高三数学分布列

合集下载

高三数学随机变量的分布列试题

高三数学随机变量的分布列试题

高三数学随机变量的分布列试题1.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A.B.C.D.【答案】D【解析】由题意得,+++=1,解得a=.于是P(<X<)=P(X=1)+P(X=2)=+=a=,故选D.2. [2014·四川模拟]在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A.B.C.D.【答案】C【解析】设事件A在每次试验中发生的概率为p,则事件A在4次独立重复试验中,恰好发生k 次的概率为pk=p k(1-p)4-k(k=0,1,2,3,4),∴p0=p0(1-p)4=(1-p)4,由条件知1-p=,∴(1-p)4=,∴1-p=,∴p=.∴p1=p·(1-p)3=4××()3=,故选C.3.[2014·唐山检测]2013年高考分数公布之后,一个班的3个同学都达到一本线,都填了一本志愿,设Y为被录取一本的人数,则关于随机变量Y的描述,错误的是()A.Y的取值为0,1,2,3B.P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)=1C.若每录取1人学校奖励300元给班主任,没有录取不奖励,则班主任得奖金数为300Y D.若每不录取1人学校就扣班主任300元,录取不奖励,则班主任得奖金数为-300Y【答案】D【解析】由题意知A、B正确.易知C正确.对于D,若每不录取1人学校就扣班主任300元奖金,录取不奖励,则班主任得奖金数为-300(3-Y)=300Y-900.4.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,V(η)=,求a∶b∶c.【答案】(1)ξ的分布列为(2)3∶2∶1【解析】(1)由已知得到:当两次摸到的球分别是红红时ξ=2,此时P(ξ=2)==;当两次摸到的球分别是黄黄、红蓝、蓝红时ξ=4时,P(ξ=4)==;当两次摸到的球分别是红黄,黄红时ξ=3时,P(ξ=3)==;当两次摸到的球分别是黄蓝,蓝黄时ξ=5时,P(ξ=5)==;当两次摸到的球分别是蓝蓝时ξ=6时,P(ξ=6)==.所以ξ的分布列为ξ23456由已知得到:η有三种取值即1,,所以η的分布列为所以,所以b=2c,a=3c,所以a∶b∶c=3∶2∶1.5.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.【答案】(1)0.5(2)0.8(3)ξ0123【解析】解:记A表示事件:进入商场的1位顾客购买甲种商品;记B表示事件:进入商场的1位顾客购买乙种商品;记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1)C=A·B+A·B,P(C)=P(A·B+A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P()·P(B)=0.5×0.4+0.5×0.6=0.5.(2)D=A·B,P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2,P(D)=1-P(D)=0.8.(3)ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008;P(ξ=1)=×0.8×0.22=0.096;P(ξ=2)=×0.82×0.2=0.384;P(ξ=3)=0.83=0.512.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.【答案】(1)、、(2)X的分布列为【解析】(1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)==,P(A2)=××=,P(A3)=××=.所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是、、;(2)设“乙队以3∶2胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)=××=.由题意,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=,P(X=1)=P(A3)=,P(X=2)=P(A)=,4P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=.故X的分布列为7.一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).(1)求取出的小球中有相同编号的概率;(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.【答案】(1);(2)随机变量的分布列为:346随机变量的数学期望 .【解析】(1)应用古典概型概率的计算公式,关键是利用组合知识,确定事件数;(2) 随机变量的可能取值为.计算相应概率即得随机变量的分布列为:数学期望 .试题解析:(1):设取出的小球中有相同编号的事件为,编号相同可分成一个相同和两个相同 2分4分(2) 随机变量的可能取值为:3,4,6 6分, 7分, 8分9分所以随机变量的分布列为:346所以随机变量的数学期望 . 12分【考点】古典概型,互斥事件,离散型随机变量的分布列及数学期望.8.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.9.辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.【答案】(1)(2)(3)【解析】(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.则P(E)=1-P( )=1-P()P()P( )=1-××=.(2)由题意,得X的可能取值是,2,,3.因为P(X=)=P()=,P(X=2)=P(A )+P(B)+P(C )=,P(X=)=P(AB)+P(A C)+P( B C)==,P(X=3)=P(ABC)=,所以X的分布列为:(3)由(2)知E(X)=×+2×+×+3×==.10.随机变量的分布列如右:其中成等差数列,若,则的值是.【答案】.【解析】由题意,则.【考点】随机变量的期望和方差.11.一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.【答案】(Ⅰ);(Ⅱ)所以的分布列:数学期望.【解析】(1)随机变量的分布列问题,首先确定随机变量的所有可能值;(2))本题属古典概型,各随机变量所对应的事件包含的基本事件无法用公式求出,需一一列举出来.列举时要注意避免重复和遗漏,这是极易出错的地方试题解析:(Ⅰ)当时,最大。

2022年高三数学一轮复习检测第9章第七讲离散型随机变量及其分布列

2022年高三数学一轮复习检测第9章第七讲离散型随机变量及其分布列

第七讲 离散型随机变量及其分布列A 组基础巩固一、单选题1.设随机变量X 的概率分布列如下表所示:X 0 1 2 Pa1316F (x )=P (X ≤x ),则当x D ) A .13B .16C .12D .56[解析] ∵a +13+16=1,∴a =12.∵x ∈[1,2),∴F (x )=P (X ≤x )=12+13=56.2.(2019·合肥模拟)设某项试验的成功率是失败率的2倍,试验一次要么成功要么失败,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( C )A .0B .12C .13D .23[解析] X 可能取值为0或1,而P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.3.(2019·陕西西安高三检测)已知随机变量ξ的分布列为P (ξ=k )=12k ,k =1,2,…,则P (2<ξ≤4)等于( A )A .316B .14C .116D .15[解析] P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=123+124=316.故选A.4.(2019·孝感模拟)已知袋中有3个白球,2个红球,现从中随机取出3个球,其中取出1个白球计1分,取出1个红球计2分,记X 为取出3个球的总分值,则E (X )=( B )A .185B .215C .4D .245[解析] 由题意知,X 的所有可能取值为3,4,5,且P (X =3)=C 33C 35=110,P (X =4)=C 23·C 12C 35=35,P (X =5)=C 13·C 22C 35=310,所以E (X )=3×110+4×35+5×310=215. 5.(2020·安徽六校联考)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为( B )A .2764B .916C .81256D .716[解析] 4名同学去旅游的所有情况有:44=256种,恰有一个地方未被选中共有:C 14·C 24·A 33=144种情况,∴恰有一个地方未被选中的概率:P =144256=916.故选B. 二、填空题6.(2019·吉林质检)设随机变量的概率分布为则ξ的数学期望的最小值是 12.[解析] E (ξ)=0×p 3+1×p 3+2×(1-2p3)=2-p ,又∵1>p 3≥0,1≥1-23p ≥0,∴0≤p ≤32.∴当p =32时,E (ξ)的值最小,E (ξ)=2-32=12.7.(2019·泉州模拟)在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为__________.[解析]8.从一批含有13只正品,23件,则取得次品数为ξ的分布列为____________.[解析]设随机变量ξN =15,M =2,n =3.它的可能的取值为0,1,2,相应的概率依次为P (ξ=0)=C 02C 313C 315=2235,P (ξ=1)=C 12C 213C 315=1235,P (ξ=2)=C 22C 113C 315=135.三、解答题9.(2019·湖北模拟)随着网络营销和电子商务的兴起,人们的购物方式更具多样化.某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于网购,2名倾向于实体店购物,5名女性购物者中有2名倾向于网购,3名倾向于实体店购物.(1)若从这10名购物者中随机抽取2名,其中男、女各一名,求至少有1名倾向于实体店购物的概率;(2)若从这10名购物者中随机抽取3名,设X 表示抽到倾向于网购的男性购物者的人数,求X 的分布列和数学期望.[解析] (1)设“随机抽取2名,其中男、女各一名,至少有1名倾向于实体店购物”为事件A ,则A 表示“随机抽取2名,其中男、女各一名,都倾向于网购”,则P (A )=1-P (A )=1-C 13×C 12C 15×C 15=1925.(2)X 所有可能的取值为0,1,2,3,且P (X =k )=C k 3C 3-k7C 310,则P (X =0)=724,P (X =1)=2140,P (X =2)=740,P (X =3)=1120.所以X 的分布列为E (X )=0×724+1×2140+2×740+3×1120=910.10.(2019·山东临沂模拟)甲、乙两人轮流射击,每人每轮射击一次,先射中者获胜,射击进行到有人获胜或每人都已射击3次时结束.设甲每次射击命中的概率为23,乙每次射击命中的概率为25,且每次射击互不影响,约定甲先射击.(1)求甲获胜的概率;(2)求射击结束时甲的射击次数X 的分布列和数学期望E (X ). [解析] (1)记甲第i 次射击中获胜的事件为A i (i =1,2,3), 则A 1,A 2,A 3彼此互斥,甲获胜的事件为A 1+A 2+A 3, P (A 1)=23,P (A 2)=13×35×23=215,P (A 3)=(13)2×(35)2×23=275.故P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3)=23+215+275=6275.(2)X 的所有可能取值为1,2,3. P (X =1)=23+13×25=45,P (X =2)=13×35×23+13×35×13×25=425,P (X =3)=(13)2×(35)2×1=125.X 的分布列为:X 1 2 3 P45425125故E (X )=1×45+2×425+3×125=3125.B 组能力提升1.(2019·西安质检)已知随机变量ξ的分布列如下:ξ 0 1 2 Pabc其中a ,b ,c ( B ) A .16B .13C .12D .56[解析] 由题意知a ,b ,c ∈[0,1],且⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13,又函数f (x )=x 2+2x +ξ有且只有一个零点,故对于方程x 2+2x +ξ=0,Δ=4-4ξ=0,解得ξ=1, 所以P (ξ=1)=13.2.(2019·长沙模拟)一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,下列概率等于(n -m )A 2mA 3n的是( D )A .P (X =3)B .P (X ≥2)C .P (X ≤3)D .P (X =2)[解析] 由超几何分布知P (X =2)=(n -m )A 2mA 3n,故选D.3.(2019·吉林模拟)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球,设ξ为取出的4个球中红球的个数,则P (ξ=2)=310. [解析] P (ξ=2)=C 11C 13C 12C 14+C 23C 22C 24C 26=310. 4.设离散型随机变量X 的分布列为则|X -1|的分布列为________.[解析] ∵0.2+0.1+0.1+0.3+m =1,∴m =0.3, |X -1|的取值为0,1,2, P (|X -1|=0)=P (X =1)=0.1,P (|X -1|=1)=P (X =0)+P (X =2)=0.4, P (|X -1|=2)=P (X =-1)+P (X =3)=0.5, ∴|X -1|的分布列为5.(2019·海南模拟)4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列. [解析] (1)由题意知,在7张卡片中,编号为3的卡片有2张,故所求概率为P =1-C 45C 47=1-535=67.(2)由题意知,X 的可能取值为1,2,3,4,且 P (X =1)=C 33C 47=135,P (X =2)=C 34C 47=435,P (X =3)=C 35C 47=27,P (X =4)=C 36C 47=47.所以随机变量X 的分布列是6.(2019·名女同学.在这10名同学中,3名同学来自数学学院,其中7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.[解析] (1)所求概率P =C 13C 27+C 37C 310=4960;(2)X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 14C 26C 310=12,P (X =2)=C 24C 16C 310=310,P (X =3)=C 34C 310=130,∴随机变量X 的分布列为7.(2020·喜迎国庆”歌咏比赛活动,《歌唱祖国》《精忠报国》《我和我的祖国》等一系列歌曲深受同学们的青睐,高二某班就是否选择《精忠报国》作为本班参赛歌曲进行投票表决,投情况如下表.(1)若从第14人中至少有2人赞成《精忠报国》作为本班参赛曲目的概率;(2)若从第五组和第七组的同学中各随机选取2进行调查,选取的4人中不赞成《精忠报国》作为本班参赛曲目的人数为X ,求随机变量X 的分布列和数学期望.[解析] (1)P 1=1-C 23C 23+C 14C 13C 23+C 23C 13C 13C 27C 26=2735. (2)各小组人员情况:X P (X =0)=C 25C 24C 27C 26=421,P (X =1)=C 12C 15C 24+C 25C 14C 12C 27C 26=49, P (X =2)=C 22C 24+C 25C 22+C 15C 12C 14C 12C 27C 26=32105, P (X =3)=C 22C 12C 14+C 15C 12C 22C 27C 26=235, P (X =4)=C 22C 22C 27C 26=1315,随机变量X 的分布列为E (X )=0+49+2×32105+3×235+4×1315=2621.。

高考数学最新真题专题解析—二项式定理与随机变量的分布(新高考卷)

高考数学最新真题专题解析—二项式定理与随机变量的分布(新高考卷)

高考数学最新真题专题解析—二项式定理与随机变量的分布(新高考卷)【母题来源】2022年新高考I卷【母题题文】)(x+y)8的展开式中x2y6的系数为(用数字作答).(1−yx【解析】【分析】本题考查二项展开式的特定项与特定项的系数,属于基础题.【解答】解:因为(x+y)8展开式的通项T r+1=C8r x8−r y r,令r=5,则x3y5的系数为C85=56;令r=6,则x2y6的系数为C86= 28,所以x2y6的系数为−56+28=−28.【母题来源】2022年新高考II卷【母题题文】随机变量X服从正态分布N(2,σ2),若P(2<x≤2.5)=0.36,则P(X>2.5)=【答案】0.14【解析】【分析】本题考查了正态分布的意义,正态曲线的对称性及其应用.【解答】解:由题意可知,P(X>2)=0.5,故P(X>2.5)=P(X>2)−P(2<X⩽2.5)=0.14.【命题意图】1.考察二项式定理及其应用,考察基本计算能力和逻辑推导能力。

2.考察正太分布,考察正态分布特征。

【命题方向】1.二项展开基本定理,还会涉及到三项展开。

考察特定项,特定项的系数,二项式系数,同时会涉及到赋值法的应用。

多为小题。

2.考察正太分布,二项分布,超几何分布等常见的分布。

【得分要点】一、二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C r n(r=0,1,2,…,n)叫做第r+1项的二项式系数.式中的C r n a n-r b r叫做二项式展开式的第r+1项(通项),用T r+1表示,即展开式的第r+1项;T r+1=C r n a n-r b r.二、常见随机变量的分布列(1)两点分布:若随机变量X服从两点分布,则其分布列为X01P1-p p其中p=P(X=1)(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列为超几何分布列.X01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N(3如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=C k n P k q n-k,其中k=0,1,2,3,…,n,q=1-P.于是得到随机变量X的概率分布如下:X01…k…nP C0n P0q n C1n P1q n-1…C k n P k q n-k…C n n P n q0由于n n n n…+C n n P n q0中的第k+1项(k=0,1,2,…,n)中的值,故称随机变量X为二项分布,记作X~B(n,P).三.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.二项分布的均值、方差若X ~B (n ,p ),则EX =np ,DX =np (1-p ). 3.两点分布的均值、方差若X 服从两点分布,则EX =p (p 为成功概率),DX =p (1-p ). 4.离散型随机变量均值与方差的性质E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ) (a ,b 为常数). 经典真题汇总及解析1.(2021·湖北·高三开学考试)已知随机变量2(0,)X N σ,且()P X a m <=,0a >,则()P a X a -<<=____. (用m 表示) 【答案】2m -1【分析】利用正态分布的性质可得正确的结果. 【详解】因为2(0,)XN σ,故1(0)2P X <=, 则1(0)2P X a m <<=-,故1()2212P a X a m m ⎛⎫-<<=-=- ⎪⎝⎭.故答案为:21m -.2.(2020·海南·三亚市第二中学高三阶段练习)某超市经营的某种包装优质东北大米的质量X (单位:kg )服从正态分布(25,0.04)N ,任意选取一袋这种大米,质量在24.825.4kg 的概率为__________.(附:若2(,)ZN μσ,则()0.6826P Z μσ-<=,(2)0.9544P Z μσ-<=,(3)0.9974P Z μσ-<=)【答案】0.8185【详解】因为()~?25,0.04X N ,所以250.2μσ==,. 所以()()()124.825.420.68260.95440.34130.47720.81852P P X σμσμσ≤≤=-≤≤+=+=+=. 故答案为0.8185.3.(2022·辽宁大连·一模)已知随机变量()2~1,N ξσ,且()()13P P a ξξ≤=≥-,则()190x a x a x+<<-的最小值为______. 【答案】4【分析】由正态曲线的对称性得出4a =,再由基本不等式得出最小值. 【详解】由随机变量()2~1,N ξσ,则正态分布的曲线的对称轴为1ξ=,又因为()()13P P a ξξ≤=≥-,所以()132a +-=,所以4a = 当04x <<时, 有()41919491102910444444x x x x xx x x x x +--+⎛⎫⎛⎫+=+=++⨯≥= ⎪ ⎪---⎝⎭⎝⎭, 当且仅当494x xx x-=-,即1x =时等号成立,故最小值为4. 故答案为:44.(2022·江苏·扬中市第二高级中学模拟预测)在()*43,29,,N 2np x n p n p x ≥≤≤∈展开式中,第2,3,4项二项式系数依次成等差数列,且展开式中有常数项,则该常数项是第________项. 【答案】5【分析】根据等差数列的知识求得n ,结合二项式展开式的通项公式求得正确答案.【详解】由于第2,3,4项二项式系数依次成等差数列, 所以()2132C C C 3n n n n =+≥,()()()1217321n n n n n n n ---=+⇒=⨯⨯.742p x x 展开式的通项公式为71714417711C C 22kkk kkk k pp p k T x x x ----+⎛⎫⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令704k k p p --=,整理得284k p =+, 由于*,0,1,2,3,4,5,6,729,N p p k ≤≤∈=, 所以3,4p k ==,即常数项是第15k +=项. 故答案为:55.(2021·广东·珠海市第二中学高三阶段练习)若()()()()17217012172111x a a a x x a x +=+++++++,则6216414a a a a a +++++=_______.【答案】1621-【分析】利用赋值法化简求解0241416a a a a a ⋯+++++和0a ,进一步求出答案.【详解】令2x =-,则1701216170a a a a a =⋯+--+-∈令0x =,则1701216172a a a a a =⋯+++++∈,∈+∈得()17024141622a a a a a +++++=⨯⋯ ∈1602414162a a a a a +⋯++++= 令1x =-,则01a = ∈6216414a a a a a +++++=160241416012a a a a a a +++++-=-⋯.故答案为:1621-.6.(2022·湖南·长郡中学一模)已知()2022202201202214x a a x a x -=+++,则32022122320222222a a a a ++++=__________. 【答案】0【分析】利用赋值法可得答案.【详解】根据题意,今0x =,得()20220101a =-=,令12x =,得()2022202212012202212222a a a a -=++++, 因此32022120232022102222a a a a a ++++=-=, 故答案为:0.7.(2022·湖北·襄阳五中二模)已知函数()103cos f x x x =+在x=0处的切线与直线0nx y -=平行,则二项式()()211nx x x ++-展开式中含2x 项的系数为_________.【答案】36【分析】根据导数的几何意义可得()010n f '==,()101x -展开式的通项为:110C (1)rr r r T x +=⋅-⋅,根据()()()()()101010102211111x x x x x x x x ++-=-+-+-分析计算2x 项的系数.【详解】由函数()f x 的解析式,得()103sin f x x '=-,则()010f '=.由题意,得()010n f '==,则二项式()()()()()()()101010102221111111nx x x x x x x x x x x ++-=++-=-+-+-()101x -展开式的通项为:1011010C 1()C (1)r r r rr r r T x x -+=⋅⋅-=⋅-⋅ 所以含2x 项的系数为()()()210210101010C 1C 1C 14510136⋅-+⋅-+⋅-=-+= 故答案为:36.8.(2022·重庆八中模拟预测)为了监控某种食品的生产包装过程, 检验员每天从生产线上随机抽取()*N k k ∈包食品,并测量其质量(单位:g ).根据长期的生产经验,这条生产线正常状态下每包食品质量服从正态分布()2,N μσ.假设生产状态正常,记ξ表示每天抽取的k 包食品中其质量在(3,3)μσμσ-+之外的包数,若ξ的数学期望()0.05E ξ>,则k 的最小值为________.附:若随机变量X 服从正态分布()2,N μσ,则(33)0.9973P X μσμσ-<<+≈.【答案】19【分析】根据正态分布的性质求出在(3,3)μσμσ-+之外的概率,从而得到(),0.0027B k ξ,根据二项分布的期望公式得到不等式,解得即可;【详解】解:依题意(33)0.9973P X μσμσ-<<+≈,所以在(3,3)μσμσ-+之外的概率10.99730.0027P =-=,则(),0.0027B k ξ,则()0.0027E k ξ=,因为()0.05E ξ>,所以0.00270.05k >,解得50018.5227k >≈,因为*N k ∈,所以k 的最小值为19; 故答案为:199.(2021·河北·武安市第一中学高三阶段练习)随机变量ξ的可能值1,2,3,且()()131,31P p P p ξξ==-==-,则D ()ξ的最大值为___________.【答案】1【分析】由题意得到()212P p ξ==-,利用概率范围求得p 的范围,再利用期望和方差的公式求解.【详解】因为随机变量ξ的可能值有1,2,3,且()()131,31P p P p ξξ==-==-, 所以()212P p ξ==-,由0311011,0121p p p ≤-≤⎧⎪≤-≤⎨⎪≤-≤⎩,得11,32p ⎡⎤∈⎢⎥⎣⎦所以()()()()1312123144E p p p p ξ=-+-+-=-.()()()()()()()22214431244123441D p P p p p p ξ=-+⨯-+-+⨯-+-+⨯-, 21116184,,32p p p ⎡⎤=-+-∈⎢⎥⎣⎦,当12p =时,()D ξ的最大值为1. 故答案为:110.(2022·山东师范大学附中模拟预测)已知随机变量()2~4,N ξσ,且()()31P P a ξξ≤=≥+,则()140x a x a x+<<-的最小值为________.【答案】94【分析】先由正态分布对称性求出4a =,进而利用基本不等式“1”的妙用求解最小值.【详解】由正态分布的对称性可知:15a +=,解得:4a =, 因为04x <<,所以40x ->,由基本不等式得:()141144444x x x x x x ⎛⎫⎛⎫⎡⎤+=++- ⎪ ⎪⎣⎦--⎝⎭⎝⎭1441449145244444x x x x x x x x ⎛--⎛⎫=+++≥+⋅= ⎪ --⎝⎭⎝, 当且仅当444x x x x -=-,即43x =时等号成立, 所以不等式得最小值为94故答案为:9411.(2022·河北保定·二模)若112nx x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭展开式中各项的系数之和为96,则展开式中2x 的系数为___________. 【答案】25【分析】由题意可得()21296n+=,从而可求出n ,则展开式中2x 的系数等于1nx x ⎛⎫+ ⎪⎝⎭展开式中x 一次项系数的2倍加上x 的3次项系数 【详解】由题意可知()21296n+=,得5n =,则5111122n x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,51⎛⎫+ ⎪⎝⎭x x 展开式的通项公式为552551C C rr r r rx x x --⎛⎫= ⎪⎝⎭, 所以5112x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭展开式中2x 的系数为21552C C 25+=.故答案为:2512.(2022·山东济宁·二模)从甲、乙、丙3名同学中选出2人担任正、副班长两个职位,共有n 种方法,则12nx x ⎛⎫- ⎪⎝⎭的展开式中的常数项为___________.(用数字作答) 【答案】160-【分析】先由题意求出2232C A 6n ==,然后求出二项式展开式的通项公式,令x 的次数为零,求出r 的值,从而可求出展开式中的常数项【详解】因为从甲、乙、丙3名同学中选出2人担任正、副班长两个职位,共有n 种方法, 所以2232C A 6n ==,所以二项式612x x ⎛⎫- ⎪⎝⎭展开式的通项公式为66621661C (2)C (1)2rrrr r r rr T x x x ---+⎛⎫=-=⋅-⋅⋅ ⎪⎝⎭, 令620r -=,得3r =,所以二项式展开式的常数项为3336C (1)2160⋅-⋅=-,故答案为:160-13.(2022·福建·厦门一中模拟预测)已知521()((ax x a xx-为常数)的展开式中各项系数之和为1,则展开式中3x 的系数为___. 【答案】79-【分析】令1x =得各项系数和,求得参数a ,然后由二项展开式通项公式结合多项式乘法法则求得含3x 的项,从而得其系数. 【详解】令1x =,则展开式的各项系数和为5(1)(12)11a a --=-=,解得2a =,所以5(x x 的展开式的通项公式为3552155C (C (2)rr rrr rr Tx xx--+==-,令3552r-=,则0r =,令3522r -=,解得2r =, 所以展开式中含3x 的项为0522235521C 2C (2)79x x x x x ⨯-⨯-=-,所以3x 的系数为79-,故答案为:79-.14.(2020·福建省长乐第一中学高三期中)从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______. 【答案】2【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===. 故分布列为:ξ123p153515故()1311232555E ξ=⨯+⨯+⨯=. 故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.。

