图形的全等的典型例题二

合集下载

图形的全等-【题型·技巧培优系列】七年级数学下册精讲精练(北师大版)2

图形的全等-【题型·技巧培优系列】七年级数学下册精讲精练(北师大版)2
【分析】根据全等形的定义:能够完全重合的两个图形是全等形对各图形进行判断.
【解答】解: 、两个图形不全等,故此选项不合题意;
、两个图形全等,故此选项符合题意;
、两个图形不全等,故此选项不合题意;
、两个图形不全等,故此选项不合题意.
故选: .
题型二全等图形的性质
【例题2】(2022秋?琼山区校级期中)下列选项中表示两个全等的图形的是
【分析】根据图形即可得到结论.
【解答】解:由图知, ,
故选: .
【变式3-2】(2021秋?台江区期末)如图,已知方格纸中是4个相同的正方形,则 的度数为
A. B. C. D.
【分析】根据对称性可得 , .
【解答】解:观察图形可知, 所在的三角形与 所在的三角形全等,

又 ,

故选: .
【变式3-3】(2022秋?鄞州区期中)如图是单位长度为1的正方形网格,则 .
故选: .
【变式2-2】(2022秋?浦口区校级月考)如图,在四边形 与 中, , , .下列条件中:① , ;② , ;③ , ;④ , .添加上述条件中的其中一个,可使四边形 四边形 ,上述条件中符合要求的有
A.①②③B.①③④C.①④D.①②③④
【分析】连接 、 ,通过证明 △ , △ ,即可得到结论.
、能够完全重合的两个图形是全等图形,故此选项正确,符合题意;
故选: .
解题技巧提炼
此题主要考查了全等图形,正确把握全等图形的定义是解题关键.
【变式2-1】(2022秋?金湖县期中)下列说法正确的是
A.两个形状相同的图形称为全等图形
B.两个圆是全等图形
C.全等图形的形状、大小都相同
D.面积相等的两个三角形是全等图形

全等三角形的性质

全等三角形的性质

全等三角形的性质一、知识回顾1、全等形的概念:能够完全重合的两个图形叫做全等形。

2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。

用符号“≌”表示,读作:全等。

4、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等.(2)全等三角形的周长、面积相等.5、全等三角形的表示:△ABC和△A'B'C'全等,记作△ABC≌△A'B'C'.通常对应顶点字母写在对应位置上.二、典型例题例1:下列判断正确的是()A.形状相同的图形叫全等形B.图形的面积相等的图形叫全等形C.部分重合的两个图形全等D.两个能完全重合的图形是全等形分析:要判断选项的正误,要以全等形的概念为依据,结合各选项认真验证,与之相符和是正确的,反之,是错误的.解答:A、如果形状相同而面积不同,则不是全等形,错;B、如果面积相等,而形状不同,则不是全等形,错;C、根据全等形概念,强调是完全重合,错.D、正确.故选D.______________________________________________________ _______________________________例2:在下列各组图形中,是全等的图形是()分析:能够完全重合的两个图形叫做全等形.只有选项C能够完全重合,A 中大小不一致,B,D中形状不同.解答:由全等形的概念可以判断:C中图形完全相同,符合全等形的要求,而A、B、D中图形很明显不相同,A中大小不一致,B,D中形状不同.故选C.______________________________________________________ _______________________________例3:下列说法中,错误的是()A.全等三角形的面积相等B.全等三角形的周长相等C.面积相等的三角形全等D.面积不等的三角形不全等分析:判断选项是否正确,要根据全等三角形的性质,全等三角形的周长、面积分别相等;而面积相等的三角形不一定重合,即不一定全等,可得选项C 是错误的.解答:全等的三角形一定是能够互相重合的三角形,故全等的三角形面积相等,周长相等,而面积相同的两个三角形不一定能重合,即不一定全等,面积不等的三角形一定不会重合,不会全等.∴根据全等三角形的定义可知A、B、D均正确,C不正确.故选C.______________________________________________________ _______________________________例4:已知△ABC≌△A′B′C′,若∠A=50°,∠B′=80°,则∠C的度数是()A.30°B.40°C.50°D.60°分析:根据全等三角形的对应角相等,可求得∠B=∠B′=80°;根据三角形内角和定理,即可求得∠C的度数.解答:∵△ABC≌△A′B′C′∴∠B=∠B′=180°∴∠C=180°-∠A-∠B=50°故选C.______________________________________________________ _______________________________例5:如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A.4cm B.5cm C.6cmD.以上都不对分析:由△ABC≌△BAD,A和B,C和D分别是对应顶点,知AD和BC 是对应边,全等三角形的对应边相等即可得.解答:∵△ABC≌△BAD,A和B,C和D分别是对应顶点∴AD=BC=5cm.故选B.______________________________________________________ _______________________________例6:如图△ABC≌△BAD,若AB=9,BD=8,AD=7,则BC的长为()A.9 B.8 C.7 D.6分析:观察图形根据已知找出对应边,运用两三角形全等的性质得对应边相等可求解.解答:∵△ABC≌△BAD,∴BC=AD=7.故选C______________________________________________________ _______________________________例7:(2003·海南)如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是()A.1个B.2个C.3个D.4个分析:根据已知找准对应关系,运用三角形全等的性质“全等三角形的对应角相等,对应边相等”求解即可.解答:∵△ABC≌△AEF,AB=AE,∠B=∠E∴EF=BC,∠EAF=∠BAC∴∠EAB+∠BAF=∠FAC+∠BAF即∠EAB=∠FACAC与AE不是对应边,不能求出二者相等,也不能求出∠FAB=∠EAB∴①、②错误,③、④正确故选B.______________________________________________________ _______________________________例8:如图,在△ABC中,D、E分别是AB,BC上的点,若△ACE≌△ADE≌△BDE,则∠ABC=()A.30°B.35°C.45°D.60°分析:运用全等三角形的性质可得出∠C=∠EDA=∠EDB=90°和∠B=∠BAE=∠CAE,从而求出∠B.解答:∵△ADE≌△BDE则∠ADE=∠BDE又∵∠ADE+∠BDE=180°∴∠ADE=∠BDE=90°∵△ACE≌△ADE∴∠C=∠ADE=90°∴∠CAB+∠B=90°又∵△ACE≌△ADE≌△BDE∴∠CAE=∠EAD=∠B=90°/3 =30°故选A.三、解题经验全等形的概念:两个能完全重合的图形是全等形,做题时要严格按照定义去判断。

专题 图形的全等(知识讲解)数学七年级下册基础(北师大版)

专题 图形的全等(知识讲解)数学七年级下册基础(北师大版)

专题4.7 图形的全等(知识讲解)【学习目标】1、从图形重合中理解图形全等的对应边、对应角的关系;2.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素;3.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.特别说明:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.特别说明:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.特别说明:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、图形的全等➽➼全等图形的识别1.下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.故选:B.【点拨】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.举一反三:【变式1】下列各组中的两个图形属于全等图形的是()A.B.C.D.【答案】D【分析】根据全等图形的概念判断即可.解:A、两个图形不能完全重合,不是全等图形,故本选项不符合题意;B、两个图形能够完全重合,不是全等图形,故本选项不符合题意;C、两个图形不能完全重合,不是全等图形,故本选项不符合题意;D、两个图形能完全重合,是全等图形,故本选项符合题意;故选:D.【点拨】本题考查的是全等图形的概念,掌握能够完全重合的两个图形叫做全等形是解题的关键.【变式2】下列图标中,不是由全等图形组合成的是()A.B.C.D.【答案】C【分析】根据全等图形的概念分析即可.解:A 、该图像是由三个全等的图形构成,故该选项不符合题意;B 、该图像是由五个全等的图形构成,故该选项不符合题意;C 、该图像不是由全等图形构成,故该选项符合题意;D 、该图像是由两个全等的图形构成,故该选项不符合题意;故选:C .【点拨】本题考查了全等图形,熟练掌握能够完全重合的两个图形是全等图形是解题的关键.类型二、全等三角形概念➽➼全等图形的识别 2.如图,在ABC 中,AD BC ⊥于点D ,=BD CD .完成下面说明B C ∠=∠的理由的过程.解:AD BC ⊥(已知),ADB ∴∠=___________Rt =∠(垂直的定义). 当把图形沿AD 对折时,射线DB 与DC ___________.BD CD =(___________)∴点B 与点___________重合,ABD ∴与ACD ___________,ABD ∴___________ACD (全等三角形的定义), B C ∴∠=∠(___________). 【答案】ADC ∠;重合;已知;C ;重合;≅;全等三角形的性质【分析】根据全等三角形的定义,即可得到答案.解:AD BC ⊥(已知),ADB ∴∠=ADC ∠Rt =∠(垂直的定义). 当把图形沿AD 对折时,射线DB 与DC 重合.BD CD =(已知)∴点B 与点C 重合,ABD ∴与ACD 重合,ABD ∴≌ACD (全等三角形的定义), B C ∴∠=∠(全等三角形的性质).故答案为:ADC ∠;重合;已知;C ;重合;≅;全等三角形的性质.【点拨】本题主要考查证明三角形全等,掌握全等三角形的定义:能够完全重合的三角形叫做全等三角形,是关键.举一反三:【变式1】如下图,AOC 与BOD 全等.用符号“≌”表示这两个三角形全等.已知A ∠与B ∠是对应角,写出其余的对应角和各对对应边.【答案】AOC BOD △△≌.对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠; 对应边是;OA 与OB ,OC 与OD ,AC 与BD .【分析】根据全等三角形的表示法以及全等三角形的性质即可得到答案.解: AOC BOD △△≌. 因为A ∠与B ∠是对应角,所以其余的对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠;对应边是;OA 与OB ,OC 与OD ,AC 与BD .【点拨】本题主要考查全等三角形的表示法和性质,准确找到全等三角形的对应角和对应边是关键.【变式2】如图,若ADE BCE ≌△△,1∠与2∠是对应角,AD 与BC 是对应边,写出其他的对应边及对应角.【答案】AE 与BE 是对应边,DE 与CE 是对应边,D ∠与C ∠是对应角,AED ∠与BEC ∠是对应角.【分析】根据全等三角形对应边和对应角的定义即可判断.解:因为ADE BCE ≌△△,所以AE 与BE 是对应边,DE 与CE 是对应边,D ∠与C ∠是对应角,AED ∠与BEC ∠是对应角.【点拨】本题主要考查全等三角形的对应边和对应角,比较基础,熟练掌握全等三角形对应边和对应角的定义是解题关键.类型三、全等三角形的性质➽➼求边✮✮求角✮✮周长✮✮面积3.如图,ABC DEC ≌△△,点A 和点D 是对应点,点B 和点E 是对应点,过点A 作AF CD ⊥,垂足为点F .(1) BAC ∠=______,B ∠=______,AB =______;(2) 若65BCE ∠=︒,完善求CAF ∠度数的解题过程.∴ABC DEC ≌△△, ∴ACB =∠______,∴BCE ACE ACD ACE ,∴______.∴65BCE ∠=︒,∴65ACF ∠=︒.又∴______,∴90AFC ∠=︒,∴CAF ∠=______︒. 【答案】(1) D ∠,E ∠,DE (2) DCE ∠,BCE ACD ∠=∠,AF CD ⊥,25【分析】(1)由ABC DEC ≌△△,即可得到对应角和对应边相等(2)由ABC DEC ≌△△,得到BCE ACD ∠=∠,且AF CD ⊥,即可求得25CAF ∠=︒ (1)解:∴ABC DEC ≌△△,∴BAC D ∠=∠,B E ∠=∠,AB DE =;故答案为:D ∠,E ∠,DE(2)∴ABC DEC ≌△△,∴ACB DCE ∠=∠,∴BCE ACE ACD ACE ,∴BCE ACD ∠=∠.∴65BCE ∠=︒,∴65ACF ∠=︒.又∴AF CD ⊥,∴90AFC ∠=︒,∴25CAF ∠=︒.故答案为:DCE ∠,BCE ACD ∠=∠,AF CD ⊥,25【点拨】本题考查了全等三角形的性质及直角三角形的性质,熟练掌握全等三角形的性质是解决问题的关键举一反三:【变式1】如图,AB 与CD 相交于点E ,连接AD AC BC 、、,若,28ABC ADE BAC ∠=︒△≌△,求B ∠的度数.【答案】48︒ 是ADE 的一个外角,AEC DAE -∠48=︒.【点拨】本题考查了全等三角形的性质,以上知识是解题的关键.】如图,已知ABC △(1) 若6DE =,4BC =,求线段AE 的长;(2) 已知35D ∠=︒,60C ∠=︒,求AFD ∠的度数.【答案】(1) 2AE = (2) 130AFD ∠=︒【分析】(1)根据全等三角形的性质得到6AB DE ==,4BE BC ==,结合图形计算,得到答案;(2)根据全等三角形的性质得到60DBE C ∠=∠=︒,35A D ∠=∠=︒,根据三角形内角和定理求出ABC ∠,计算即可.(1)解:∴ABC DEB △△≌,6DE =,4BC =, ∴6AB DE ==,4BE BC ==, ∴642AE AB BE =-=-=;(2)∴ABC DEB △△≌,35D ∠=︒,60C ∠=︒, ∴60DBE C ∠=∠=︒,35A D ∠=∠=︒,ABC DEB ∠=∠,∴18085ABC A C ∠=︒-∠-∠=︒,∴85DEB ∠=︒,∴95AED ∠=︒,∴3595130AFD A AED ∠=∠+∠=︒+︒=︒.【点拨】本题考查了全等三角形的性质,三角形的内角和定理,三角形外角的性质,熟练掌握全等三角形的性质是解题的关键.4.如图,已知ABC DEB ≌,点E 在AB 上,AC 与BD 交于点F ,8AB =,5BC =,65C =︒∠,20D ∠=︒.(1) 求AE 的长度;(2) 求AED ∠的度数.【答案】(1) 3AE = (2) 85AED ∠=︒【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可. 解:(1)∴ABC DEB ≅,∴3BE BC ==,∴633AE AB BE =-=-=,(2)∴ABC DEB ≅,∴25A D ∠=∠=︒,55DBE C ∠=∠=︒,∴255580AED DBE D ∠=∠+∠=︒+︒=︒.【点拨】本题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等即可.举一反三:【变式1】如图,已知△ABC ∴∴DEF ,AF =5cm .(1)求CD 的长.(2)AB 与DE 平行吗?为什么?解:(1)∴∴ABC ∴∴DEF (已知),∴AC =DF ( ),∴AC ﹣FC =DF ﹣FC (等式性质) 即 =∴AF =5cm∴ =5cm(2)∴∴ABC ∴∴DEF (已知)∴∴A = ( )∴AB ( )【答案】(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∴D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ∴∴DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ∴∴DEF ,可以得到∴A =∴D ,从而可以得到AB 与DE 平行. 解:(1)∴∴ABC ∴∴DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∴AF =5cm∴CD =5cm ;(2)∴∴ABC ∴∴DEF (已知)∴∴A =∴D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∴D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点拨】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2】如图,B ,C ,D 三点在同一条直线上,90,,5B D ABC CDE AB ︒∠=∠=∆≅∆=,12,13BC CE ==.(1) 求ABC 的周长.(2) 求ACE △的面积.,然后计算ABC 的周长;,再证明ACE ∠=)ABC ∆≅13AC CE ==ABC 的周长)ABC CDE ∆≅∆13,AC CE ∴==90D ∠=︒,CED ∴∠+∠ACB ∴∠+∠ACE ∴∠=ACE ∴的面积【点拨】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.熟练掌握知识点是解题的关键.类型四、全等图形➽➼应用5.沿着图中的虚线,用两种方法将下面的图形划分为两个全等的图形.【分析】根据全等图形的定义:对应边都相等,对应角都相等的图形进行构造即可.解:如图所示(任意两种方法,正确即可):【点拨】本题考查全等图形的定义,熟练掌握相关概念是解题的关键.举一反三:【变式1】试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.【答案】见分析(第一个图答案不唯一)【分析】根据全等图形的定义,利用图形的对称性和互补性来分隔成两个全等的图形.解:第一个图形分割有如下几种:第二个图形的分割如下:【点拨】本题主要考查了学生的动手操作能力和学生的空间想象能力,牢记全等图形的定义是解题的重点.【变式2】沿着图中的虚线,请将如图的图形分割成四个全等的图形.【答案】见分析【分析】直接利用图形总面积得出每一部分的面积,进而求出答案.解:共有3412⨯=个小正方形,∴被分成四个全等的图形后每个图形有1243÷=,∴如图所示:,【点拨】本题主要考查了应用设计图作图,正确求出每部分面积是解题关键.s。

