五年级 第11讲-盈亏问题(学)

合集下载

第11讲-盈亏问题(教)

第11讲-盈亏问题(教)

学科教师辅导讲义知识梳理一、基本方法盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。

二、方法技巧注意1.条件转换 2.关系互换典例分析考点一:直接计算型盈亏问题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【解析】比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。

第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块),每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人).共有砖:4×9+7=43(块)例2、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【解析】“多8元”与“多4元”两者相差8-4=4(元),每个人要多出8-7=1(元),因此就知道,共有4÷1=4(人),蛋糕价钱是8×4-8=24(元)例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【解析】老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是9-2=7(个),两次分配之差是11-10=1(个),由盈亏问题公式得,有小猴子:7÷1=7=(只),老猴子有7×10+9=79(个)桃子例4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多少只?【解析】当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是盈亏问题说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下20-10=10个,所以大猴比小猴多10只考点二:条件关系转换型盈亏问题例1、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是5-4=1(粒),由盈亏问题公式得,参与分糖的同学有:9÷1=9(人),有糖果9×5=45(粒)例2、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是 11-10=1(条),由盈亏问题公式得,有小猫:8÷1=8(只),猫妈妈有8×10+8=88(条)鱼例3、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】每辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人。

小学五年级奥数盈亏问题

小学五年级奥数盈亏问题

1、五年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?2、妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?3、学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?4、学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?5、少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?6、红山小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?7.某商店进了定价分别为210元、90元、60元的羊毛衫共47件,卖完后共得6360元。

已知定价为90元的羊毛衫件数是定价为60元羊毛衫件数的2倍。

求,三种羊毛衫各进了多少件?8.从甲城往乙城运输78吨贷物,载重量为5吨的大卡车运一趟,运费为110元;载重量为2吨的小卡车运一趟,运费为50元。

要使运费最省,运送这批贷物需要大、小卡车各多少辆?运费为多少?9.有一个三位数,个位数字是十位数字与1。

5相乘积,十位数字是百位数字除以2的商,个位、十位、百位三个数字的和是18。

问,这个三位数是多少?10.学校举行田径运动会,小赵和小王参加100米赛跑。

已知小赵从开始到终点是以每秒2米的速度跑。

小王第一秒跑1米,以后每秒都比前一秒多跑0。

1米。

问,他们两人谁能获胜?为什么?请说明理由。

(完整版)五年级奥数盈亏问题讲座及练习答案

(完整版)五年级奥数盈亏问题讲座及练习答案

五年级奥数盈亏问题讲座及练习答案盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会不足(亏),求物品的数量和分配对象的数量。

例如:把一袋饼干分给小班的小朋友,每人分 3 块,多12 块,;如果每人分 4 块,少8 块,小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是这们通常说的标准的盈亏问题。

标准盈亏问题的基本数量关系式:(盈+亏)÷两次分配之差=参与分配对象总数;每次分得的数量×份数+盈=总数量;每次分得的数量×份数-亏=总数量还有一些非标准盈亏问题,如:1、两盈:两次分配都有余。

数量关系式为:(大盈-小盈)÷两次分配差=参与分配对象总数2、两亏:两次分配都不够。

数量关系式为:(大亏-小亏)÷两次分配差=参与分配对象总数例1:(一盈一亏问题)一个植树小组,如果每人植 5 棵,还剩14 棵;如果每人植7 棵,就缺 4 棵。

这个植树小组有多少人?一共有多少棵树?分析:由题意可知,植树的人数和棵数是不会变化的,只是两次分配的方案不一样,结果就差了18棵,即第一种方案的结果比第二种多18 棵,这是因为两种分配方案每人植树棵数相差7-5 =2(棵),所以根据一盈一亏解答此题就非常简单了。

人数:(14+4)÷(7-5)=2(人)棵数:5×9+14=59(棵)答:这个植树小组一共有9 人,一共有59 棵树。

【巩固练习1】:幼儿园把一些积木分给小朋友,如果每人分 2 个,则剩下20 个;如果每人分3 个,则差40 个。

幼儿园有多少个小朋友?一共有多少个积木?解,小朋友分积木,每人2个则剩20个,每人3个则少40个,因此这是一亏一盈问题,两种分积木的方案最后相差20+40=60 个,两种方案中每人分得的积木数相差3-2=1 个,所以小朋友的个数为:60÷1=60 人,积木数为:60×2+20=140 个或60×3-40=140 个综合算式为:幼儿园有多少个小朋友? 一共有多少个积木?(20+40)÷( 3-2)60=60÷ 1 =120+2060(个)=140答:幼儿园有 60 个小朋友,一共有 140 个积木 .例 2 :(两亏问题) 学校将一批铅笔奖给三好学生。

盈亏问题(五年级教师版)

盈亏问题(五年级教师版)