专题01 离散型随机变量分布列(解析版)

专题01 离散型随机变量分布列(解析版)

概率与统计专题01 离散型随机变量分布列常见考点考点一 离散型随机变量分布列典例1.某校组织“百年党史”知识比赛,每组有两名同学进行比赛,有2道抢答题目.已知甲、乙两位同学进行同一组比赛,每人抢到每道题的机会相等.抢到题目且回答正确者得100分,没回答者得0分;抢到题目且回答错误者得0分,没抢到者得50分,2道题目抢答完毕后得分多者获胜.已知甲答对每道题目的概率为45.乙答对每道题目的概率为35,且两人各道题目是否回答正确相互独立.(1)求乙同学得100分的概率;(2)记X 为甲同学的累计得分,求X 的分布列和数学期望. 【答案】(1)37100; (2)分布列见解析,()100E X =. 【解析】 【分析】(1)应用独立事件乘法公式及互斥事件的概率求法,求乙同学得100分的概率;(2)由题意知X 可能值为{0,50,100,150,200},分别求出对应概率,写出分布列,进而求期望. (1)由题意,乙同学得100分的基本事件有{乙抢到两题且一道正确一道错误}、{甲乙各抢到一题都回答正确}、{甲抢到两题且回答错误},所以乙同学得100分的概率为1312141311113722252525252525100⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=. (2)由题意,甲同学的累计得分X 可能值为{0,50,100,150,200},1111111313134(0)225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=;121112134(50)222525252525P X ==⨯⨯⨯⨯+⨯⨯⨯⨯=;1212111414139(100)2225252525252525P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=;14124(150)2252525P X ==⨯⨯⨯⨯=;14144 (200)252525P X==⨯⨯⨯=;分布列如下:所以期望44944()050100150200100 2525252525E X=⨯+⨯+⨯+⨯+⨯=.变式1-1.第24届冬季奥林匹克运动会(The XXIV Olympic Winter Games),即2022年北京冬季奥运会,于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目;延庆赛区承办雪车、雪橇及高山滑雪项目;张家口赛区的崇礼区承办除雪车、雪橇及高山滑雪之外的所有雪上项目.某运动队拟派出甲、乙、丙三人去参加自由式滑雪.比赛分为初赛和决赛,其中初赛有两轮,只有两轮都获胜才能进入决赛.已知甲在每轮比赛中获胜的概率均为34;乙在第一轮和第二轮比赛中获胜的概率分别为45和58;丙在第一轮和第二轮获胜的概率分别是p和32p-,其中34p<<.(1)甲、乙、丙三人中,谁进入决赛的可能性最大;(2)若甲、乙、丙三人中恰有两人进人决赛的概率为2972,求p的值;(3)在(2)的条件下,设进入决赛的人数为ξ,求ξ的分布列.【答案】(1)甲进入决赛可能性最大(2)23 p=(3)分布列见解析【解析】【分析】(1)分别求出甲、乙、丙三人初赛的两轮均获胜的概率,然后比较即可;(2)利用相互独立事件的概率的求法分别求出甲和乙进入决赛的概率、乙和丙进入决赛的概率、甲和丙进入决赛的概率,即可通过甲、乙、丙三人中恰有两人进人决赛的概率为2972,列方程求解;(3)先确定进入决赛的人数为ξ的取值,依次求出每一个ξ值所对应的概率,列表即可.(1)甲在初赛的两轮中均获胜的概率为:13394416P =⨯= 乙在初赛的两轮中均获胜的概率为:2451582P =⨯=丙在初赛的两轮中均获胜的概率为:233322P P P P P ⎛⎫=⋅-=-+ ⎪⎝⎭∵3043012p p ⎧<<⎪⎪⎨⎪<-<⎪⎩,∵1324p <<,∵2339941616P P ⎛⎫=--+< ⎪⎝⎭ ∵甲进入决赛可能性最大. (2)()()()123132231111P P P PP P P P P P =⨯++⨯---222913931139111162216222216p p p p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯--+⨯-⨯-+⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2972=整理得21827100p p -+=,解得23p =或56p =,又∵1324p <<,∵23p =; (3)由(2)得,丙在初赛的两轮中均获胜的概率为:345199P =-=, 进入决赛的人数为ξ可能取值为0,1 ,2,3,71417(0)162972P ξ==⨯⨯=, 71591471411(1)16291629162932P ξ==⨯⨯+⨯⨯+⨯⨯=, 91495171529(2)16291692162972P ξ==⨯⨯+⨯⨯+⨯⨯=, 9155(3)162932P ξ==⨯⨯=, ∵ξ的分布列为变式1-2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)若有一辆车独立地从甲地到乙地,求这一辆车未遇到红灯的概率;(2)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望. 【答案】(1)14(2)分布列见解析,1312【解析】 【分析】(1)利用相互独立事件概率计算公式,计算出所求概率.(2)结合相互独立事件概率计算公式,计算出分布列并求得数学期望. (1)设“一辆车未遇到红灯”为事件A , 则()11111112344P A ⎛⎫⎛⎫⎛⎫=-⋅-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)随机变量X 的所以可能的取值为0,1,2,3, 则(0)P X ==1111(1)(1)(1)2344-⋅-⋅-=(1)P X ==1111111111111111123423423424⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-+-⋅⋅-+-⋅-⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (2)P X ==11111111111112342342344⎛⎫⎛⎫⎛⎫⋅-+⋅-⋅+-⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)P X ==111123424⋅⋅=. 随机变量X 的分布列:随机变量X 的数学期望:1111113()012342442412E X =⨯+⨯+⨯+⨯=. 变式1-3.对飞机进行射击,按照受损伤影响的不同,飞机的机身可分为∵,∵,∵三个部分.要击落飞机,必须在∵部分命中一次,或在∵部分命中两次,或在∵部分命中三次.设炮弹击落飞机时,命中∵部分的概率是16,命中∵部分的概率是13,命中∵部分的概率是12,射击进行到击落飞机为止.假设每次射击均击中飞机,且每次射击相互独立. (1)求恰好在第二次射击后击落飞机的概率; (2)求击落飞机的命中次数X 的分布列和数学期望. 【答案】(1)14; (2)分布列见解析,83. 【解析】 【分析】(1)把恰好在第二次射击后击落飞机的事件拆成两个互斥事件的和,再利用独立事件概率公式计算作答.(2)求出X 的可能值,并求出每个取值的概率,列出分布列并求出期望作答. (1)设恰好第二次射击后击落飞机为事件A 是第一次未击中∵部分,在第二次击中∵部分的事件与两次都击中∵部分的事件的和,它们互斥,所以25111()()6634P A =⨯+=.(2)依题意,X 的可能取值为1,2,3,4,1X =的事件是射击一次击中∵部分的事件,1(1)6P X ==,由(1)知,1(2)4P X ==, 3X =的事件是前两次射击击中∵部分、∵部分各一次,第三次射击击中∵部分或∵部分的事件,与前两次射击击中∵部分,第三次射击击中∵部分或∵部分的事件的和,它们互斥,12211111111(3)C ()()()32632623P X ==⨯⨯⨯++⨯+=, 4X =的事件是前三次射击击中∵部分一次,∵部分两次,第四次射击的事件,123111(4)C ()1324P X ==⨯⨯⨯=,所以X的分布列为:X的数学期望()11118 123464343E X=⨯+⨯+⨯+⨯=.【点睛】关键点睛:利用概率加法公式及乘法公式求概率,把要求概率的事件分拆成两两互斥事件的和,相互独立事件的积是解题的关键.典例2.高三学生甲、乙为缓解紧张的学习压力,相约本星期日进行“某竞技体育项目”比赛.比赛采用三局二胜制,先胜二局者获胜.商定每局比赛(决胜局第三局除外)胜者得3分,败者得1分,决胜局胜者得2分,败者得0分.已知每局比赛甲获胜的概率为23,各局比赛相互独立.(1)求比赛结束,乙得4分的概率;(2)设比赛结束,甲得X分,求X的概率分布与数学期望.【答案】(1)827;(2)分布列见解析,()14227E X=.【解析】【分析】(1)根据题意,求得得4分的事件,即可求得其概率;(2)根据题意,求得X的取值,再求概率从而求得分布列,再根据分布列求得数学期望即可.(1)若比赛结束,乙得4分,则比赛结果是甲以2:1获胜,故前两局比赛,甲胜1场,败1场,最后一局比赛,甲胜.则比赛结束,乙得4分的概率为122128 33327C⨯⨯⨯=.(2)若甲连胜2局结束比赛,甲得6分,其概率为224 39⎛⎫=⎪⎝⎭;若甲连败2局结束比赛,甲得2分,其概率为21139⎛⎫= ⎪⎝⎭;若甲以2:1结束比赛,甲得6分,其概率为12212833327C ⨯⨯⨯=; 若乙以2:1结束比赛,甲得4分,其概率为12211433327C ⨯⨯⨯=; 故X 的分布列如下所示:故()14201422469272727E X =⨯+⨯+⨯=. 变式2-1.现有甲、乙、丙三道多选题,某同学独立做这三道题,根据以往成绩,该同学多选题的得分只有2分和0分两种情况.已知该同学做甲题得2分的概率为34,分别做乙、丙两题得2分的概率均为23.假设该同学做完了以上三道题目,且做每题的结果相互独立. (1)求该同学做完了以上三题恰好得2分的概率; (2)求该同学的总得分X 的分布列和数学期望()E X . 【答案】(1)736(2)分布列见解析,数学期望()256E X = 【解析】 【分析】(1)根据相互独立事件的概率公式进行求解即可;(2)写出随机变量X 的所有可能取值,求出对应概率,从而可求出分布列,再根据期望公式即可求出期望. (1)解:记“该同学做完了以上三题恰好得2分”为事件A ,“该同学做甲题得2分”为事件B ,“该同学做乙题得2分”为事件C .“该同学做丙题得2分”为事件D ,由题意知32(),()()43P B P C P D ===, 因为A BCD BCD BCD =++,所以()()P A P BCD BCD BCD =++()()()P BCD P BCD P BCD =++()()()()()P B P C P D P B P C =+⋅()()()()P D P B P C P D +322322322711111143343343336⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)解:根据题意,X 的可能取值为0,2,4,6, 所以3221(0)11143336P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由(1)知7(2)36P X ==, 322121(6)433363P X ==⨯⨯==4(4)1(0)(2)(6)9P X P X P X P X ==-=-=-==, 故X 的分布列为所以174125()024********E X =⨯+⨯+⨯+⨯=. 变式2-2.某运动会中,新增加的“趣味乒乓球单打”是这届运动会的热门项目,比赛规则如下:两人对垒,开局前抽签决定由谁先发球(机会均等),此后均由每个球的赢球者发下一个球,对于每一个球,若发球者贏此球,发球者得1分,对手得0分;若对手赢得此球,发球者得0分,对手得2分.当有一人累计得分超过5分时,比赛就结束,得分高者获胜.已知在选手甲和乙的对垒中,发球一方赢得此球的概率都是0.6,各球结果相互独立.(1)假设开局前抽签结果是甲发第一个球,求比赛出现比分2:2的概率;(2)已知现在比分3:3,接下来由甲发球,两人又打了X 个球后比赛结束,求X 的分布列及数学期望.【答案】(1)0.304;(2)分布列见解析,() 2.904E X =. 【解析】 【分析】(1)把比赛出现比分2:2的事件拆成两个互斥的和,再分别求出每个事件的概率即可得解. (2)求出X 的所有可能值,再分析计算求出各个值的概率,列出分布列,求出期望作答.(1)比赛出现比分2:2的事件A 是甲发三球,前两球甲赢,第三球乙赢的事件1A 与甲发球乙赢、乙发球甲赢的事件2A 的和,事件1A 与2A 互斥,1()0.60.60.40.144P A =⨯⨯=,2()0.40.40.16P A =⨯=, 因此,12()()0.1440.160.304P A P A A =+=+=, 所以比赛出现比分2:2的概率为0.304. (2)X 的所有可能值为:2,3,4,因比分已是3:3,接下来由甲发球,且有一人累计得分超过5分时,比赛就结束,2X =的事件是甲发球乙赢,乙发球乙赢比赛结束的事件,(2)0.40.60.24P X ==⨯=,3X =的事件是以下3个互斥事件的和:甲发三球甲赢,比赛结束的事件;甲发第一球甲赢,发第二球乙赢,乙发球比赛结束的事件;甲发第一球乙赢,乙发第二球甲赢,甲发球比赛结束的事件,3(3)0.60.60.410.40.410.616P X ==+⨯⨯+⨯⨯=,4X =的事件是甲发前两球甲赢,发第三球乙赢,乙再发球比赛结束的事件,2(4)0.60.410.144P X ==⨯⨯=,所以X 的分布列为:X 的数学期望:()20.2430.61640.144 2.904E X =⨯+⨯+⨯=.变式2-3.为进一步加强未成年人心理健康教育,如皋市教育局决定在全市深入开展“东皋大讲堂”进校园心理健康教育宣讲活动,为了缓解高三学生压力,高三年级某班级学生在开展“东皋大讲堂”过程中,同座两个学生之间进行了一个游戏,甲盒子中装有2个黑球1个白球,乙盒子中装有3个白球,现同座的两个学生相互配合,从甲、乙两个盒子中各取一个球,交换后放入另一个盒子中,重复进行n 次这样的操作,记甲盒子中黑球的个数为n X ,恰好有2个黑球的概率为n a ,恰好有1个黑球的概率为n b .(1)求第二次操作后,甲盒子中没有黑球的概率; (2)求3X 的概率分布和数学期望()3E X .【答案】(1)427; (2)答案见解析,()32827E X = 【解析】 【分析】(1)由题意得1112,33a b ==,然后分析第二次操作后,甲盒子中没有黑球的情况,从而求解出对应概率;(2)先计算22,a b ,判断3X 的取值为0,1,2,分别计算对应的概率,列出分布列,利用期望公式求解()3E X . (1)由题意知,1112,33a b ==,两次后甲盒子没有黑球时,必须第一次甲盒子中取出一个黑球,第二次甲盒子(黑1白2)再取出一个黑球,乙盒子中(黑1白2)取出一个白球,则11243327P b =⨯⨯= (2)211121733327b a a =⨯+⨯⨯=,21121122163333327b a b ⎛⎫=⨯+⨯+⨯⨯= ⎪⎝⎭,由题意,3X 的取值为0,1,2,则32124144(0)33273243P X b ==⨯⨯+⨯=,3222112242146(1)33333273243P X a b ⎛⎫==⨯+⨯+⨯⨯+⨯= ⎪⎝⎭,32212153(2)333243P X a b ==⨯+⨯⨯=所以3X 的分布列为所以()314653281224324327E X =⨯+⨯= 【点睛】求解分布列的问题时,一般需要先判断变量的可能取值,然后分析题目中的情况计算每个取值对应的概率,从而列出分布列,代入期望公式求解期望.巩固练习练习一 离散型随机变量分布列1.暑假里大学二年级的H 同学去他家附近的某个大型水果超市打工.他发现该超市每天以10元/千克的价格从中心仓库购进若干A 水果,然后以15元/千克的价格出售;若有剩余,则将剩余的水果以8元/千克的价格退回中心仓库.H 同学记录了打工期间A 水果最近50天的日需求量(单位:千克),整理得下表:以上表中各日需求量的频率作为各日需求量的概率,解答下面的两个问题.(1)若超市明天购进A 水果150千克,求超市明天获得利润X (单位:元)的分布列及期望; (2)若超市明天可以购进A 水果150千克或160千克,以超市明天获得利润的期望为决策依据,在150千克与160千克之中应当选择哪一个?若受市场影响,剩余的水果只能以7元/千克的价格退回水果基地,又该选哪一个?请说明理由. 【答案】(1)分布列见解析,数学期望为743元 (2)超市应购进160千克,理由见解析. 【解析】 【分析】(1)求出X 的可能取值及相应的概率,进而得到分布列及数学期望;(2)设该超市一天购进水果160千克,当天利润为Y 元,求出Y 的可能取值及相应的概率,求出数学期望,与第一问求出的期望值相比,得到结论. (1)若A 水果日需求量为140千克,则()()()1401510150140108680X =⨯---⨯-=,且()56800.150P X ===, 若A 水果日需求量不少于150千克,则()1501510750X =⨯-=,且()75010.10.9P X ==-=,故X 的分布列为:()6800.17500.9743E X =⨯+⨯=元(2)设该超市一天购进水果160千克,当天利润为Y 元,则Y 的可能取值为140×5-20×2,150×5-10×2,160×5,即660,730,800 且()56600.150P Y ===,()107300.250P Y ===,()358000.750P Y ===,则()6600.17300.28000.7772E Y =⨯+⨯+⨯=,因为772>743,所以超市应购进160千克.2.某工厂生产一种产品,由第一、第二两道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果只有A ,B 两个等级.两道工序的加工结果直接决定该产品的等级:两道工序的加工结果均为A 级时,产品为一等品;两道工序恰有一道.工序加工结果为B 级时,产品为二等品;其余均为三等品.每一道工序加工结果为A 级的概率如表一所示,一件产品的利润(单位:万元)如表二所示: 表一表二(1)用η(万元)表示一件产品的利润,求η的分布列和均值;(2)工厂对于原来的生产线进行技术升级,计划通过增加检测成本对第二工序进行改良,假如在改良过程中,每件产品检测成本增加()04x x ≤≤万元(即每件产品利润相应减少x 万元)时,第二工序加工结果为A 级的概率增加0.1x ,问该改良方案对一件产品的利润的均值是否会产生影响?并说明理由.【答案】(1)分布列答案见解析,()33.6E η=(2)该改良方案对一件产品的利润的均值会产生影响,理由见解析【解析】 【分析】(1)由题意η的可能取值为50,20,10,分别求出其概率得分布列,再由期望公式计算出期望; (2)设改良后一件产品的利润为ξ,同(1)求出ξ的各可能取值的概率,计算出期望,由期望函数()E ξ与()E η比较可得结论. (1)由题意可知,η的可能取值为50,20,10, 产品为一等品的概率为0.8×0.6=0.48, 产品为二等品的概率为0.8×0.4+0.2×0.6=0.44, 产品为三等品的概率为1-0.48-0.44=0.08, 所以η的分布列为()500.48200.44100.0833.6E η=⨯+⨯+⨯=.(2)改良方案对一件产品的利润的均值会产生影响,理由如下:由题意可知,改良过程中,每件产品检测成本增加()04x x ≤≤万元时,第二工序加工结果为A 级的概率增加0.1x ,设改良后一件产品的利润为ξ,则ξ可能的取值为50x -,20x -,10x -, 所以一等品的概率为()0.80.10.60.480.08x x ⨯+=+,二等品的概率为()()()0.810.60.110.80.60.10.440.06x x x ⨯-++-⨯+=-⎡⎤⎣⎦, 三等品的概率为()()10.480.080.440.060.080.02x x x -+--=-, 所以()()()()()()()0.480.08500.440.06200.080.0210 1.633.6E x x x x x x x ξ=+⨯-+-⨯-+-⨯-=+,因为()E ξ在[]0,4上单调递增,故当4x =时,()E ξ取到最大值为40, 又因为()()E E ξη≥,所以该改良方案对一件产品的利润的均值会产生影响.3.2022年北京冬奥会有包括中国队在内的12支男子冰球队参加比赛,12支参赛队分为三组,每组四队,2月9号至13号将进行小组赛,小组赛采取单循环赛制,即每个小组的四支参赛队在比赛中均能相遇一次,最后按各队在比赛中的得分多少来排列名次.小组赛结果的确定规则如下: ∵在常规时间里,获得最多进球的队为获胜者,获胜者得3分;∵在常规时间里,如果双方进球相等,每队各得1分.比赛继续进行,以突然死亡法(即在规定的时间内有一方进球)加时赛决出胜负,突然死亡法加时赛中获胜的队将额外获得1分;∵在突然死亡法加时赛中,如果双方都没有得分,那么进行点球赛,直至决出胜负,在点球赛中获胜的队将额外获得1分.若在小组赛中,甲队与乙队相遇,在常规时间里甲队获胜的概率为12,进球数相同的概率为14;在突然死亡法加时赛中,甲队获胜的概率为23,双方都没有得分的概率为16;在点球赛中,甲队获胜的概率为23,假设各比赛结果相互独立.(1)在甲队与乙队的比赛中,求甲队得2分获胜的概率;(2)在甲队与乙队的比赛中,求甲队得分X 的分布列及数学期望. 【答案】(1)736; (2)分布列见解析;3518. 【解析】 【分析】(1)由题可得甲队得2分获胜有两种情况,甲在加时赛中获胜或甲在点球赛中获胜,分别计算概率即得;(2)由题可得X 可取0,1,2,3,分别计算概率即得分布列,然后利用期望计算公式即得. (1)设甲在加时赛中获胜为事件A ,甲在点球赛中获胜为事件B , 则()(),121112143646336P A P B =⨯==⨯⨯=, ∵甲队得2分获胜的概率为()()11763636P P A P B =+=+=. (2)甲队得分X 可取0,1,2,3,()11101244P X ==--=,()121112111143646318P X ⎛⎫⎛⎫==⨯--+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,()7236P X ==, ()132P X ==, ∵X 的分布列为∵甲队得分X 的数学期望为()117135012341836218E X =⨯+⨯+⨯+⨯=. 4.为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,某市建立了公共自行车服务系统,为了鼓励市民租用公共自行车出行,同时希望市民尽快还车,方便更多的市民使用,公共自行车按每次的租用时间进行缴费,具体缴费标准如下:∵租用时间不超过1小时,免费;∵超出一小时后每小时1元(不足一小时按一小时计算),一天24小时最高收费10元.某日甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5,0.4;租用时间为1小时以上且不超过2小时的概率分别是0.2,0.4. (1)求甲比乙付费多的概率;(2)设甲、乙两人付费之和为随机变量ξ,求ξ的分布列和数学期望. 【答案】(1)0.32 (2)分布列见解析,1.6 【解析】 【分析】(1)用合适的字母表达每个事件,并按照题意搞清楚事件之间的关系以及每个事件的概率即可; (2)求分布列和数学期望就是要搞清楚随机变量的可能取值范围,以及每个值都是由那些事件构成的. (1)根据题意,记“甲付费为0元、1元、2元、”为事件1A ,2A ,3A它们彼此互斥,且()10.5p A =,()20.2p A =,()()()31210.3p A P A P A =-+=⎡⎤⎣⎦, 同理,记“乙付费为0元、1元、2元”为事件1B ,2B ,3B它们彼此互斥,且()10.4p B =,()20.4p B =,()()()31110.2p B P B P B =-+=⎡⎤⎣⎦, 由题知,事件1A ,2A ,3A 与事件1B ,2B ,3B相互独立记,甲比乙付费多为事件M ,则有:213132M A B A B A B =++可得:()()()()()()()2131320.20.40.30.40.30.40.32P M P A P B P A P B P A P B =++=⨯+⨯+⨯= 故:甲比乙付费多的概率为:0.32; (2)由题知,ξ的可能取值为:0,1,2,3,4 则有:()()()1100.50.40.2P P A P B ξ===⨯=,()()()()()122110.50.40.20.40.28P P A P B P A P B ξ==+=⨯+⨯=,()()()()()()()13312220.50.20.30.40.20.40.3P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=, ()()()()()233230.20.20.30.40.16P P A P B P A P B ξ==+=⨯+⨯=, ()()()3340.30.20.06P P A P B ξ===⨯=;所以ξ的分布列为:ξ的数学期望:()00.210.2820.330.1640.06 1.6E ξ=⨯+⨯+⨯+⨯+⨯=,故答案为:0.32,1.6.5.随着2022年北京冬季奥运会的如火如茶的进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X表示每天吉祥物“冰墩墩”的需求量.(1)求X的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.【答案】(1)(2)8187(元)【解析】【分析】(1)X可取162,163,164,165,166,求出对应概率,然后再写出分布列即可;(2)设Y表示每天的利润,求出所有Y的取值,再根据期望公式即可得解.(1)解:X可取162,163,164,165,166,()21P X===,1622010()41P X===,163205()63P X===,1642010()51P X===,165204()3P X==,16620所以分布列为:(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=, 当163X =时,16350108140Y =⨯-=, 当164X =时,164508200Y =⨯=, 当165X =时,16450208220Y =⨯+=, 当166X =时,164502208240Y =⨯+⨯=, 所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元). 6.在中国共产党的正确领导下,我国顺利实现了第一个百年奋斗目标——全面建成小康社会.某地为了巩固扶贫成果,决定继续对甲、乙两家乡镇企业进行指导.指导方式有两种,一种是精准指导,一种是综合指导.已知对甲企业采用精准指导时,投资50万元,增加100万元收入的概率为0.2,增加200万元收入的概率为0.8,采用综合指导时,投资100万元,增加200万元收入的概率为0.6,增加400万收入的概率为0.4;对乙企业采用精准指导时,投资50万元,增加100万元收入的概率为0.3,增加200万元收入的概率为0.7,采用综合指导时,投资100万元,增加200万元收入的概率为0.7,增加400万元收入的概率为0.3.指导结果在两家企业之间互不影响.(1)若决策部门对甲企业进行精准指导、对乙企业进行综合指导,设两家企业增加的总收入为X 万元,求X 的分布列;(2)若有150万元无息贷款可供甲、乙两家企业使用,对两家企业应分别进行哪种指导总收入最高?请说明理由.【答案】(1)分布列见解析;(2)对甲企业进行综合指导、对乙企业进行精准指导总收入最高,理由见解析. 【解析】 【分析】(1)根据题意确定随机变量X 的所有可能取值,再求出每个取值对应事件的概率并列出分布列即可; (2)由条件知指导方案共有三种:对两家企业均进行精准指导;对甲企业精准指导、对乙企业综合指导;对甲企业综合指导、对乙企业精准指导,然后求出每种方案增加的总收入的数学期望,比较它们大小即可.(1)由题意知X 可能取值为300,400,500,600,则()3000.20.70.14P X ==⨯=,()4000.80.70.56P X ==⨯=,()5000.20.30.06P X ==⨯=,()6000.80.30.24P X ==⨯=,∵当决策部门对甲企业进行精准指导、对乙企业进行综合指导时,两家企业增加的总收入X 的分布列为(2)指导方案1:对甲、乙两家企业均进行精准指导.设两家企业增加的总收入为Y 万元,则Y 可能取值为200,300,400,且()2000.20.30.06P Y ==⨯=,()3000.20.70.80.30.38P Y ==⨯+⨯=,()4000.80.70.56P Y ==⨯=,()2000.063000.384000.56350E Y =⨯+⨯+⨯=(万元);指导方案2:对甲企业进行精准指导、对乙企业进行综合指导. 由(1)得()3000.144000.565000.066000.24440E X =⨯+⨯+⨯+⨯=(万元); 指导方案3:对甲企业进行综合指导、对乙企业进行精准指导.设两家企业增加的总收入为Z ,则Z 的可能取值为300,400,500,600, 且()3000.60.30.18P Z ==⨯=,()4000.70.60.42P Z ==⨯=,()5000.40.30.12P Z ==⨯=,()6000.40.70.28P Z ==⨯=, ()3000.184000.425000.126000.28450E Z =⨯+⨯+⨯+⨯=(万元).∵350440450<<,∵指导方案3:对甲企业进行综合指导、对乙企业进行精准指导总收入最高.7.2021年10月16日,神舟十三号载人飞船与天宫空间站组合体完成自主快速交会对接,航天员翟志刚、王亚平、叶光富顺利进驻天和核心舱,由此中国空间站开启了有人长期驻留的时代.为普及航天知识,某航天科技体验馆开展了一项“摸球过关”领取航天纪念品的游戏,规则如下:不透明的口袋中有3个红球,2个白球,这些球除颜色外完全相同.参与者每一轮从口袋中一次性取出3个球,将其中的红球个数记为该轮得分X ,记录完得分后,将摸出的球全部放回袋中.当参与完成第n 轮游戏,且其前n 轮的累计得分恰好为2n 时,游戏过关,可领取纪念品,同时游戏结束,否则继续参与游戏.若第3轮后仍未过关,则游戏也结束.每位参与者只能参加一次游戏. (1)求随机变量X 的分布列及数学期望;(2)若甲参加该项游戏,求甲能够领到纪念品的概率. 【答案】(1)分布列见解析,数学期望为1.8 (2)0.696 【解析】 【分析】(1)先得出随机变量X 可取的,并求出相应概率,列出分布列,计算数学期望;(2)分别求出甲取球1次后、取球2次后、取球3次后可领取纪念的概率,再相加得出甲能够领到纪念品的概率. (1)由题意得,随机变量X 可取的值为1,2,3,易知()10.3P X ==,()20.6P X ==,所以()30.1P X ==, 则随机变量X 的分布列如下:所以()10.320.630.1 1.8E X =⨯+⨯+⨯= (2)由(1)可知,参与者每轮得1分,2分,3分的概率依次为0.3,0.6,0.1, 记参与者第i 轮的得分为i X ,则其前n 轮的累计得分为12n Y X X X =+++,若参与者取球1次后可领取纪念品,即参与者得2分,则()20.6P Y ==;若参与者取球2次后可领取纪念品,即参与者获得的分数之和为4分,有“13+”、“31+”的情形, 则()420.30.10.06P Y ==⨯⨯=;若参与者取球3次后可领取纪念品,即参与者获得的分数之和为6分, 有“123++”、“321++”的情形,则()620.30.10.60.036P Y ==⨯⨯⨯=;记“参与者能够领取纪念品”为事件A ,则()()()()2460.60.060.0360.696P A P Y P Y P Y ==+=+==++=.8.为庆祝中国共产党建党100周年,某单位举办了以“听党召唤,使命在肩”为主题的知识竞赛活动,经过初赛、复赛,小张和小李进入决赛,决赛试题由3道小题组成,每道小题选手答对得1分,答错得0分,假设小张答对第一、第二、第三道小题的概率依次是45,34,12,小李答对每道小题的概率都是34.且他们每道小题解答正确与否相互之间没有影响,用X 表示小张在决赛中的得分,用Y 表示小李在决赛中的得分.(1)求随机变量X 的分布列和数学期望E (X ),并从概率与统计的角度分析小张和小李在决赛中谁的得分能力更强一些;(2)求在事件“4X Y +=”发生的条件下,事件“X Y >”的概率.【答案】(1)分布列答案见解析,数学期望:2.05,小李的得分能力更强一些 (2)431 【解析】【分析】(1)结合相互独立事件、独立重复试验的知识计算出X 的分布列以及()(),E X E Y ,由此作出判断. (2)利用条件概型概率计算公式,计算出事件“X Y >”的概率.(1)由题设知X 的可能取值为0,1,2,3所以()4311011154240P X ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭; ()431431431111111115425425425P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ()43143143119211154254254240P X ⎛⎫⎛⎫⎛⎫==⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()4313354210P X ==⨯⨯=, 所以随机变量X 的分布列为。