初中数学《图形的全等》经典习题

初中数学《图形的全等》经典习题

平面图形的认识试卷副标题1.命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果a2=b2,那么a=b;⑧三角对应相等的两三角形全等;⑨如果∠A+∠B=90°,那么∠A与∠B互余.其中真命题有…()A. 3个B. 4个C. 5个D. 6个2.下列条件中能判定△ABC≌△DEF的是()A. AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC. AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF3.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形4.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;其中假命题共有()A. 1个B. 2个C. 3个D. 4个5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A. 50 B. 62 C. 65 D. 687.如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()A. 2对B. 3对C. 4对D. 5对8.下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCOB.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD 9.如图,AC=DF,∠ACB=∠DFE,点B、E、C在一条直线上,则下列条件中不能断定△ADC≌DEF的是()A.∠A=∠D B. BE=CF C. AB=DE D. AB∥DE10.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B. 4 C.D. 511.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.如图,在△ABC和△BAD中,若∠C=∠D,再添加一个条件,就可以判定△ABC≌△BAD 你添加的条件是.13.如图,已知AC=BD,则再添加条件,可证出△ABC≌△BAD.14.如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要补加一个条件是或或.15.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= cm.16.如图,△ABC≌△EFC,CF=3cm,CE=4cm,∠F=36°,则BC= cm,∠B=度.17.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.18.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与对应;B与对应;C与对应;D与对应.19.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).20.如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有对.21.如图,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC(1)证明:△C′BD≌△B′DC;(2)证明:△AC′D≌△DB′A;(3)对△A BC、△ABC′、△BCA′、△CAB′,从面积大小关系上,你能得出什么结论?22.如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.23.如图,已知:△ABC中,∠ACB=90°,D为AC边上的一点,E为DB的中点,CE的延长线交AB于点F,FG∥BC交DB于点G.试说明:∠BFG=∠CGF.24.如图(1),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.25.如图,两个全等的直角三角形△ABC和△A1B1C1中,∠ACB=∠A1C1B1=90°,两条相等的直角边AC,A1C1在同一直线上,A1B1与AB交于O,AB与B1C1交于E1,A1B1与BC交于E.(1)写出图中除△ABC≌△A1B1C1外的所有其它各组全等三角形(不再连线和标注字母);(2)求证:B1E1=BE.26.(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.27.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE的道理.28.用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.29.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.30.如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:;得到的一对全等三角形是△≌△.参考答案1.B【解析】试题分析:根据邻补角互补,对顶角相等的性质,线段的性质,直线的性质,倒数的特殊规定,绝对值的选择性,全等三角形的判定,余角的定义对各小题分析判断后即可求解.解:①邻补角互补,正确;②对顶角相等,正确;③被截线不平行则同旁内角不互补,故本小题错误;④两点之间线段最短,是线段的性质,正确;⑤直线是向两方无限延伸的,没有长短,故本小题错误;⑥0没有倒数,故本小题错误;⑦如果a2=b2,那么a=b或a=﹣b,故本小题错误;⑧三角对应相等的两三角形相似但不一定全等,故本小题错误;⑨如果∠A+∠B=90°,那么∠A与∠B互余,是定义,正确.综上所述,真命题有①②④⑨共4个.故选B.考点:对顶角、邻补角;倒数;线段的性质:两点之间线段最短;全等三角形的判定.点评:本题是对基础知识的综合考查,熟记概念与性质是解题的关键.2.D【解析】试题分析:全等三角形的判定方法有:SAS,ASA,AAS,SSS,而SSA,AAA都不能判定两三角形全等,根据以上内容判断即可.解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故本选项正确;故选D.考点:全等三角形的判定.点评:本题考查了全等三角形的判定的应用,题目比较好,但是一道比较容易出错的题目,全等三角形的判定方法有:SAS,ASA,AAS,SSS.3.D【解析】试题分析:根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选D.考点:全等三角形的性质.点评:本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.4.B【解析】试题分析:根据三角形全等的判定方法即可解得,做题时要根据已知条件结合判定方法逐个验证.解:①符合SAS,成立;②SSA不符合三角形全等的条件;③符合SAS,是真命题;④没有对应相等不符合三角形全等的条件,是假命题.则正确的是①和③.故选B.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.B【解析】试题分析:全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.考点:全等三角形的判定.点评:本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.A【解析】试题分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.考点:全等三角形的判定与性质.点评:本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.7.C【解析】试题分析:根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证,做题时要由易到难,循序渐进.解:①△ODC≌△OEC∵BD⊥AO于点D,AE⊥OB于点E,OC平分∠AOB∴∠ODC=∠OEC=90°,∠1=∠2∵OC=OC∴△ODC≌△OEC(AAS)∴OE=OD,CD=CE;②△ADC≌△BEC∵∠CDA=∠CEB=90°,∠3=∠4,CD=CE∴△OBE≌△OCD(AAS)∴AC=BC,AD=BE,∠B=∠A;③△OAC≌△OBC∵OD=OE∴OA=OB∵OA=OB,OC=OC,AC=BC∴△ABO≌△ACO(SSS);④△OAE≌△OBD∵∠ODB=∠OEA=90°,OA=OB,OD=OE∴△AEC≌△ADB(HL).故选C.考点:全等三角形的判定.点评:本题考查了全等三角形的判定方法;全等三角形的判定方法一般有:AAS、SAS、ASA、SSS、HL.应该对每一种方法熟练掌握做到灵活运用,做题时要做到不重不漏.提出猜想,证明猜想是解决几何问题的基本方法.8.C【解析】试题分析:全等三角形的判定定理有:SAS、ASA、AAS、SSS,只要具备以上四种方法中的一种,即可判定联三角形全等.解:A、因为∠AOB=∠DOC,根据SAS可判断△ABO≌△DCO,故本选项错误;B、AB=AB,根据SSS可证出△ABC≌△ABD,故本选项错误;C、全等三角形的判定定理有SAS、ASA、AAS、SSS,根据已知不能得出以上三个条件,即两三角形不全等,故本选项正确;D、∵AE=BE,CE=DE,∴AD=BC,∵AB=AB,AC=BD,根据SSS可证出△ABC≌△BAD,故本选项错误.故选C.考点:全等三角形的判定.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定有:SAS、ASA、AAS、SSS,题型较好,但是一道比较容易出错的题目.9.C【解析】试题分析:根据全等三角形的判定ASA推出三角形全等,即可判断A;求出BC=EF,根据SAS 即可判断B;根据有两边和其中一边的对角相等不能判断两三角形全等,即可判断C;根据平行线性质推出∠B=∠DEF,根据AAS即可判断D.解:A、在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;B、∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;C、根据AB=DE,∠ACB=∠DFE,AC=DF,不能判定△ABC和△DEF全等,故本选项正确;D、∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;故选C.考点:全等三角形的判定;平行线的性质.点评:本题考查了平行线性质和全等三角形的判定的应用,熟练地运用定理进行推理是解此题的关键,题目比较好,难度适中.10.B【解析】试题分析:由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠AHE+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.考点:全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=45°,AD是高,得出BD=AD是正确解答本题的关键.11.2【解析】试题分析:AB不是全等三角形的对应边,但它通过全等三角形的对应边转化为AB=CD,而使AB+CD=AD﹣BC可利用已知的AD与BC求得.解:∵△ACF≌△DBE,∠E=∠F,∴CA=BD,∴CA﹣BC=DB﹣BC,即AB=CD,∴AB+CD=2AB=AD﹣BC=9﹣5=4(cm),∴AB=2(cm).故填2.考点:全等三角形的性质.点评:本题主要考查了全等三角形的对应边相等.难点在于根据图形得到线段AB=CD,也是解决本题的关键.12.∠DAB=∠CBA(答案不唯一)【解析】试题分析:由图可知,AB是公共边,然后根据全等三角形的判定方法选择添加不同的条件即可.解:∵∠C=∠D,AB是公共边,∴可添加∠DAB=∠CBA或∠DBA=∠CAB,故答案为:∠DAB=∠CBA(答案不唯一).考点:全等三角形的判定.点评:本题考查了全等三角形的判定,根据∠D、∠C是公共边AB的对角,只能选择利用“角角边”证明两三角形全等添加条件.13.∠CAB=∠DBA@BC=AD【解析】试题分析:本题要判定△ABC≌△ADC,已知AC=BD,AB是公共边,具备了两组边对应相等,故添加BC=AD、∠CAB=∠DBA,后可分别根据SSS、SAS、能判定△ABC≌△ADC.解:AC=BD,AB是公共边,加∠CAB=∠DBA,就可以用SAS证出△ABC≌△BAD;加BC=AD就可以用SSS证出△ABC≌△BAD.故填∠CAB=∠DBA@BC=AD.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.∠A=∠D AB=CD ∠ACB=∠DBC【解析】试题分析:要证明△ABC≌△DCB,已知∠ABC=∠DCB,且有一个公共边BC=BC,则可以添加一组角从而利用AAS、ASA判定其全等;添加边从而利用SAS判定其全等.解:补充∠A=∠D.∵∠ABC=∠DCB,BC=BC,∠A=∠D∴△ABC≌△DCB(AAS)补充∠ACB=∠DBC.∵∠ABC=∠DCB,BC=BC,∠ACB=∠DBC∴△ABC≌△DCB(ASA)补充AB=CD.