第8讲盈亏问题盈亏问题又叫盈不足问题,是指把固定数量的物品平均分给固定的对象,因为两种不同的分配标准,导致两种不同的分配结果:一种标准分配后有剩余(盈);另一种标准分配后不够分(亏或不足)。

此类问题,要求通过两种分配结果的比较,求出物品总数量和固定对象的个数。

标准的盈亏问题就是两次分配的结果一盈一亏,所以就叫盈亏问题。

基本的数量关系是:(盈+亏)三两种分配标准的数量之差=固定对象数量。

广义的盈亏问题一般还包括以下四种情况:一、两次分配都有余(两盈);二、两次分配都不够分(两亏);三、一次有余,一次刚好够分(盈适足);四、一次分配不够分,一次刚好够分(亏适足)。

解决盈亏问题常用比较的解题策略:通过两次分配盈亏总额与分配数量的比较,先求出固定对象的个数,再求出分配物品的总数量。

此类问题基本数量关系有:①盈适足问题:盈余部分三两种分配标准的数量之差=固定对象数量。

②亏适足问题:亏欠部分三两种分配标准的数量之差=固定对象数量。

③两盈问题:(盈多一盈少)三两种分配标准的数量之差=固定对象数量。

④两亏问题:(亏多一亏少)三两种分配标准的数量之差=固定对象数量。

⑤盈亏问题:(盈+亏)三两种分配标准的数量之差=固定对象数量。

比较常规的盈亏问题,一般可以直接套用上面的数量关系,解决问题。

较复杂的盈亏问题,一般需要先对题中的条件进行适当的转化,将相关问题先转化成典型的盈亏问题,再求解。

【例1】“雏鹰小队”的同学们参加植树活动,如果每人栽5棵树,还剩12棵树;如果每人栽7棵,就缺4棵。

问这个小队有多少人一共要栽多少棵树解析】:可以画出线段图帮助理解题意,如下图:观察上图,比较每人栽7棵与每人栽5棵的两种情况,雏鹰小队总人数是不变的。

雏鹰小队栽树总棵数多出:12+4=16(棵);而每个人多栽:7-5=2(棵);所以小队人数为:(12+4)三(7—5)=8(人)。

由小队人数和任意一种栽法,可以求出栽树总棵数:5X8+12=52(棵)或7X8—4=52(棵)。

盈亏问题——五年级

盈亏问题——五年级
6 + 4 = 10 (本)
Q1:两次共相差多少本?
(一颠一倒,总共差了10本)
Q2:两次每人相差多少本?
5 - 3 = 2 (本)
那么需要多少人呢?
根据分析:
每人分3本,多6本;(盈) 每人分5本,少4本 (亏) 一颠一倒,总共差了40个, (人不变,本数也没变,为什么这么分, 那么分,分着分着,就会差出10本呢? “是因为每个人分的本数不一样了,每人 差2本,总共差了10本,所以一共有5 人。) 注意哦:我们这里用的是一盈一亏
总差=盈值+亏值
解:
两次总共相差本数:
6+ 4 =10 (本) 5 - 3 = 2 (本) 10÷2 = 5 (人) 3×5+6 =21 (本) 5×5-4 = 21 (本)
两次每人相差本数:
人数: 练习本的本数: 或
答:一共有5名同学获奖,这沓练习本有21页.
• 1.幼儿园某班分一包糖果,每人分3粒, 余16粒;每人分5粒,差4粒;问有几个 小朋友?有几粒糖果?
有一个班的同学去划船他们算一下如果增加一条船每条船正好坐有一个班的同学去划船他们算一下如果增加一条船每条船正好坐6人如果减少一条船每条船正好坐人如果减少一条船每条船正好坐9人
奥五下期
引入
假若今天老师带了100个水果,准 备分给10个同学。并不是每次都 能正好分完。如果物体还有剩余, 就叫盈;如果物体不够分,少了, 叫亏。凡是研究盈和亏这一类算 法的应用题就叫盈亏问题。
*3+4*5=95个 预计完成任务要:(95-20)/(25-20)=15 天 答:这批零件有:20*(15-1)=280(个)
总结:两次分配的总差值÷每份的差=份数
⑴一盈一亏: 总差值=盈值+亏值 ⑵两盈: 总差值=大盈-小盈

五年级数学上册《盈亏问题》汇总,考试必考

五年级数学上册《盈亏问题》汇总,考试必考

五年级数学上册《盈亏问题》汇总,考试必考盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量【练习题】1.一个植树小组植树。

如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。

这个植树小组有多少人?一共有多少棵树?分析与解答:由题意可知,植树的人数和树的棵数是不变的。

比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。

这是因为两种分配方案每人植树的棵数相差7-5=2棵。

所以植树小组有18÷2=9人,一共有5×9+14=59棵树。

2.五(2)班老师给学生发笔记本,如果每人发3本,还剩下31本,如果每人发5本,就差15本,五(2)班有学生多少人?共有多少本笔记本?分析与解答:学生与笔记本的总数不变,每人分3本,剩下31本,每人分5本,差15本。

