2011年中考第一轮复习精品第1讲平面直角坐标系与函数基本知识[1]

合集下载

中考数学一轮复习课件:第3章 第1节平面直角坐标系与函数

中考数学一轮复习课件:第3章  第1节平面直角坐标系与函数

例1[2020·邵阳]已知a+b>0,ab>0,则在如
[答案] B
图9-3所示的平面直角坐标系中,小手盖住 [解析]∵a+b>0,ab>0,∴a>0,b>0.(a,b)
的点的坐标可能是
(
)
在第一象限,(-a,b)在第二象限,(-a,-b)
-2
-5
的自变量 x 的取值范围是 ( D )
A.x≠5
B.x>2 且 x≠5
C.x≥2
D.x≥2 且 x≠5
7.已知点P(a,b)到x轴的距离为5,到y轴的距离为3,则点P的坐标为(3,5)或(-3,5)
或(-3,-5)或(3,-5)
____________
.
考向一
平面直角坐标系中点的坐标特征
画一个简单图形.
4.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的
顶点坐标,并知道对应顶点坐标之间的关系.
5.探索简单实例中的数量关系和变化规律,了解常量、变量的意义.
6.结合实例,了解函数的概念和三种表示法,能举出函数的实例.
7.能结合图象对简单实际问题中的函数关系进行分析.
二、坐标系中的距离
点 P(x,y)到坐标轴及原点的距离
(1)到 y 轴的距离 d=⑫
|x|
两点间的距离(设 A(x1,y1),B(x2,y2),P(x2,y1))
(1)AP∥x 轴,AP=|x2-x1|;
;
(2)BP∥y 轴,BP=
(2)到 x 轴的距离 d=|y|;
⑭ |y1-y2▶演▶练
题组一 必会题
1.[2020·扬州]在平面直角坐标系中,点P(x2+2,-3)所在的象限是

初三代数平面直角坐标系及函数的概念复习课课件

初三代数平面直角坐标系及函数的概念复习课课件
初三代数平面直角坐标系 及函数的概念复习课PPT 课件
本课程将为您复习初三代数中的平面直角坐标系和函数的概念,帮助您更好 地掌握这一重要知识点。
平面直角坐标系
直角坐标系的定义
如何构建一个平面直角坐标系
坐标的概念
如何使用坐标表示一个点的位置
距离和斜率的计算
如何计算两点之间的距离和斜率
平面图形的表示
如何使用直角坐标系表示平面图形
现在是时间来回顾本节课所涉及的所有知识点并解决我们的错题。
3
函数的图像和奇偶性
函数的图像具有什么特征?函数的奇偶
函数的运算和复合函数
4
性如何确定?
如何进行函数的加、减、乘、除和复合 运算?
一次函数
定义和性质
一次函数的定义和特征
函数图像的特征
一次函数的图像具有什么特点?
截距和斜率的含义
如何计算函数的截距和斜率?
应用题的解法
如何使用一次函数解决实际问题?
二次函数
定义和性质
二次函数的定义和特征
完全平方公式的应用
如何使用完全平方公式求解二次函数?
函数图像的特征
二次函数的图像具有什么特点?
应用题的解法
如何使用二次函数解决实际问题?
总结与练习
1 本节课所学的重点和难点
本节课所学的重点和难点是什么?
2 相关习题的解法
请尝试完成这些与本节课相关的习题
3 知识点串讲及错题解析
直线的表示
坐标系中直线的方程
如何使用斜率和截距表示直线的方程
点斜式和两点式表示直线
如何使用点斜式和两点式表示直线的方程
斜率的概念及计算方法
如何计算直线的斜率
不同类型直线的图像

中考数学平面直角坐标系和函数复习(知识点归纳+常考题型剖析)

中考数学平面直角坐标系和函数复习(知识点归纳+常考题型剖析)

中考数学平面直角坐标系和函数复习(知识点归纳+常考题型
剖析)
平面直角坐标系和函数相关概念
【基础知识归纳】
归纳一、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系
把坐标平面被x轴和y轴分割而成的四个部分
分别叫做第一象限、第二象限、第三象限、第四象限
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开
2. 函数的三种表示法
(1)列表法(2)图像法(3)解析法
3. 由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接。

中考总复习平面直角坐标系与一次函数反比例函数--知识讲解

中考总复习平面直角坐标系与一次函数反比例函数--知识讲解

中考总复习平面直角坐标系与一次函数反比例函数--知识讲解一、平面直角坐标系:平面直角坐标系是描述平面上点位置的一种工具,它由两条互相垂直的数轴(横轴和纵轴)构成。

横轴通常被称为x轴,纵轴通常被称为y轴。

通常,将x轴和y轴的交点称为坐标原点O。

在平面直角坐标系中,每一个点都可以用一个有序数对(x,y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。