∵∠ABC=∠DCB,AB=CD,BC=BC∴△ABC≌△DCB(SAS).∴故填∠A=∠D或AB=CD或∠ACB=∠DBC.考点:全等三角形的判定.点评:题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.10【解析】试题分析:根据△DEF周长是32cm,DE=9cm,EF=13cm就可求出第三边DF的长,根据全等三角形的对应边相等,即可求得AC的长.解:DF=32﹣DE﹣EF=10cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=10cm.考点:全等三角形的性质.点评:本题考查全等三角形的性质,解题时应注重识别全等三角形中的对应边,要根据对应角去找对应边.16.3 36【解析】试题分析:运用“全等三角形的对应边相等,对应角相等”即可得,做题时要根据△ABC≌△EFC找对对应边.解:∵△ABC≌△EFC,CF=3cm,∠F=36,∴BC的对应边是CF,∠B的对应角是∠F,∴BC=FC=3cm,∠B=∠F=36°.故填3,36.考点:全等三角形的性质.点评:本题考查了全等三角形的性质及对应关系的找法;全等三角形书写时各对应顶点应在同一位置,找准对应关系是解决本题的关键.17.【解析】试题分析:根据图形得出当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;根据以上结果得出当有n个点时,图中有个全等三角形即可.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.考点:全等三角形的判定.点评:本题考查了对全等三角形的应用,关键是根据已知图形得出规律,题目比较典型,但有一定的难度.18.M N Q P【解析】试题分析:能够完全重合的两个图形叫做全等形.按照剪开前后各基本图形是重合的原则进行逐个验证、排查.解:由全等形的概念可知:A是三个三角形,与M对应;B是一个三角形和两个直角梯形,与N对应;C是一个三角形和两个四边形,与Q对应;D是两个三角形和一个四边形,与P对应故分别填入M,N,Q,P.考点:全等图形.点评:本题考查的是全等形的识别,注意辩别组成图形的基础图形的形状.19.①②③【解析】试题分析:由已知条件,可直接得到三角形全等,得到结论,采用排除法,对各个选项进行验证从而确定正确的结论.解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).所以正确结论有①②③.故填①②③.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.得到三角形全等是正确解决本题的关键.20.4【解析】试题分析:根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证.解:∵CD⊥AB,BE⊥AC,垂足分别为D、E,且AO平分∠BAC,∴△ODA≌△OEA,∴∠B=∠C,AD=AE,∴△ADC≌△AEB,∴AB=AC,∴△OAC≌△OAB,∴△COE≌△OBD.故填4.考点:全等三角形的判定.点评:本题考查了三角形全等的判定方法;提出猜想,验证猜想是解决几何问题的基本方法,做题时要注意从已知条件开始思考结合全等的判定方法逐一判断,做到不重不漏,由易到难.21.(1)先证明:△C′BD≌△ABC,再证明△ABC≌△B′DC;(2)根据(1)的结论,可以证明:△AC′D≌△DB′A;(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.【解析】试题分析:(1)先证明:△C′BD≌△ABC,再证明△ABC≌△B′DC;(2)根据(1)的结论,可以证明:△AC′D≌△DB′A;(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.(1)△C′BD与△ABC中,BC=DC,AB=BC′,∠C′BD=60°+∠ABD=∠ABC,∴△C′BD≌△ABC,∴C′D=AC又在△BCA与△DCB′中,BC=DC,AC=B′C,∠ACB=∠B′CD=60°,∴△BCA≌△DCB′.∴DB′=BA.∴△C′BD≌△B′DC(2)由(1)的结论知:C′D=B′C=AB′,B′D=BC′=AC′,又∵AD=AD,∴△AC′D≌△DB′A.(3)S△AB′C>S△ABC′>S△ABC>S△A′BC;S△AB′C=,S△A′BC=,S△ABC′=,S△ABC=,因为AB2=(AC2+BC2﹣2AC×BC×cos60°)整理得S△ACB′+S△BCA′=S△ABC′+S△ABC考点:全等三角形的判定;三角形的面积.点评:考查全等三角形的证明,考查在三角形中,已知两边和夹角求第三边的计算.22.有两种解法:①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.【解析】试题分析:有两种解法:①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.证明:方法一:延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC,∴BF=AC;方法二:延长AD至点M,使DM=AD,连接BM,在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴∠M=∠MAC,BM=AC,∵EA=EF,∴∠CAM=∠AFE,而∠AFE=∠BFM,∴∠M=∠BFM,∴BM=BF,∴BF=AC.考点:全等三角形的判定与性质.点评:本题考查了三角形全等的判定及性质、等腰三角形的性质.其中普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,解决此题的关键是作出巧妙的辅助线:倍长中线.23.本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.【解析】试题分析:本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.证明:∵∠ACB=90°,E为DB的中点,∴CE=DE=BE,(直角三角形斜边上的中线等于斜边一半)∴CE=EB,∴∠ECB=∠CBE,∵FG∥BC,∴∠GFE=∠ECB,∠EGF=∠CBE∴∠EGF=∠EFG,∴GE=EF,∵∠GEC=∠FEB,∴△GEC≌△FEB,∴∠EFB=∠EGC,∵∠BFG=∠EFB+∠EFG,∠CGF=∠EGC+∠EGF,∴∠BFG=∠CGF.考点:全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,从而得出FG=EG,即BD平分EF.(2)结论仍然成立,同样可以证明得到.【解析】(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,试题分析:从而得出FG=EG,即BD平分EF.(2)结论仍然成立,同样可以证明得到.(1)证明:∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,∴△BFG≌△DGE(AAS),∴FG=EG,即BD平分EF.(2)FG=EG,即BD平分EF的结论依然成立.理由:因为 AE=CF,所以 AF=CE,因为 DE垂直于AC,BF垂直于AC,所以角AFB=角CED,BF∥DE,因为AB∥CD,所以角A=角C,所以三角形ABF全等于三角形CDE,所以 BF=DE,所以四边形BEDF是平行四边形,所以 GE=GF,即:BD平分EF,即结论依然成立.考点:全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.【解析】试题分析:(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.(1)解:△ACE≌△A1C1E1,△OBE≌△O1B1E1;(2)证明:∵△ABC≌△A1B1C1∴AC=A1C1,BC=B1C1∴AC1=A1C已知∠A=∠A1,∠ACE=∠A1C1E1=90°∴△ACE≌△A1C1E1∴CE=C1E1又∵BC=B1C1∴B1E1=BE.考点:全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.26.(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.【解析】试题分析:(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.证明:(1)如图1∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,∵在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°,∴AC=2AD,AC=2AB,∴AD+AB=AC.(2)判断是:(1)中的结论①DC=BC;②AD+AB=AC都成立.理由如下:如下图,在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴△ADC≌△EBC,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.考点:全等三角形的判定与性质;角平分线的定义;三角形内角和定理.点评:本题考查了角平分线的性质,直角三角形的性质,和全等三角形的判定等知识综合运用,是一道由浅入深的训练题.27.根据已知,利用有两组角对应相等的两个三角形相似得到△AEF∽△DCF,从而得到∠E=∠C,再由已知可得∠BAC=∠DAE,又因为AC=AE,所以根据AAS可判定△ABC≌△ADE.【解析】试题分析:根据已知,利用有两组角对应相等的两个三角形相似得到△AEF∽△DCF,从而得到∠E=∠C,再由已知可得∠BAC=∠DAE,又因为AC=AE,所以根据AAS可判定△ABC≌△ADE.解:△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠E=∠C.∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,∴△ABC≌△ADE.考点:全等三角形的判定.点评:此题考查学生对相似三角形的判定及全等三角形的判定的理解及运用.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.应先确定选择哪对三角形,再对应三角形全等条件求解.【解析】试题分析:本题是一道开放性题,应先确定选择哪对三角形,再对应三角形全等条件求解.解:(1)BE=CF.证明:在△ABE和△ACF中,∵∠BAE+∠EAC=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵AB=AC,∠B=∠ACF=60°,∴△ABE≌△ACF(ASA).∴BE=CF;(2)BE=CF仍然成立.证明:在△ACE和△ADF中,∵∠CAE+∠EAD=∠FAD+∠DAE=60°,∴∠CAE=∠DAF,∵∠BCA=∠ACD=60°,∴∠FCE=60°,∴∠ACE=120°,∵∠ADC=60°,∴∠ADF=120°,在△ACE和△ADF中,∴△ACE≌△ADF,∴CE=DF,∴BE=CF,考点:全等三角形的判定.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.29.(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.【解析】试题分析:(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,。

全等三角形典型50题

全等三角形典型50题

2
shp EDIT
∴ ABO DCO . 又∵ AOB DOC , ∴ △ AOB ≌△DOC . ∴ OA OD . 【典题5】 如图所示, AB AF , BC FE , B F , D 是 CE 的中点. ⑴ 求证: AD ⊥ CE ; ⑵ 连接 BF 后,还能得出什么结论?请你写出两个(不要求证明)
模块一 全等基本模型
【典题1】 证明:两全等三角形的对应角的角平分线相等. 【答案】已知:△ ABC ≌△ A BC , AD 平分 BAC 交 BC 于 D , AD 平分 B AC 交 B C 于 D .
A A'
B
D
C
B'
D'
C'
求证: AD AD . 证明:∵ △ ABC ≌△ A BC , ∴ BAC B AC , ∵ AD 平分 BAC 交 BC 于 D , AD 平分 B AC 交 B C 于 D 1 1 BAD BAC B AC B A D 2 2 ∴ 在 △ ABD 和 △ A B D 中, BAD B AD AB AB B B ∴ △ ABD ≌△ A B D , ∴ AD AD 【典题2】 如图,在 △ ABE 中, AB AE , AD AC , BAD EAC , BC 、 DE 交于点 O . 求证:⑴ △ ABC ≌△ AED ;⑵ OB OE .
A B C
F E
D
【答案】⑴ 连结 AC、 AE ,则 △ ABC ≌△ AFE ,∴ AC AE , 又∵ D 是 CE 的中点,∴ AD ⊥ CE ⑵ AD BF , BF ∥ CE 【典题6】 如图,在五边形 ABCDE 中, B E , C D , BC DE , M 为 CD 中点. 求证: AM CD .

