初三中考数学全等三角形

合集下载

2022年中考数学满分攻略全等三角形

2022年中考数学满分攻略全等三角形

2022年中考数学专题复习第4.3讲全等三角形★★★知识梳理★★★知识点一、全等三角形的概念和性质1.两个三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应边、对应角,全等三角形的对应线段(角平分线、中线、高线)、周长、面积分别对应.知识点二、全等三角形的判定1.全等三角形的判定方法:(1)基本事实:对应相等的两个三角形全等,简记为“边边边”或“SSS”;(2)基本事实:对应相等的两个三角形全等,简记为“边角边”或“SAS”;(3)基本事实:对应相等的两个三角形全等,简记为“角边角”或“ASA”;(4)对应相等的两个三角形全等,简记为“角角边”或“AAS”;(5)对应相等的两个直角三角形全等,简记为“斜边、直角边”或“HL”;2.证明三角形全等的一般思路如下:(1)若已知两边对应相等,则找第三条边(SSS)或它们的夹角(SAS)或找直角(HL)(2)若已知两角对应相等,则找它们的夹边(ASA)或其中一角的对边(AAS);(3)若已知一边和邻角对应相等,则找这边的另一邻角(ASA)或找这边的对角(AAS)或找这个角的另一边(SAS);(4)若已知一边和它的对角对应相等,则找一角(AAS)或已知角为直角的情况下,找一边(HL).★★★中考典例剖析★★★考点一:平移类型例1 (2021·大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.【跟踪训练】1.(2021·衡阳)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.考点二:轴对称类型例2 (2021·杭州)在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,并完成问题的解答.问题:如图,在△ABC中,∠ABC=∠ACB(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连接BE,BE与CD相交于点F.若,求证:BE=CD.(注:如果选择多个条件分别作答,按第一个解答计分)【跟踪训练】2.(2021·吉林)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.3.(2021云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.考点三:一线三等角类型例3 (2021·南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE ⊥AD于点E,CF⊥AD于点F.求证:AF=BE.【跟踪训练】4.(2020·宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长考点四:旋转型例4 (2021·黄石)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.【跟踪训练】5.(2021·重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD例5 (2021·徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.【跟踪训练】6.(2021·威海)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.BF2=CF·AC★★★真题达标演练★★★1.(2021·兰州)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC =DF.2.(2021·新疆)如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:(1)△ABE≌△DCF;(2)四边形AEFD是平行四边形.3.(2021·盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS4.(2021·济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.5.(2021·台州)如图,在四边形ABCD 中,AB =AD =20,BC =DC =.(1)求证:△ABC ≌△ADC ;(2)当∠BCA =45°时,求∠BAD 的度数.6.(2021·重庆)如图,在△ABC 和△DCB 中,∠ACB =∠DBC ,添加一个条件,不能证明△ABC 和△DCB 全等的是( )A .∠ABC =∠DCB B .AB =DC C .AC =DBD .∠A =∠D7.(2021·无锡)已知:如图,AC ,DB 相交于点O ,AB =DC ,∠ABO =∠DCO . 求证:(1)△ABO ≌△DCO ;(2)∠OBC =∠OCB .2108.(2021·南京)如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF∥CD,交BD的延长线于点F.(1)求证:△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.9.(2021·福建)如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.10.(2021·成都)如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD11.