例如,点A在x轴上的位置是2,在y轴上的位置是3,那么点A的坐标就是(2,3)。

二、一次函数:1.定义:一次函数是指形如y = ax + b的函数,其中a和b是常数,并且a≠0。

其中,a叫做一次函数的斜率,b叫做一次函数的截距。

2.斜率的性质:(1)当a>0时,一次函数是递增的,意味着随着x的增加,y也增加。

(2)当a<0时,一次函数是递减的,意味着随着x的增加,y减少。

3.截距的性质:截距是指一次函数与y轴的交点,在数学上记为点(0,b)。

(1)当b>0时,一次函数与y轴正向相交,函数图像在y轴上方。

(2)当b<0时,一次函数与y轴负向相交,函数图像在y轴下方。

4.一次函数的图像特点:一次函数的图像是一条直线,直线的斜率决定了直线的倾斜程度,而截距决定了直线与y轴的交点位置。

通过改变斜率和截距的值,可以改变直线的位置和倾斜程度。

三、反比例函数:1.定义:反比例函数也称为比例函数的倒数函数,当x≠0时,反比例函数可以表示为y=k/x,其中k≠0。

反比例函数的图像是图象关于坐标原点O对称的两个分离的曲线。

2.反比例函数的性质:(1)当x增大时,y减小;当x减小时,y增大。

(2)反比例函数不存在斜线,是一对曲线对称分离的图象。

四、平面直角坐标系与一次函数反比例函数的应用:平面直角坐标系和一次函数、反比例函数可以应用于很多实际问题中,如图形的绘制、方程的求解等。

1.图形的绘制:- 对于一次函数y = ax + b,通过改变a和b的值,可以得到不同的图形及其特点。

数学中考一轮复习专题11 平面直角坐标系(课件)

数学中考一轮复习专题11 平面直角坐标系(课件)

P′(x+a,y). P′(x–a,y). P′(x,y+b). P′(x,y–b).
知识点2:点的坐标在不同位置的特征
典型例题
【例3】(2分)(2021•青海12/25)已知点A(2m﹣5,6﹣2m)在第四象限,则m 的取值范围是 .
【分析】根据第四象限点的特点,2m﹣5>0,6﹣2m<0,可得答案.
【解答】解:∵A(2m﹣5,6﹣2m)在第四象限,

2m 5>0 6 2m<0
,
解得m>3,
故答案为:m>3.
知识点2:点的坐标在不同位置的特征
典型例题
【例4】(3分)(2020•广东3/25)在平面直角坐标系中,点(3,2)关于x轴对称的
点的坐标为(

A.(-3,2)
B.(-2,3) C.(2,-3) D.(3,-2)
中考数学一轮复习
11 平面直角坐标系
中考命题说明
考点
课标要求
考查角度
平面直角 认识并能画出平面直角坐标系;在给定 常以选择题、填空题的形式考
1 坐标系及 的直角坐标系中,会根据坐标描出点的位 查平面直 角坐标系 及点的坐
点的坐标 置、由点的位置写出它的坐标.
标.
图形变换 2 及点的坐
标变化
常以选择题、填空题的形式考 在同一直角坐标系中,感受图形变换后点
知识点2:点的坐标在不同位置的特征
知识点梳理
5. 关于x轴、y轴或原点对称的点的坐标的特征:
点P与点P′关于x轴对称 横坐标相等,纵坐标互为相反数. 点P与点P′关于y轴对称 纵坐标相等,横坐标互为相反数. 点P与点P′关于原点对称 横、纵坐标均互为相反数.
知识点2:点的坐标在不同位置的特征

初三一轮复习学案平面直角坐标系与函数初步认识

初三一轮复习学案平面直角坐标系与函数初步认识

课时8. 平面直角坐标系与函数初步认识班级姓名上课时间: 月 日 一、考试大纲要求:1、掌握平面直角坐标系中点的坐标的特点, 2了解函数的相关概念及图像的特点 二、重点、易错点分析:1、重点:点的坐标特征及应用,函数的定义,自变量的取值范围,函数图像等。