可以看出如果在每人发3本的基础上每人再发2本,就需要31+15=46(本)。

因此,46除以2就是五(2)班的学生人数。

解:五(2)班有学生:(46)÷2=23(人)一共有笔记本:5×23-15=100(本)答:五(2)班有学生23人,共有100本笔记本。

3.幼儿园把一些苹果平均分给小朋友吃,每个小朋友发5个,有8个小朋友分不到苹果,每个小朋友分4个,正好分完,幼儿园有多少个小朋友?有多少个苹果?分析与解答:有8个小朋友分不到苹果,就是缺少5×8=40(个)苹果,每个小朋友分4个,正好分完,说明每个小朋友少分5-4=1(个)苹果,共少分40个苹果,由此可以求出:有多少个小朋友:40÷1=40(个)有多少个苹果:4×40=160(个)答:幼儿园有40个小朋友。

有160个苹果。

4.妈妈在菜市场买猪肉,买5斤猪肉剩余5元钱,买6斤差3元钱,猪肉每斤多少钱?妈妈带了多少钱?分析与解答:妈妈买5斤多5元,买6斤差3元,一次多余,一次不够,两次一共相差5+3=8(元),多买6-5=1(斤),多出8元,因此一斤猪肉要8元。

五年级盈亏问题

五年级盈亏问题

第一讲盈亏问题盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余盈;按另一种标准分,分配后又会有不足亏,求物品的数量和分配对象的数量;例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块;小朋友有多少人饼干有多少块这种一盈一亏的情况,就是我们通常说的标准的盈亏问题;盈亏问题的基本数量关系是:盈+亏÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好;盈亏问题的数量关系是:1盈+亏÷两次分配差=份数大盈-小盈÷两次分配差=份数大亏-小亏÷两次分配差=份数2每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1.一个植树小组,如果每人栽5棵树,还剩14棵,每人栽7棵树,就缺4棵,问一共有几个人一共有多少棵树例2、妈妈买来一些桃子分给全家人吃;如果每人分4个,则多出12个;如果每人分6个,则多出2个;妈妈买来几个桃子全家共有几人例3、老师给美术小组的同学分发图画纸;如果每人发5张,则少3张;如果每人发8张,则少48张;美术小组有几人练习:1.幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个;幼儿园有多少个小朋友一共有多少个积木2.2. 某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位;问宿舍多少间学生多少人3.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人;问:这个班共有多少学生4.将月季花插入一些花瓶中;如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵;求花瓶的只数和月季花的朵数;5.王老师给美术兴趣小组的同学分发图画纸;如果每人发5张,则少32张;如果每人发3张,则少2张;美术兴趣小组有多少名同学王老师一共有多少张图画纸6.老师将一些练习本发给班上的学生;如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完;有多少个学生多少本练习本7.五1班同学植树,每人植1棵还剩20棵,每人植2棵差30棵;有多少个同学多少棵树苗巩固练习:1.三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人要搬的砖共有多少块2.2.老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子老猴子一共有多少个桃子3.有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢4.望子成龙学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师多少本书5. 王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把王老师一共带了多少钱6.工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个7. 望子成龙学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果8. 秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个计划吃多少天。

(完整版)盈亏问题讲义

(完整版)盈亏问题讲义

盈亏问题小朋友分铅笔,每人分3支,则多6支,每人分5支则少8支。

有多少小朋友,有多少铅笔?任务:分东西,分什么:铅笔【总量】分给谁:小朋友【份数】多,余,盈是多余的意思少,亏是不足的意思。

在分物品或者安排其他工作时,经常会遇到多余或者不足的情况。

遇到这类题目,我们可以根据多余以及不足的数量找出解题的线索。

这类应用题通常叫做盈亏问题。

解答盈亏问题的关键是弄清盈、亏与两次分配差的关系。

盈亏问题的数量关系是:(1)“一盈一亏”:(盈+亏)÷两次分配差=份数【标准盈亏】“两盈”:(大盈-小盈)÷两次分配差=份数“两亏”:(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量1、标准盈亏问题(一盈一亏)例1、小朋友分糖果,每人3粒剩2粒,每人5粒少6粒,则共有糖果_________粒?思路点拨:列出已知条件:两个不变量两种分配方案先列对比图:每人3粒,多2粒;每人5粒,少6粒。