(2021·菏泽)如图,在菱形ABCD中,点M、N分别在AB、CB上,且∠ADM=∠CDN,求证:BM=BN.12.(2021·铜仁)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为,结论为;(2)证明你的结论.13.(2021·柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?14.(2021·广州)如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF.证明:AE=DF.15.(2021·怀化)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.16.(2021·哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°17.(2021·齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)18.(2021·湘西州)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C 旋转到CE的位置,使得∠ECA=∠DCB,连接DE与AC交于点F,且∠B=70°,∠A =10°.(1)求证:AB=ED;(2)求∠AFE的度数.19.(2020·黔东南)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.20.(2021·深圳)如图,已知反比例函数过A,B两点,A点坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为.21.(2021·福建)如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.(1)求证:∠ADE=∠DFC;(2)求证:CD=BF.22.(2021·西藏)如图,AB∥DE,B,C,D三点在同一条直线上,∠A=90°,EC⊥BD,且AB=CD.求证:AC=CE.23.(2021·陕西)如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.2022年中考数学专题复习第4.3讲全等三角形★★★知识梳理★★★知识点一、全等三角形的概念和性质1.能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应边相等、对应角相等,全等三角形的对应线段(角平分线、中线、高线)、周长、面积分别对应相等.知识点二、全等三角形的判定1.全等三角形的判定方法:(1)基本事实:三边对应相等的两个三角形全等,简记为“边边边”或“SSS”;(2)基本事实:两边及其夹角对应相等的两个三角形全等,简记为“边角边”或“SAS”;(3)基本事实:两角及其夹边对应相等的两个三角形全等,简记为“角边角”或“ASA”;(4)两角及其中一个角的对边对应相等的两个三角形全等,简记为“角角边”或“AAS”;(5)斜边和直角边对应相等的两个直角三角形全等,简记为“斜边、直角边”或“HL”;2.证明三角形全等的一般思路如下:(1)若已知两边对应相等,则找第三条边(SSS)或它们的夹角(SAS)或找直角(HL)(2)若已知两角对应相等,则找它们的夹边(ASA)或其中一角的对边(AAS);(3)若已知一边和邻角对应相等,则找这边的另一邻角(ASA)或找这边的对角(AAS)或找这个角的另一边(SAS);(4)若已知一边和它的对角对应相等,则找一角(AAS)或已知角为直角的情况下,找一边(HL).★★★中考典例剖析★★★考点一:平移类型例1 (2021·大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.【思路分析】根据线段的和差得到AB=DE,由平行线的性质得到∠A=∠EDF,根据全等三角形的性质即可得到结论.【解析】证明:∵AD=BE∴AD+BD=BE+BD,即AB=DE∵AC∥DF∴∠A=∠EDF又∵AC=DF∴△ABC≌△DEF(SAS)∴BC=EF【点评】本题考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定是解题的关键.【跟踪训练】1.(2021·衡阳)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.【解析】证明:∵AC∥DF∴∠CAB=∠FDE∵BC∥EF∴∠CBA =∠FED 在△ABC 和△DEF 中 ∴△ABC ≌△DEF (ASA ) 考点二:轴对称类型例2 (2021·杭州)在①AD =AE ,②∠ABE =∠ACD ,③FB =FC 这三个条件中选择其中一个,并完成问题的解答.问题:如图,在△ABC 中,∠ABC =∠ACB (不与点A ,点B 重合),点E 在AC 边上(不与点A ,点C 重合),连接BE ,BE 与CD 相交于点F .若 ,求证:BE =CD .(注:如果选择多个条件分别作答,按第一个解答计分)【思路分析】若选择条件①,利用∠ABC =∠ACB 得到AB =AC ,则可根据“SAS ”可判断△ABE ≌△ACD ,从而得到BE =CD ;选择条件②,利用∠ABC =∠ACB 得到AB =AC ,则可根据“ASA ”可判断△ABE ≌△ACD ,从而得到BE =CD ;选择条件③,利用∠ABC =∠ACB 得到AB =AC ,再证明∠ABE =∠ACD ,则可根据“ASA ”可判断△ABE ≌△ACD ,从而得到BE =CD .