三角形全等的判定(含例题)

三角形全等的判定(含例题)

1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。

三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。

关于全等三角形的例题

关于全等三角形的例题

关于全等三角形的例题全等三角形,听起来是不是有点高大上?其实它就像我们生活中的小秘密一样,随处可见。

这不,咱们先来聊聊,三角形的魅力在哪里。

大家都知道,三角形是最简单的几何图形之一。

三条边,三角角,简单又好玩。

不过,说到全等三角形,这事儿可就有意思了。

全等三角形就像是长得一模一样的双胞胎,简直让人忍不住想要八卦一番。

想象一下,有两个三角形,A和B,长得就像复制粘贴过来的一样。

这两个小家伙无论是边长还是角度,都是一模一样的。

就像是穿了一样的衣服,甚至连发型都不带差别。

是不是特别有趣?你知道,这样的三角形是怎么判定的嘛?我们常用的有SSS、SAS、ASA和AAS这几种方式。

听上去很复杂,其实就是看边边角角。

只要其中三条边都相等,或者两边一夹角相等,咱们就可以自信地说“嘿,这俩小家伙全等!”再说说我们日常生活中的例子。

想象一下,你和你的小伙伴一起画画,你们俩居然画出了一模一样的三角形。

这不就是全等三角形的真实写照吗?你们用的尺子、量角器,全都一样。

要是让其他朋友来看看,他们肯定会惊叹“哇,真是天衣无缝啊!”这时候,你心里是不是乐开了花?那种感觉就像是找到了志同道合的伙伴,一起做了一件很酷的事情。

咱们再来聊聊这些三角形的性质。

全等三角形之间的关系可不简单。

就像好朋友一样,它们之间有很多的共同点。

比如说,面积和周长,都是一模一样的。

想想看,如果你们在比赛,结果肯定是平局,没有谁赢谁输。

就像打游戏的时候,两个玩家都是满血状态,谁也不服谁。

这样的局面是不是很让人兴奋?还记得我们在课堂上学的那些定理吗?比如说,平行线被横线切割后,形成的角度就可以帮助我们判断全等三角形。

老师一边讲解,一边用粉笔在黑板上画个不停,大家听得津津有味。

每当这时候,心里总会想“哇,数学真有趣!”就像是在探险一样,发现了一个又一个小秘密。

再说说实际应用,生活中其实到处都是全等三角形的身影。

建筑设计、工程测量,甚至一些玩具的制作,三角形的稳定性让它们成为了各种设计的宠儿。

第4讲.全等三角形的经典模型(二).培优

第4讲.全等三角形的经典模型(二).培优

等等…腰漫画释义满分晋级阶梯4全等三角形的 经典模型(二)三角形11级特殊三角形之直角三角形 三角形10级 勾股定理与逆定理 三角形9级全等三角形的经典模型(二)OFEC BA A F COBEDHABCDO EO GFE CB A“手拉手”数学模型:⑴ ⑵ ⑶【引例】 如图,等边三角形ABE 与等边三角形AFC 共点于A ,连接BF 、CE ,求证:BF =CE 并求出∠EOB 的度数.【解析】 ∵△ABE 、△AFC 是等边三角形∴AE =AB ,AC =AF ,60∠=∠=︒EAB FAC知识互联网思路导航例题精讲题型一:“手拉手”模型NM C B A B N CN∴∠+∠=∠+∠EAB BAC FAC BAC 即∠=∠EAC BAF ∴AEC ABF △≌△ ∴BF =EC ∠=∠AEC ABF又∵AGE BGO ∠=∠ ∴60∠=∠=︒BOE EAB ∴60∠=︒EOB【例1】 如图,正方形BAFE 与正方形ACGD 共点于A ,连接BD 、CF ,求证:BD =CF 并求出∠DOH 的度数.【解析】 同引例,先证明ABD AFC △≌△∴BD =FC ,∠=∠BDA FCA ∵∠=∠DHO CHA ∴90∠=∠=︒DOH CAD【例2】 如图,已知点C 为线段AB 上一点,ACM △、BCN △是等边三角形.⑴ 求证:AN BM =.⑵ 将ACM △绕点C 按逆时针方向旋转180°,使点A 落在CB 上,请你对照原题图在图中画出符合要求的图形;⑶ 在⑵得到的图形中,结论“AN BM =”是否还成立,若成立,请证明;若不成立,请说明理由;⑷ 在⑵所得的图形中,设MA 的延长线交BN 于D ,试判断ABD △的形状,并证明你的结论.【分析】 这是一个固定后运动变化的探索题,且在一定的条件下,探究原结论的存在性(不变性); 需要画图分析、判断、猜想、推理论证.【解析】 ⑴ ∵ACM △、BCN △是等边三角形∴AC CM =,BC CN = 60ACM BCN ∠=∠=° ∴∠=∠ACN MCB在ACN △和MCB △中典题精练OHG DFE CB ADNMCBA=⎧⎪∠=∠⎨⎪=⎩AC MC ACN MCB CN CB ∴ACN MCB △≌△(SAS ) ∴AN BM =⑵ 将ACM △绕点C 旋转如图:⑶ 在⑵的情况,结论AN BM =仍然成立.证明:∵60BCM NCA ∠=∠=°,CA CM =,CN CB =. ∴CAN CMB △≌△(SAS ),∴AN MB =.⑷ 如图,延长MA 交BN 于D ,则ABD △为等边三角形. 证明:∵60CAM BAD ABD ∠=∠=∠=°. ∴ABD △是等边三角形.【例3】 在ABC △中,90∠=BAC °,⊥AD BC 于D ,BF 平分∠ABC 交AD 于E ,交AC 于F .求证:AE=AF .54321A BCDE F【解析】 90∠=BAC °,390∴∠+∠=DAC °90⊥∴∠=︒AD BC ADC 90∴∠+∠=︒C DAC 3∴∠=∠C43152∠=∠+∠∠=∠+∠C ,BF 是ABC ∠的角平分线 12∴∠=∠ 45∴∠=∠∴=AE AF【例4】 如图,已知ABC △中,90ACB ∠=°,CD AB ⊥于D ,ABC ∠的角平分线BE 交CD 于G ,交AC 于E ,GF AB ∥交AC 于F .典题精练题型二:双垂+角平分线模型ENMD CBA NMD CBA 求证:AF CG =.【分析】 要证AF CG =,一般想到证明这两条线段所在的三角形全等,由图形可知,不存在直接全等三角形,因此要想到添加辅助线构造全等三角形.【解析】 作EH AB ⊥于H∵12∠=∠,90ACB ∠=°∴EC EH =(角平分线定理) 又∵CD AB ⊥ ∴3A ∠=∠∵431∠=∠+∠,52A ∠=∠+∠ ∴45∠=∠ ∴CE CG = ∴CG EH =又∵GF AB ∥,90∠=∠=AHE FGC ° ∴A CFG ∠=∠∴CFG EAH △≌△(AAS ) ∴=CF EA ,∴-=-CF EF EA EF , ∴CE AF = ∴AF CG =【例5】 已知:正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交线段CB DC 、于点M N 、.求证BM DN MN +=.【解析】 延长ND 到E 使DE BM =∵四边形ABCD 是正方形 ∴AD =AB在ADE △和ABM △ =⎧⎪∠=∠⎨⎪=⎩AD AB ADE B DE BM ∴ADE ABM △≌△∴AM =AE ∠=∠BAM DAE典题精练题型三:半角模型54321HG FE DCBA54321G FE DCBADHFECBA∵45MAN ∠=︒ ∴45∠+∠=︒BAM NAD ∴45∠=∠=︒MAN EAN在AMN △和AEN △中 =⎧⎪∠=∠⎨⎪=⎩MA EA MAN EAN AN AN ∴AMN AEN △≌△ ∴MN =EN∴DE +DN =BM +DN=MN【例6】 如图,在四边形ABCD 中,180∠+∠=︒=B D AB AD ,,E 、F 分别是线段BC 、CD 上的点,且BE +FD =EF . 求证:12∠=∠EAF BAD .ABCDEF【解析】 延长FD 到H ,使DH =BE ,易证ABE ADH △≌△, 再证AEF AHF △≌△1122∴∠=∠=∠=∠EAF FAH EAH BAD【例7】 在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为三角形ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC . 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系.AM N BCDCBN M A图1 图2⑴如图1,当点M 、N 在边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; ⑵如图2,点M 、N 在边AB 、AC 上,且当DM ≠DN 时,猜想⑴问的结论还成立吗?写出你的猜想并加以证明.【解析】 ⑴如图1, BM 、NC 、MN 之间的数量关系BM +NC=MN .⑵猜想:结论仍然成立.证明:如图,延长AC 至E ,使CE=BM ,连接DE . BD=CD 且120BDC ∠=.∴ 30=∠=∠DCB DBC . 又△ABC 是等边三角形,∴90MBD NCD ECD ∠=∠=∠=. 在MBD △与ECD △中:BM CE MBD ECD BD CD =⎧⎪∠=∠⎨⎪=⎩∴MBD △≌ECD △(SAS ) . ∴DM=DE , BDM CDE ∠=∠ ∴60EDN BDC MDN ∠=∠-∠=在△MDN 与△EDN 中:⎪⎩⎪⎨⎧=∠=∠=DN DN EDN MDN DE DM ∴MDN EDN △≌△(SAS) ∴MN NE NC BM ==+第04讲精讲:典型的旋转全等构图:“手拉手”全等模型探究; 【探究一】“手拉手”模型基本构图;如图1,若ABC ∆与ADE ∆旋转全等,则必有ABD ∆与ACE ∆为两个顶角相等的等腰三角形(即相似的等腰三角形);反之,如图2,若有两个顶角相等的等腰三角形ABD ∆与ACE ∆共顶角顶点,则必有ABC ∆与ADE ∆旋转全等;而图2正是“手拉手”模型的基本构图;图1EDC BA图2EDC BA【探究二】将探究一中的普通等腰三角形换成特殊的图形,例如等边三角形、等腰直角三角形、正方形,然后再探究结论如何变化;ENM DC BA图3EDCBA 图4E D CB A FG 图5ED CB A如图3、图4、图5,当两个等边三角形、等腰直角三角形、正方形共顶点时,ABC ∆与ADE ∆仍然旋转全等,并且有两个共同的结论; 结论1:ABC ∆≌ADE ∆;DE BC =;结论2:BC 与DE 所夹锐角等于两个等腰三角形的顶角;(倒角方法如下图6、图7、图8的八字模型)图6图7图8【探究三】将探究二中的特殊图形旋转后结论是否仍然成立; 如下图9、图10、图11易得探究二中的两个结论仍然成立;图9E图10图11【探究四】深化探究二中图3的结论; 如图12,可得结论1:ABC ∆≌ADE ∆;DE BC =;结论2:︒=∠=∠=∠=∠60CAE BAD COE BOD ; 结论3:如图12、图13、图14,可得三对三角形全等(ABC ∆≌ADE ∆;AHD ∆≌AGB ∆;AGC ∆≌AHE ∆)图12图13图14结论4:如图15,连接GH ,可得AGH ∆为等边三角形;(由结论3可得AH AG =)图15NM O 图16EDC BA 结论5:BE GH ∥;(由结论4可得︒=∠=∠60BAD AGH ) 结论6:连接AO ,可得AO 平分BOE ∠;(如图16,分别作BC AM ⊥、DE AN ⊥,AM 与AN 分别是全等三角形ABC ∆与ADE ∆对应边BC 和DE 上的高,故相等)SFEDCBA MP N MH GFE DCBA N M DCBA题型一 手拉手模型 巩固练习【练习1】 如图,DA ⊥AB ,EA ⊥AC ,AD=AB ,AE=AC ,则下列正确的是( )A. ABD ACE △≌△B. ADF AES △≌△C. BMF CMS △≌△D. ADC ABE △≌△【解析】 D【练习2】 如图,正五边形ABDEF 与正五边形ACMHG 共点于A ,连接BG 、CF ,则线段BG 、CF 具有什么样的数量关系并求出∠GNC 的度数. 【解析】 先证ABG AFC △≌△ 可得BG =CF ,∠=∠ACF AGB∵∠=∠NPG APC∴108∠=∠=︒GNC GAC题型二 双垂+角平分线模型 巩固练习【练习3】 已知AD 平分∠BAC ,⊥DE AB ,垂足为E ,⊥DF AC ,垂足为F ,且DB =DC ,则EB 与FC 的关系( )A. 相等B. EB <FCC. EB >FCD.以上都不对 【解析】 A题型三 半角模型 巩固练习【练习4】 如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 . 【解析】 6【练习5】 如图,在四边形ABCD 中,180∠+∠=︒B ADC ,AB AD =,E 、F 分别是边BC 、CD 延长线上的点,且复习巩固F E DCBAFD BAE H GD CBA FDEGCB A12EAF BAD =∠∠,求证:EF BE FD =-【解析】 证明:在BE 上截取BG ,使BG DF =,连接AG .∵180B ADC +=︒∠∠,180ADF ADC +=︒∠∠, ∴B ADF =∠∠. ∵AB AD =,∴ABG ADF △≌△.∴BAG DAF =∠∠,AG AF =.∴12BAG EAD DAF EAD EAF BAD +=+==∠∠∠∠∠∠.∴GAE EAF =∠∠. ∵AE AE =,∴AEG AEF △≌△. ∴EG EF =∵EG BE BG =-,∴EF BE FD =-.训练1. 如图,C 为线段AB 上一点,分别以AC 、CB 为边在AB 同侧作等边ACD △和等边BCE △,AE 交DC 于G 点,DB 交CE 于H 点,求证:GH AB ∥.【分析】 本题中,ACD △与BCE △是等边三角形,因此AC CD =,BC CE =,60ACD ECB ∠=∠=°,因为A 、C 、B 在同一条直线上,故60DCE ∠=°.这样可以得到ACE DCB △≌△,AEC DBC ∠=∠,故可以得到CEG CBH △≌△,则GC HC =,60CGH CHG ∠=∠=°,所以60ACG CGH ∠=∠=°,故GH AB ∥.【解析】 ∵ACD △和BCE △是等边三角形(已知)∴AC CD =,BC CE =(等边三角形的各边都相等)思维拓展训练(选讲)A B C DH QNM60ACD BCE ∠=∠=°(等边三角形的每个角都等于60°) ∵180ACD DCE BCE ∠+∠+∠=°∴60DCE ∠=°,120ACE DCB ∠=∠=°.在ACE △和DCB △中,=⎧⎪∠=∠⎨⎪=⎩AC DC ACE DCB CE CB∴ACE DCB △≌△(SAS )∴AEC DBC ∠=∠(全等三角形的对应角相等)在BCH △和ECG △中,60∠=∠=⎧⎪=⎨⎪∠=∠⎩BCH ECG BC CE CBH CEG °∴BCH ECG △≌△(ASA )∴CH CG =(全等三角形的对应边相等) ∴CGH CHG ∠=∠(等边对等角)∵180GCH GHC CGH ∠+∠+∠=°(三角形内角和定理) ∴60GHC CGH ∠=∠=°.∴60ACG CGH ∠=∠=°(等量代换) ∴GH AB ∥(内错角相等,两直线平行)训练2. 条件:正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,45MAN ∠=︒.结论:⑴ MN DN BM =-;⑵ AH AB =.【解析】 ⑴在CD 上取一点Q ,使DQ =BM先证AMB AQD △≌△可得AM =AQ再证AMN AQN △≌△∴MN =NQ∴DN DQ DN BM NQ MN -=-==⑵可证△ANH ≌△AND ,∴AH=AD=AB训练3. 如图,在Rt ABC △中,锐角ACB ∠的平分线交对边于E ,又交斜边的高AD 于O ,过O引OF BC ∥,交AB 于F ,请问AE 与BF 相等吗?理由是什么?A B M C H N DDOEOO 12ABCD E F FEDCBA21543G O54321G FE DC BA【解析】 相等.理由如下:如图,过E 作EG BC ⊥于G ∵EC 平分ACB ∠,∴12∠=∠ ∵90EAC ∠=°,AD BC ⊥∴1490∠+∠=°,2390∠+∠=° ∴34∠=∠ ∵35∠=∠, ∴45∠=∠ ∴AE AO =∵EC 平分ACB ∠,EA AC ⊥,EG BC ⊥ ∴EA EG =,∴AO EG =,∵FO BC ∥∴AFO B ∠=∠,90BDA FOA ∠=∠=° ∴BEG FAO ∠=∠∴AFO EBG △≌△(AAS ) ∴AF BE =∴AF EF BE EF -=- ∴AE BF =.训练4. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形.【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.测试1. 如图,等腰直角△ADB 与等腰直角△AEC 共点于A ,连接BE 、CD ,则线段BE 、CD具有什么样的数量关系和位置关系【解析】 先证明ABE ADC △≌△∴BE =CD ,再类似例1倒角即可得到BE ⊥CD课后测N M DBA测试2. 如图,△ABD 为等腰直角三角形,45∠=︒MAN ,求证:以BM 、MN 、DN 为边的三角形是直角三角形.【解析】 过B 作BD 的垂线并取BQ =ND ,连接AQ 、QM先证∴=AQB AND AQ AN △≌△, 再证∴=AQM ANM MN QM △≌△∴以BM 、MN 、DN 为边的三角形是直角三角形.N M DA第十五种品格:创新学会变通,变则通一天早上,一位贫困的牧师,为了转移哭闹不止的儿子的注意力,将一幅色彩缤纷的世界地图,撕成许多细小的碎片,丢在地上,许诺说:“小约翰,你如果能拼起这些碎片,我就给你二角五分钱。