这属于“一盈一亏”问题。

由题意可知,小朋友的人数和糖果的粒数是不变的。

比较两种分配方案,结果相差2+6=8(粒),这是因为两种分配方案每人所分糖果相差5-3=2(粒)。

所以,小朋友的人数是8÷2=4(人),再求出糖果一共有多少粒。

(盈+亏)÷两次分配差=份数【标准盈亏】拓展:1)兔妈妈给兔子们分胡萝卜。

如果每只兔子分3个,则多17个,如果每只兔子分5个,还少13个。

问:有多少兔子?有多少胡萝卜?2)幼儿园老师给小朋友分果冻,如果每人分7个,则多15个果冻,如果每人分5个,则少3个果冻。

问:幼儿园有多少小朋友?有多少果冻?3)一些同学去划船,如果每条船坐4人,则有3个人没有位置。

如果每条船坐5人,则多出3个位置;一共有多少条船?一共有多少个同学?4)绿化队一次植树。

如果每人栽15棵树,则还剩下27棵没有人栽;如果每人栽18棵,就少3棵树苗。

五年级盈亏问题

五年级盈亏问题

盈亏问题 盈亏问题的数量关系是: (1)(盈+亏)÷两次分配差=份数 (盈-盈)÷两次分配差=份数 (亏-亏)÷两次分配差=份数 (2)每次分得的数量×份数+盈=总数量 每次分得的数量×份数-亏=总数量 例1.一个植树小组,如果每人栽5棵树,还剩14棵,每人栽7棵树,就缺4棵,问一共有几个人?一共有多少棵树? 由题意可知,植树的人数和树的棵数是不变的。

比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。

这是因为两种分配方案每人植树的棵数相差7-5=2棵。

所以植树小组有18÷2=9人,一共有5×9+14=59棵树。

练习:1.幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。

幼儿园有多少个小朋友?一共有多少个积木?2. 某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。

问宿舍多少间?学生多少人? 3.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支? 分析与解答:这是两亏的问题。

由题意可知:三好学生人数和铅笔支数是不变的。

比较两种分配方案,结果相差45-7=38支。

这是因为两种分配方案每人得到的铅笔相差9-7=2支。

所以,三好学生有38÷2=19人,铅笔有9×19-45=126支。

练习:1.将月季花插入一些花瓶中。

如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。

求花瓶的只数和月季花的朵数。

2.王老师给美术兴趣小组的同学分发图画纸。

如果每人发5张,则少32张;如果每人发3张,则少2张。

美术兴趣小组有多少名同学?王老师一共有多少张图画纸? 3.老师将一些练习本发给班上的学生。

【精品】五年级奥数培优教程讲义第11讲-盈亏问题(学生版)

【精品】五年级奥数培优教程讲义第11讲-盈亏问题(学生版)

第11讲盈亏问题学习目标了解盈亏问题是什么,能够分辨出是属于盈亏问题类型掌握盈亏问题的几种基本情况,以及基本的解题方法熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题知识梳理一、基本方法盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。

二、方法技巧注意1.条件转换 2.关系互换典例分析考点一:直接计算型盈亏问题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?例2、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?例4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多少只?考点二:条件关系转换型盈亏问题例1、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?例2、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?例3、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?考点三:复杂的盈亏问题例1、国庆节快到了,学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?例2、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?例3、堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?例4、四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了多少元钱?实战演练?课堂狙击1、有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2、王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30 元,问儿童小提琴多少钱一把?王老师一共带了多少钱?3、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?4、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

五年级奥数盈亏问题

五年级奥数盈亏问题

五年级奥数盈亏问题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--盈亏问题【知识要点】“幼儿园老师给小朋友分糖果,每个小朋友分5个糖果,就多出22个糖果;每个小朋友分7个糖果,就少18个糖果,有多少个小朋友和多少个糖果”像这样以份数平均分一定数量的物品,每份少一些,则物品有余(盈);每份多一些,则物品不足(亏)。

凡是研究这一类算法的应用题叫做盈亏问题。

盈亏问题的基本解法是:份数=(盈+亏)÷两次分配数的差;物品总数=每份个数×份数﹢盈数,物品总数=每份个数×份数-亏数。

【例题放映】例1 小明的妈妈买回一篮梨,分给全家,如果每人分5个,就多出10个梨;如果每人分6个,就少2个梨,小明全家有多少人这篮梨有多少个例2 一组学生去搬书,如果每人搬2本,还剩下12本;如果每人搬3本,还剩下6本,这组学生有几人这批书有几本例3 学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18棵,学生有几人这批树苗有多少棵例4 三(1)班学生去公园划船,如果每条船坐4人,则少一条船,如果每条船坐6人,则多出4条船,公园里有多少条船?三(1)班有多少个学生?例5 三年级少年表演队要去表演,他们算了一下,如果增加一辆汽车,正好每辆汽车坐20人,如果减少一辆汽车,正好每辆车坐30人,问这个表演队有多少人?例6 小明从家到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?【随堂大比拼】1.一些同学去划船,如果每条船坐5人,则多出3个位置,如果每条坐4人,则有3个人没有位置,一共有多少条船一共有多少个同学2.幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班这批玩具有多少个3.老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本,优秀少先队员有几人买来多少本练习本4.把一袋糖分给小朋友们,如果每人分4粒,则多了12粒,如果每人分6粒,则多了2粒,有小朋友几人有多少粒糖5.自然课上,老师发给学生一些树叶,如果每人分5片叶子,则差3片叶子。