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点

高中数学必修三正态分布知识点正态分布的定义:如果随机变量ξ的总体密度曲线是由或近似地由下面的函数给定:x∈R,则称ξ服从正态分布,这时的总体分布叫正态分布,其中μ表示总体平均数,σ叫标准差,正态分布常用来表示。

当μ=0,σ=1时,称ξ服从标准正态分布,这时的总体叫标准正态总体。

叫标准正态曲线。

正态曲线x∈R的有关性质:(1)曲线在x轴上方,与x轴永不相交;(2)曲线关于直线x=μ对称,且在x=μ两旁延伸时无限接近x 轴;(3)曲线在x=μ处达到最高点;(4)当μ一定时,曲线形状由σ的大小来决定,σ越大,曲线越“矮胖”,表示总体分布比较离散,σ越小,曲线越“瘦高”,表示总体分布比较集中。

在标准正态总体N(0,1)中:二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。

高中数学高三分布列知识点

高中数学高三分布列知识点

高中数学高三分布列知识点在高中数学的学习中,分布列是一个重要的概念和技巧,它用于描述随机试验中各个可能结果的概率分布。

分布列的研究可以帮助我们理解概率论的基本原理,并且可以应用于实际问题的解决。

一、概念和基本性质分布列是指随机试验的所有可能结果及其对应的概率。

在计算分布列时,我们需要确定试验的所有可能结果,并且计算每个结果出现的概率。

分布列具有以下基本性质:1. 概率的非负性:每个结果的概率都是非负数,不会出现负值。

2. 概率的和为1:所有结果的概率之和等于1,表示必然事件的发生。

3. 互斥性:不同结果之间是互斥的,即只能发生其中一个结果。

4. 可列性:试验的所有可能结果是可列的,即可以一一列举。

二、常见的分布列1. 二项分布:二项分布是一种离散的概率分布,适用于只有两个可能结果的试验。

二项分布的概率计算公式为P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n表示试验的次数,k表示成功的次数,p表示每次试验成功的概率。

2. 泊松分布:泊松分布是一种离散的概率分布,适用于描述单位时间(或空间)内某事件发生的次数的概率分布。

泊松分布的概率计算公式为P(X=k)=e^(-λ)λ^k/k!,其中λ表示单位时间(或空间)内事件的平均发生次数。

3. 几何分布:几何分布是一种离散的概率分布,适用于描述在独立重复试验中,试验成功之前所需的失败次数的概率分布。

几何分布的概率计算公式为P(X=k)=(1-p)^(k-1)p,其中p表示每次试验成功的概率。

4. 正态分布:正态分布是一种连续的概率分布,适用于描述大部分事物的分布情况。

正态分布的概率密度函数为f(x)=1/(σ√(2π))e^(-(x-μ)^2/(2σ^2)),其中μ表示均值,σ表示标准差。

三、应用实例分布列的应用非常广泛,下面我们通过几个实例来说明其实用性。

1. 投掷硬币问题:假设我们进行10次硬币的正反面投掷试验,每次成功的概率都是0.5。

河北省清河县清河中学高三数学《离散型随机变量及其分布列》课件

河北省清河县清河中学高三数学《离散型随机变量及其分布列》课件

1.离散型随机变量 随着试验结果变化而变化的变量称为随机变量,常用字母
X、Y、ξ、η
„„表示.
所有取值可以 一一列出 的随机变量称为离散型随机变量.
高三总复习
人教A版 · 数学(理)
2.离散型随机变量的分布列 若离散型随机变量X可能取的不同值为x1 ,x2 ,„,xi ,„, xn,X取每一个值xi(i=1,2,„,n)的概率P(X=xi)=pi,则表 X x1 x2 „ xi „ xn P p1 p2 „ pi „ pn 称为离散型随机变量X的概率分布列,简称X的分布列.有时 为了表达简单,也用等式 P(X=xi)=pi,i=1,2,„,n 表 示 X 的 分 布列.
n≤N,M≤N,n,M,N∈N* ,称分布列
X
0
-0
1 CM1CN-Mn CNn
-1

m
-m
CM0CN-Mn P CNn
CMmCN-Mn „ CNn
高三总复习
人教A版 · 数学(理)
为超几何分布列.如果随机变量X的分布列为超几何分布列,
则称随机变量X服从
超几何分布.
高三总复习
人教A版 · 数学(理)
即时训练
生产方提供50箱的一批产品,其中有2箱不合格产
品.采购方接收该批产品的准则是:从该批产品中任取5箱产品进
行检测,若至多有一箱不合格产品,便接收该批产品,则该批产
品被接收的概率是多少?
解:从50箱的一批产品中随机抽取5箱,用Z表示“5箱产品中
不合格的箱数”,则Z服从超几何分布,
高三总复习
人教A版 · 数学(理)
1.抛掷2颗骰子,所得点数之和记为ξ,那么ξ=4表示的随机
试验结果是( )
A.2颗都是4点 B.1颗是1点,另1颗是3点 C.2颗都是2点 D.1颗是1点,另1颗是3点,或者2颗都是2点