2、易错点:由点的坐标确定字母的取值范围易出现符号错误;由于考虑问题不全面,函数的自变量取值范围的确定常出错;函数的实际含义理解不当造成图像选择错误。

【知识梳理】一、平面直角坐标系1. 坐标平面内的点与______________一一对应.2. 点的位置 横坐标符号 纵坐标符号 第一象限 第二象限 第三象限第四象限3. x 0.4. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________, 关于原点对称的点坐标为___________. *5.两点之间的距离 *6.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.5. 函数的三种表示方法分别是__________、__________、__________.6. 描点法画函数图象的一般步骤是__________、__________、__________.7.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义 例如:x y =有意义,则自变量x 的取值范围是. xy 1=有意义,则自变量x 的取值范围是. 【思想方法】数形结合 【典型例题】考点一、平面直角坐标系 1. 各象限点的坐标的符号;例1:如果点P(m ,1-2m)在第四象限,那么m 的取值范围是 ( )A .210<<m B .021<<-m C .0<m D .21>m 2. 坐标轴上的点的坐标特征.例2:X 轴上到(-1,0)的距离为2的点是3. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x 对称点的坐标21212211P P )0()0()2(yy y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 例3:点A(-2,1) 关于x轴对称的点的坐标为___________;关于y轴对称的点的坐标为___________;关于原点对称的点的坐标为________.考点二、函数例4:下列图形不能体现y是x的函数关系的是( )2.自变量的取值范围:例5:函数122y xx=++-的自变量x的取值范围为()A、x≥-2B、x>-2且x≠2C、x≥0且≠2D、x≥-2且≠2【巩固练习】1.函数11+=xy中,自变量x的取值范围是.2.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为.3.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.4.学校升旗仪式上,•徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()5.点A(—3,2)关于y轴对称的点的坐标是()A.(-3,-2)B.(3,2)C.(3,-2)D.(2,-3)6.若点P(1-m,m)在第二象限,则下列关系式正确的是()A. 0<m<1B. m<0C.m>0D.m>l7.下列图形中的曲线不表示y是x的函数的是()【梳理小结】OyxOyx Oyx OyxvxvxvxyOBx【中考链接】1.(2015•湖南株洲,第10题3分)在平面直角坐标系中,点(-3,2)关于y 轴的对称点的坐标是。