全等三角形经典例题

全等三角形经典例题

全等三角形经典例题(全等三角形的概念和性质)类型一、全等形和全等三角形的概念1、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A,及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )(答案)B ;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B 答案中的两个三角形经过翻转180°就可以重合,故选B ;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角 类型三、全等三角形性质3、如图,将长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,那么DAE ∠等于( ).A 。

60° B 。

45° C 。

30° D.15°(答案)D ;(解析)因为△AFE 是由△ADE 折叠形成的,所以△AFE ≌△ADE,所以∠FAE=∠DAE ,又因为60BAF ∠=︒,所以∠FAE =∠DAE =90602︒-︒=15°.(点评)折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:(变式)如图,在长方形ABCD 中,将△BCD 沿其对角线BD 翻折得到△BED ,若∠1=35°,则∠2=________。

(答案)35°;提示:将△BCD 沿其对角线BD 翻折得到△BED,所以∠2=∠CBD ,又因为AD ∥BC ,所以∠1=∠CBD ,所以∠2=35°.4、 如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.(答案)∠α=80°(解析)∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x ,∠2=5x ,∠3=3x ,∴28x +5x +3x =36x =180°,x =5° 即∠1=140°,∠2=25°,∠3=15°∵△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的, ∴△ABE ≌△ADC ≌△ABC ∴∠2=∠ABE ,∠3=∠ACD∴∠α=∠EBC +∠BCD =2∠2+2∠3=50°+30°=80°(点评)此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题。

直角三角形全等的判定_典型例题

直角三角形全等的判定_典型例题

典型例题直角三角形全等的判定例1:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

已知:如图1,在Rt△ABC、Rt△中,∠ACB=∠=Rt∠,BC=,CD⊥AB于D,⊥于,D=求证:Rt△ABC≌Rt△证明:在Rt△CDB和Rt△中∵∴Rt△CDB≌Rt△(HL)由此得∠B=∠在Rt△ABC与Rt△△中∵∴Rt△ABD≌△(ASA)说明:文字证明题的书写格式要标准。

例2 :如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.求证:BE=CF分析: BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF证明:(略)说明:本题容易误认为AD⊥BC。

根据图形的直观“好象相等”或“好象垂直”要避免这种错误,要把“好象”变为确定。

例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:(1) BD=DE+CE(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明归纳(1)、(2)、(3),请用简捷的语言表述BD、DE、CE的关系。

分析:(1)由已知出发容易得到:BD=AE,再分析观察AE=AD+DE又易证AD=EC。

(2)猜想规律,再运用几何知识证明。

解:(1)略(2)BD=DE-CE(3)BD=DE-CE(4)结论:当B、C在异侧时,BD=DE+CE;当B、C在同侧时,BD=DE-CE说明:本题是阅读理解题,让学生在阅读的基础上,理解其中的内容、方法和思想。

三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)

三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。

边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。

需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。

例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。

但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。

在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。

角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。

例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。

在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。

除了边角边和角边角外,还有三种判定全等三角形的条件。

在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。

在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。

在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。

总之,掌握全等三角形的判定方法对于解决几何问题非常重要。

1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。

根据角角边相等可知,∠ACB=∠DCB。

又因为AB=DC,所以BC=AC。

因此,根据SSS(边边边)相等可知,△ABC≌△DCB。

同时,∠ACB=∠DCB,AC=BC=DC。

2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。

根据角角边相等可知,∠ABD=∠BCE。

又因为AD=CE,所以BD=BE。

因此,根据SAS(边角边)相等可知,△ABD≌△BCE。

同时,∠ABD=∠BCE,AD=CE=BE。

12-2-4 三角形全等的判定AAS(解析版)

12-2-4 三角形全等的判定AAS(解析版)