五年级盈亏问题应用题

五年级盈亏问题应用题

五年级盈亏问题应用题示例文章篇一:《有趣的盈亏问题》嘿,同学们!你们知道吗?在数学的世界里,有一种特别有意思的问题,叫做盈亏问题。

今天,我就来给大家讲讲我在五年级学习盈亏问题时的那些有趣事儿!有一次上课,数学老师神秘兮兮地在黑板上写下了一道题:“小朋友分糖果,如果每人分4 颗,就多9 颗;如果每人分5 颗,就少6 颗。

问有多少个小朋友和多少颗糖果?”看到这道题,我一下子就懵了,这可咋整啊?我抓耳挠腮,苦思冥想。

同桌小明凑过来,一脸得意地说:“这还不简单,你看啊,如果每人多分一颗糖,从4 颗变成5 颗,那原本多出来的9 颗糖不但不够,还少了6 颗,这不就说明小朋友的人数是9 + 6 = 15 个嘛!”我瞪大眼睛,惊讶地问:“啊?这么简单?那糖果数呢?”小明敲了敲我的脑袋,说:“你真笨,小朋友都算出来了,糖果数不就是15×4 + 9 = 69 颗嘛!”我恍然大悟,哎呀,原来如此!后来,老师又出了一道题:“把一些书分给学生,如果每人分3 本,就剩下20 本;如果每人分4 本,就缺25 本。

有多少学生和多少本书?”这一次,我可学聪明了,我想:每人多分一本,从3 本变成4 本,就从剩下20 本变成缺25 本,那学生人数不就是20 + 25 = 45 人嘛!书的数量就是45×3 + 20 = 155 本。

我兴奋地举起手,大声回答了老师的问题,老师笑着点了点头,夸我进步真大!还有一次,我和小伙伴们一起做作业,遇到了这样一道题:“一组同学去植树,如果每人栽8 棵则少27 棵;如果每人栽6 棵,则余5 棵。

问这组同学有多少人?他们要栽多少棵树?”我们几个人围在一起,七嘴八舌地讨论起来。

小红说:“哎呀,这可太难了,我都被绕晕啦!”小刚皱着眉头说:“别急别急,咱们慢慢想。

”我仔细琢磨了一会儿,说:“你们看啊,每人少栽2 棵树,就从少27 棵变成多5 棵,那人数不就是(27 + 5)÷ 2 = 16 人嘛!”小伙伴们听了,都恍然大悟,纷纷夸我厉害。

小学五年级逻辑思维学习—复杂盈亏问题(

小学五年级逻辑思维学习—复杂盈亏问题(

小学五年级逻辑思维学习—复杂盈亏问题知识定位盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义。

重点难点:1.理解掌握并运用直接计算型盈亏问题;2.理解掌握条件转换型盈亏问题;3.理解掌握关系互换型盈亏问题.知识梳理【授课批注】本节与实际生活练习较为紧密,生活中经常遇到此类问题,学生较感兴趣。

合理提炼分配的总量和份数,能够在多个条件下,统一关系,对于盈亏问题的变型,更是学生需要注意的,是对学生能力的考察,对学生来说是一个挑战。

【授课批注】注意总量与份数是恒定不变的,能够将多个条件统一到统一条件关系下,利用画图表解题一、解盈亏问题的公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。