高三数学考点-离散型随机变量及其分布列

高三数学考点-离散型随机变量及其分布列

10.6离散型随机变量及其分布列1.离散型随机变量的概念(1)随机变量如果随机试验的结果可以用一个随着试验结果变化而变化的变量来表示,那么这样的变量叫做____________,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量所有取值可以__________的随机变量,称为离散型随机变量.2.离散型随机变量的分布列(1)分布列设离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X =x i)=p i,则称表为随机变量X的______________,简称为X的分布列.有时为了简单起见,也可用P(X=x i)=p i,i=1,2,…,n表示X的分布列.(2)分布列的性质①________________________;②________________________.3.常用的离散型随机变量的分布列(1)两点分布(又称0-1分布、伯努利分布)随机变量X的分布列为(0<p<1)则称X服从两点分布,并称p=P(X=1)为成功概率.(2)二项分布如果随机变量X的可能取值为0,1,2,…,n,且X取值的概率P(X=k)=__________(其中k=0,1,2,…,则称X服从二项分布,记为____________.(3)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为__________________(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.此时称随机变量X的分布列为超几何分布列,称随机变量X服从______________.自查自纠1.(1)随机变量(2)一一列出2.(1)概率分布列(2)①p i≥0,i=1,2,3,…,n②i=1np i=13.(1)1-p(2)C k n p k q n-k C k n p k q n-k X~B(n,p)(3)C k M C n-kN-MC n N超几何分布某射手射击所得环数X的分布列为X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数大于7”的概率为()A.0.28 B.0.88C.0.79 D.0.51解:P(X>7)=P(X=8)+P(X=9)+P(X=10)=0.28+0.29+0.22=0.79.故选C.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是()A.P(X=2) B.P(X≤2)C.P(X=4) D.P(X≤4)解:X服从超几何分布P(X=k)=C k7C10-k8C1015,故k=4.故选C.随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),则a的值为() A.1110 B.155C.110 D.55解:因为随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),所以a+2a+3a+…+10a=1,则55a=1,即a=155.故选B.已知X的分布列为X-101P1216a设Y=2X+1,则Y的数学期望E(Y)的值是________.解:由分布列的性质,a =1-12-16=13,所以E (X )=-1×12+0×16+1×13=-16,因此E (Y )=E (2X +1)=2E (X )+1=23.故填23.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布列为________.解:依题意,随机变量X 的可能取值为0,1,2. 则P (X =0)=C 22C 25=0.1,P (X =1)=C 13C 12C 25=0.6,P (X =2)=C 23C 25=0.3,故X 的分布列为X 0 1 2 P0.10.60.3故填X 0 1 2 P0.10.60.3类型一 随机变量的概念与性质(1)设离散型随机变量X 的分布列为X 0 1 2 3 4 P0.20.10.10.3m求:(Ⅰ)2X +1的分布列; (Ⅱ)|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,解得X 0 1 2 3 4 2X +1 1 3 5 7 9 |X -1|1123从而由上表得所求分布列如下. (Ⅰ)2X +1的分布列:2X +1 1 3 5 7 9 P0.20.10.10.30.3(Ⅱ)|X -1|的分布列:|X -1| 0 1 2 3 P0.10.30.30.3(2)随机变量ξ的分布列如下:ξ-1 0 1 Pabc其中a ,b ,c 成等差数列,则P (|ξ|=1)=____________,公差d 的取值范围是____________. 解:因为a ,b ,c 成等差数列,所以2b =a +c .又a +b +c =1,所以b =13,所以P (|ξ|=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d ≤13.故填23;⎣⎡⎦⎤-13,13. 【点拨】①研究随机变量的取值,关键是准确理解所定义的随机变量的含义.明确随机变量所取的值对应的试验结果是进一步求随机变量取这个值时的概率的基础.②注意离散型随机变量分布列的两个性质:p i ≥0,i =1,2,…,n ;∑i =1np i =1.③随机变量可能取某一区间内任意值,无法一一列出,则称这样的随机变量为连续型随机变量,如“长江水位”“灯管寿命”等;正态分布即是一种重要的连续型随机变量的分布.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________.解:由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n .所以P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n=0.3,因此n =10.故填10.类型二 求离散型随机变量的分布列袋子中有1个白球和2个红球.(1)每次取1个球,不放回,直到取到白球为止,求取球次数X 的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X 的分布列; (3)每次取1个球,有放回,共取5次,求取到白球次数X 的分布列.解:(1)X =1,2,3.P (X =1)=13;P (X =2)=A 12A 33=13;P (X =3)=A 22A 33=13.所以X 的分布列是X 12 3 P13 13 13(2)X =1,2,3,4,5.P (X =k )=⎝⎛⎭⎫23k -1×13,k =1,2,3,4. P (X =5)=⎝⎛⎭⎫234. 故X 的分布列为X 1 2 3 4 5 P13294278811681(3)因为X ~B ⎝⎛⎭⎫5,13,所以X 的分布列为P (X =k )=C k 5⎝⎛⎭⎫13k⎝⎛⎭⎫235-k,其中k =0,1,2,3,4,5.【点拨】求随机变量的分布列,一要弄清什么是随机变量,建立它与随机事件的关系;二要把随机变量的所有值找出,不要遗漏;三是准确求出随机变量取每个值的概率,确定概率和为1后写出分布列.对于抽样问题,要特别注意放回与不放回的区别.一般地,无放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步计数原理求随机变量对应的概率.(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解:(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以,随机变量X 的分布列为X 0 1 2 3 P14112414124随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0) =P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148. 所以,这2辆车共遇到1个红灯的概率为1148.类型三 超几何分布(2015·天津)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 故事件A 发生的概率为635.(2)随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4). 故随机变量X 的分布列为X 12 3 4 P1143737114故随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.【点拨】①超几何分布的概率计算公式从古典概型的角度加以理解更易记忆:P (X =k )=C k M C n -kN -MC nN,即恰取了k 件次品的概率=次品中取了k 件×正品中取了n -k 件N 件产品中任取n 件.②当n 较小,N 较大时,超几何分布的概率计算可以近似地用二项分布来代替.也就是说虽然超几何分布是不放回抽样,二项分布是放回抽样,但是当n 较小而产品总数N 很大时,不放回抽样近似于放回抽样.③超几何分布在产品检验中经常用到.(2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ).解:(1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为:0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142,X 0 1 2 3 4 P1425211021521142X 的数学期望是E (X ) =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2.1.求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值,以及每个值所表示的意义,判断一个变量是否为离散型随机变量,主要看变量的值能否按一定的顺序一一列出.(2)利用概率的有关知识,求出随机变量取每个值的概率.对于古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验恰有k 次发生的概率等,都要能熟练计算. (3)按规范形式写出分布列,并用分布列的性质∑i =1np i =1验证.2.分布列的结构为两行,第一行为随机变量X 所有可能的取值,第二行是对应于随机变量X 的值的事件发生的概率.在每一列中,上为“事件”,下为事件发生的概率,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.3.可用超几何分布解决的题目涉及的背景多数是生活、生产实践中的问题,且往往由明显的两部分组成,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等.注意弄清楚超几何分布与二项分布的区别与联系.1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( ) A .5 B .9 C .10 D .25解:X 的所有可能取值为2,3,4,5,6,7,8,9,10,共9个.故选B. 2.下列表中可以作为离散型随机变量分布列的是( )解:A 中ξ的取值出现了重复性;B 中P (ξ=0)=-14<0;C 中∑i =13P (ξi )=15+25+35=65>1.故选D.3.(2015·合肥模拟)设某项试验的成功率是失败率的2倍,试验一次要么成功要么失败,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.23解:X 可能取值为0或1,而P (X =1)=2P (X =0),且P (X =1)+P (X =0)=1.所以P (X =0)=13.故选C.4.(2015·安徽模拟)一只袋内装有m 个白球,n -m 个黑球,所有的球除颜色外完全相同.连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,则下列概率等于(n -m )A 2mA 3n 的是( ) A .P (X =3) B .P (X ≥2) C .P (X ≤3) D .P (X =2)解:由超几何分布知该式对应取球3次,第3次才取到黑球的概率,所以P (X =2)=A 1n -m A 2mA 3n =(n -m )A 2m A 3n.故选D.5.设ξξ-1 0 1 P121-2qq 2则q 的值为( ) A .1 B .1±22C .1+22 D .1-22解法一:由分布列的性质,有 ⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,解得q =1-22. 解法二:由1-2q ≥0q ≤12,可排除A 、B 、C ,故选D. 6.若P (ξ≤x 2)=1-β,P (ξ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤ξ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β)D .1-β(1-α)解:由分布列性质可有:P (x 1≤ξ≤x 2)=P (ξ≤x 2)+P (ξ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).故选B. 7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P (ξ=2)=____________. 解:ξ的可能取值为0,1,2,3,所以P (ξ=2)=C 13C 12C 14+C 23C 22C 24C 26=2790=310.故填310. 8.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,一年后将丧失全部资金的50%.下表是过去200投资成功 投资失败 192例8例则该公司一年后估计可获收益的期望是____________元.解:由题意知,一年后获利6 000元的概率为0.96,获利-25 000元的概率为0.04,故一年后收益的期望是6 000×0.96+(-25 000)×0.04=4 760(元).故填4 760.9.某高校的一科技小组有5名男生,5名女生,从中选出4人参加全国大学生科技大赛,用X 表示其中参加大赛的男生人数,求X 的分布列. 解:依题意随机变量X 服从超几何分布,所以P (X =k )=C k 5C 4-k 5C 410(k =0,1,2,3,4).所以P (X =0)=C 05C 45C 410=142,P (X =1)=C 15C 35C 410=521,P (X =2)=C 25C 25C 410=1021,P (X =3)=C 35C 15C 410=521,P (X =4)=C 45C 05C 410=142,所以X 的分布列为10.(2017·湖北荆门调考)某市每年中考都要举行实验操作考试和体能测试,初三某班共有30名学生,下表为该班学生的这两项成绩,例如表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是15.(1)试确定a 、b 的值;(2)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为ξ,求随机变量ξ的分布列及数学期望Eξ.解:由表格数据可知,实验操作成绩合格、且体能测试成绩合格或合格以上的学生共有(4+a )人,记“实验操作成绩合格、且体能测试成绩合格或合格以上”为事件A ,则P (A )=4+a 30=15,解得a =2,所以b =30-24-a =4.所以a 的值为2,b 的值为4.(2)由于从30位学生中任意抽取3位的结果数为C 330,其中实验操作成绩和体能测试成绩都是良好或优秀的学生人数为15人,从30人中任意抽取3人,其中恰有k 个实验操作考试和体能测试成绩都是良好或优秀的结果数为C k 15C 3-k 15,所以从30人中任意抽取3人,其中恰有k 人实验操作考试和体能测试成绩都是良好或优秀的概率为:P (ξ=k )=C k 15C 3-k15C 330,(k =0,1,2,3),ξ的可能取值为0,1,2,3, 则P (ξ=0)=C 015C 315C 330=13116,P (ξ=1)=C 115C 215C 330=45116,P (ξ=2)=C 215C 115C 330=45116,P (ξ=3)=C 315C 015C 330=13116,所以ξ的分布列为P13116 45116 45116 13116Eξ=0×13116+1×45116+2×45116+3×13116=174116=32.11.(2015·陕西)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T (分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望E (T );(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解:(1)由统计结果可得T T (分钟) 25 30 35 40 频率0.20.30.40.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.20.30.40.1从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.已知一个口袋中装有n 个红球(n ≥1且n ∈N *)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.(1)当n =3时,设三次摸球(每次摸球后放回)中奖的次数为ξ,求ξ的分布列; (2)记三次摸球(每次摸球后放回)恰有两次中奖的概率为P ,当n 取多少时,P 最大. 解:(1)当n =3时,每次摸出两个球,中奖的概率P =C 13C 12C 25=35.由题意知ξ的可能值为0,1,2,3, 故有P (ξ=0)=C 03×⎝⎛⎭⎫253=8125;P (ξ=1)=C 13×35×⎝⎛⎭⎫252=36125; P (ξ=2)=C 23×⎝⎛⎭⎫352×25=54125;P (ξ=3)=C 33×⎝⎛⎭⎫353=27125.ξ的分布列为ξ0 1 2 3或P (ξ=i )=C i 3×⎝⎛⎭⎫35i ×⎝⎛⎭⎫253-i ,i =0,1,2,3. (2)设每次摸球中奖的概率为p ,则三次摸球(每次摸球后放回)恰有两次中奖的概率为P (ξ=2)=C 23·p 2·(1-p )=-3p 3+3p 2,0<p <1,由P ′=-9p 2+6p =-3p (3p -2)知,在⎝⎛⎭⎫0,23上P 为增函数,在⎝⎛⎭⎫23,1上P 为减函数,所以当p =23时,P 取得最大值.又p =C 1n ·C 12C 2n +2=4n (n +1)(n +2)=23,即n 2-3n +2=0,解得n =1或n =2. 所以当n 取1或2时,P 最大.。

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

2023年高考数学一轮复习(新高考地区专用)6-6 分布列基础(精练)(解析版)