12.2.4三角形全等的判定AAS知识点管理归类探究用AAS判定三角形全等概念两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)【注】:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.题型一:通过添加条件利用AAS,判定三角形全等【例1】(2020·江苏盐城·八年级期中)如图,AC,BD相交于点O,AO=DO,请你补充一个条件,能直接利用AAS证全等,使得△AOB△△DOC.你补充的条件是_____________________________.【答案】∠B=∠C【分析】线段AC、BD相交于点O,且AO=DO,有一对对顶角∠AOB与∠DOC,添加∠B=∠C,能证出∠AOB∠∠DOC.【详解】解:∠AO=DO,∠AOB=∠DOC,∠B=∠C,∠∠ABO∠∠DOC(AAS).故答案为:∠B=∠C.【点睛】本题考查三角形全等的判定方法AAS.根据已知结合图形,找到已经有的条件,然后结合判定方法选择条件是正确解答本题的关键.特别注意题目要求利用AAS判定全等,需要的是两个角和其中一个角的对边对应相等.【变式1-1】(2020·江苏苏州市·八年级期末)如图,点B 在AE 上,∠CAB =∠DAB ,要利用AAS 使ABC ABD △≌△,可补充的一个条件是:______.【答案】C D ∠=∠,【详解】补充:C D ∠=∠,结合,CAB DAB AB AB ∠=∠=, 利用角角边定理可得ABC ABD △≌△,从而可得答案.【变式1-2】(2019·江苏镇江市·八年级月考)如图,∠BAC=∠DAC ,若要以AAS 证明∠ABC∠∠ADC ,要补充的一个条件是_________ 【答案】∠B=∠D【详解】添加AB =AD ,再加上条件∠BAC =∠DAC ,公共边AC ,可利用AAS 定理判定∠ABC ∠∠ADC .【变式1-3】(2019·江苏南京市·八年级期中)如图,已知AB =DC ,∠A =∠D ,则补充条件_____可使∠ACE∠∠DBF (填写你认为合理的一个条件). 【答案】∠E =∠F (答案不唯一)【详解】根据等式的性质可由AB=DC 得到AC=BD ,若利用AAS 定理判定∠ACE∠∠DBF ,则还需要添加一组角对应相等即可.题型二:直接利用AAS 证明三角形全等【例题2】(2021·广东广州市·九年级二模)如图,已知AD AE =,B C ∠=∠.求证:ACD ABE △△≌. 【分析】利用AAS 定理即可得证. 【详解】证明:在ACD △和ABE △中,A AC B AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACD ABE AAS ∴≅.【点睛】AAS 证明全等需要三个条件,在此类简单的证明题中往往题目中给出两个明显的条件,第三个条件可能隐藏在公共边、公共角、对顶角等;也可能第三个需要通过角度的和差或者线段的和差得到;此外还可能需要寻找题目中已知条件或者图形中隐含条件通过等量代换达到证明全等的目的.【变式2-1】(2021·北京九年级专题练习)如图,已知Rt ABD ∆中,90A ∠=︒,将斜边BC 绕点B 顺时针方向旋转至BD ,使//BD AC ,过点D 作DE BC ⊥于点E . 求证:ABC EDB ∆≅∆;【分析】根据AAS 证明∠ABC ∠∠EDB 即可. 【详解】(1)证明:DE BC ⊥,90DEB ∴∠=︒, //AC BD ,90A ABD DEB ∴∠=∠=∠=︒,90ABC CBD ∠+∠=︒, 90CBD BDE ∴∠+∠=︒, ABC BDE ∴∠=∠,BC BD =,()ABC EDB AAS ∴∆≅∆.【变式2-2】(2021·全国七年级课时练习)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则∠__≅∠___. 【答案】ACD AED 【详解】 证明:AD 平分BAC ∠,CAD EAD ∴∠=∠,又DE AB ⊥,90C =∠AED C ∴∠=∠,在Rt ADC 和Rt AED △中,{CAD EAD C AED AD AD∠=∠∠=∠=, ()Rt ACD Rt AED AAS ≅.AAS 证明全等的应用题型三:全等三角形性质与AAS 判定的综合运用【例题3】(2021·广东广州市·九年级一模)如图,∠B =∠E ,∠1=∠2,BC =EC . 求证:AB =DE .【分析】先证出∠ACB =∠DCE ,再根据AAS 证明 ∠ABC ∠∠DEC ,即可得出AB =DE ; 【详解】证明:∠∠1=∠2 , ∠∠ACB =∠DCE , 在∠ABC 和∠DCE 中,=B EACB DCE BC EC ⎧⎪=⎨⎪=⎩∠∠∠∠ ∠∠ABC ∠∠DEC (AAS ), ∠AB =DE .【点睛】方法总结:证明线段相等或角相等可以通过证明三角形全等而得到,所以可以根据题目给出的已知条件,考虑证明三角形全等,还需要什么条件这些条件怎样可以得到.由对应边角相等的条件边得到三角形全等,这是全等三角形的判定;由三角形全等得到对应的边角相等,这是全等三角形的性质. 变式训练【变式3-1】(2021·山西一模)如图,,,//AD BF EC AB DE ∠∠==.求证:AC DF =. 【分析】由已知//AB DE ,可得∠B =∠E ,由BF =EC ,可得BC =EF ,易证ABC DEF △≌△,即可得出AC =DF .【详解】证明:∠//AB DE ,,B E ∴∠∠= ,BF CE =,BC EF ∴=在ABC 和DEF 中,,A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC DEF AAS ∴≌(),AC DF ∴=.【点睛】本题主要考查了全等三角形的判定及性质,解题的关键是证出ABC DEF △≌△【变式3-2】(2020·浙江八年级期末)如图,在ABC 中,90C ∠=︒,点D 是AB 边上的一点,DE AB ⊥于D ,交AC 于M ,且ED AC =,过点E 作//EF BC 分别交,AB AC 于点,F N . (1)试说明:ABC EFD ≌△△; (2)若25A ∠=︒,求EMN ∠的度数. 【答案】(1)见解析;(2)65° 【分析】(1)根据平行线的性质求得∠B =∠EFD ,然后依据AAS 即可证得∠ABC ∠∠EFD ; (2)根据三角形内角和定理求得∠AMD ,然后根据对顶角相等即可求得. 【详解】解:(1)∠DE ∠AB 于D , ∠∠EDF =90°, ∠∠C =90°, ∠∠C =∠EDF , ∠EF ∠BC , ∠∠B =∠EFD , 在∠ABC 与∠EFD 中,C EDFB EFD AC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ABC ∠∠EFD (AAS ); (2)∠∠EDF =90°, ∠∠ADM =180°-∠EDF =90°,在∠ADM 中,∠A +∠AMD +∠ADM =180°且∠A =25° ∠∠AMD =180°-∠A -∠ADM =65°, ∠∠EMN =∠AMD =65°.【变式3-3】(2021·湖北月考)如图,已知∠C =∠D ,∠CAB =∠DBA ,求证:AD =BC .【分析】根据全等三角形的判定方法判定∠ABC ∠∠BAD (AAS ),再根据全等三角形的对应边相等即可得到结论. 【详解】证明:在∠ABC 和∠BAD 中,C D CAB DBA AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ABC ∠∠BAD (AAS ), ∠AD =BC .题型四:AAS 的实际应用【例题4】(2020·驻马店市第一高级中学分校七年级期中)如图,小明和小华两家位于A ,B 两处,隔河相望.要测得两家之间的距离,小明设计如下方案:从点B 出发沿河岸画一条射线BF ,在BF 上截取BC CD =,过点D 作DE //AB ,取点E 使E ,C ,A 在同一条直线上,则DE 的长就是A ,B 之间的距离,说明他设计的道理.【分析】根据两直线平行,内错角相等可得A E ∠=∠,然后利用“角角边”证明ABC 和EDC △全等,根据全等三角形对应边相等解答; 【详解】 解://DE AB ,A E ∴∠=∠,在ABC 和EDC △中,A E ACB ECD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EDC AAS ∴≅,DE AB ∴=,即DE 的长就是A 、B 两点之间的距离.【点睛】此题型主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法. 变式训练【变式4-1】(2021·湖南湘西土家族苗族自治州·八年级期末)如图,小强学习全等三角形后,用10块高度都是5cm 的相同长方体积木,搭了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,求两堵木墙之间的距离. 【答案】两堵木墙之间的距离为50cm .【分析】根据题意可得AC =BC ,∠ACB =90°,AD∠DE ,BE∠DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明ADC CEB ∆∆≌即可,利用全等三角形的性质进行解答. 【详解】 解:由图可得, ∠ACB =90°,∴∠ACD+∠BCE =90°又∠ACD+∠CAD =90°∴∠CAD =∠BCE在ADC 和CEB △中,CAD BCEADC CEB AC BC ∠∠⎧⎪∠∠⎨⎪=⎩== AD C CEB ∴∆∆≌∴AD=CE=3×5=15cmBE=CD=7×5=35cm∴DE=CD+CE=35+15=50cm答:两堵木墙之间的距离是50cm .题型五:三垂直模型与AAS的综合运用【例题5】如图,在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m,CE∠直线m,垂足分别为D,E.(1)求证:∠ABD∠∠ACE;(2)若BD=2cm,CE=4cm,DE=cm.【答案】(1)见解析;(2)6【分析】(1)根据BD∠直线m,CE∠直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断∠ADB∠∠CEA;(2)根据全等三角形的性质得出AE=BD,AD=CE,于是DE=AE+AD=BD+CE.【详解】证明:(1)∠BD∠直线m,CE∠直线m,∠∠BDA=∠CEA=90°,∠∠BAC=90°,∠∠BAD+∠CAE=90°,∠∠BAD+∠ABD=90°,∠∠CAE=∠ABD,∠在∠ABD和∠ACE中,ABD CAEBDA CEAAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠ACE(AAS),(2)∠∠ABD∠∠ACE,∠AE=BD,AD=CE,∠DE=AE+AD=BD+CE,∠BD=2cm,CE=4cm,∠DE=6cm;故答案为:6.变式训练【变式5-1】(2019·福建期中)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.(1)∠ACD与∠CBE全等吗?说明你的理由.(2)猜想线段AD、BE、DE之间的关系.(直接写出答案)【答案】(1)详见解析;(2)AD=BE-DE;【分析】(1)观察图形,结合已知条件,可知全等三角形为:∠ACD与∠CBE.根据AAS即可证明;(2)由(1)知∠ACD∠∠CBE,根据全等三角形的对应边相等,得出CD=BE,AD=CE,从而求出线段AD、BE、DE之间的关系.【详解】证明:(1)∠AD∠CD,BE∠CD,∠∠ADC=∠CEB=90°,又∠∠ACB=90°,∠∠ACD=∠CBE=90°-∠ECB.在∠ACD与∠CBE中,ADC CEBACD CBEAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ACD∠∠CBE(AAS);(2)AD=BE-DE,理由如下:∠∠ACD∠∠CBE,∠CD=BE,AD=CE,又∠CE=CD-DE,∠AD=BE-DE.【变式5-2】(2019·河南月考)(1)如图1,在∠ABC中,∠ACB=90°,AC=BC,直线l过点C,点A,B 在直线l同侧,BD∠l,AE∠l,垂足分别为D,E.求证:∠AEC∠∠CDB.(2)如图2,AE∠AB,且AE=AB,BC∠CD,且BC=CD,利用(1)中的结论,请按照图中所标注的数据计算图中实线所围成的图形的面积S=.【答案】(1)见解析;(2)S= 50.【分析】(1)因为BD∠l,AE∠l,可得∠AEC=∠CDB,结合题意得到∠CAE=∠BCD,再根据AAS证明即可.(2)利用(1)中结论,根据全等三角形的性质进行计算即可解决问题.【详解】(1)如图1中,∠BD∠l,AE∠l,∠∠AEC=∠CDB=90°,∠∠CAE+∠ACE=90°,∠∠BCD+∠ACE=90°,∠∠CAE=∠BCD,在∠AEC和∠CDB中90AEC CDBCAE BCDAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∠∠AEC∠∠CDB(AAS).(2)如图2中,因为AE∠AB,且AE=AB,BC∠CD,且BC=CD,由(1)可知:∠EFA∠∠AGB,∠BGC∠∠CHD,∠EF=AG=6,AF=BG=CH=3,CG=DH=4,∠S=12(6+4)×16-18-12=50.故答案为50.【真题1】(2017·江苏常州市·中考真题)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【答案】(1)证明见解析;(2)112.5°.【分析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D∠=∠,再加上BC CE=,可证得结论;()2根据90ACD AC CD∠=︒=,,得到145D∠=∠=︒,根据等腰三角形的性质得到3567.5∠=∠=︒,由平角的定义得到1805112.5DEC∠=︒-∠=︒.【详解】()1证明:90BCE ACD∠=∠=︒,2334,∴∠+∠=∠+∠24∴∠=∠,在∠ABC和∠DEC中,24BAC DBC CE∠=∠⎧⎪∠=∠⎨⎪=⎩,()AASABC DEC∴≌,AC CD∴=;(2)∠∠ACD=90°,AC=CD,∠∠1=∠D=45°,∠AE=AC,∠∠3=∠5=67.5°,∠∠DEC=180°-∠5=112.5°.【拓展1】(2020·黑龙江齐齐哈尔市·八年级期中)探究:(1)如图∠,在∠ABC中,∠ACB=90°,CD∠AB 于点D,若∠B=28°,则∠ACD的度数是.拓展:(2)如图∠,∠MCN=90°,射线CP在∠MCN的内部,点A、B分别存CM、CN上,分别过点A、B作AD∠CP、BE∠CP于点D、E,若AC=CB,则AD、DE、BE三者间的数量关系为.应用:(3)如图∠,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连结AD、BE、AE,且使∠MCN=∠ADP=∠BEP.当AC=BC时,∠∠∠;此时如果CD=2DE,且S∠CBE=6,则∠ACE的面积是.链接中考满分冲刺【答案】(1)28° (2)DE =AD ﹣BE ;理由见解析 (3)ACD ;CBE ;9 【分析】(1)利用直角三角形的两锐角互余,即可得出结论;(2)利用同角的余角相等判断出∠CAD =∠BCE ,进而判断出∠ACD∠∠CBE ,即可得出结论;(3)利用等式的性质判断出∠ADC =∠CEB ,进而判断出∠ACD∠∠CBE ,得出S ∠ACD =S ∠CBE ,再求出S ∠ADE =3,即可得出结论. 【详解】解:探究:∠CD∠AB , ∠∠CDB =90°, ∠∠B =28°,∠∠BCD =90°﹣∠B =68°, ∠∠ACB =90°,∠∠ACD =90°﹣∠BCD =28°, 故答案为:28°; 拓展:(2)∠∠MCN =90°, ∠∠ACD+∠BCE =90°, ∠AD∠CP ,BE∠CP , ∠∠ADC =∠BEC =90°, ∠∠ACD+∠CAD =90°, ∠∠CAD =∠BCE , 在∠ACD 和∠CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ACD∠∠CBE (AAS ), ∠CD =BE ,AD =CE , ∠DE =CE ﹣CD =AD ﹣BE , 故答案为:DE =AD ﹣BE ; 应用:(3)∠∠MCN =∠ACD+∠BCD ,∠MCN =∠ADP ,∠∠ADP =∠ACD+∠BCD , ∠∠ADP =∠ACD+∠CAD , ∠∠CAD =∠BCE , ∠∠ADP =∠BEP , ∠∠ADC =∠CEB , 在∠ACD 和∠CBE 中,ADC CEBCAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠ACD∠∠CBE (AAS ), ∠S ∠ACD =S ∠CBE , ∠S ∠CBE =6, ∠S ∠ACD =6, ∠CD =2DE , ∠S ∠ACD =2S ∠ADE , ∠S ∠ADE =12S ∠ACD =3, ∠S ∠ACE =S ∠ACD +S ∠ADE =9, 故答案为:ACD ,CBE ,9.【点睛】此题是三角形综合题,主要考查了直角三角形的性质,同角的余角相等,等式的性质,全等三角形的判定和性质,判断出∠ACD∠∠CBE 是解本题的关键.。