二、竞赛考点1.条件转换2.关系互换例题精讲【题目】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【题目】小胖的爷爷买回一筐梨,分给全家人.如果小胖和小妹二人每人分4个,其余每人分2个,还多出4个,如果小胖1人分6个,其余每人分4个,又差12个.问小胖家有多少人?这筐梨子有多少个?【题目】用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.【题目】食堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?【题目】王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【题目】幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5 粒就缺6 粒.如果分给小班的小朋友,每人4 粒就余4 粒.已知大班比小班少2 个小朋友,这袋糖果共有多少粒?【题目】实验小学少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?【题目】李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?【题目】有若干个苹果和梨,如果按1个苹果配3个梨分一堆,那么苹果分完时,还剩2个梨;如果按半个苹果配2个梨分一堆,那么梨分完时,还剩半个苹果.问梨有多少个?小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.小同共存了多少钱?【题目】学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?【题目】体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?【题目】小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,小白兔恰好放完,小灰兔还多12只.那么小白兔和小灰兔共有多少只?四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔?习题演练【试题来源】【题目】小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校.小强家到学校的路程是多少米?【试题来源】【题目】少先队员参加绿化植树,他们准备栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,还余2棵;如果每人栽7棵苹果树苗,要少6棵.问有多少少先队员?他们准备栽多少棵苹果树和梨树?【试题来源】【题目】学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?【试题来源】【题目】兔子妈妈分白菜:如果其中2只小兔子每只分4棵,其余每只分2棵,则多4棵白菜;如果其中一只小兔子分6棵,其余每只分4棵,则差12棵白菜,问:一共有多少只小兔子?一共有多少棵白菜?【试题来源】【题目】有48个香蕉分给两个笼子的小猩猩,已知第二个笼子比第一个笼子多5只猩猩.如果把香蕉全部分给第一个笼子的猩猩,那么每只猩猩4个,有剩余;每只猩猩5个,香蕉不够.如果把香蕉全分给第二个笼子,那么每只猩猩3个,有剩余;每只猩猩4个,香蕉不够.问第二个笼子有多少只猩猩?【试题来源】【题目】若干盒卡片,每盒中卡片数一样多.把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张.现在把所有卡片都分完,每人都分到60张,而且还多出4张.问共有小朋友多少人?。

五年级奥数-盈亏问题

五年级奥数-盈亏问题

小学数学盈亏问题盈亏问题就是把一定的总数,分配给一定的对象,由于每份数分法不同,导致分后结果有盈(多)有亏(少)的一种典型应用题。

解题关键:解决盈亏问题,往往先用结果的相差数除以每份的相差数,求出对象的数量,进一步求出分配的总数。

所以在讲解时,不要刻意区分这三类基本题型,而应引导学生牢牢抓住两种分法上总的相差数和每次相差数三年级要求:掌握三类基本题型及解题思路和方法四年级要求:掌握三类题型的变化题型的转化思路和转化方法(讲解时注意运用对比例子,对比引导学生进行条件转换)一、基本题型第一类:一盈一亏例1:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还少4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以不仅把那剩下的16块分完,还少4块,总数上,第二次比第一次多16+4=20块,换句话说:每人多分2块,就得多分20块,我们就可以算出有多少人了,20÷2=10人,那总饼干数就是:10×3+16=46或10×5-4=46第二类:二次都是盈例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就多4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还多4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由剩下16块变成只剩下4块,总数上,第二次比第一次多16-4=12块,换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3+16=34或6×5+4=34第三类:二次都是亏例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则少4块饼干;如果每人分5块,那么就少16块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还少4块第二种分法:每人5块,还少16块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由少4块变成了少16块,总数上,第二次比第一次多16-4=12块,换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3-4=14或6×5-16=14 题库:1.某校同学排队上操.如果每行站9人,则多37人;如果每行站12人,则少20人.一共有多少学生?2、老师卖来一些练习本奖给学生,如果每人分2本,则多18本;如果每人分4本,则少12本,学生几人?有多少本练习本?3、学生做一批纸花,如果每人做3朵,则多了15朵纸花;如果每人做4朵,则少了9朵纸花,学生有几人?共做多少纸花?4、老师给同学发图画纸,如果每人分3张,则少2张;如果每人分5张,则少32张,同学有几人?一共有多少张图画纸?5、小明计划用若干天读完一本书,如果每天读18页,还剩120页;如果每天读22页,还剩下100页;小明计划几天读完?这本书共多少页?6、二班学生去公园玩,收门票费。

小学数学五年级盈亏问题

小学数学五年级盈亏问题

盈亏问题专题简析:盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。

例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。

小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。

盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1,两盈:两次分配都有多余;2,两不足:两次分配都不够;3,盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。

一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。

解题时我们可以记住:1,“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2,“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3,“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。

例1 某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。

乒乓球队共有多少名学生?分析(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知:女生比男生多2人;(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4人,这时男生为女生人数的一半,即现在女生有4×2=8人。

原来女生有8-1=7人,男生有7-2=5人,共有7+5=12人。

例2 幼儿园老师拿出苹果发给小朋友。

如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。

有多少个小朋友?共有多少个苹果?分析如果平均分给小朋友,则少4个,说明小朋友人数大于4;如果每个小朋友只发给4个,则教师也能留下4个,说明每人少拿若干个,就少拿4+4=8个苹果。

五年级奥数专题 复杂盈亏问题(学生版)

五年级奥数专题 复杂盈亏问题(学生版)

复杂盈亏问题学生姓名授课日期教师姓名授课时长知识定位盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义。

重点难点:1.理解掌握并运用直接计算型盈亏问题;2.理解掌握条件转换型盈亏问题;3.理解掌握关系互换型盈亏问题.知识梳理【授课批注】本节与实际生活练习较为紧密,生活中经常遇到此类问题,学生较感兴趣。