中考复习 平面直角坐标系基础知识详解

中考复习 平面直角坐标系基础知识详解

平面直角坐标系目录一、平面直角坐标系二、坐标方法的简单应用三、《平面直角坐标系》全章复习与巩固一、平面直角坐标系基础知识讲解+基本典型例题解析【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【基本典型例题】(1)类型一、有序数对1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.类型二、平面直角坐标系与点的坐标的概念2.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)【答案】D.3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).【答案与解析】解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y轴上找到坐标是3的点N.然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D.所以,点A、B、C、D在直角坐标系的位置如图所示.【总结升华】对于坐标平面内任意一点,都有唯一的一对有序数对和它对应;对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征4.(2014春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?【思路点拨】(1)利用第四象限点的坐标性质得出答案;(2)利用第二、四象限点的坐标性质得出答案;(3)利用第三、四象限和纵轴点的坐标性质得出答案.【答案与解析】解:∵M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第四象限;(2)当ab>0时,即a,b同号,故点M位于第一、三象限;(3)当a为任意实数,且b<0时,点M位于第三、四象限和纵轴的负半轴.【总结升华】本题考查点的坐标的确定,正确掌握各象限对应坐标的符号是解题关键.举一反三:【变式】(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.5.(2016春•宜阳县期中)已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P 的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).【基本典型例题】(2)类型一、有序数对表示位置1.如图是小刚的一张笑脸,他对妹妹说:如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成().A.(1,0) B.(-1,0) C.(-1,1) D.(1,-1)【思路点拨】由(0,2)表示左眼,用(2,2)表示右眼,可以确定平面直角坐标系中x 轴与y轴的位置,从而可以确定嘴的位置.【答案】A.【解析】解:根据(0,2)表示左眼,用(2,2)表示右眼,可得嘴的坐标是(1,0),故答案为A.【总结升华】此题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A,B,C,D各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A为坐标原点,边AB所在的直线为x轴,边AD所在直线为y轴,建立平面直角坐标系,如图(1):A(0,0),B(5,0),C(5,3), D (0,3).解法二:以边AB的中点为坐标原点,边AB所在的直线为x轴,AB的中点和CD的中点所在的直线为y轴,建立平面直角坐标系,如图(2):A(﹣2.5,0),B(2.5,0),C(2.5,3), D (-2.5,3).解法三:以两组对边中点所在直线为x轴、y轴,建立平面直角坐标系,如图(3):A(﹣2.5,-1.5),B(2.5,-1.5),C(2.5,1.5), D (-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x轴和y轴确定,每一个点的位置也确定,而一旦原点或x轴、y轴改变,每一个点的位置也相对应地改变.举一反三:【变式】如图所示,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),……,则点A2008的坐标为________.【答案】(-502,-502).3.平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (-3,-1),B (1,3),C (2,-3).求△ABC 的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A 、C 分别作平行于y 轴的直线与过B 点平行于x 轴的直线交于点D 、E ,则四边形ACED 为梯形,根据点A (-3,-1)、B (1,3)、C (2,-3)可求得AD =4,CE =6,DB =4,BE =1,DE =5,所以△ABC 的面积为:. 【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.类型三、坐标平面及点的特征111()222ABC S AD CE DE AD DB CE BE =+--g g g △111(46)5446114222=+⨯-⨯⨯-⨯⨯=4.(2016春•沂水县期中)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【思路点拨】根据点的坐标特征一一求解.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,包括坐标轴上的点的坐标特征,平行于坐标轴的点的特征,以及到坐标轴的距离相等的点的特征,考察很全面.举一反三:【变式】若点C(x,y)满足x+y<0,xy>0,则点C在第_____象限.【答案】三.5.一个正方形的一边上的两个顶点O、A的坐标为O(0,0),A(4,0),则另外两个顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B、C,因为OABC是正方形,所以OC=BA=BC=OA=4.且OC∥AB,OA∥BC,则:(1)当顶点B在第一象限时,如图所示,显然B点坐标为(4,4),C点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】(2015•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)【答案】A.二、坐标方法的简单应用基础知识讲解+基本典型例题解析【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【基本典型例题】(1)类型一、用坐标表示地理位置1.(2015春•建昌县期末)课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B.【解析】解:如图,小慧的位置可表示为(4,4).【总结升华】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B 处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-1000,600)、B(-800,600)、C(0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B点为坐标原点更贴切一些.举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.【答案】本题的答案不唯一,现给出三种答案:(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是1 5,2⎛⎫--⎪⎝⎭,动物园的位置是(4,4);(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是12,12⎛⎫--⎪⎝⎭,动物园的位置是(7,3);(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场19,42⎛⎫--⎪⎝⎭,动物园(0,0).类型二、用坐标表示平移3.(2016•徐州模拟)在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是.【思路点拨】首先设点A的坐标是(x,y),根据平移方法可得A的对应点坐标为(x﹣1,y﹣4),进而可得x﹣1=2,y﹣4=﹣2,然后可得x、y的值,从而可得答案.【答案】(3,2).【解析】解:设点A的坐标是(x,y),∵将点A向左平移1个单位长度,再向下平移4个单位长度得点B,可得B的对应点坐标为(x﹣1,y﹣4),∵得到点B的坐标是(2,﹣2),∴x﹣1=2,y﹣4=﹣2,∴x=3,y=2,∴A的坐标是(3,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•甘南州)将点A(2,1)向上平移3个单位长度得到点B的坐标是.【答案】(2,4).解:原来点的横坐标是2,纵坐标是1,向上平移3个单位长度得到新点的横坐标不变,纵坐标为1+3=4.即该坐标为(2,4).4.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=g△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).【基本典型例题】(2)类型一、用坐标表示地理位置1.小明写信给他的朋友介绍学校的有关情况:校门正北方100米处是教学楼,从校门向东50米,再向北50米是科教楼,从校门向西100米,再向北150米是宿舍楼……请画出适当的平面直角坐标系表示校门、教学楼、科技楼、宿舍楼的位置,并写出这四个点的坐标.【思路点拨】选取校门所在的位置为原点,并以正东,正北方向为x轴、y轴的正方向,可以容易地写出三个建筑物的坐标.否则就较复杂.【答案与解析】解:(1)平面直角坐标系及学校的建筑物位置如图所示,比例尺为1:10000.(2)校门的坐标为(0,0);教学楼的坐标为(0,100);科技楼的坐标是(50,50);宿舍楼的坐标为(-100,150).【总结升华】选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.举一反三:【变式】一个探险家在日记上记录了宝藏的位置,从海岛的一块大圆石O出发,向东1000m,向北1000m,向西500m,再向南750m,到达点P,即为宝藏的位置.(1)画出坐标系确定宝藏的位置;(2)确定点P的坐标.【答案】解:根据数据的特点,选择250作为单位长度,以大圆石O为原点,建立平面直角坐标系.(1)如图,中心带有箭头的线是行动路线,点P的位置如图所示.(2)点P的坐标是(500,250)2.如图是一所学校的平面示意图,已知国旗杆的坐标为(-1,1),写出其他几个建筑物位置的坐标.若国旗杆的坐标为(3,1),则其他几个建筑物位置的坐标是否发生改变?若改变,请写出坐标,若不改变,请说明理由.【答案与解析】解:当国旗杆的坐标是(-1,1)时,校门的坐标是(-4,1),实验楼的坐标是(2,-2),教学楼的坐标是(2,1),图书馆的坐标是(1,4);若国旗杆的坐标是(3,1),则校门的坐标是(0,1),实验楼的坐标是(6,-2),教学楼的坐标是(6,1),图书馆的坐标是(5,4).【总结升华】根据已知点确定平面直角坐标系,进一步求得要求点的坐标.举一反三:【变式】(2016春•石家庄期末)如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上.【答案】(﹣2,1).解:∵位于点(1,﹣2)上,位于点(3,﹣2)上,∴位于点(﹣2,1)上.类型二、用坐标表示平移3.(2015春•文安县期末)如如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.【思路点拨】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.【答案与解析】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.【总结升华】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.举一反三:【变式】已知三角形ABC 三个顶点的坐标为A(-2,3),B(-4,-1),C(2,0).三角形ABC 中任意一点P(x 0,y 0)经平移后对应点为P 1(x 0+5,y 0+3).将三角形ABC 作同样的平移得到三角形A 1B 1C 1:(1)求A 1B 1C 1的坐标.(2)求三角形ABC 和△A 1B 1C 1的面积大小. 【答案】 解:(1)A 1(3,6),B 1(1,2),C 1(7,3).(2)ABC A B C S S '''=△△11124246143222=-⨯⨯-⨯⨯-⨯⨯=24-4-3-6=11. 类型三、综合应用4.在A 市北300km 处有B 市,以A 市为原点,东西方向的直线为x 轴,南北方向的直线为y 轴,并以50km 为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C (10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km ,问经几小时后,B 市将受到台风影响?并画出示意图.【思路点拨】当台风中心移动到据B点200千米时,B市将受到台风影响,从而求出台风中心的移动距离,除以速度,即可求出所需时间.【答案与解析】解:∵台风影响范围半径为200km,∴当台风中心移动到点(4,6)时,B市将受到台风的影响.所用的时间为:50×(10-4)÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)【总结升华】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.举一反三:【变式】一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.【答案】在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C.三、《平面直角坐标》全章复习与巩固【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.。