2 全等图形(拓展提高)(解析版)

2 全等图形(拓展提高)(解析版)

专题1.2 全等图形(拓展提高)一、单选题1.下列说法正确的是()A.两个长方形是全等图形B.形状相同的两个三角形全等C.两个全等图形面积一定相等D.所有的等边三角形都是全等三角形【答案】C【分析】性质、大小完全相同的两个图形是全等形,根据定义解答.【详解】A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形;故选:C.【点睛】此题考查全等图形的概念及性质,熟记概念是解题的关键.2.百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.6【答案】A【分析】根据14=(1+6)×2=(2+5)×2=(3+4)×2,可知能围出不全等的长方形有3个.【详解】解:∵长为4、宽为3的长方形,∴周长为2×(3+4)=1414=(1+6)×2=(2+5)×2=(3+4)×2,∴能围出不全等的长方形有3个,故选:A.【点睛】此题考查了平面图形的规律变化,通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.3.下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.4.下列图形中与已知图形全等的是()A.B.C.D.【答案】B【分析】认真观察图形,根据全等形的定义,能够重合的图形是全等形,可得答案是B.【详解】A、圆里面的正方形与已知图形不能重合,错;B、与已知图形能完全重合,正确;C、中间是长方形,与已知图形不重合,错;D、中间是长方形,与已知图形不重合,错.故选:B.【点睛】此题考查全等形的性质,解题关键在于认真观察图形,同时还要想到是否能够重合.5.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个【答案】D【分析】根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断即可.【详解】解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确;③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选D.【点睛】考核知识点:全等图形、三角形的高、互补、垂直以及平行线的性质.理解相关定义是关键. 6.下列四个图形中,通过旋转和平移能够全等图形的是()A.③和④B.②和③C.②和④D.①②④【答案】D【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案【详解】①、②和④都可通过平移或旋转完全重合.故选D.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.二、填空题7.如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.【答案】135∠+∠的值,即可得出答案;【分析】首先利用全等三角形的判定和性质求出13【详解】如图所示,在△ACB 和△DCE 中,AB DE A D AC DC ⎧=⎪∠=∠⎨⎪=⎩, ∴()△△ACB DCE SAS ≅, ∴3ABE ∠=∠,∴()12313459045135∠+∠+∠=∠+∠+︒=︒+︒=︒; 故答案是:135︒.【点睛】本题主要考查了全等图形的应用,准确分析计算是解题的关键.8.如图,长方形纸片的长为8,宽为6,从长方形纸片中剪去两个全等的小长方形卡片,那么余下的两块阴影部分的周长之和是_____.【答案】24【分析】设两个全等的小长方形卡片的长为a ,宽为b ,先用含a 、b 的代数式分别表示出两个阴影长方形的周长,再相加即得结果.【详解】解:设两个全等的小长方形卡片的长为a ,宽为b , 则左边的阴影长方形的周长=2(a +6-b )=12+2a -2b , 右边的阴影长方形的周长=2(b +6-a )=12+2b -2a ,∴两块阴影部分的周长之和=(12+2a -2b )+( 12+2b -2a )=24. 故答案为:24.【点睛】本题考查了全等图形的概念和整式的加减运算,正确表示出两个阴影长方形的周长是解题的关键. 9.如图,四边形ABCD ≌四边形A B C D '''',则A ∠的大小是________.【答案】95︒【分析】由全等形四边形的性质,得到130D D '∠=∠=︒,由四边形的内角和即可求出A ∠的度数. 【详解】解:∵四边形ABCD ≌四边形A B C D '''', ∴130D D '∠=∠=︒,∴360130756095A ∠=︒-︒-︒-︒=︒; 故答案为:95°.【点睛】本题考查了全等四边形的性质,解题的关键是掌握全等图形中对应角相等.10.在网格线中,每个方格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形,如图中的网格线中,每个小正方形的边长均为1,以线段AB 为一边的格点三角形的面积随着第三个顶点的位置的不同而发生变化,如下列表格中当格点三角形的面积为1时,频数为8; 如果将图中格点三角形面积记为S ,频数记为x ,根据上述信息计算:当S =3时,x =_______.【答案】4【分析】由题意直接依据三角形的面积公式进行填表即可得出答案. 【详解】解:由题意可知格点三角形面积(S ) 1 2 3 4 频数(x ) 8 6 4 2故答案为:4.【点睛】本题考查网格问题中的三角形,熟练掌握三角形的概念以及三角形的面积公式是解题的关键. 11.如图(1)~(12)中全等的图形是________ 和________ ;________ 和________ ;________ 和________;________ 和________ ;________和________ ;________ 和________ ;(填图形的序号)【答案】见解析【分析】根据能够互相重合的两个图形叫做全等图形解答.【详解】全等图形是(1)和(11);(2)和(10);(3)和(6);(4)和(7);(5)和(8);(9)和(12).【点睛】本题考查了全等图形,掌握概念并准确识别各图形的形状是解题的关键.12.如图,△EFG≌△NMH,△EFG的周长为15cm,HN=6cm,EF=4cm,FH=1cm,则HG= ______ .【答案】4cm【分析】首先根据全等三角形对应边相等可得MN=EF=4cm,FG=MH,△HMN的周长=△EFG的周长=15cm,再根据等式的性质可得FG-HG=MH-HG,即GM=FH,进而可得答案.【详解】解:∵△EFG≌△NMH,∴MN=EF=4cm,FG=MH,△HMN的周长=△EFG的周长=15cm,∴FG-HG=MH-HG,即FH=GM=1cm,∵△EFG的周长为15cm,∴HM=15-6-4=5cm,∴HG=5-1=4cm .故答案为4cm.【点睛】本题考查全等三角形的性质,解题关键是掌握全等三角形对应边相等.13.如图,已知正方形中阴影部分的面积为3,则正方形的面积为________.【答案】6【分析】利用割补法,把阴影部分移动到一边.【详解】把阴影部分移动到正方形的一边,恰好是正方形的一半,故正方形面积是6.【点睛】割补法,等面积转换,可以简便运算,化复杂为简单.14.如图,在平行四边形ABCD中,∠A=70°,将平行四边形ABCD绕点B顺时针旋转到平行四边形A1BC1D1的位置,此时C1D1恰好经过点C,则∠ABA1=______°.【答案】40°【解析】由四边形ABCD是平行四边形结合旋转的性质易得∠C1=∠BCD=∠A=70°,BC1=BC,由此可得∠BCC1=∠C1=70°,从而可得∠CBC1=40°,由旋转的性质可得∠ABA1=∠CBC1=40°.详解:∵平行四边形A1BC1D1是由平行四边形ABCD绕点B顺时针旋转得到的,∠A=70°,∴∠C1=∠BCD=∠A=70°,BC1=BC,∠ABA1=∠CBC1,∵点C在线段C1D1上,∴∠BCC1=∠C1=70°,∴∠CBC1=180°-70°-70°=40°,∴∠ABA1=∠CBC1=40°.故答案为40.点睛:这是一道涉及平行四边形、等腰三角形及旋转等图形知识的综合题,熟记“平行四边形的对角相等、等腰三角形的性质和旋转的性质”是正确解答本题的关键.三、解答题15.我们把两个能够互相重合的图形成为全等形.(1)请你用四种方法把长和宽分别为5和3的矩形分成四个均不全等的小矩形或正方形,且矩形或正方形的各边长均为整数;(2)是否能将上述3×5的矩形分成五个均不全等的整数边矩形?若能,请画出. 【答案】(1)见解析;(2)能.【分析】(1)根据题意画出图形即可,注意所得的图形不应全等. (2)作长为1,宽分别为1,2,3,4,5的图形即可. 【详解】解:(1)所画图形如上. (2)能,所画图形如上所示.【点睛】本题考查分割图形的知识,有一定难度,关键是根据题意作答,注意作图的规范性. 16.在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合: (1)三个三角形是全等的直角三角形. (2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.【答案】(1)见解析;(2)见解析.【分析】先将点C对折到点E,将对折后的纸片再沿DE对折.此题要理解折叠的实质是重合,根据重合可以得到BC=BE,AD=BD,∠DBE=∠DAE=30°,∠BDE=∠ADE=60°,∠AED=∠BED=90°.【详解】(1) 如下图1(2) 如下图2 .【点睛】本题考查折叠问题,此题要理解折叠的实质是重合,要求学生理解折叠的实质是解题的关键. 17.如图所示,两个图形是全等图形,试根据所给的条件,求出两个图形中标出的a,b,c,∠α,∠β的值.【答案】a=3,b=5.4,c=7, ∠α=105°, ∠β=45°【分析】全等图形的对应边及对应角均相等,据此进行解答.【详解】解:根据全等多边形的对应角相等有∠α=105°.又由四边形的内角和,得第四个角为360°-(120°+90°+105°)=45°,所以∠β=45°.根据全等多边形的对应边相等有a=3,b=5.4,c=7.【点睛】本题考查了全等图形的性质.18.将下图分成四个全等的图形,而且每一份图形中恰好有“巧分图形”四个字.【答案】见解析.【解析】要分成四个全等的图形,且每个图形中恰好有“巧分图形”四个字,所以相同的字必须分开,由此分图即可.试题解析:图(a)中共有36个小方格,平分成4份后,每份应是9个小方格;因为第一份中要有“巧分图形”四个字,所以相同的两个字必须分支;又因为分成的每一份一定要通过大正方形的中心点,所以正方形中间的四个小方格一定是分开的,其中有一块已有“巧”字,它的下面一格一定是与“图”字相连如图(b)19.将一个正方形剖成4个全等的部分.【答案】见解析【解析】根据正方形的性质,由正方形是轴对称图形分解即可;也可以根据面积法分正方形.试题解析:剖成如图或均可,答案不惟一点睛:此题主要考查了全等图形的概念,掌握全等的定义是解题关键,主要抓住能够完全重合这一特点分析.20.把44⨯的正方形方格图形分割成两个全等图形,如图,沿着虚线画出种不同的分法,把44⨯的正方形方格图形分割成两个全等图形.【答案】见解析【分析】利用图形的对称性和互补性来分隔成两个全等的图形.【详解】解:三种不同的分法:【点睛】本题主要考查的是作图-应用与设计作图,利用对称性和互补性解题.。

初二数学 全等的条件(提优版)

初二数学 全等的条件(提优版)