合理提炼分配的总量和份数,能够在多个条件下,统一关系,对于盈亏问题的变型,更是学生需要注意的,是对学生能力的考察,对学生来说是一个挑战。

【授课批注】注意总量与份数是恒定不变的,能够将多个条件统一到统一条件关系下,利用画图表解题一、解盈亏问题的公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。

二、竞赛考点1.条件转换2.关系互换例题精讲【试题来源】【题目】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【试题来源】【题目】小胖的爷爷买回一筐梨,分给全家人.如果小胖和小妹二人每人分4个,其余每人分2个,还多出4个,如果小胖1人分6个,其余每人分4个,又差12个.问小胖家有多少人?这筐梨子有多少个?【试题来源】【题目】用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.【试题来源】【题目】食堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?【试题来源】【题目】王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?【试题来源】【题目】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【试题来源】【题目】幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5 粒就缺6 粒.如果分给小班的小朋友,每人4 粒就余4 粒.已知大班比小班少2 个小朋友, 这袋糖果共有多少粒?【试题来源】【题目】实验小学少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?【试题来源】【题目】李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?【试题来源】【题目】有若干个苹果和梨,如果按1个苹果配3个梨分一堆,那么苹果分完时,还剩2个梨;如果按半个苹果配2个梨分一堆,那么梨分完时,还剩半个苹果.问梨有多少个?【试题来源】【题目】小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.小同共存了多少钱?【试题来源】【题目】学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?【试题来源】【题目】体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?【试题来源】【题目】小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,小白兔恰好放完,小灰兔还多12只.那么小白兔和小灰兔共有多少只?【试题来源】【题目】四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔?习题演练【试题来源】【题目】小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校.小强家到学校的路程是多少米?【试题来源】【题目】少先队员参加绿化植树,他们准备栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,还余2棵;如果每人栽7棵苹果树苗,要少6棵.问有多少少先队员?他们准备栽多少棵苹果树和梨树?【试题来源】【题目】学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?【试题来源】【题目】兔子妈妈分白菜:如果其中2只小兔子每只分4棵,其余每只分2棵,则多4棵白菜;如果其中一只小兔子分6棵,其余每只分4棵,则差12棵白菜,问:一共有多少只小兔子?一共有多少棵白菜?【试题来源】【题目】有48个香蕉分给两个笼子的小猩猩,已知第二个笼子比第一个笼子多5只猩猩.如果把香蕉全部分给第一个笼子的猩猩,那么每只猩猩4个,有剩余;每只猩猩5个,香蕉不够.如果把香蕉全分给第二个笼子,那么每只猩猩3个,有剩余;每只猩猩4个,香蕉不够.问第二个笼子有多少只猩猩?【试题来源】【题目】若干盒卡片,每盒中卡片数一样多.把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张.现在把所有卡片都分完,每人都分到60张,而且还多出4张.问共有小朋友多少人?。

小学数学盈亏问题五年级讲课上课PPT教学课件

小学数学盈亏问题五年级讲课上课PPT教学课件
关键:找盈数、找亏数
练2 小朋友分糖果, 若每人分4粒,则多9粒; 若每人分5粒,则少6粒。 问:有多少个小朋友?
关键:找盈数、找亏数
基本盈亏问题(笔记)
☆认识:①盈→有剩余; ②亏→不足(需要借);
☆核心:平均分东西,两种分配方案→比较找不同!
①(大盈-小盈)÷两次分配差=份数! ②(大亏-小亏)÷两次分配差=份数! ③(盈数+亏数)÷两次分配差=份数!
基本盈亏问题(笔记)
☆认识:①盈→有剩余; ②亏→不足(需要借);
☆核心:平均分东西,两种分配方案→比较找不同!
①(大盈-小盈)÷两次分配差=份数! ②(大亏-小亏)÷两次分配差=份数! ③(盈数+亏数)÷两次分配差=份数!
练1 数学兴趣小组的同学做数学题, 如果每人做6道,则多4道; 如果每人做8道,则少16道。 有同学几人?
☆技巧:①正好分完→盈0个!
练1 数学兴趣小组的同学做数学题, 如果每人做5道,则正好够做; 如果每人做8道,则少18道。 有同学几人?
关键:找盈数、找亏数
练2 小朋友分糖果, 若每人分3粒,则多16粒; 若每人分5粒,则正好分完。 问:有多少个小朋友?
关键:找盈数、找亏数
基本盈亏问题(笔记)
每份个数×份数+盈数(或减亏数)=总数
关键:找盈数、找亏数
基本盈亏问题(笔记)
☆认识:①盈→有剩余; ②亏→不足(需要借);
☆核心:平均分东西,两种分配方案→比较找不同!
①(大盈-小盈)÷两次分配差=份数!
练1 王老师给同学分发图画纸。 如果每人发5张,则多12张; 如果每人发2张,则多36张。 美术兴趣小组有多少名同学?
关键:找盈数、找亏数
关键:找盈数、找亏数