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)
A.(2011,0) B.(2011,1) (2)用方向和距离表示.
技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).

【中考一轮复习】平面直角坐标系与函数复习课件

【中考一轮复习】平面直角坐标系与函数复习课件
(3)关注每一段运动过程中函数值的变化规律,与图象上升(或降落)的变化趋势相比对; (4)在以上排除法行不通的情况下,需要写出各段的函数解析式,进行选择.
练习
1.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟
远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大


睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同
时到达终点.用S1,S2分别表示乌龟和兔子赛跑的路程,t为赛跑③时间,
则下列图象中与故事情节相吻合的是( ) C
2.如图,四边形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,垂足分别为E,F, 且AE=EF=FB=5 cm,DE=12 cm.动点P,Q均以1 cm/s的速度同时从点 A出发,其中点P沿折线AD-DC-CB运动到点B停止,点Q沿AB运动到点B 停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t对应关系的
图象大致是(D )
例二 根据图象分析、判断实际问题
例2. 一对变量满足如图的函数关系.设计以下问题情境:
①小明从家骑车以600米/分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1000米/分
的速度匀速骑回家.设所用时间为x分钟,离家的距离为y千米;
②有一个容积为1.5升的开口空瓶,小张以0.6升/秒的速度匀速向这个空瓶注水,注满后停止,
B.(-2,3)
C.(3,-2)
D.(2,-3)
的是(
)A
A.这一天最低温度是-4℃
B.这一天12时温度最高
C.最高温比最低温高8℃ 高12℃
D.0时至8时气温呈降落趋势
先降落后上升
3.李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽

中考数学第三章函数第一节平面直角坐标系与函数课件

中考数学第三章函数第一节平面直角坐标系与函数课件
然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐
标符号改变可得答案. 【自主解答】 点A(-1,-2)向右平移3个单位长度得到
点B的坐标为(-1+3,-2),即(2,-2),则点B关于x轴
的对称点B′的坐标是(2,2),故选B.
对称点的坐标:①点(a,b)关于x轴的对称点是(a,-b), 即关于x轴对称的点的横坐标不变;②点(a,b)关于y轴的 对称点是(-a,b),即关于y轴的对称点的纵坐标不变; ③点(a,b)关于原点的对称点是(-a,-b),即关于原点 对称的点的坐标符号相反.
4.函数的三种常见表示方法: _解__析__式__法__、 _列__表__法__、 _图__象__法__,这三种方法有时可以互相转化.
5.函数的图象 (1)一般地,对于一个函数,如果把自变量与函数的每对 对应值分别作为点的横、纵坐标,那么坐标平面内由这些 点组成的图形,就是这个函数的图象. (2)画函数图象的一般步骤:列表、描点、连线.
解答此类问题,关键是熟记各象限点的坐标特征:第一象 限的符号为(+,+),第二象限的符号为(-,+),第三 象限的符号为(-,-),第四象限的符号为(+,-).
1.(2017·河北模拟)已知点P(x+3,x-4)在x轴上,
则x的值为( D )A.3Fra bibliotekB.-3
C.-4
D.4
2.(2017·长安区二模)如图,正五边形ABCDE放入某 平面直角坐标系后,若顶点A,B,C,D的坐标分别是 (0,a),(-3,2),(b,m),(c,m),则点E的坐标 是( C )
第三章 函 数 第一节 平面直角坐标系与函数
知识点一 平面直角坐标系 1.定义:在平面内画两条互相 _垂__直__ 、 _原__点__重__合__的 数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴, 竖直的数轴称为y轴或纵轴.