探索三角形全等的条件【学习目标】1.理解全等三角形及相关概念,能够从图形中寻找全等三角形; 2.掌握判定两个三角形全等的方法. 【典型例题】一.用“SAS ”证三角形全等;例题1.如图,在△ABC 中,AB =AC ,点O 为∠BAC 的平分线上一点,连接OB 、OC . 求证:OB =OC ;OCBA二.用“ASA ”“AAS ”证三角形全等;例题2 如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交于点G 、H ,若AB =CD ,探究AG 与DH 有怎样的数量关系.HFGE DCBA例题3 两个全等三角形对应边上的中线相等.D'C'A'B'DCBA已知,如图,在△ABC 和△A 'B 'C '中,△ABC ≌△A 'B 'C ',AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线. 求证:AD =A 'D '.【变式】已知,如图,在△ABC 和△A 'B 'C '中,AD ,A 'D '分别是△ABC 和△A 'B 'C '的中线,AB =A 'B ',BC =B 'C ',AD =A 'D '.求证:△ABC ≌△A 'B 'C '.D'C'A'B'DCBA三.用“SSS ”证三角形全等;例题4 如图所示,BC =DE ,BE =DC , 试说明:(1)BC ∥DE ; (2)∠A =∠ADE .ED CBA EDC BA四.用“HL ”证三角形全等;例题5 如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于点E ; (1)若B 、C 在DE 的同侧(如图所示)且AD =CE .求证:AB ⊥AC ;EDCB A(2)若B 、C 在DE 的两侧(如图所示),且AD =CE ,其他条件不变,AB 与AC 仍垂直吗?若是请给出证明;若不是,请说明理由.EDCBA五.综合运用例题6 陈成只用刻度尺作角的平分线时,在∠MON 的两边上分别取OA =OB ,OC =OD ,连接BC 和AD 交于点P ,则OP 必是∠MON 的平分线,你知道为什么吗?PNM ODCBA六.拓展提升例题7 如图,四边形ABCD 中,∠ABC =∠BCD =90°,点E 在BC 边上,∠AED =90° (1)求证:∠BAE =∠CED ;(2)若AB +CD =DE ,求证:AE +BE =CE ;(3)在(2)的条件下,若△CDE 与△ABE 的面积的差为18,CD =6,求BE 的长.EDCBA【课后练习】 一、选择题1.如图,E 是∠BAC 的平分线AD 上任意一点,且AB =AC ,则图中全等三角形有( )E DCBAA .4对B .3对C .2对D .1对2.如图,点D 、E 分别在AB 、AC 上,BE 与CD 相交于点O ,已知∠B =∠C ,现添加下面的哪一个条 件后,仍不能判定△ABE ≌△ACD ( )OEDCBAA .AD =AEB .AB =AC C .BE =CD D .∠AEB =∠ADC3.如图,已知△ABC 的3条边和3个角,则能判断和△ABC 全等的是( )c丙乙甲aa a72°50°50°50°CA .甲和乙B .乙和丙C .只有乙D .只有丙二、填空题4.如图,∠C =∠D =90°,添加一个条件: (写出一个条件即可),可使Rt △ABC 与Rt △ABD 全等.DCBA5.下列语句:①有一边对应相等的两个直角三角形全等;②一般三角形具有的性质,直角三角形都具有;③有两边相等的两直角三角形全等;④两直角三角形的斜边为5cm ,一条直角边都为3cm ,则这两个直角三角形必全等.其中正确的有 个.6.如图,已知△ABC (AC >AB ),DE =BC ,以D ,E 为顶点作三角形,使所作的三角形△ABC 全等,这样的三角形最多可以作出 个.ED C BA三、解答题7. 已知,如图,AB =AE ,AB ∥DE ,∠ECB =70°,∠D =110°,求证:△ABC ≌△EAD .ED C BA8.如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD 与CE 相交于点O ,连接线段AO ,AO 恰好平分∠BAC .求证:OB =OC .OED CBA9.如图,已知Rt △ABC 中,∠ACB =90°,CA =CB ,D 是AC 上一点,E 在BC 的延长线上,且AE =BD ,BD 的延长线与AE 交于点F .试通过观察、测量、猜想等方法来探索BF 与AE 有何特殊的位置关系,并说明你猜想的正确性.F EDCBA10.已知一个三角形的两条边长分别是1cm 和2cm ,一个内角为40度. (1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由;(3)如果将题设条件改为“三角形的两条边长分别是3cm 和4cm ,一个内角为40°,那么满足这一条件,且彼此不全等的三角形共有几个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.备用40°图140°。

全等例题+习题

全等例题+习题

例1、(1)如下图,△ABC≌△CDA,找出对应边和对应角.(2)下图中,点O左右两边对应的三角形都能够重合,请找出全等的三角形.例2、如下图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,试求∠DFB和∠DGB的度数.例3、如图,AE是∠BAC的平分线,AB=AC.(1)若D是AE上任意一点,求证:△ABD≌△ACD.(2)若D是AE反向延长线上一点,结论还成立吗?试证明你的猜想.例4、如图所示,在△ABC中,∠ACB=90°,AC=BC,AE是BC边的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.例5、如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.例1、如下图,A、C、B、D在同一条直线上,AC=BD,AM=CN,BM=DN,证明:△ABM≌△CDN.例2、如图(1),已知AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由.若将过O点的直线旋转至图(2)、(3)的情况时,其他条件不变,那么图(1)中∠1与∠2的关系还成立吗?请说明理由.例3、△ABC中,∠ACB=90°,AC=BC,过C的一条直线CE⊥AE于E,BD⊥CE的延长线于D,求证:AE=BD+DE.例4、如图,四边形ABCD中,点E在边CD上,连接AE、BE,其中,AD∥BC,∠1=∠2,AD+BC=AB,求证:(1)DE=CE;(2)∠3=∠4.例5、如图,已知∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°.习题1、全等三角形是()A.三个角对应相等的两个三角形 B.周长相等的两个三角形C.面积相等的两个三角形 D.能够完全重合的两个三角形2、如下图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()(第2题)(第5题)(第6题)A.15°B.20°C.25°D.30°3、已知线段BC交AD于O点,连接AB、CD,且△OAB≌△OCD,则AB与CD()A.不一定相等 B.一定平行 C.一定相等且平行 D.一定相等可能平行4、下列说法中错误的是() A.两个全等三角形的面积相等 B.面积不相等的两个三角形不全等C.不全等的两个三角形面积可能相等 D.面积相等的两个三角形全等5、如图,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店中去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②去6、如图所示,AD=AE,BE=CD,∠1=∠2,∠1=110°,∠BAE=60°,那么∠CAE=()A.20° B.30° C.40° D.50°7、如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()(第7题)(第10题)A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC8、△ABC≌△DEF,若满足以下条件一定全等的是() A.AB=DE,∠B=∠E,AC=DF B.AB=DF,∠A=∠D,AC=DE C.BC=EF,∠B=∠E,AB=DF D.AB=DF,∠A=∠F,BC=EF9、在△ABC与△DEF中,∠A=40°,∠B=80°,AB=4,∠D=40°,∠E=80°,EF=4,则△ABC和△DEF()A.一定全等 B.不一定全等 C.一定不全等 D.以上都不对10、如图,在四边形ABCD中,BD平分∠ABC,AD=CD.∠A=120°,则∠C=()A.30° B.60° C.90° D.45°11、如图,△ACF≌△DBE,AD=9厘米,BC=5厘米,求AB的长.12、已知A、F、C、D在一直线上,AF=CD,AB//DE,且AB=DE,求证(1)△ABC≌△DEF;(2)∠CBF=∠FEC.13、如下图,△BEF≌△MEF,E点为BC上一点,EN是∠MEC的平分线,试求∠FEN的度数.14、如下图1,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB.(1)△ABE与△ADF全等吗?请说明理由.(2)阅读下面的材料:如图2,把△ABC沿直线BC平行移动线段BC的长度可以变到△ECD的位置.如图3,以BC所在的直线为轴把△ABC旋转180°可以变到△DBC的位置.如图4,以点A为中心,把△ABC旋转180°可以变到△AED的位置.像这样,其中一个三角形是另一个三角形按平移、翻折、旋转等方法变成的,这种只改变图形的位置,不改变图形大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平移、翻折、旋转中的哪一种变换方法,使△ABE变到△ADF的位置;②指出图1中线段BE与DF之间的关系,并说明理由.[答案]15、此题有A、B、C三类题目,其中A类题4分,B类题6分,C类题8分,请你任选一类做,多做的题目不记分.(A类)已知:如图(1)所示,AB=AC,AD=AE,那么∠B=∠C.(B类)已知:如图(2)所示,CE⊥AC于点E,BD⊥AC于D,BD、CE交于点O,且AO平分∠BAC,那么OB=OC.(C类)已知:如图(3)所示,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与AC 交于点E,请你在图中找出一对全等三角形,并写出推理过程.1、对下列各组条件,不能判定△ABC≌△A′B′C′的一组是()A.∠A=∠A′,AB=A′B′,AC=A′C′ B.∠B=∠B′,AB=A′B′,AC=A′C′C.∠C=∠C′,BC=B′C′,AC=A′C′ D.AB=A′B′,BC=B′C′,AC=A′C′2、如图所示,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()(第2题) (第3题)A.甲和乙B.乙和丙 C.只有乙 D.只有丙3、如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AC=BD C.AM=CN D.AM∥CN4、如图,从下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′中,任取三个为题设,余下的一个为结论,则最多可以构成正确命题的个数是()(第4题)(第6题)(第7题)A.1个 B.2个 C.3个 D.4个5、下列命题中正确的个数是()①有一边相等的两个等边三角形全等②腰长相等且都有一个角是50°的两个等腰三角形全等③各有两边长分别是5cm,4cm的两个等腰三角形全等④判定三角形全等的条件中,至少要有一对对边对应相等A.1 B.2 C.3 D.46、如图,OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC相交于点E,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对7、如图,D是△ABC的边AB上一点,DF交AC于E,给出3个论断:①DE=EF;②AE=CE;③FC∥AB.以其中两个论断为条件,其余一个论断为结论,可以作出3个命题,其中正确命题的个数为()A.1个 B.2个 C.0个 D.3个8、如图,AB∥CD,AD∥BC,则图中的全等三角形共有()对.(第8题)(第10题)A.4 B.3 C.2 D.19、已知点A和点B,以点A和点B为顶点作位置不同的等腰直角三角形,一共可作出()A.2个 B.4个 C.6个 D.8个10、如下图所示,△ABC≌△BAD,∠C和∠D对应,AC和BD对应,AB=8cm,BD=5cm,AD=7cm,那么BC的长等于() A.8cm B.5cm C.7cm D.无法确定11、已知:如图AB=DC,AC=DB,求证:OB=OC.12、如图,已知AC=AD,BC=BD,求证:∠1=∠2.13、如图所示,已知在四边形AB CD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线AC相交于点O,请问O点有何特征.14、如图,AB=AC,BE=CE,求证:(1)AE平分∠BAC;(2)AD垂直平分BC.15、如图.已知AB=DE,AF=CD,BC=EF,∠A=∠D,求证:∠C=∠F.。

常见图形(全等三角形)

常见图形(全等三角形)

常见图形一、轴对称型:二、相交线型三、旋转型【典型例题】一、和差倍分——轴对称型 1、如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

2、(第19届“希望杯”)如图1,矩形ABCD 的长AD=9cm ,宽AB=3cm ,将它折叠,使点D 与点B 重合,求折叠后DE 的长和折痕EF 的长A BCD A B C DE AB C D E AB C D E FAB CDE P A M N E B C DF A E F B图① 图②图③ O (第20题图) C D A B CD E F分别是( )A 、cm cm 10,5B 、cm cm3,5 C 、cm cm 10,6 D 、cm cm 4,5 3、如图,△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC 交AC 于D ,CE ⊥BD 的延长线于E ,求证:BD =2CE 。

4、如图所示,已知△ABC 中,∠B=60°,∠BAC 和∠BCA 的平分线AD 与CE 相交于点O 。

求证:AE+CD=AC 。

二、利用旋转,构造全等三角形 1、(2008年泰安市)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:.2、已知:如图△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,点M 、N 分别在AB 、AC 上,且∠MDN =60°求证:△AMN 的周长l =2A EB D CO三、中点或中线问题 1、已知:如图2,AD 为△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF ,求证:AC=B F.2、如图,已知ΔABC 中,A B=5,A C=3,连BC 上的中线AD=2,求BC 的长。

八年级上数学 全等三角形典型例题

八年级上数学 全等三角形典型例题
⑴求C点的坐标;
⑵D为△ABC内一点(AD>2),连AD,并以AD为边作等腰直角三角形ADE,∠DAE=90°,AD=AE,连CD、BE.试判断线段CD、BE的位置及数量关系,并给出你的证明;
⑶旋转△ADE,使D点刚好落在x轴的负半轴,连CE交y轴于M.
求证:①EM=CM;②BD=2AM.
练习2:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。
∴∠ABD=∠CAE(等角的余角相等)
故在△ABD与△CAE中,
∠BDA=∠AEC=90°(垂直定义)
∠ABD=∠CAE(已求)
AB=AC(已知)
∴△ABD≌△CAE(AAS)
∴AE=BD=7,AD=EC=3(全等三角形的对应边相等)
∴DE=AE AD=7 3=4
[变形4]:在△ABC中,∠ACB= 900,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
加上所求的“BD=CE”,你会发现BD在△ABD中,CE在△ACE中,
这样一来,“AB=AC”可以理解为:AB在△ABD中,AC在△ACE中,它们是一组对应边;
“AD=AE”可以理解为:AD在△ABD中,AE在△ACE中,它们是一组对应边;
所以只需要说明它们的夹角相等即可。
关键还是在于:说明“相等的边(角)所在的三角形全等”
解:∵∠1=∠2(已知)
∴∠1+∠CAD=∠2+∠CAD(等式性质)
即:∠BAD=∠CAE
∴在△ABD与△ACE中,
AB=AC(已知)
∠BAD=∠CAE(已求)
AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE(全等三角形的对应边相等)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档