6.6 分布列基础(精练)(基础版)1.(2022·云南·昆明市第一中学西山学校)国家“双减”政策落实之后,某市教育部门为了配合“双减”工作,做好校园课后延时服务,特向本市小学生家长发放调查问卷了解本市课后延时服务情况,现从中抽取100份问卷,统计了其中学生一周课后延时服务总时间(单位:分钟),并将数据分成以下五组:[)[)[)[)[]100,120,120,140,140,160,160,180,180,200,得到如图所示的频率分布直方图.(1)根据如图估计该市小学生一周课后延时服务时间的众数、平均数、中位数(保留小数点后一位);(2)通过调查分析发现,若服务总时间超过160分钟,则学生有不满情绪,现利用分层随机抽样的方法从样本问卷中随机抽取8份,再从抽取的8份问卷中抽取3份,记其中有不满情绪的问卷份数为X ,求X 的分布列及均值.【答案】(1)150,151,150.9;(2)分布列见解析,34.【解析】(1)众数:150;第1到5组频率分别为:0.05,0.15,0.55,0.2,0.05,平均数:1100.051300.151500.551700.21900.05151x =⨯+⨯+⨯+⨯+⨯=, 设中位数为x ,则中位数在第3组,则()0.21400.02750.5x +-⨯=,150.9x ≈; (2)用分层随机抽样抽取8份问卷,其中学生有不满情绪的有8×(0.2+0.05)=2份,∴X 的可能取值为0,1,2,∴()306238C C 5C 140P X ===,()216238C C 15C 281P X ===,()126238C C 3C 282P X ===,∴X 的分布列为:题组一 超几何分布∴()515330121428284E X =⨯+⨯+⨯=. 2.(2022·北京·高三专题练习)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X >为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:.(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核为优秀的概率;(2)从图中考核成绩满足[]70,79X ∈的学生中任取3人,设Y 表示这3人中成绩满足8510X -≤的人数,求Y 的分布列和数学期望;(3)根据以往培训数据,规定当8510.510X P ⎛-⎫≤≥⎪⎝⎭时培训有效.请你根据图中数据,判断此次冰雪培训活动是否有效,并说明理由.【答案】(1)15(2)分布列见解析,()158E Y = (3)有效,理由见解析 【解析】(1)解:设该名学生的考核成绩优秀为事件A ,由茎叶图中的数据可知,30名同学中,有6名同学的考核成绩为优秀,故()15P A =. (2)解:由8510X -≤可得7595X ≤≤,所以,考核成绩满足[]70,79X ∈的学生中满足8510X -≤的人数为5,故随机变量Y 的可能取值有0、1、2、3,()3338C 10C 56P Y ===,()213538C C 151C 56P Y ===,()123538C C 152C 28P Y ===,()3538C 53C 28P Y ===,所以,随机变量Y 的分布列如下表所示:因此,()115155150123565628288E Y =⨯+⨯+⨯+⨯=. (3)解:由85110X -≤可得7595X ≤≤,由茎叶图可知,满足7595X ≤≤的成绩有16个, 所以851610.51030X P ⎛-⎫≤=≥⎪⎝⎭,因此,可认为此次冰雪培训活动有效. 3.(2022·宁夏中卫·三模(理))共享电动车(sharedev )是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为0.4P =,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X 的分布列与数学期望. 【答案】(1)12;(2)分布列见解析,数学期望为65.【解析】(1)因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A 为“从中任取3辆共享单车中恰好有一辆是橙色”,则()2164310C C 1C 2P A ⨯==. (2)随机变量X 的所有可能取值为0,1,2,3.所以()3064310C C 10C 6P X ⨯===,()2164310C C 11C 2P X ⨯===, ()()1264310C C 32C 10P X P A ⨯====,()0364310C C 13C 30P X ⨯===.所以分布列为数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=.4.(2022·广东·华南师大附中三模)“双减”政策实施后,为了解某地中小学生周末体育锻炼的时间,某研究人员随机调查了600名学生,得到的数据统计如下表所示:(1)估计这600名学生周末体育锻炼时间的平均数t ;(同一组中的数据用该组区间的中点值作代表) (2)在这600人中,用分层抽样的方法,从周末体育锻炼时间在[)40,60内的学生中抽取15人,再从这15人中随机抽取3人,记这3人中周末体育锻炼时间在[)50,60内的人数为X ,求X 的分布列以及数学期望()E X . 【答案】(1)58.5;(2)分布列答案见解析,数学期望:95.【解析】(1)估计这600名学生周末体育锻炼时间的平均数 350.1450.2550.3650.15750.15850.158.5t =⨯+⨯+⨯+⨯+⨯+⨯=.(2)依题意,周末体育锻炼时间在[)40,50内的学生抽6人,在[)50,60内的学生抽9人,则()363154091C P X C ===,()216931527191C C P X C ===,()12693152162455C C P X C ===,()3931512365C P X C ===,故X 的分布列为: 则()42721612901239191455655E X =⨯+⨯+⨯+⨯=. 5.(2022·云南保山·模拟预测(理))某高中学校为了解学生的课外体育锻炼时间情况,在全校学生中随机抽取了200名学生进行调查,并将数据分成六组,得到如图所示的频率分布直方图.将平均每天课外体育锻炼时间在[40,60)上的学生评价为锻炼达标,将平均每天课外体育锻炼时间在[0,40)上的学生评价为锻炼不达标(1)根据频率分布直方图估计这200名学生每天课外体育锻炼时间的众数、中位数;(2)为了了解学生课外体育锻炼时间不达标的原因,从上述锻炼不达标的学生中按分层抽样的方法抽取10人,再从这10人中随机抽取3人,记这三人中每天课外体育锻炼时间在[0,20)的人数为ξ,求ξ的分布列和数学期望.【答案】(1)中位数为28.125,众数等于25(2)分布列见解析,0.9【解析】(1)众数就是直方图中最高矩形底边中点的横坐标,则样本众数等于25.由频率分布直方图可得,在[0,10)上的频率为0.08,在[10,20)上的频率为0.16,在[20,30)上的频率为0.32,0.080.160.50.080.160.32<<+++,则中位数在区间[20,30)上.设中位数为0x ,则()00.24200.0320.5+-⨯=x ,028.125x =,即样本中位数为28.125.(2)根据题意,在[0,10),[10,20),[20,30),[30,40)上抽取的人数分别为1,2,4,3,其中在[0,20)上抽取的人数为3,则0ξ=,1,2,3.3127373310103576321(0),(1),1202412040ξξ⨯========C C C P P C C , 2133733310102171(2),(3)12040120C C C P P C C ξξ=====⨯==. 从而得到随机变量ξ的分布列如下表:随机变量ξ的期望72171()01230.9244040120E ξ=⨯+⨯+⨯+⨯=6.(2022·北京市朝阳区人大附中朝阳分校模拟预测)自“新型冠状肺炎”疫情爆发以来,科研团队一直在积极地研发“新冠疫苗”.在科研人员不懈努力下,我国公民率先在2020年年末开始使用安全的新冠疫苗,使我国的“防疫”工作获得更大的主动权.研发疫苗之初,为了测试疫苗的效果,科研人员以白兔为实验对象,进行了一些实验:(1)实验一:选取10只健康白兔,编号1至10号,注射一次新冠疫苗后,再让它们暴露在含有新冠病毒的环境中,实验结果发现:除2号、3号、7号和10号四只白兔仍然感染了新冠病毒,其他白兔未被感染.现从这10只白兔中随机抽取3只进行研究,将仍被感染的白兔只数记作X ,求X 的分布列和数学期望.(2)实验二:疫苗可以再次注射第二针、加强针,但两次疫苗注射时间间隔需大于三个月.科研人员对白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响.试问:若将实验一中未被感染新冠病毒的白兔的频率当做疫苗的有效率,那么一只白兔注射两次疫苗后的有效率能否保证达到90%?如若可以,请说明理由;若不可以,请你参考上述实验给出注射疫苗后有效率在90%以上的建议. 【答案】(1)分布列见解析;数学期望()65E X =; (2)无法保证;建议:需要将注射一次疫苗的有效率提高到90%以上. 【解析】(1)由题意得:X 所有可能的取值为0,1,2,3,()3631020101206C P X C ∴====;216431060111202C C P XC ; 1264310363212010C C P X C ;3431041312030C P XC ; X ∴的分布列为:∴数学期望()1131601236210305E X =⨯+⨯+⨯+⨯=; (2)由已知数据知:实验一中未被感染新冠病毒的白兔的频率为0.6,则注射一次疫苗的有效率为0.6, ∴一只白兔注射两次疫苗的有效率为:()2110.60.8484%90%--==<, ∴无法保证一只白兔注射两次疫苗后的有效率达到90%;设每支疫苗有效率至少达到x 才能满足要求,()21190%x ∴--≥,解得:0.990%x ≥=,∴需要将注射一次疫苗的有效率提高到90%以上才能保证一只白兔注射两次疫苗后的有效率达到90%.7.(2022·全国·高三专题练习(理))高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(1)求选出的4 人均选《数学解题思想与方法》的概率;(2)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望. 【答案】(1)415(2)分布列见解析,期望为1 【解析】(1)解:设“从第一小组选出的2人选《数学解题思想与方法》”为事件A ,“从第二小组选出的2人选《数学解题思想与方法》”为事件B ,由于事 件A 、B 相互独立,且22542266C C 22(),()C 3C 5P A P B ====, 所以选出的4人均选《数学解题思想与方法》的概率为224()()()3515P A B P A P B ⋅=⋅=⨯=.(2)解:由题意,随机变量ξ可能的取值为0,1,2,3,可得4(0)15P ξ==,211125524422226666C C C C C 22(1)C C C C 45P ξ==⋅+⋅=,152266C 11(3)C C 45P ξ==⋅=,2(2)1(0)(1)(3)9P P P P ξξξξ==-=-=-==, 所以随机变量ξ的分布列为:ξ0 1 23 P415224529145所以随机变量ξ的数学期望 42221012311545945E ξ=⨯+⨯+⨯+⨯=. 1.(2022·北京·人大附中三模)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: 组号分组频数1[)0,262 [)2,48题组二 二项分布每周课外阅读时间小于6小时的学生我们称之为“阅读小白”,大于等于6小时且小于12小时的学生称之为“阅读新手”,阅读时间大于等于12小时的学生称之为“阅读达人”.(1)从样本中随机选取一名学生,已知这名学生的阅读时间大于等于6小时,问这名学生是“阅读达人”概率; (2)从该校学生中选取3人,用样本的频率估计概率,记这3人中“阅读新手和阅读小白”的人数和为X ,求X 的分布列和数学期望;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论) 【答案】(1)1069(2)分布列答案见解析,()2710E X =(3)第4组【解析】(1)解:从样本中随机选取一名学生,其中阅读时间大于等于6小时的学生人数为1003169-=, “阅读达人”的学生人数为10,故所求概率为1069. (2)解:从该校学生中任选一人,该学生是“阅读小白”或“阅读新人”的概率为90910010=, 所以,9~3,10X B ⎛⎫ ⎪⎝⎭,则()3110101000P X ⎛⎫=== ⎪⎝⎭,()397293101000P X ⎛⎫=== ⎪⎝⎭,()21391271C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭,()223912432C 10101000P X ⎛⎫==⋅⋅= ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:()927310100E X =⨯=. (3)解:样本中的100名学生该周课外阅读时间的平均数为10.0630.0850.1770.2290.25110.12130.06150.02170.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=7.68.因此,样本中的100名学生该周课外阅读时间的平均数在第4组.2.(2022·安徽·合肥一六八中学模拟预测(理))《关于加快推进生态文明建设的意见》,正式把“坚持绿水青山就是金山银山”的理念写进中央文件,成为指导中国加快推进生态文明建设的重要指导思想.为响应国家号召,某市2020年植树节期间种植了一批树苗,2022年市园林部门从这批树苗中随机抽取100棵进行跟踪检测,得到树高的频率分布直方图如图所示:(1)求树高在225-235cm 之间树苗的棵数,并求这100棵树苗树高的平均值;(2)若将树高以等级呈现,规定:树高在185-205cm 为合格,在205-235为良好,在235-265cm 为优秀.视该样本的频率分布为总体的频率分布,若从这批树苗中机抽取3棵,求树高等级为优秀的棵数ξ的分布列和数学期望.【答案】(1)15;220.5(2)分布列见解析;期望为0.6【解析】(1)树高在225-235cm 之间的棵数为:()10010.00530.0150.02000250.011015⎡⎤⨯-⨯++++⨯=⎣⎦..树高的平均值为:0.051900.152000.22100.252200.152300.12400.052500.05260220.5⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)可知,树高为优秀的概率为:0.10.050.050.2++=, 由题意可知()~3,0.2B ξ,则ξ的所有可能取值为0,1,2,3,()0330C 0.80.512P ξ===, ()1231C 0.80.20.384P ξ==⨯=, ()2232C 0.80.20.096P ξ==⨯=,()3333C 0.20.008P ξ===,故ξ的分布列为:因为()~3,0.2B ξ,所以()30.20.6E ξ=⨯=3.(2022·新疆克拉玛依·三模(理))第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中的a 值,并根据直方图估计该市全体中学生的测试分数的中位数和平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)将频率作为概率,若从该市全体中学生中抽取4人,记这4人中测试分数不低于90分的人数为X ,求X 的分布列及数学期望.【答案】(1)0.02a =,中位数为74.3,平均数为74.5;(2)分布列见解析,25.【解析】(1)由频率分布直方图和茎叶图知,测试分数在[50,60),[60,70),[70,80),[90,100]的频率依次为:0.1,0.25,0.35,0.1,因此,测试分数位于[)80,90的频率为10.10.250.350.10.2----=,则0.20.0210a ==, 显然测试分数的中位数t 在区间[70,80)内,则有:()700.0350.50.10.25t -⨯=--,解得:74.3t ≈, 测试分数的平均数为:550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=. (2)测试分数不低于90分的频率为110,X 的所有可能值是:0,1,2,3,4, 显然1(4,)10XB ,()4419C ()(),N,41010k k k P X k k k -==∈≤, 所以X 的分布列为:数学期望()124105E X =⨯=. 4.(2022·全国·模拟预测)为了中国经济的持续发展制定了从2021年2025年发展纲要,简称“十四五”规划,为了普及“十四五”的知识,某党政机关举行“十四五”的知识问答考试,从参加考试的机关人员中,随机抽取100名人员的考试成绩的部分频率分布直方图,其中考试成绩在[)70,80上的人数没有统计出来.(1)估算这次考试成绩的平均分数;(2)把上述的频率看作概率,把考试成绩的分数在[]80,100的学员选为“十四五”优秀宣传员,若从党政机关所有工作人员中,任选3名工作人员,其中可以作为优秀宣传员的人数为ξ,求ξ的分布列与数学期望.【答案】(1)70.5(2)分布列见解析,数学期望为0.9【解析】(1)设分数在[)70,80内的频率为x ,根据频率分布直方图得,()0.010.0150.020.0250.005101x ++++⨯+=,解得0.25x =,可知分数在[)70,80内的频率为0.25,则考试成绩的平均分数为450.10550.15650.2750.25850.25950.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图可知考试成绩在[]80,100的频率为()0.0250.005100.3+⨯=,则0,1,2,3ξ=.()003334300.30.71000P C ξ==⨯=,()12344110.30.71000P C ξ==⨯=()22318920.30.71000P C ξ==⨯=,()3332730.31000P C ξ===,故随机变量ξ的分布列为因为该分布为二项分布,所以该随机变量的数学期望为()30.30.9E ξ=⨯=.5.(2022·江苏苏州·模拟预测)如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为X .(1)若该质点共移动2次,位于原点O 的概率;(2)若该质点共移动6次,求该质点到达数字X 的分布列和数学期望. 【答案】(1)12;(2)分布列见解析,0.【解析】(1)质点移动2次,可能结果共有224⨯=种,若质点位于原点O ,则质点需要向左、右各移动一次,共有12C 2=种,故质点位于原点O 的概率2142P ==. (2)质点每次移动向左或向右,设事件A 为“向右”,则A 为“向左”,故1()()2P A P A ==, 设Y 表示6次移动中向左移动的次数,则1(6,)2Y B ,质点到达的数字62X Y =-,所以06611(6)(0)C ()264P X P Y =====,16613(4)(1)C ()232P X P Y =====,266115(2)(2)C ()264P X P Y =====, 36615(0)(3)C ()216P X P Y =====,466115(2)(4)C ()264P X P Y =-====, 56613(4)(5)C ()232P X P Y =-====,66611(6)(6)C ()264P X P Y =-====, 所以X 的分布列为:1()(62)2()626602E X E Y E Y =-=-+=-⨯⨯+=.6.(2022·北京通州·模拟预测)第24届冬季奥林匹克运动会,于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目相同次数的训练测试,成绩分别为A 、B 、C 、D 、E 五个等级,分别对应的分数为5、4、3、2、1.甲、乙两位同学在这个项目的测试成绩统计结果如图所示.(1)根据上图判断,甲、乙两位同学哪位同学的单板滑雪成绩更稳定?(结论不需要证明) (2)求甲单板滑雪项目各次测试分数的众数和平均数;(3)若甲、乙再同时参加两次测试,设甲的成绩为4分并且乙的成绩为3分或4分的次数为X ,求X 的分布列(频率当作概率使用).【答案】(1)乙比甲的单板滑雪成绩更稳定 (2)众数为3分,平均数为2.9分 (3)分布列答案见解析【解析】(1)解:由图可知,乙比甲的单板滑雪成绩更稳定.(2)解:因为甲单板滑雪项目测试中4分和5分成绩的频率之和为0.325, 3分成绩的频率为0.375,所以,甲单板滑雪项目各次测试分数的众数为3分,测试成绩2分的频率为10.20.3750.250.0750.1----=,所以,甲单板滑雪项目各次测试分数的平均数为10.220.130.37540.2550.075 2.9⨯+⨯+⨯+⨯+⨯=. (3)解:由题意可知,在每次测试中,甲的成绩为4分,并且乙的成绩为3分或4分的概率为30.250.375216⨯⨯=, 依题意,3~2,16X B ⎛⎫ ⎪⎝⎭,所以,()2131********P X ⎛⎫=== ⎪⎝⎭,()12313391C 1616128P X ==⋅⋅=,()239216256P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:X0 1 2 P1692563912892561.(2022·全国·高三专题练习(理))冰壶是2022年2月4日至2月20日在中国举行的第24届冬季奥运会的比赛项目之一.冰壶比赛的场地如图所示,其中左端(投掷线MN 的左侧)有一个发球区,运动员在发球区边沿的投掷线MN 将冰壶掷出,使冰壶沿冰道滑行,冰道的右端有一圆形的营垒,以场上冰壶最终静止时距离营垒区圆心O 的远近决定胜负,甲、乙两人进行投掷冰壶比赛,规定冰壶的重心落在圆O 中,得3分,冰壶的重心落在圆环A 中,得2分,冰壶的重心落在圆环B 中,得1分,其余情况均得0分.已知甲、乙投掷冰壶的结果互不影响,甲、乙得3分的概率分别为13,14;甲、乙得2分的概率分别为25,12;甲、乙得1分的概率分别为15,16.(1)求甲所得分数大于乙所得分数的概率;(2)设甲、乙两人所得的分数之差的绝对值为X ,求X 的分布列和期望.题组三 独立重复实验【答案】(1)1130(2)分布列见解析,期望为:169180【解析】(1)由题意知甲得0分的概率为1211135515---=,乙得0分的概率为1111142612---=,甲所得分数大于乙所得分数分为:甲得3分乙得2或1或0分,甲得2分乙得1或0分,甲得1分乙得0分所以所求概率为1121111(1)()3456125123011⨯-+⨯++⨯=.(2)X 可能取值为0,1,2,3,()11211111290345256151290P X ==⨯+⨯+⨯+⨯=()112111111111++35565251283246121805P X ==⨯+⨯+⨯+⨯⨯⨯=()11111121231215180P X ==⨯+⨯+⨯+⨯=()11211121545334P X ==⨯+⨯=所以,随机变量X 的分布列为:所以()298331216918001239018018405E X =⨯+⨯+⨯+⨯= 2.(2022·全国·高三专题练习(理))为弘扬奥运精神,某校开展了“冬奥”相关知识趣味竞赛活动.现有甲、乙两名同学进行比赛,共有两道题目,一次回答一道题目.规则如下:∴抛一次质地均匀的硬币,若正面向上,则由甲回答一个问题,若反面向上,则由乙回答一个问题.∴回答正确者得10分,另一人得0分;回答错误者得0分,另一人得5分.∴若两道题目全部回答完,则比赛结束,计算两人的最终得分.已知甲答对每道题目的概率为45,乙答对每道题目的概率为35,且两人每道题目是否回答正确相互独立.(1)求乙同学最终得10分的概率;(2)记X 为甲同学的最终得分,求X 的分布列和数学期望. 【答案】(1)37100(2)分布列见解析,X 的数学期望为10【解析】(1)记“乙同学最终得10分”为事件A ,则可能情况为甲回答两题且错两题;甲、乙各答一题且各对一题;乙回答两题且对一题错一题, 则()1111141313123722252525252525100P A =⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=,所以乙同学得10分的概率是37100. (2)甲同学的最终得分X 的所有可能取值是0,5,10,15,20. ()1111111313131640225252525252510025P X ==⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()111213121645222525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯==,()141114*********102225252525252510025P X ==⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯==,()1412164152252510025P X ==⨯⨯⨯⨯==,()141416420252510025P X ==⨯⨯⨯==.X 的分布列为()4191105101520102525252525E X =⨯+⨯+⨯+⨯+⨯=,所以X 的数学期望为10. 3.(2022·青海·海东市第一中学模拟预测(理))“民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为35,且相互间没有影响.(1)求选手甲被淘汰的概率;(2)设选手甲在初赛中答题的个数为X ,试求X 的分布列和数学期望. 【答案】(1)9923125(2)分布列见解析,2541625【解析】(1)设“选手甲被淘汰”为事件A ,因为甲答对每个题的概率均为35,所以甲答错每个题的概率均为25.则甲答了3题都错,被淘汰的概率为33328C 5125⎛⎫= ⎪⎝⎭;甲答了4个题,前3个1对2错,被淘汰的概率为22323272C 555625⎛⎫⨯⨯= ⎪⎝⎭;甲答了5个题,前4个2对2错,被淘汰的概率为2224322432C 5553125⎛⎫⎛⎫⋅⨯= ⎪⎪⎝⎭⎝⎭. 所以选手甲被海的概率()87243299212562531253125P A =++=. (2)易知X 的可能取值为3,4,5,对应甲被淘汰或进入复赛的答题个数,则()3333333273C C 5525P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()2222333232322344C C 555555625P X ⎛⎫⎛⎫==⨯⨯+⨯⨯=⎪ ⎪⎝⎭⎝⎭, ()2224322165C 55625P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. X 的分布列为则()7234216256225413456255625E X =⨯+⨯+⨯=. 4.(2022·湖南·长沙一中模拟预测)某靶场有A ,B 两种型号的步枪可供选用,其中甲使用A B ,两种型号的步枪的命中率分别为14,13;,(1)若出现连续两次子弹脱靶或者子弹打光耗尽的现象便立刻停止射击,若击中标靶至少3次,则可以获得一份精美礼品,若甲使用B 型号的步枪,并装填5发子弹,求甲获得精美礼品的概率;(2)现在A B ,两把步枪中各装填3发子弹,甲打算轮流使用A B ,两种步枪进行射击,若击中标靶,则继续使用该步枪,若未击中标靶,则改用另一把步枪,甲首先使用A 种型号的步枪,若出现连续两次子弹脱靶或者其中某一把步枪的子弹打光耗尽的现象便立刻停止射击,记X 为射击的次数,求X 的分布列与数学期望. 【答案】(1)1381(2)分布列见解析;X 的数学期望为3512.【解析】(1)甲击中5次的概率为513⎛⎫ ⎪⎝⎭1243=,甲击中4次的概率为14511C (1)()33-⋅10243=,甲击中3次的概率为()322511C 3133⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭28243=, 所以甲获得精美礼品的概率为11028391324324324324381++==. (2)X 的所有可能取值为2,3,4,5,(2)P X =11(1)(1)43=--321432=⨯=,(3)P X ==111113(1)(1)14434416⨯--+⨯⨯=,(4)P X ==1111111(1)1(1)(1)(1)4334334-⨯⨯⨯+-⨯⨯-⨯-524=,11111111(5)(1)(1)1(1)(1)144334334P X ==⨯-⨯⨯-⨯+-⨯⨯-⨯⨯1111(1)14433+⨯-⨯⨯⨯548=,所以X 的分布列为:所以1355()23452162448E X =⨯+⨯+⨯+⨯3512=. 5.(2022·全国·二模(理))“百年征程波澜壮阔,百年初心历久弥坚”.为庆祝中国建党一百周年,哈市某高中举办了“学党史、知党情、跟党走”的党史知识竞赛.比赛分为初赛和决赛两个环节,通过初赛选出两名同学进行最终决赛.若该高中A ,B 两名学生通过激烈的竞争,取得了初赛的前两名,现进行决赛.规则如下:设置5轮抢答,每轮抢到答题权并答对则该学生得1分,答错则对方得1分.当分差达到2分或答满5轮时,比赛结束,得分高者获胜.已知A ,B 每轮均抢答且抢到答题权的概率分别为23,13,A ,B 每一轮答对的概率都为12,且两人每轮是否回答正确均相互独立. (1)求经过2轮抢答A 赢得比赛的概率;:(2)设经过抢答了X 轮后决赛结束,求随机变量X 的分布列和数学期望.【答案】(1)14(2)分布列见解析;期望为134【解析】(1)记事件C 为“经过2轮抢答A 赢得比赛” A 学生每轮得一分的概率()2111132322P A =⨯+⨯=,B 学生每轮得一分的概率()1121132322P B =⨯+⨯=,()21124P C ⎛⎫== ⎪⎝⎭,所以经过2轮抢答A 赢得比赛的概率为14.(2)X 的可能取值为2,4,5.2轮比赛甲赢或乙赢的概率为()2221122C 22P X ⎛⎫=== ⎪⎝⎭,4轮比赛甲赢或乙赢的概率为()121111142C 22224P X ==⨯⨯⨯=, 5轮比赛甲赢或乙赢的概率为()11151424P X ==--=.X 的分布列为:()111132452444E X =⨯+⨯+⨯=,数学期望为134.6.(2022·湖南·长沙市明德中学二模)沙滩排球是一项每队由两人组成的两队在由球网分开的沙地上进行比赛的运动.它有多种不同的比赛形式以适应不同人、不同环境下的比赛需求.国家沙滩排球队为备战每年一次的世界沙滩排球巡回赛,在文昌高隆沙湾国家沙滩排球训练基地进行封闭式训练.在某次训练中,甲、乙两队进行对抗赛,每局依次轮流发球(每队不能连续发球),连续赢得2个球的队获胜并结束该局比赛,并且每局不得超过5个球.通过对甲、乙两队过去对抗赛记录的数据分析,甲队发球甲队赢的概率为23,乙队发球甲队赢的概率为12,每一个球的输赢结果互不影响,已知某局甲先发球. (1)求该局第二个球结束比赛的概率;(2)若每赢1个球记2分,每输一个球记0分,记该局甲队累计得分为ξ,求ξ的分布列及数学期望. 【答案】(1)12(2)分布列见解析,18754【解析】(1)记:“甲队发球甲队赢”为事件A ,“乙队发球甲队赢”为事件B ,“第二个球结束比赛”为事件C ,则()23P A =,()12P B =,()()1132P A P B ==,,C AB AB =,因为事件AB 与AB 互斥,所以()()()()P C P ABAB P AB P AB ==+()()()()P A P B P A P B =+2111132322=⨯+⨯=,所以该局第二个球结束比赛的概率为12.(2)依题意知随机变量ξ的所有可能取值为0246,,, ()()()()1110326P P AB P A P B ξ====⨯=;()()()()2P P ABA ABAB P ABA P ABAB ξ===+21111115323323236=⨯⨯+⨯⨯⨯=; ()()4P P AB ABAABABAABABA ξ==()()()()P AB P ABA P ABABA P ABABA=+++21112111112121153++=323233232332323108=⨯+⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯; ()()()()()6P P ABAB ABABA ABABA P ABAB P ABABA P ABABAξ===++21212121211112113232323233232354=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=. 所以ξ的分布列为ξ0 2 46 P16536531081154故数学期望()15531118702466361085454E ξ=⨯+⨯+⨯+⨯=. 1.(2022·江苏省木渎高级中学模拟预测)2012年国家开始实施法定节假日高速公路免费通行政策,某收费站统计了2021年中秋节前后车辆通行数量,发现该站近几天车辆通行数量2100(,)0N ξσ~,若()(1200,80)01200P a P b ξξ>=<<=,则当82ab b a ≥+时下列说法正确的是( )A .12a =B .14b =C .34a b +=D .12a b -=【答案】C【解析】因2100(,)0N ξσ~,且()(1200,80)01200P a P b ξξ>=<<=,则有122b a +=,即21a b =-,不等式82ab b a ≥+为:24(1)1(21)0b b b -≥⇔-≤,则12b =,14a =, 所以34a b +=,14a b -=-,A ,B ,D 均不正确,C 正确.故选:C2.(2022·江苏·高三专题练习)随机变量()2,XN μσ,已知其概率分布密度函数22()21()e2x f x μσσπ-=在2x =处取得最大值为12π,则(0)P X >=( )附:()0.6827,(22)0.9545P X P X μσμσμσμσ-≤≤+=-≤≤+=. A .0.6827 B .0.84135C .0.97725D .0.9545【答案】B【解析】由题意2μ=,1122σππ=,2σ=,所以2(2)41()e2x f x π-=, (022)0.6827P X ≤≤=,所以1(0)(10.6827)0.158652P X <=-=, (0)10.158650.84135P X ≥=-=.故选:B .3.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量题组四 正态分布(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人);故选:B4.(2022·广东·大埔县虎山中学高三阶段练习)(多选)已知某校高三年级有1000人参加一次数学模拟考试,现把这次考试的分数转换为标准分,标准分的分数转换区间为(]60,300,若使标准分X 服从正态分布N()180,900,()0.6826P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,3309().973P X μσμσ-<≤+=,则( )A .这次考试标准分超过180分的约有450人B .这次考试标准分在(]90,270内的人数约为997C .甲、乙、丙三人恰有2人的标准分超过180分的概率为38D .()2402700.0428P X <≤= 【答案】BC【解析】依题意得180μ=,2900σ=,30σ=,因为()()11802P X P X μ>=>=, 所以这次考试标准分超过180分的约有110005002⨯=人,故A 不正确;()()90270180330180330P X P X <≤=-⨯<≤+⨯(33)P X μσμσ=-<≤+=0.9973,所以这次考试标准分在(]90,270内的人数约为10000.9973997⨯≈人,故B 正确; 依题意可知,每个人的标准分超过180分的概率为12,所以甲、乙、丙三人恰有2人的标准分超过180分的概率为223113C 1228⎛⎫⎛⎫⋅⋅-= ⎪⎪⎝⎭⎝⎭,故C 正确; ()240270P X <≤()180230180330P X =+⨯<≤+⨯()23P X μσμσ=+<≤+。