中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件

中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件
对自变量x的不同取值,y的值可以相同.
③在某个变化过程中处于主导地位的变量即为自变量,随之变
化且对应值有唯一确定性的另一个变量即为该自变量的函数.
(4)函数自变量取值范围.
①不同类型的函数关系式中自变量取值范围的求解方法:
函数解析式
整式型(y=ax+b)
自变量的取值范围
全体实数,但在实际问题中要注意限
向上平移b个单位
向下平移b个单位
平移后点P'的坐标
特征
(x-a,y)
左减
(x+a,y)
(x,y+b)
(x,y-b)
右加
上加
下减

⁠(Βιβλιοθήκη )中心对称的坐标特征:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)
关于原点的对称点为P'(-x,-y).
(8)图形在坐标系中的旋转的坐标特征.
图形(点)的旋转与坐标变化:
① 点 P ( x , y ) 绕 坐 标 原 点 顺 时 针 旋 转 9 0 °, 其 坐 标 变 为
P'(y,-x);
②点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P'
(-x,-y);
③点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P’
(-y,x);
④点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P'
间的距离为|y1-y2|.
任意两点P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标
1 +2 1 +2
为(

);
2
2
任 意 两 点 P1 ( x1 , y1 ) , P2 ( x2 , y2 ) , 则 线 段 P1P2 =

中考数学第一轮复习平面直角坐标系与函数

中考数学第一轮复习平面直角坐标系与函数

平面直角坐标系与函数知识点睛一、平面直角坐标系1.有序实数对有顺序的两个数a 与b 组成的实数对,叫做有序实数对,记作()a b ,. 注意:当a b ≠时,()a b ,和()b a ,是不同的两个有序实数对. 2.平面直角坐标系在平面内有两条公共点并且互相垂直的数轴就构成了平面直角坐标系,通常把其中水平的一条数轴叫做横轴或x 轴,取向右的方向为正方向;铅直的数轴叫做纵轴或y 轴,取向上的方向为正方向,两数轴的交点叫做坐标原点;x 轴和y 轴统称为坐标轴;建立了直角坐标系的平面叫做坐标平面.3.象限x 轴和y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫做第一象限,第二象限,第三象限,第四象限.注意:(1)两条坐标轴不属于任何一个象限.(2)如果所表示的平面直角坐标系具有实际意义时,要在表示横轴,纵轴的字母后附上单位. 4.点的坐标对于坐标平面内的一点A ,过点A 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a 、b 分别叫做点A 的横坐标和纵坐标,有序实数对()a b ,叫做点A 的坐标,记作A ()a b ,. 坐标平面内的点与有序实数对是一一对应的.注意:横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来.二、坐标平面内特殊点的坐标特征1.各象限内点的坐标特征点()P x y ,在第一象限⇔00x y >>,;点()P x y ,在第二象限⇔00x y <>,; 点()P x y ,在第三象限⇔00x y <<,; 点()P x y ,在第四象限⇔00x y ><,.2.坐标轴上点的坐标特征点()P x y ,在x 轴上⇔0y =,x 为任意实数; 点()P x y ,在y 轴上⇔0x =,y 为任意实数; 点()P x y ,即在x 轴上,又在y 轴上⇔00x y ==,,即点P 的坐标为()00,.3.两坐标轴夹角平分线上点的坐标特征点()P x y ,在第一、三象限夹角的角平分线上⇔x y =; 点()P x y ,在第二、四象限夹角的角平分线上⇔0x y +=.4.平行于坐标轴的直线上的点的坐标特征平行于x 轴直线上的两点,其纵坐标相等,横坐标为两个不相等的实数; 平行于y 轴直线上的两点,其横坐标相等,纵坐标为两个不相等的实数.5.坐标平面内对称点的坐标特征点()P a b ,关于x 轴的对称点是()P a b '-,,即横坐标不变,纵坐标互为相反数. 点()P a b ,关于y 轴的对称点是()P a b '-,,即纵坐标不变,横坐标互为相反数. 点()P a b ,关于坐标原点的对称点是()P a b '--,,即横坐标互为相反数,纵坐标也互为相反数.点()P a b ,关于点()Q m n ,的对称点是()22M m a n b --,.三、用坐标表示地理位置1.直角坐标系法先确定原点,然后画出x 轴和y 轴,建立平面直角坐标系,再确定它的横坐标及纵坐标.点的坐标可以又横坐标和纵坐标唯一地确定.2.方位角法从一定点出发,测量出被测点到定点的距离,及相对于定点的距离及相对于定点所处的方位角.点的位置有距离和方位角唯一地确定.四、中点坐标公式及两点之间的距离公式已知坐标系中两点()()1122A a b B a b ,,,.