5.11 较复杂的盈亏问题

5.11 较复杂的盈亏问题
男生 每人分8支钢笔, 则少3支钢笔
例4:金博士将若干支钢笔分给四年级(3)班的学生,如 果只分给女生,每人分6支钢笔,则多5支钢笔;如果只分给男 生,每人分8支钢笔,则少3支钢笔;已知四年级(3)班的女 生比男生多4人。那么,四年级(3)班共有多少名学生?这些 钢笔共多少支?
5+6×4=2c9(支) 男生:(29+3)÷(8-6)=16(名) 共有:16+(16+4)=36(名) 钢笔:8×16-3=125(支)
45+5=50(人) (10+50)÷(50-45)=12(辆)
45×12+10=550(名)
答:一共有12辆汽车,有550名学生去秋游。
少先队员参观航天展,如果每车坐30人,则有5人不能乘车; 如果每车多坐5人,恰好多余1辆车。全体少先队员有多少人?
车:(35+5)÷5=8(辆) c
人数:30×8+5=245(人)
步行速度是每分钟70米, 就多可走以(提70前×55分)钟米
例5:小明从家到学校,如果步行速度是每分钟50米,就 要迟到3分钟。如果步行速度是每分钟70米,就可以提前5分 钟到校。求家到学校有多少米?
50×3=150(米) 70×5=350c(米) 准时:(150+350)÷(70-50)=25(分) 50×(25+3)=1400(米)
较复杂盈亏问c题解决方法: 将题目条件适当转化或假设。
博易新思维数学
易于学 乐于思
人数:6×5=30(人)
答:探险队一共有30人。
例2:少先队员植树,如果每人挖5个坑,那么还有3个坑 无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰 好将坑挖完。问:有多少名少先队员?一共要挖几个坑?

五年级数学盈亏问题

五年级数学盈亏问题
2、复杂盈亏问题的转化


盈亏问题
例+练:
1、学校分配宿舍,每个房间住3人,则多出20人;每个房间住5人,正好可全部安排好。有多少个房间?有多少学生?
2、有一些少先队员到山上去种一批树,如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种,有多少名少先队员?有多少棵树?
3、学校组织一些学生去植树,如果每人植树5棵,则差2棵,如果每人植树7棵,则差18棵。学生有几人?这批树苗有多少棵?
7、周老师为参加数学夏令营的学生安排宿舍。如果增加2间宿舍,每间宿舍恰好住6人;如果减少2间宿舍,每间宿舍恰好住9人。参加数学夏令营的学生共有多少人?
8、滔滔每天步行上学,如果每分走60米,则要迟到5分钟;如果每分走75米,则可提前2分到校。滔滔家到学校多少米?
9、现在有小树苗若干棵,准备围绕着圆形水池栽种,若每棵树苗相距2米,还少5棵树苗;若每棵树苗相距3米,还剩余4棵树苗。圆形水池的周长是米?
4、思齐教育组织师生乘汽车去春游,如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余一辆车。一共有多少辆车?多少学生?
5、少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑,少先队员一共挖多少树坑?
6、妈妈给一批上衣缝纽扣,如果每天缝1ห้องสมุดไป่ตู้件,就比规定的工期晚两天完成;如果每天缝18件,就可比规定的工期提前3天完成。这批上衣共多少件?
-小升初冲刺班教学教案
授课时间:2019年1月2日(星期三)
姓名
年级
五年级
科目
数学
总课时第课
教学
目标
知识目标:让学生明白盈亏问题知识点,使学生理解盈亏问题及公式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科教师辅导讲义
知识梳理
一、基本方法
盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

可以得出盈亏问题的基本关系式:
(盈+亏)÷两次分得之差=人数或单位数
(盈-盈)÷两次分得之差=人数或单位数
(亏-亏)÷两次分得之差=人数或单位数
物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。

二、方法技巧
注意1.条件转换 2.关系互换
典例分析
考点一:直接计算型盈亏问题
例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?
例2、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?
例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?
例4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多少只?
考点二:条件关系转换型盈亏问题
例1、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?
例2、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?
例3、堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?
例4、四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了多少元钱?
实战演练
➢课堂狙击
1、有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学
生,多少练习本呢?
2、王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30 元,问儿童小提琴多少钱一把?王老师一共带了多少钱?
3、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?
4、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

如全部分给小班的小朋友,每人分到8个,则缺2个。

已知大班比小班多3人,问:这筐苹果共有多少个?
4、王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?
5、李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?
6、王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?
直击赛场
重点回顾
盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

名师点拨
1.条件转换
2.关系互换这两种典型例题的常见类型以及复杂问题转化为基本盈亏问题。

学霸经验
➢本节课我学到
➢我需要努力的地方是。

相关文档
最新文档