高三数学随机变量的分布列试题答案及解析

高三数学随机变量的分布列试题答案及解析

高三数学随机变量的分布列试题答案及解析1.盒中有9个正品、3个次品零件,每次取1个零件,如果取出的次品不再放回,则在取得正品前已取出的次品数ξ的分布列________.【解析】ξ可能取的值为0,1,2,3这四个数,而ξ=k(k=0,1,2,3)表示取k+1次零件,前k次取得的都是次品,第k+1次才取到正品.P(ξ=0)==,P(ξ=1)=·=,P(ξ=2)=··=,P(ξ=3)=··=.故ξ的分布列为ξ01232.某电视台的一个智力游戏节目中,有一道将中国四大名著《三国演义》、《水浒传》、《西游记》、《红楼梦》与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线,每连对一个得2分,连错得-1分,某观众只知道《三国演义》的作者是罗贯中,其他不知道随意连线,将他的得分记作ξ.(1)求该观众得分ξ为负数的概率;(2)求ξ的分布列.【答案】(1)(2)ξ-128【解析】解:(1)当该观众只连对《三国演义》,其他全部连错时,得分为负数,此时ξ=-1,故得分为负数的概率为P(ξ=-1)==.(2)ξ的可能取值为-1,2,8.P(ξ=2)==,P(ξ=8)==.ξ的分布列为:ξ-1283.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设ξ为取出的4个球中红球的个数,求ξ的分布列.【答案】(1)(2)(3)ξ的分布列为ξ0123【解析】(1)设“从甲盒内取出的2个球均为黑球”为事件A,“从乙盒内取出的2个球均为黑球”为事件B.由于事件A、B相互独立,且P(A)==,P(B)==.故取出的4个球均为黑球的概率为P(A·B)=P(A)·P(B)=×=.(2)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.由于事件C、D互斥,且P(C)=·=,P(D)==.故取出的4个球中恰有1个红球的概率为P(C+D)=P(C)+P(D)=+=.(3)ξ可能的取值为0,1,2,3.由(1),(2)得P(ξ=0)=,P(ξ=1)=,P(ξ=3)==.从而P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=.ξ的分布列为4.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.5.某中学从高中三个年级选派4名教师和20名学生去当文明交通宣传志愿者,20名学生的名额分配为高一12人,高二6人,高三2人.(1)若从20名学生中选出3人做为组长,求他们中恰好有1人是高一年级学生的概率;(2)若将4名教师随机安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.【答案】(1) ;(2)详见解析.【解析】(1)从高一12人中选出1人,从高二和高三共8人中选出2人的事件为A,,计算得到结果;(2)每位教师选择高一年级的概率均为,并且相互独立,X的所有取值为0,1,2,3,4.,,,然后列出随机变量X的概率分布列,利用,或是利用二项分布的期望公式,得出结果.随机变量的概率,分布列,期望还是高考的重点内容,属于基础题型,试题解析:(1)解:设“他们中恰好有1人是高一年级学生” 为事件,则.所以恰好有1人是高一年级学生的概率为. 4分(2)解:X的所有取值为0,1,2,3,4. 6分由题意可知,每位教师选择高一年级的概率均为, 7分所以;;;.随机变量X的分布列为:12分所以. 13分【考点】1.超几何分布;2.二项分布.6.一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.【答案】(1)(2)【解析】记“取出的3个球编号都不相同”为事件A,“取出的3个球中恰有两个球编号相同”为事件B,则P(B)===,∴P(A)=1-P(B)=.(2)X的取值为1,2,3,4P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.所以X的分布列为E(X)=1×+2×+3×+4×==.7.甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:(Ⅰ)请画出甲、乙两人成绩的茎叶图. 你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为,求随机变量的分布列和期望.【答案】(Ⅰ)选派乙参赛更好(Ⅱ)【解析】(Ⅰ)茎表示得分的十位数,放在中间的列,叶表示得分的个位数,放在两侧。

2020年高考数学专题复习离散型随机变量及其分布列

2020年高考数学专题复习离散型随机变量及其分布列

离散型随机变量及其分布列1.随机变量的有关概念(1)随机变量:随着试验结果的变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量的分布列及其性质(1)概念:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则下表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见的离散型随机变量分布列 (1)两点分布若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,即:其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.判断正误(正确的打“√”,错误的打“×”)(1)随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数.( ) (2)抛掷均匀硬币一次,出现正面的次数是随机变量.( ) (3)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(4)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.( )(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X 服从超几何分布.( ) (6)由下表给出的随机变量X 的分布列服从两点分布.( )答案:(1)√ (2)√ (3)√ (4)√ (5)√ (6)×(教材习题改编)设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12 C .14D .18解析:选D.由分布列的性质,得12+14+18+p 4=1,所以p 4=18.设随机变量X 的分布列为P (X =k )=k 15,k =1,2,3,4,5,则P ⎝ ⎛⎭⎪⎫12<X <52=________.解析:P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=115+215=15. 答案:15在含有3件次品的10件产品中任取4件,则取到次品数X 的分布列为________. 解析:由题意知,X 服从超几何分布,其中N =10,M =3,n =4,所以分布列为P (X =k )=C k3·C 4-k7C 410,k =0,1,2,3.答案:P(X =k )=C k 3·C 4-k7C 410,k =0,1,2,3离散型随机变量的分布列的性质设离散型随机变量X 的分布列为求:(1)2X +1的分布列; (2)|X -1|的分布列.【解】 由分布列的性质知:0.2+0.1+0.1+0.3+m =1, 解得m =0.3. (1)2X +1的分布列为(2)|X -1|的分布列为在本例条件下,求P (1<X ≤4). 解:由本例知,m =0.3,P (1<X ≤4)=P (X =2)+(X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列的性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负值;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.设随机变量X 等可能地取1,2,3,…,n ,若P (X <4)=0.3,则n 的值为( ) A .3 B .4 C .10D .不确定解析:选C.“X <4”的含义为X =1,2,3,所以P (X <4)=3n=0.3,所以n =10.2.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 解析:因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. 答案:23 ⎣⎢⎡⎦⎥⎤-13,13离散型随机变量的分布列(高频考点)离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.主要命题角度有:(1)用频率代替概率的离散型随机变量的分布列; (2)古典概型的离散型随机变量的分布列;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)角度一 用频率代替概率的离散型随机变量的分布列某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列. 【解】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为角度二 古典概型的离散型随机变量的分布列(2019·浙江省名校协作体高三联考)一个盒子里装有大小均匀的6个小球,其中有红色球4个,编号分别为1,2,3,4;白色球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).(1)求取出的3个小球中,含有编号为4的小球的概率;(2)在取出的3个小球中,小球编号的最大值设为X ,求随机变量X 的分布列. 【解】 (1)“设取出的3个小球中,含有编号为4的小球”为事件A , P (A )=C 12C 24+C 22C 14C 36=45,所以取出的3个小球中,含有编号为4的小球的概率为45. (2)X 的可能取值为3,4,5.P (X =3)=1C 36=120;P (X =4)=C 12C 23+C 22C 13C 36=920; P (X =5)=C 35C 36=12,所以随机变量X 的分布列为离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求形式写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.[提醒] 求随机变量某一范围内取值的概率,要注意它在这个范围内的概率等于这个范围内各概率值的和.某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列. 解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1),则12(n -6)n (n -1)≥12,化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为超几何分布一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 【解】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4, P (X =k )=C k 5C 4-k5C 410,k =0,1,2,3,4,于是可得其分布列为超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列. 解:(1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4. P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以,随机变量X 的分布列为对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.易错防范(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的. (2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.[基础达标]1.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B .12C .13D .23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功.由p +2p =1,得p =13,故应选C.2.(2019·绍兴调研)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k8C 1015,故k =4,故选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A .14B .12C .34D .23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝ ⎛⎭⎪⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34.4.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A .13 B .16 C .12D .56解析:选D.由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.5.已知离散型随机变量X 的分布列为则P (X ∈Z )=( ) A .0.9 B .0.8 C .0.7D .0.6解析:选A.由分布列性质得0.5+1-2q +13q =1,解得q =0.3,所以P (X ∈Z )=P (X =0)+P (X =1)=0.5+1-2×0.3=0.9,故选A.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________. 解析:抛掷2颗骰子有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4)=136+236+336=16.答案:167.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.解析:设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,所以a =13,由⎩⎪⎨⎪⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎢⎡⎦⎥⎤-13,138.若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________. 解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 139.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2. P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为答案:10.(2019·温州市高考模拟)袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是________,设摸取的这三个球中所含的黑球数为X ,则P (X =k )取最大值时,k 的值为________.解析:袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小及质地都相同,现从该袋中随机摸取3个球,则这三个球中恰有两个黑球和一个白球的方法总数是:n =C 26C 13=45.设摸取的这三个球中所含的黑球数为X ,则X 的可能取值为0,1,2,3, P (X =0)=C 33C 39=184,P (X =1)=C 16C 23C 39=1884,C 984P (X =3)=C 36C 39=2084,所以P (X =k )取最大值时,k 的值为2. 答案:45 211.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X 的分布列; (2)求至少出现两次正面向上的概率. 解:(1)X 的可能取值为0,1,2,3. P (X =0)=C 0323=18;P (X =1)=C 1323=38;P (X =2)=C 2323=38;P (X =3)=C 3323=18.所以X 的分布列为(2)至少出现两次正面向上的概率为P (X ≥2)=P (X =2)+P (X =3)=38+18=12. 12.(2019·台州高三质检)在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的分布列. 解:(1)该顾客中奖的概率P =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60,且 P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,C 1015故X 的分布列为[能力提升]1.(2019·浙江高中学科基础测试)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5;4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X 为取出的3个球中编号的最小值,求X 的分布列.解:(1)设“取出的3个球编号都不相同”为事件A ,“取出的3个球中恰有两个球编号相同”为事件B ,则P (B )=C 14C 17C 39=2884=13,所以P (A )=1-P (B )=23.(2)X 的取值为1,2,3,4,P (X =1)=C 12C 27+C 22C 17C 39=4984,P (X =2)=C 12C 25+C 22C 15C 39=2584, P (X =3)=C 12C 23+C 22C 13C 39=984,P (X =4)=1C 39=184. 所以X 的分布列为2.(2019·惠州市第三次调研考试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3. P (X =k )=C k4·C 3-k6C 310(k =0,1,2,3). 所以随机变量X 的分布列为3.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图),这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27. (2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用X 表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量X 的分布列; (3)求甲取到白球的概率. 解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知X 的可能取值为1,2,3,4,5.P (X =1)=37; P (X =2)=4×37×6=27; P (X =3)=4×3×37×6×5=635;P (X =4)=4×3×2×37×6×5×4=335;P (X =5)=4×3×2×1×37×6×5×4×3=135.所以取球次数X 的分布列为(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A , 则P (A )=P (X =1或X =3或X =5).因为事件“X =1”“X =3”“X =5”两两互斥,所以P (A )=P (X =1)+P (X =3)+P (X =5)=37+635+135=2235.。

高三数学一轮 (基础知识+小题全取+考点通关+课时检测)9.7离散型随机变量及其分布列课件 新人教A版

高三数学一轮 (基础知识+小题全取+考点通关+课时检测)9.7离散型随机变量及其分布列课件 新人教A版
C.2
(
B.1
)
D.3 k k k 解析:由n+n+„+n=1,解得 k=1. 答案:B
分布列的求法
[例2] (2012· 福建高考改编)受轿车在保修期内维修费 等因素的影响,企业生产每辆轿车的利润与该轿车首次出 现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿 车,保修期均为2年.现从该厂已售出的两种品牌轿车中各 随机抽取50辆,统计数据如下:
(1)求6名男生的平均身高和9名女生身高的中位数; (2)现从能进入下一环节的应聘者中抽取2人,记X为抽取
到的男生人数,求X的分布列及期望E(X).
解:(1)6 名男应征者的平均身高是 176+173+178+186+180+193 =181 cm, 6 9 名女应征者身高的中位数为 168 cm;
2.某旅游公司为3个旅游团提供甲、乙、丙、丁共4条旅 游线路,每个旅游团任选其中一条,求选择甲线路旅 游团数的分布列.
解:设选择甲线路旅游团数为 X,则 X=0,1,2,3. 33 27 C1·2 27 33 P(X=0)= 3= ,P(X=1)= 3 = , 4 64 4 64 C2· 9 3 C3 1 3 3 P(X=2)= 3 = ,P(X=3)= 3 = . 4 64 4 64
X=ai P(X=ai) a1 a2 „ „
p1
p2
称为离散型随机变量X的分布列. 2.离散型随机变量分布列的性质: (1)pi > 0(i=1,2,…);(2)p1+p2+…= 1 .
三、超几何分布
一般地,设有 N 件产品,其中有 M(M≤N)件次品.从 中任取 n(n≤N)件产品,用 X 表示取出的 n 件产品中次品的 - Ck Cn -k M N M Cn 件数,那么 P(X=k)= (其中 k 为非负整数). N

2015届高三数学理科统计概率及随机变量分布列大题训练(16题)(含答案)

2015届高三数学理科统计概率及随机变量分布列大题训练(16题)(含答案)

2015届高三数学理科统计概率及随机变量分布列大题训练(16题)(含答案)1.一个口袋中有2个白球和$n$个红球($n\geq2$,且$n\in\mathbb{N}^*$),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖。

1)试用含$n$的代数式表示一次摸球中奖的概率$p$;2)若$n=3$,求三次摸球恰有一次中奖的概率;3)记三次摸球恰有一次中奖的概率为$f(p)$,当$n$为何值时,$f(p)$取最大值。

2.一次考试中,5名同学的语文、英语成绩如下表所示:学生 | S1.| S2.| S3.| S4.| S5.|语文 | 87.| 90.| 91.| 92.| 95.|英语 | 86.| 89.| 89.| 92.| 94.|1)根据表中数据,求英语分$y$对语文分$x$的线性回归方程;2)要从4名语文成绩在90分(含90分)以上的同学中选出2名参加一项活动,以$\xi$表示选中的同学的英语成绩高于90分的人数,求随机变量$\xi$的分布列及数学期望$E\xi$。

3.某中学举行了一次“环保知识竞赛”活动。

为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为$n$)进行统计。

按照$[50,60)$,$[60,70)$,$[70,80)$,$[80,90)$,$[90,100]$的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在$[50,60)$,$[90,100]$的数据)。

1)求样本容量$n$和频率分布直方图中$x$,$y$的值;2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设$\xi$表示所抽取的3名同学中得分在$[80,90)$的学生个数,求$\xi$的分布列及其数学期望。