则A 、B 的中点C 坐标为121222a a b b ++⎛⎫⎪⎝⎭,221221)b -b ()a -a (+=AB L设点()C x y ,,则12a x a x -=-即()2a b ,12x a a x -=-,所以122a ax +=.同理求出122b b y +=例题精讲一、点位置的确定与坐标特征【例1】 在y 轴上且到点()04A ,的线段长度为5的点B 的坐标是( ) A .()09,B .()01-,C .()90,或()10-,D .()09,或()01-, 【例2】 由坐标平面内的三点()()()113113A B C --,,,,,构成的ABC ∆是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰直角三角形 【例3】 在平面直角坐标系中,点(721)m --+,在第三象限,则m 的取值范围是( )A.12m <B.12m >-C.12m <-D.12m >【例4】 在平面直角坐标系中,如果0mn >,那么点(m ,n )一定在( ) A.第一象限或第二象限 B.第一象限或第三象限C.第二象限或第四象限D.第三象限或第四象限【例5】 已知:点P (24m +,1m -).试分别根据下列条件,求出P 点的坐标.⑴点P 在y 轴上;⑵点P 在x 轴上;⑶点P 的纵坐标比横坐标大3; ⑷点P 在过(23)A -,点,且与x 轴平行的直线上.二、坐标与面积、对称问题【例6】 如图,若直线m 经过第二、四象限,且平分坐标轴的夹角,Rt AOB ∆与''Rt A OB ∆关于直线m 对称,已知(12)A ,,则点'A 的坐标为( )A.(12)-,B.(12)-,C.(12)--,D.(21)--,【例7】 方格中有一点P 和ABC ∆,第一步:作点P 关于点A 的对称点P 1;第二步:作点P 1关于点B 的对称点P 2;第三步:作点P 2关于点C 的对称点P 3;第四步:作点P 3关于点A 的对称点P 4…;如此一直对称下去.问:第2009次对称后,求点这P 2009与P 之间的距离为( ).(每一方格的边长为1).【例8】 如图,在平面直角坐标系中,一颗棋子从点P 处开始依次关于点A ,B ,C 作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再到点N 关于点C 的对称点处,…,如此下去.则经过第2009次跳动之后,棋子落点的坐标为 .三、与坐标相关的综合问题【例9】 如下右图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2011次,点P 依次落在点1P ,2P ,3P ,4P ,…2011P 的位置,则2011P 的横坐标2011x = _______.【例10】读一读,想一想,做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个44⨯的小方格棋盘,图中的“皇后Q ”能控制图中虚线所经过的每一个小方格.⑴在如图乙的小方格棋盘中有一“皇后Q ”,她所在的位置可用“(23),”来表示,请说明“皇后Q ”所在的位置“(23),”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.⑵如图所示的是一长方形纸板,请你把它裁成两块,然后拼成一个正方形,你能做到吗?请画图说明.课后作业1. 在平面直角坐标系中,对于平面内任一点()m n ,,规定以下两种变换①()()f m n m n =-,,,如(21)(21)f =-,,;②()()g m n m n =--,,,如(21)(21)g =--,,.按照以上变换有:[(34)](34)(34)f g f =--=-,,,,那么[(32)]g f -,等于( )A.(32),B.(32)-,C.(32)-,D.(32)--,2. 由坐标平面内的三点()()()113113A B C --,,,,,构成的ABC ∆是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰直角三角形3. 如图:在直角坐标系中,第一次将AOB ∆变换成11OA B ∆,第二次将三角形变换成22OA B ∆,第三次将22OA B ∆,变换成33OA B ∆,已知(13)A ,,1(33)A ,,2(53)A ,,3(73)A ,;(20)B ,,1(40)B ,,2(80)B ,,3(160)B ,.(1)观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是 ,B 4的坐标是 .(2)若按(1)找到的规律将△OAB 进行了n 次变换,得到△OA n B n ,比较每次变换中三角形顶点有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 .。

初中数学中考[函数]第1讲平面直角坐标系与函数

初中数学中考[函数]第1讲平面直角坐标系与函数

初中数学中考[函数]第1讲平面直角坐标系与函数平面直角坐标系与函数是中学数学中的一项重要内容,它是理解和掌握函数概念的基础。

在初中数学中考中,这个知识点通常作为第一讲出现,通过学习平面直角坐标系和函数的概念和性质,学生可以建立数学思维的基础,并且能够在后续的知识学习中有效运用。

本篇文章将对初中数学中考《平面直角坐标系与函数》这一知识点进行详细介绍,帮助教师更好地教授和组织学生学习。

一、教学目标1.理解平面直角坐标系的基本概念和性质;2.掌握平面直角坐标系中点的坐标计算方法;3.理解函数的概念和性质;4.能够用平面直角坐标系表示函数的图像;5.能够根据函数的表达式判断其性质。

二、教学重点1.平面直角坐标系的基本概念和性质;2.点的坐标计算方法;3.函数的概念和性质。

三、教学准备1.平面直角坐标系的教学展示板或幻灯片;2.相应的教学课件或教材;3.计算器;4.相关的练习题。

四、教学过程1.导入与概念引入教师通过对平面直角坐标系的介绍,让学生了解平面直角坐标系的基本概念,如x轴、y轴、原点等。

然后,教师引入点的坐标的概念,通过示例演示如何计算点的坐标,让学生参与其中,加深对概念的理解。

2.函数的概念和性质教师通过例题引导学生了解函数的概念和性质,帮助学生理解函数的本质是一种映射关系。

然后,教师通过具体的图像示例和表达式示例,帮助学生理解函数的图像和表达式之间的关系,引导学生观察函数图像的特点。

3.函数图像的绘制方法教师通过示例讲解如何根据函数的表达式绘制其图像,引导学生体会函数图像的变化规律。

然后,教师引导学生通过变化系数来探究函数图像的变化趋势,并通过让学生自己进行绘制练习,帮助学生巩固所学知识。

4.函数的性质判断教师通过例题讲解函数的奇偶性、周期性等性质的判断方法,帮助学生熟悉函数性质的判断规则。

然后,教师引导学生通过具体的函数表达式进行判断练习,巩固所学知识。

5.深化与拓展教师设计一些较难的练习题,帮助学生将所学知识应用到不同的问题中,并引导学生思考和解决问题的方法。

【中考一轮复习】平面直角坐标系与函数课件

【中考一轮复习】平面直角坐标系与函数课件

A.(1,3) C.(2,1)
B.(2,-1) D.(3,1)
N A
C
B M
拓展提升------坐标的几何意义
1.在平面直角坐标系中,A,B,C,D,M,N的位置 M A
B
如图所示,若点M的坐标为(-2,0),点N的坐标
为(2,0)则在第二象限内的点时__A___.
O
2.如图,在平面直角坐标系中,一动点从原点O C
解:由题意得,x+3≠0,4-x≥0,解得x≤4且x≠-3,故选:D
归纳拓展
(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.
当堂训练---函数的有关概念
1.函数 y =
x+3 x -1
中自变量的取值范围是(
地理位置的 ①平面直角坐标系法;②方位角+距离;③经纬度。
表示方法
典型例题---坐标的几何意义
【例2-1】在平面直角坐标系中,点P(4,-3)到x轴的距离是( B )
A.4
B.3
C.5
D.-3
解:在平面直角坐标系中,点P(4,-3)到x轴的距离为3.
故选:B.
典型例题---坐标的几何意义
【例2-2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点
A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( A )
A.O1 B.O2 C.O3 D.O4
A n
O1 O2 在如图的方格纸中,每个小正方形的边长为1,如果以MN所在的
直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,
使A点与B点关于原点对称,则这时C点的坐标可能是( B )

初三代数平面直角坐标系及函数的概念复习课课件

初三代数平面直角坐标系及函数的概念复习课课件

REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复习题与答案解析
基础题
01
02
03
04
题目
已知点A(2,3),B(-3,2),求线段AB的长度。
答案
线段AB的长度为5。
题目
已知点A(3,5),B(-4, 1),求线段AB的中点坐标。
答案
线段AB的中点坐标为(-0.5 ,3)。
当 x = 3 时,y = 2。
题目
答案
已知函数 y = -x^2 + 4x - 3,当 x = -1 时 ,求 y 的值。
当 x = -1 时,y = -6。
正比例函数的定义与图像
正比例函数的定义
正比例函数是一种特殊的函数,其表 达式为 y = kx (k ≠ 0),其中 x 和 y 是自变量和因变量,k 是常数。
正比例函数的图像
正比例函数的图像是一条通过原点的直线。当 k > 0 时,图像在第一象限和第三象限内均为 正值,且随着 x 的增大,y 值也逐渐增大;当 k < 0 时,图像在第二象限和第四象限内均为 负值,且随着 x 的增大,y 值逐渐减小。
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,函 数图像为上升直线;k<0 时,函数图像为下降直线 。
截距
b为y轴上的截距,当x=0 时,y=b。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接
成直线即为一次函数的图像。
图像特征
一次函数图像是一条直线,斜率为 k,y轴上的截距为b。
进阶题
题目
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档