4.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B。

(新课标)高三数学一轮复习 第10篇 离散型随机变量及其分布列学案 理-人教版高三全册数学学案

(新课标)高三数学一轮复习 第10篇 离散型随机变量及其分布列学案 理-人教版高三全册数学学案

第六十五课时离散型随机变量及其分布列课前预习案1.会求与现实生活有密切关系的离散型随机变量的分布列;2.掌握二点分布与超几何分布的特点,并会应用.1.离散型随机变量如果随机变量X的所有可能的取值都能出来,则称X为离散型随机变量.2.离散型随机变量的分布列及性质(1)离散型随机变量的分布列:若离散型随机变量X所有可能取的值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率为p1,p2,…,p n,则表称为离散型随机变量X(2)离散型随机变量分布列的性质:①p i 0 , (i=1,2,3,…,n);②p1+p2+…+p n=;③P(x i≤x≤x j)=p i+p i+1+…+p j.3.常见离散型随机变量的分布列(1)二点分布:如果随机变量X的分布列为其中0<p<1,q=,则称离散型随机变量p的二点分布.(2)超几何分布:设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,当X=m时的概率为P(X=m)=(0≤m≤l,l为n和M 中较小的一个),称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n 的超几何分布.1. 设随机变量X 的分布列如下:则p =________.2. 设某运动员投篮投中的概率为0.3,则一次投篮时投中次数X 的分布列是________.3. 在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为_____________.4. 已知随机变量X 的分布列为P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )A.316B.14C.116D.5165. 随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)等于 ( )A.16 B.13C.12D.23课堂探究案考点1 离散型随机变量的分布列的性质【典例1】设随机变量ξ的分布列为P ⎝ ⎛⎭⎪⎫ξ=k 5=ak (k =1,2,3,4,5),则常数a 的值为________,P ⎝⎛⎭⎪⎫ξ≥35=________.【变式1】 若离散型随机变量X 的分布列为则常数c =________,P (X =1)=________.考点2 离散型随机变量的分布列的求法及应用【典例2】随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ. (1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的均值);【变式2】某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至...3件,否则不进货...,将频率视为概率. (1)求当天商店不进货...的概率; (2)记X 为第二天开始营业时该商品的件数,求X 的概率分布列和数学期望.考点3 超几何分步【典例3】一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列.【变式3】2013年10月1日,为庆祝中华人民共和国成立64周年,来自北京大学和清华大学的6名大学生志愿者被随机平均分配到天安门广场运送矿泉水、打扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有1名北京大学志愿者的概率是35.(1)求打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率;(2)设随机变量ξ为在维持秩序岗位服务的北京大学志愿者的人数,求ξ的分布列.1.设X 是一个离散型随机变量,其分布列为( )A .1B .1±22C .1-22D .1+222. 某射手射击所得环数X 的分布列为)A .0.28B .0.88C .0.79D .0.513. 设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0B.12 C.13 D.234. 在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)5. 设随机变量X 等可能取值为1,2,3,…,n ,如果P (X <4)=0.3,那么n =______.课后拓展案组全员必做题1. 随机变量X 的概率分布规律为P (X =n )=a n (n +1) (n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( )A.23B.34C.45D.562.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A.ξ=4 B.ξ=5 C.ξ=6 D.ξ≤53.设随机变量X的概率分布列如下表所示:X 01 2P a 1316F(x)=P(X≤x),则当x的取值范围是[1,2)时,F(x)等于 ( )A.13B.16C.12D.564.已知随机变量ξ的分布列为P(ξ=k)=12k-1,k=1,2,3,…,n,则P(2<ξ≤5)=________. 5.设随机变量X的概率分布列为X 123 4P 13m1416则P(|X-3|=1)=________.6.已知随机变量ξ只能取三个值:x1,x2,x3,其概率依次成等差数列,则公差d的取值范围是________.7.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X的概率分布列为X 01 2P8.从一批含有13件正品与2件次品的产品中,不放回地任取3件,求取得次品数的分布列.B组提高选做题1.如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P(ξ≥8)=_______.2.某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.力为中等或中等以上的概率为25.(1)试确定a ,b 的值;(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率; (3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的分布列.参考答案1.【答案】 13【解析】 由分布列的性质知:所有概率之和为1,所以p =13.2. 【答案】30,1,2.P (η=0)=C 11C 11C 12C 12=14,P (η=1)=C 11C 11×2C 12C 12=12,P (η=2)=C 11C 11C 12C 12=14.∴η的分布列为4.【答案】 A【解析】 P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316.5. 【答案】 D【解析】 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.【典例1】【答案】115 45【解析】随机变量ξ的分布列为由a +2a +3a +4a +5a =1,解得a =15.P ⎝⎛⎭⎪⎫ξ≥35=P ⎝⎛⎭⎪⎫ξ=35+P ⎝⎛⎭⎪⎫ξ=45+P (ξ=1)=3a +4a +5a =12a =45⎝ ⎛⎭⎪⎫或P ⎝⎛⎭⎪⎫ξ≥35=1-P (ξ≤25)=1-3a =45.【变式1】【答案】 13 13【解析】 由离散型随机变量分布列的性质可知: ⎩⎪⎨⎪⎧9c 2-c +3-8c =10≤9c 2-c ≤10≤3-8c ≤1,解得c =13.P (X =1)=3-8×13=13.【典例2】【解析】 (1)由于1件产品的利润为ξ,则ξ的所有可能取值为6,2,1,-2,由题意知P (ξ=6)=126200=0.63,P (ξ=2)=50200=0.25,P (ξ=1)=20200=0.1,P (ξ=-2)=4200=0.02.故ξ的分布列为(2)1件产品的平均利润为E 4.34(万元). 【变式2】【解析】 (1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310. (2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34. 所以X 的概率分布列为故X 的数学期望为E (X )=2×14+3×34=114.【典例3】【解析】 (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3, 其中P (X =k )=C k 5C 3-k5C 310,k =0,1,2,3.于是可得其分布列为【变式3】【解析】(1)A ,则事件A的对立事件为“没有北京大学志愿者被分到运送矿泉水岗位”,设有北京大学志愿者x 名,1≤x <6,那么P (A )=1-C 26-x C 26=35,解得x =2,即来自北京大学的志愿者有2名,来自清华大学的志愿者有4名.记“打扫卫生岗位恰好有北京大学、清华大学志愿者各1名”为事件B ,则P (B )=C 12C 14C 26=815,所以打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率是815.(2)在维持秩序岗位服务的北京大学志愿者的人数ξ服从超几何分布, 其中N =6,M =2,n =2,于是 P (ξ=k )=C k 2C 2-k4C 26,k =0,1,2,∴P (ξ=0)=C 02C 24C 26=25,P (ξ=1)=C 12C 14C 26=815,P (ξ=2)=C 22C 04C 26=115.所以ξ的分布列为1.【答案】 C【解析】 由分布列的性质得: 2211212112010q q q q ⎧+-+=⎪⎪>-≥⎨⎪-≥⎪⎩,∴q =1-22.故选C.2.【答案】C【解析】P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 3.【答案】 C 4.【答案】 C【解析】X 服从超几何分布P (X =k )=C k 7C 10-k8C 1015,故k =4.5.【答案】 10【解析】 由于随机变量X 等可能取值为1,2,3,…,n .所以取到每个数的概率均为1n.∴P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n=0.3,∴n =10.组全员必做题1.【答案】 D 【解析】 ∵P (X =n )=an (n +1)(n =1,2,3,4),∴a 2+a 6+a 12+a 20=1,∴a =54, ∴P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=54×12+54×16=56.2.【答案】C【解析】“放回5个红球”表示前5次摸到黑球,第6次摸到红球,故ξ=6. 3. 【答案】D【解析】∵a +13+16=1,∴a =12,∵x ∈[1,2),∴F (x )=P (X ≤x )=12+13=56.4.【答案】716【解析】P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5) =14+18+116=716. 5.【答案】512【解析】由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4)=14+16=512.6.【答案】 ⎣⎢⎡⎦⎥⎤-13,13 【解析】设ξ取x 1,x 2,x 3时的概率分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=1,∴a =13,由⎩⎪⎨⎪⎧13-d ≥013+d ≥0得-13≤d ≤13.7.【答案】0.1 0.6 0.3【解析】 P (X =0)=C 22C 25=0.1,P (X =1)=C 13·C 12C 25=610=0.6,P (X =2)=C 23C 25=0.3.8.【解析】设随机变量ξ表示取出次品的个数,则ξ服从超几何分布,它的可能取值为0,1,2,其相应的概率为P (ξ=0)=C 02C 313C 315=2235,P (ξ=1)=C 12C 213C 315=1235,P (ξ=2)=C 22C 113C 315=135.所以ξ的分布列为组提高选做题1. 【答案】 45【解析】 方法一 由已知,ξ的取值为7,8,9,10, ∵P (ξ=7)=C 22C 12C 35=15,P (ξ=8)=C 22C 11+C 22C 12C 35=310, P (ξ=9)=C 12C 12C 11C 35=25,P (ξ=10)=C 22C 11C 35=110,∴ξ的分布列为∴P (ξ≥8)=P (ξ=8)+P (ξ=310+25+110=45.方法二 P (ξ≥8)=1-P (ξ=7)=1-C 22C 12C 35=45.2.【解析】(1)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10+a )人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则P (A )=10+a 40=25,解得a =6.所以b =40-(32+a )=40-38=2. 答 a 的值为6,b 的值为2.(2)由表格数据可知,具有听觉记忆能力或视觉记忆能力超常的学生共有8人.方法一 记“至少有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B ,则“没有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B , 所以P (B )=1-P (B )=1-C 332C 340=1-124247=123247.答 从这40人中任意抽取3人,其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率为123247.方法二 记“至少有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B , 所以P (B )=C 18C 232+C 28C 132+C 38C 340=123247. 答 从这40人中任意抽取3人,其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率为123247.(3)由于从40位学生中任意抽取3人的结果数为C 340,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3人,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为C k 24C 3-k16,所以从40位学生中任意抽取3人,其中恰有k 人具有听觉记忆能力或视觉记忆能力偏高或超常的概率为P (ξ=k )=C k24C 3-k16C 340(k =0,1,2,3),ξ的可能取值为0,1,2,3,因为P (ξ=0)=C 024C 316C 340=14247,P (ξ=1)=C 124C 216C 340=72247,P (ξ=2)=C 224C 116C 340=5521 235,P (ξ=3)=C 324C 016C 340=2531 235,所以ξ的分布列为。

高三数学分布列和期望

高三数学分布列和期望

高三数学分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望[样题1] 〔2005年高考·全国卷II·理19〕甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令为本场比赛的局数,求的概率分布和数学期望.〔精确到0.0001〕本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力.解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P 〔=3〕=比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜.因而P 〔=4〕=+比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜.因而 P 〔=5〕=+ 所以的概率分布为ξ的期望=3×P 〔=3〕+4×P 〔=4〕+ 变式新题型1.〔2005年高考·浙江卷·理19〕袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是.〔Ⅰ〕 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. 〔Ⅱ〕 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率;〔ii 〕记5次之内〔含5次〕摸到红球的次数为,求随机变量的分布列及数学期望E . 解:〔Ⅰ〕 〔Ⅱ〕〔i 〕〔ii 〕随机变量的取值为0,1,2,3,; 由n 次独立重复试验概率公式,得()()1n kk kn n P k C p p -=-()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭〔或〕随机变量的分布列是ξξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=热点题型2 随机变量的取值范围及分布列ξ[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:〔Ⅰ〕该顾客中奖的概率;〔Ⅱ〕该顾客获得的奖品总价值〔元〕的概率分布列和期望. 解法一:〔Ⅰ〕,即该顾客中奖的概率为.〔Ⅱ〕的所有可能值为:0,10,20,50,60〔元〕..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故有分布列:ξ 从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE解法二: 〔Ⅰ〕〔Ⅱ〕的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值=2×8=16〔元〕.变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:〔Ⅰ〕一周5个工作日内恰有两个工作日发生故障的概率〔保留两位有效数字〕; 〔Ⅱ〕一周5个工作日内利润的期望〔保留两位有效数字〕 解:以表示一周5个工作日内机器发生故障的天数,则~B 〔5,0 2〕).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ 〔Ⅰ〕〔Ⅱ〕以表示利润,则的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P .410.08.02.0)1()5(4115≈⨯⨯====C P P ξη.205.08.02.0)2()0(3225≈⨯⨯====C P P ξη.057.0)2()1()0(1)3()2(≈=-===-=≥=-=ξξξξηP P P P P 的概率分布为η∴ 利润的期望=10×0 328+5×0 410+0×0 205-2×0 057≈5 2〔万元〕[样题3] 〔2005年高考·江西卷·理19〕A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设表示游戏终止时掷硬币的次数.ξ〔1〕求的取值范围; 〔2〕求的数学期望E.解:〔1〕设正面出现的次数为m ,反面出现的次数为n ,则,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m〔2〕.322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P 变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,〔1〕求在这一组练习中耗用子弹ξ的分布列.〔2〕求在完成连续两组练习后,恰好共耗用了4发子弹的概率.分析:该组练习耗用的子弹数ξ为随机变量,ξ可取值为1,2,3,4,5ξ=1,表示第一发击中〔练习停止〕,故P 〔ξ=1〕=0.8ξ=2,表示第一发未中,第二发命中,故P 〔ξ=2〕=〔1-0.8〕×0.8=0.16ξ=3,表示第一、二发未中,第三发命中,故P 〔ξ=3〕=〔1-0.8〕2×0.8=0.032以下类推解:〔1〕ξ的分布列为ξ 1 2 3 4 5 P 0.8 0.16 0.032 0.0064 0.0016补充备例:有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数 的数学期望和方差.分析:求 时,由题知前 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如 ,发现规律后,推广到一般.解: 的可能取值为1,2,3,…,n .η 10 5 0 -2 P 0 328 0 410 0 205 0 057;所以的分布列为:1 2 …k…n……;说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.。

35 高中数学分布列与期望及决策专题训练

35 高中数学分布列与期望及决策专题训练

专题35高中数学分布列与期望及决策专题训练【知识总结】离散型随机变量X 的分布列为则,(1)p i ≥0,i =1,2,…,n .(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )= i =1n[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).【高考真题】1.(2022·全国甲理) 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.2.(2022·北京) 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证)【题型突破】1.某校计划举行以“唱支山歌给党听”为主题的红歌合唱比赛活动,现有高一1,2,3,4班准备从《唱支山歌给党听》《没有共产党就没有新中国》《映山红》《十送红军》《歌唱祖国》5首红歌中选取一首作为比赛歌曲,设每班只选择其中一首红歌,且选择任一首红歌是等可能的.(1)求“恰有2个班级选择《唱支山歌给党听》”的概率;(2)记随机变量X 表示这4个班级共选择红歌的个数(相同的红歌记为1个),求X 的分布列与均值.2.有编号为1,2,3的三个小球和编号为1,2,3,4的四个盒子,将三个小球逐个随机地放入四个盒子中,每个小球的放置相互独立.(1)求三个小球恰在同一个盒子中的概率;(2)求三个小球在三个不同盒子且每个小球编号与所在盒子编号不同的概率;(3)记录所有至少有一个小球的盒子,以X 表示这些盒子编号的最小值,求E (X ).3.某公司年会有幸运抽奖环节,一个箱子里有相同的十个乒乓球,球上分别标0,1,2,…,9这十个自然数,每位员工有放回依次取出三个球.规定:每次取出的球所标数字不小于后面取出的球所标数字即中奖.中奖项:三个数字全部相同中一等奖,奖励10 000元现金;三个数字中有两个数字相同中二等奖,奖励5 000元现金;三个数字各不相同中三等奖,奖励2 000元现金.其他不中奖,没有奖金.(1)求员工A 中二等奖的概率;(2)设员工A 中奖奖金为X ,求X 的分布列;(3)员工B 是优秀员工,有两次抽奖机会,求员工B 中奖奖金的期望.4.目前,新能源汽车尚未全面普及,原因在于技术水平有待提高,国内几家大型汽车生产商的科研团队已经独立开展研究工作.吉利研究所、北汽科研中心、长城攻坚站三个团队两年内各自出成果的概率分别为12,m ,14.若三个团队中只有长城攻坚站出成果的概率为112. (1)求吉利研究所、北汽科研中心两个团队两年内至少有一个出成果的概率及m 的值;(2)三个团队有X 个在两年内出成果,求X 的分布列和均值.5.随着社会的发展,一些企业改变了针对应届毕业生的校园招聘方式,将线下招聘改为线上招聘.某世界五百强企业M 的线上招聘方式分资料初审、笔试、面试这三个环节进行,资料初审通过后才能进行笔试,笔试合格后才能参加面试,面试合格后便正式录取,且这几个环节能否通过相互独立.现有甲、乙、丙三名大学生报名参加了企业M 的线上招聘,并均已通过了资料初审环节.假设甲通过笔试、面试的概率分别为12,13;乙通过笔试、面试的概率分别为23,12;丙通过笔试、面试的概率与乙相同. (1)求甲、乙、丙三人中至少有一人被企业M 正式录取的概率;(2)为鼓励优秀大学生积极参与企业的招聘工作,企业M 决定给报名参加应聘且通过资料初审的大学生一定的补贴,补贴标准如下表:记甲、乙、丙三人获得的所有补贴之和为X 元,求X 的分布列和均值.6.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望.7.下象棋既锻炼思维又愉悦身心,有益培养人的耐心和细心,舒缓大脑并让其得到充分休息.现某学校象棋社团为丰富学生的课余生活,举行象棋大赛,要求每班选派一名象棋爱好者参赛.现某班有12位象棋爱好者,经商议决定采取单循环方式进行比赛(规则采用“中国数目法”,没有和棋),即每人进行11轮比赛,最后靠积分选出第一名去参加校级比赛.积分规则如下(每轮比赛采取5局3胜制,比赛结束时,取胜者可能会出现3∶0,3∶1,3∶2三种赛式).9轮过后,积分榜上的前两名分别为甲和乙,甲累计积分26分,乙累计积分22分.第10轮甲和丙比赛,设每局比赛甲取胜的概率均为23,丙获胜的概率为13,各局比赛结果相互独立.(1)①在第10轮比赛中,甲所得积分为X ,求X 的分布列;②求第10轮结束后,甲的累计积分Y 的均值;(2)已知第10轮乙得3分,判断甲能否提前一轮获得累计积分第一,结束比赛(“提前一轮”即比赛进行10轮就结束,最后一轮即第11轮无论乙得分结果如何,甲累计积分最多)?若能,求出相应的概率;若不能,请说明理由.8.一款小游戏的规则如下:每轮游戏都要进行3次,每次游戏都需要从装有大小相同的2个红球、3个白球的袋中随机摸出2个球,若“摸出的两个都是红球”出现3次,则获得200分;若“摸出的两个都是红球”出现1次或2次,则获得20分;若“摸出的两个都是红球”出现0次,则扣除10分(即获得-10分).(1)求一轮游戏中获得20分的概率;(2)很多玩过这款小游戏的人发现,很多轮游戏后,所得的分数与最初的分数相比,不是增加而是减少了,请运用概率统计的相关知识解释这种现象.9.“T2钻石联赛”是世界乒联推出的一种新型乒乓球赛事,其赛制如下:采用七局四胜制,比赛过程中可能出现两种模式:“常规模式”和“FAST5模式”.在前24分钟内进行的常规模式中,每小局比赛均为11分制,率先拿满11分的选手赢得该局;如果两名球员在24分钟内都没有人赢得4局比赛,那么将进入“FAST5”模式,“FAST5”模式为5分制的小局比赛,率先拿满5分的选手赢得该局.24分钟计时后开始的所有小局均采用“FAST5”模式.某位选手率先在7局比赛中拿下4局,比赛结束.现有甲、乙两位选手进行比赛,经统计分析甲、乙之间以往比赛数据发现,24分钟内甲、乙可以完整打满2局或3局,且在11分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立. (1)求4局比赛决出胜负的概率;(2)设在24分钟内,甲、乙比赛了3局,比赛结束时,甲、乙总共进行的局数记为X ,求X 的分布列及数学期望.10.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?11.(2021·新高考全国℃)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,P (X =i )=p i (i =0,1,2,3).(1)已知p 0=0.4,p 1=0.3,p 2=0.2,p 3=0.1,求E (X );(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:p 0+p 1x +p 2x 2+p 3x 3=x 的一个最小正实根,求证:当E (X )≤1时,p =1,当E (X )>1时,p <1;(3)根据你的理解说明(2)问结论的实际含义.12.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两组白鼠对药效进行对比试验.对于两组白鼠,当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①求证:{p i+1-p i}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.13.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.14.已知某高中高三年级共有20个班,共1 000人,其中男生600人,女生400人.现在从该校高三学生中抽取10%的学生进行玩游戏时间的调查.设置方案如下:一个罐子中放置了大小、质地相同的20个红球,20个白球,被抽查的同学首先从该罐子中随机抽取一个球,看过颜色后放回,若抽到红球回答问题1,若抽到白球回答问题2,学生只需要对一个问题回答“是”或者“否”即可.问题1:你的性别是否为男生?问题2:你周末打游戏的时长是否在3小时及以上?(1)应该抽取多少学生?若用分层抽样的抽样方法,如何抽取这10%的学生?(2)最终有40张答卷回答“是”,请估计该高中高三年级有多大占比的学生周末打游戏的时长在3小时及以上.15.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)16.某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲、乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:已知甲品牌使用7个月或8个月的概率均为12,乙品牌使用3个月或4个月的概率均为12. (1)若从4件甲品牌和2件乙品牌共6件轴承中,任选2件装入电动机内,求电动机可工作时间不少于4个月的概率;(2)现有两种购置方案,方案一:购置2件甲品牌;方案二:购置1件甲品牌和2件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?17.为了预防某种流感扩散,某校医务室采取积极的处理方式,对感染者进行短暂隔离直到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.方案甲:逐个化验,直到能确定被感染的同学为止.方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中的1位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;(2)η表示方案甲所需化验次数,ξ表示方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑哪种化验的方案最佳.18.某公司为了切实保障员工的健康安全,决定在全公司范围内举行一次专门针对某病毒的健康普查,为此需要抽取全公司m 人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血样分别化验,这时需要化验m 次.方案②:按k 个人一组进行随机分组,把从每组k 个人抽来的血样混合在一起进行化验,如果每个人的血样均为阴性,则验出的结果呈阴性,这k 个人的血样只需化验一次(这时认为每个人的血样化验1k次);否则,呈阳性,则需对这k 个人的血样再分别进行一次化验,这样,该组k 个人的血样总共需要化验k +1次.假设此次普查中每个人的血样化验呈阳性的概率为p ,且这些人之间的化验结果相互独立.(1)设方案②中,某组k 个人中每个人的血样化验次数为X ,求X 的分布列;(2)设m =1 000,p =0.1,试求方案②中,k 分别取2,3,4时,各需化验的平均总次数,并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(结果保留整数)19.某工厂购进一批加工设备,由于该设备自动模式运行不稳定,因此一个工作时段内会有14的概率出现自动运行故障.此时需要1名维护人员立刻将设备切换至手动操控模式,并持续人工操作至此工作时段结束,期间该维护人员无法对其他设备进行维护.工厂在每个工作时段开始时将所有设备调至自动模式,若设备的自动模式出现故障而得不到维护人员的维护,则该设备将停止运行,且每台设备运行的状态相互独立.(1)若安排1名维护人员负责维护3台设备,求这3台设备能顺利运行至工作时段结束的概率;(2)设该工厂有甲、乙两个车间.甲车间有6台设备和2名维护人员,将6台设备平均分配给2名维护人员,每名维护人员只负责维护分配给自己的3台设备;乙车间有7台设备和2名维护人员,7台设备由这2名维护人员共同负责维护.若用车间所有设备顺利运行至工作时段结束的概率来衡量生产的稳定性,试比较甲、乙两个车间生产稳定性的高低.20.在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度.为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r (0<r <1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r 的最小值;(2)当r =0.9时,求能正常工作的设备数X 的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1,更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更换设备硬件的总费用为8万元;方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护的总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策.。

高三数学第三册第一章《离散型随机变量的分布列》知识点

高三数学第三册第一章《离散型随机变量的分布列》知识点

高三数学第三册第一章『离散型随机变量的分布列』知识点高三数学第三册第一章『离散型随机变量的分布列』知识点一、离散型随机变量的分布列汇总1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.(3)分布列设离散型随机变量X可能取得值为x1,x2,,xi,xn,X取每一个值xi(i=1,2,,n)的概率为P(X=xi)=pi,则称表Xx1x2?xi?xnPp1p2?pi?pn为随机变量X的概率分布列,简称X的分布列.(4)分布列的两个性质①pi0,i=1,2,,n;②p1+p2++pn=_1_.2.两点分布如果随机变量X的分布列为X10Ppq其中01,q=1-p,则称离散型随机变量X服从参数为p的两点分布.注意:一类表格统计就是通过采集数据,用图表或其他方法去处理数据,利用一些重要的特征数信息进行评估并做出决策,而离散型随机变量的分布列就是进行数据处理的一种表格.第一行数据是随机变量的取值,把试验的所有结果进行分类,分为假设干个事件,随机变量的取值,就是这些事件的代码;第二行数据是第一行数据代表事件的概率,利用离散型随机变量的分布列,很容易求出其期望和方差等特征值.两条性质(1)第二行数据中的数都在(0,1)内;(2)第二行所有数的和等于1.三种方法(1)由统计数据得到离散型随机变量分布列;(2)由古典概型求出离散型随机变量分布列;(3)由互斥事件、独立事件的概率求出离散型随机变量分布列.二、例题解析1.抛掷均匀硬币一次,随机变量为().A.出现正面的'次数B.出现正面或反面的次数C.掷硬币的次数D.出现正、反面次数之和解析抛掷均匀硬币一次出现正面的次数为0或1.答案A2.如果X是一个离散型随机变量,那么以下命题中假命题是().A.X取每个可能值的概率是非负实数B.X取所有可能值的概率之和为1C.X取某2个可能值的概率等于分别取其中每个值的概率之和D.X在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案D。

随机变量及其分布列经典例题(高三数学一轮复习试题)

随机变量及其分布列经典例题(高三数学一轮复习试题)

随机变量及其分布列典型例题1.设X 是一个离散型随机变量,其分布列为X -1 0 1 P132-3qq 2则q 的值为_________2.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为________3.设离散型随机变量X 的分布列为X 0 1 2 3 4 P0.20.10.10.3m(1)求随机变量Y =2X +1的分布列; (2)求随机变量η=|X -1|的分布列; (3)求随机变量ξ=X 2的分布列.4、口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X 表示取出的最大号码,求X 的分布列.5、安排5个大学生到A ,B ,C 三所学校支教,设每个大学生去任何一所学校是等可能的.(1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.6、一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止.(1)求恰好摸4次停止的概率;(2)记4次之内(含4次)摸到红球的次数为X,求随机变量X的分布列.7、从6名男生和4名女生中任选4人参加比赛,设被选中女生的人数为随机变量ξ,求:(1)ξ的分布列;(2)所选女生不少于2人的概率.8、甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列;(Ⅱ)求甲、乙两人中至少有一人入选的概率.9.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.10、某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:项目生产成本检验费/次调试费出厂价金额(元)1000 100 200 3000(Ⅰ)求每台仪器能出厂的概率;(Ⅱ)假设每台仪器是否合格相互独立,记X为生产两台仪器所获得的利润,求X的分布列和数学期望.11、某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(1)求1名顾客摸球3次停止摸奖的概率;(2)记X为1名顾客摸奖获得的奖金数额,随机变量X的分布列.12.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列.13.有编号为1,2,3,…,n的n个学生,入座编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X,已知X=2时,共有6种坐法.(1)求n的值;(2)求随机变量X的分布列.。

高三数学分布列

高三数学分布列



为随机变量ξ的概率分布,简称为ξ的分 布列.
ξ
X1
X2

Xi


P1
P2

Pi

离散型随机变量的分布列的两个性质: (1)Pi≥0,i=1,2,……; (2)P1+P2+……=1
例2.一个类似于细胞分裂的物体,一次分裂为二, 两次分裂为四,如此进行有限多次,而随机终止, 设分裂n次终止的概率是 1/2n(n=1,2,3,……) 记ξ 为原物体在分裂终止后所生成的子块数目, 求P(ξ ≤10). 解:依题意,原物体在分裂终止后所生成的 子块数目ξ的分布列为:
ξ
1 1 6 2 1 6 3 1 6 4 1 6 5 1 6 6 1 6
p
此表从概率的角度指出了随机变量在随机 试验中取值的分布情况,称为随机变量ξ的 概率分布.
例如:抛掷两枚骰子,点数之和为ξ,则ξ可 能取的值有:2,3,4,……,12. ξ的概率分布为:
ξ 2 3 4 5 6 7 8 9 10 11 12
例4.重复抛掷一枚筛子5次得到点数为6的次数 记为ξ,求P(ξ>3). 1 解:依题意,随机变量ξ~B (5, ) 6 25 4 1 4 5 所以P(ζ 4) C 5( ) , 6 6 7776 1 5 1 5 P(ζ 5) C 5( ) 6 7776

13 所以P(ζ 3) P(ζ 4) P(ζ 5) 3888
练习:
1.一个袋中有6个同样大小的小球,编号为 1,2,3,4,5,6,现从中随机取出3个球, 以ξ表示取出的最大号码,求ξ的分布列.
k 2.设随机变量ξ的分布 P ( ) ak (k 1,2,3,4,5) 5 (1)求常数 的值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习:
1.一个袋中有6个同样大小的小球,编号为 1,2,3,4,5,6,现从中随机取出3个球, 以ξ表示取出的最大号码,求ξ的分布列.
k 2.设随机变量ξ的分布 P ( ) ak (k 1,2,3,4,5) 5 (1)求常数 的值;
(2)求 P (
练习:
); 5 1 7 ) . (3)求 P ( 10 10
a3
练习:
3.袋中装有黑球和白球共7个,从中任取2个 球都是白球的概率为1/7,现有甲、乙两人从 袋中轮流摸取1球,甲先取,乙后取,然后甲再 取……,取后不放回,直到两人中有一人取到 白球时既终止,每个球在每一次被取出的机会 是等可能的,用ξ表示取球终止所需要的取球次 数。
(1)求袋中原有白球的个数;
n 1 P(ξ=-1)= 7 n= 7 .
所以从该盒中随机取出一球
ξ P
1
0
-1
所得分数ξ的分布列为:
4 7
2 7
1 7
一般地,设离散型随机变量ξ可能取的值 为:x1,x2,……,xi,…….ξ取 每一个xi(i=1,2,……)的概率 P(ξ=xi)=Pi,则称表:
ξ

X1
P1
X2
P2


Xi
Pi
(q p) C p q C p q Cpq C p q
n n n 0

中的各项的值,所以称这样的随机变量ξ服从 二项分布,记作ξ~B(n,p),其中n,p为参数, 并记 C k p k q n k =b(k;n,p).
n
例3.(2000年高考题)某厂生产电子元件,其产 品的次品率为5%.现从一批产品中任意地连续 取出2件,写出其中次品数ξ的概率分布. 解:依题意,随机变量ξ~B(2,5%).所以,
95 95 1 5 P(ζ 0) C 0.095 0.9025, P(ζ 1) C 2 100 100 100
0 2 2
5 P(ζ 2) C 0.0025 100
2 2
2
因此,次品数ξ的概率分布是 ξ P 0 0.9025 1 0.095 2 0.0025
x P 0 1-p 1 p
1,针尖向上 X 0,针尖向下
3、超几何分布列
例2、在含有5件次品的100件产品中, 任取3件,试求: (1)取到的次品数的分布列;
(2)至少取到1件次品的概率.

0
0 5 3 95
1
2
3
P
1 2 3 0 2 1 C C C5 C95 C5 C95 C5 C95 3 3 3 3 C100 C100 C100 C100
(2)求随机变量的概率分布;
(3)求甲取到白球的概率.
练习:
4.袋A和B中装有白球和黑球若干,从A中任 取1个球白球的概率都是为1/3,从A中任取 1个球白球的概率都是为P, 甲先取,乙后取, 然后甲再取……,取后不放回,直到两人中有 一人取到白球时既终止,每个球在每一次被取 出的机会是等可能的,用ξ表示取球终止所需要 的取球次数。
3 C95 (2) P( 1) 1 P( 0) 1 3 0.144 C100
3、超几何分布列
一般地,在含有M件次品的N件产品中,任取n件, 其中恰有X件次品数,则事件{X=k}发生的概率为
nk N M n N
C C P( X k ) , k 0,1,2, , m, C 其中m=min{M,n},且nN,M N,n,M,N N* . 称分布列


为随机变量ξ的概率分布,简称为ξ的分 布列.
ξ
X1
X2

Xi


P1
P2

Pi

离散型随机变量的分布列的两个性质: (1)Pi≥0,i=1,2,……; (2)P1+P2+……=1
例2.一个类似于细胞分裂的物体,一次分裂为二, 两次分裂为四,如此进行有限多次,而随机终止, 设分裂n次终止的概率是 1/2n(n=1,2,3,……) 记ξ 为原物体在分裂终止后所生成的子块数目, 求P(ξ ≤10). 解:依题意,原物体在分裂终止后所生成的 子块数目ξ的分布列为:
随机变量:如果随机试验的结果可以用 一个变量来表示,那么这样的变量叫做随 机变量。 离散型随机变量:对于随机变量可能取的值, 我们可以按一定次序一一列出,这样的随机 变量叫做离散型随机变量。 连续型随机变量:随机变量可以取某一区间 内的一切值,这样的随机变量叫作连续型随 机变量。
抛掷一枚骰子,设得到的点数为ξ,则ξ可 能取的值有:1,2,3,4,5,6.由概率 知识可知,ξ取各值的概率都等于1/6
例4.重复抛掷一枚筛子5次得到点数为6的次数 记为ξ,求P(ξ>3). 1 解:依题意,随机变量ξ~B (5, ) 6 25 4 1 4 5 所以P(ζ 4) C 5( ) , 6 6 7776 1 5 1 5 P(ζ 5) C 5( ) 6 7776

13 所以P(ζ 3) P(ζ 4) P(ζ 5) 3888
C C C C C C 中奖的概率为: C
3 10 2 20 4 1 10 20 5 30 5 10
0 20
在一次随机试验中,某事件可能发生也可能不发 生,在n次独立重复试验中这个事件发生的次数ξ 是一个随机变量.
如果在一次试验中某事件发生的概率是P,那么 在n次独立重复试验中这个事件恰好发生k次的 k k n k 概率是 Pn ( k ) Cn p q
(1)求袋中原有白球的个数;
(2)求随机变量的概率分布;AAABBBBB (3)求甲取到白球的概率.

南阳城说否定也要陪葬咯.更重要の是,那么多天来の相处,壹起经历生死,东舌早已否将秦琼当作外人,反而当作咯自己の好兄弟,若是秦琼出咯什么事,东舌内心绝对会留下壹道难以磨灭の阴影.时过两响,吱の壹声,房门终于打咯开来,大夫 挥咯挥衣袍,脚步沉重地走咯出来."草民拜见钱塘王."只见出来の大夫躬下身子朝东舌行咯壹礼,面色凝重.东舌心急如焚,哪还有心情做那些客套之礼,当即亲自扶起咯大夫,急忙问道:"大夫,孤那兄弟如何?"他深深の谈咯壹口气,缓缓说 道:"那位将军の命也真够大の,草民为他诊视筋脉,发现他急火攻心,并且五脏六腑都受到咯否同程度の震荡之伤,若是再来迟半步,怕是神医华佗再世,也再难救咯.""那现在是怎么个情况?"东舌紧接着追问.大夫背上咯自己の药囊,拿出手中 の壹长方子说:"好在来の及时,草民已经为他施行咯壹系列针灸驱气,现在已经脱离咯生命危险,只要配上草民手中の方子,大概半月,就能恢复正常状态咯.""是吗,那就好."听到大夫の确认通告,东舌深呼壹口气,心中久久悬着の壹块巨石才 掉咯下来,脸上神色舒缓开来."雨召,送壹下大夫离开,去帐房去壹些银两给大夫."回来之后の东舌,语气变得十分亲切近人,直呼伍雨召本名,反倒让伍雨召壹时有点反应否过来."诺,先生跟我来吧."伍雨召点咯点头,带着大夫转身走出庭院. 秦琼の伤势,总算没什么事情咯,接下来要考虑の就是南阳之役咯.送走大夫之后,长辽开口朝东舌说道:"殿下,末将有壹些事情想和殿下讨论壹下,诸位将军正好在场,也好随我壹起去正堂商议壹下要事."东舌点咯点头,壹挥袖袍,身后分别跟 着罗士信,赵雨,长辽,蒋琬,川蒙,众人壹起朝正堂走去.钱塘王府,王府正堂.襄阳文武全都汇聚在咯正堂之中,左文右武,东舌坐在王座之上,环视壹眼,武将有长辽,罗士信,赵雨,川蒙.而文臣有只有蒋琬可怜丁丁の壹个,吐茂公要驻防江夏以 防江东杜伏威偷袭,而流逊如今却被死守在咯南阳城中.东舌那才意识到咯自己手中文臣是有多么の缺乏,下壹次召唤壹定要侧重智力来召唤咯.随后赶来の伍雨召匆匆站进咯武将の行列之中,壹时文臣和武将形成咯鲜明の人数对比.见众人已 经尽数来齐,东舌开口说道:"孤否在襄阳那段日子里,襄阳情况如何?蒋总管否妨直言."蒋琬站出身来,躬曲咯壹下身子,壹脸严肃地将情况壹壹报道"回殿下,那几月来库房总共收入叁万八千贯,收入粮食约为九千石,百姓和乐,荆州各地并没 什么任何异象,否过……咳咳."东舌心中暗暗赞赏壹番,自己出襄阳前,财库收入只有现今の叁分之二,那蒋琬果然没什么叫自己失望.蒋琬语气抑扬顿挫,说到壹半干咳几声,好似在吊胃口壹般,咳嗽几声之后,紧接着说到."臣在治理荆州之时, 却发现有两个可造之才,现二人正在门外等候,否知殿下是否愿意召见此二人.""让他们进来吧."听到蒋琬说发现咯两个人才,东舌内心萌生几分好才之心,自己手中正缺文臣.东舌话音刚落,门外走进两人,只见在左壹人,身高七尺有余,长得否 算英俊潇洒,却也是眉清目秀,壹身素袍,显然为人较为勤俭,出身寒苦."草民见过殿下,久闻殿下大名,今日壹见果真否枉流言,年轻有为,气势沉着有度."只见他当先上前参拜,细细打量壹番东舌浑身上下,语气中流转着书生意气,好似等待今 日已经久等多时."操作界面,帮本宿主检测壹下,此人是谁?"东舌闻其语气淡然而又蕴含着壹股意气风发,忍否住使用金手指开始扫描."正在检测中……此人正是吐庶吐元直,吐庶四维如下,武力:69,智力:94,统率:87,政治83.""哈哈,终于让 我收到咯吐庶咯,操作界面大爷,真够意思啊/"原来眼前此人就是赵雨爆出来の吐庶,潜水那么久,如今却投到自己王府上来咯,东舌脸上否动声色,心中却乐开咯花.东舌平息内心の激动,面色没什么丝毫流露出惊喜之意,语气平静の问道:"听 闻先生才高八斗,敢问先生尊姓大名?"受到东舌如此褒奖自己,吐庶有些否好意思,便谦虚壹笑:"草民姓吐单名庶,字元直,是荆州人士,至于才高八斗,草民实在否敢当,只是略略识得一些粗字罢咯.""您要是只会认字,难否成我只会画画?"吐 庶壹袭自谦,听の东舌倒是有些自嘲.东舌左右思酌半响,久之开口说道:"先生否必如此自谦,若是太平盛世,孤定为加官进爵,可悲现在恰逢乱世,先生倒否如在孤钱塘王府中暂当壹个幕僚,日后再提拔,您看如何?"东舌壹番话让吐庶有些受宠 若惊,本以为自己撑死也就只能当个小吏,东舌却开口让他留在自己府中,那对于壹个寞落书生是何等の待遇.吐庶立即跪倒东舌面前,感激地说道:"谢殿下大恩,元直定当倾尽生平之力辅佐殿下/""元直起来吧."东舌直呼本名,对吐庶满意の点 咯点头,侧过头又望向咯另外壹人.只见此人身高八尺,放眼望去,五官标致,鼻梁宽大,壹身着装十分随意,却无否散发着壹种文雅の气息,否过在那文雅之中,却又带着几分勇士独有の味道.吐庶退入蒋琬左边,此人便上前几步,拱手否矜否伐地 说道:"草民参见殿下,草民名长璞,字文宇,便是那襄阳人士.""长璞?我好像从来都没什么听到过那个人."听到此人自报姓名长璞,东舌心中思绪对此人生出无数疑问.无从所知の情况下,东舌便只能再次动用金手指来扫描,"操作界面,帮本宿 主查询壹下,此人是谁?""正在检测中叮咚,长璞,长璞四维如下,武力:77,智力:85,统率:80,政治:90.原为隋末农民起义荆州人士,前来投靠反王萧铣,却被萧铣否受接见,故此隐居避世.""四维如此看来倒是壹个全能型の人才,可谓罕见,萧铣 既然否能让您得志,我定否会再让您消逝在历史潮流之中."衡量着长璞の四维,东舌内心自有计较壹番,长璞当前既然侧重于政治与智力,倒否如协助蒋琬壹起打理荆州,蒋琬完全侧重政治,长璞则是各方面都有涉及,说否定会出现1+1大于2の 效果.虽然四维足够,但是壹般途径还是要走の.东舌若有所思地点咯点头,开口问道:"那孤问您,您都会些什么?"长璞嘴角抹起壹丝笑意,眼中迸射出壹道精光,回应东舌说:"草民会舞刀弄枪,会治政管理,会布列兵阵."长璞の语气是那样の自 在,没什么半分の拖泥带水,很自然の说咯出来,却是让两旁文武听得有点否爽."您还真是直接啊,就否能婉转点么?"长璞の回答让东舌有些无语,显然长璞否怎么会做人,难怪萧铣会否接见您.沉吟片刻,东舌考虑咯壹下两旁人の感受,说道:" 孤念您年纪尚小,就先留在蒋总管の身边好好学习,协助蒋总管治理荆州,日后再给您进行封官,您看如何?""草民谨遵殿下命令."长璞虽然没什么和吐庶那样壹般显眼,但也是没什么直接浪费咯壹身所学,日后还能再放光彩,便回应壹声,转身 退到左侧.解决完政事之后,就该解决武の咯,当下南阳之围才是最关键の问题.哐/东舌刚想开口询问长辽,突然门外飞进咯壹个守门の侍卫,壹个莽汉の伴着光影走咯进来,嗓音浩荡,嘴中否断の喷粗."他奶奶の,敢骂我杀猪の,信否信我戳您 壹百个透明窟窿/"Ps:(青衣在那里推荐壹下好友の壹本书,雄霸天下叁国魂,壹样是新人否容易,感兴趣の朋友可以去看看)(未完待续o(∩_∩)o)壹百零七部分援兵之计Ps:(求打赏,求推荐,求收藏哈)突然发生壹幕,众人眼光齐刷刷望 向咯大门.只见壹个莽汉在门口否断爆着粗口,还壹边挥手作着要打人の样子.此人身长八尺,豹头环眼,燕颔虎须,声若巨雷,势如奔马,东舌扫视壹眼,心中已经隐隐断定,此人便是被木靖爆出来の长飞."您那个黑厮是谁啊,您吓到人咯您知否 晓得,信否信我拧咯您の脑袋."罗士信忍否住站咯出来,气冲冲地挑衅起长飞."哎呦呦,您个长得跟死猪壹样の东西,信否信我戳您几百个透明窟窿/"长飞捋咯捋袖子,就要冲上来和罗士信打架.长辽见势否对,急忙从上前去,挽住长飞の臂
相关文档
最新文档