【解析】证明:选择条件①的证明为: ∵∠ABC =∠ACB ∴AB =AC在△ABE 和△ACD 中 ∴△ABE ≌△ACD (SAS ) ∴BE =CD选择条件②的证明为:⎪⎩⎪⎨⎧∠=∠=∠=∠FED CBA DEAB FDE CAB ⎪⎩⎪⎨⎧=∠=∠=AD AE A A AC AB∵∠ABC =∠ACB ∴AB =AC在△ABE 和△ACD 中 ∴△ABE ≌△ACD (ASA ) ∴BE =CD选择条件③的证明为: ∵FB =FC ∴∠EBC =∠DCB ∵∠ABC =∠ACB ∴∠DBC =∠ECB 在△DCB 和△EBC 中 ∴△DCB ≌△EBC (SAS ) ∴BE =CD【点评】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键. 【跟踪训练】2.(2021·吉林)如图,点D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C. 求证:AD =AE .【解析】证明:在△ABE 与△ACD 中 ∴△ACD ≌△ABE (ASA )⎪⎩⎪⎨⎧∠=∠=∠=∠A A ACAB ACD ABE ⎪⎩⎪⎨⎧∠=∠=∠=∠EBC DCB CBBC ECB DBC ⎪⎩⎪⎨⎧∠=∠=∠=∠C B AC AB A A∴AD =AE3.(2021云南)如图,在四边形ABCD 中,AD =BC ,AC =BD ,AC 与BD 相交于点E . 求证:∠DAC =∠CBD .【解析】证明:在△DCA 和△DCB 中∴△CDA ≌△DCB (SSS ) ∴∠DAC =∠CBD 考点三:一线三等角类型例3 (2021·南充)如图,∠BAC =90°,AD 是∠BAC 内部一条射线,若AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .求证:AF =BE .【思路分析】根据AAS 证明△BAE ≌△ACF ,再根据全等三角形的对应边相等即可得解. 【解析】证明:∵∠BAC =90° ∴∠BAE +∠FAC =90° ∵BE ⊥AD ,CF ⊥AD ∴∠BEA =∠AFC =90° ∴∠BAE +∠EBA =90° ∴∠EBA =∠FAC 在△ACF 和△BAE 中⎪⎩⎪⎨⎧===CD DC BD AC BC AD∴△ACF ≌△BAE(AAS) ∴AF =BE【点评】本题考查三角形全能的判定与性质,解题关键是根据已知条件证明△ACF ≌△BAE. 【跟踪训练】4.(2020·宁波)△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF 的周长,则只需知道( )A .△ABC 的周长B .△AFH 的周长C .四边形FBGH 的周长D .四边形ADEC 的周长【解析】∵△GFH 为等边三角形 ∴FH =GH ,∠FHG =60° ∴∠AHF +∠GHC =120° ∵△ABC 为等边三角形∴AB =BC =AC ,∠ACB =∠A =60° ∴∠GHC +∠HGC =120° ∴∠AHF =∠HGC ∴△AFH ≌△CHG (AAS ) ∴AF =CH∵△BDE 和△FGH 是两个全等的等边三角形 ∴BE =FH∴五边形DECHF 的周长=DE +CE +CH +FH +DF =BD +CE +AF +BE +DF =(BD +DF +AF )+(CE +BE )=AB +BC ∴只需知道△ABC 的周长即可 故选:A .⎪⎩⎪⎨⎧=∠=∠∠=∠BA AC EBA FAC BEA AFC考点四:旋转型例4 (2021·黄石)如图,D 是△ABC 的边AB 上一点,CF ∥AB ,DF 交AC 于E 点,DE =EF .(1)求证:△ADE ≌△CFE ;(2)若AB =5,CF =4,求BD 的长.【思路分析】(1)先根据CF ∥AB 可得∠ADF =∠F ,∠A =∠ECF ,再结合DE =EF 即可证明△ADE ≌△CFE (AAS );(2)由(1)得出AD =CF ,利用BD =AB ﹣AD 即可求解. 【解析】(1)证明:∵CF ∥AB ∴∠ADF =∠F ,∠A =∠ECF 在△ADE 和△CFE 中 ∴△ADE ≌△CFE (AAS ) (2)∵△ADE ≌△CFE ∴AD =CF =4∴BD =AB ﹣AD =5﹣4=1【点评】本题考查平行线的性质、全等三角形的判定与性质,解决问的关键在于熟练掌握全等三角形的判定方法. 【跟踪训练】5.(2021·重庆)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不能判断△ABC ≌△DEF 的是( )⎪⎩⎪⎨⎧=∠=∠∠=∠FE DE F ADE FCE AA.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD【解析】证明:∵BF=EC∴BF+FC=EC+FC,即BC=EF又∵∠B=∠E∴添加条件为AB=DE时,△ABC≌△DEF(SAS),故A不符合题意;添加条件为∠A=∠D时,△ABC≌△DEF(AAS),故B不符合题意;添加条件为AC=DF时,无法判断△ABC≌△DEF,故C符合题意;添加条件为AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故D不符合题意;故选:C.例5 (2021·徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.【思路分析】(1)先证明∠ACE=∠BCD,再证明△ACE≌△BCD(SAS)即可得到AE=BD;(2)由△ACE≌△BCD得到∠A=∠B,由对顶角得到∠ANC=∠BNF,推出∠ACN =∠BFN=90°,即可求得∠AFD的度数.【解析】(1)证明:∵AC⊥BC,DC⊥EC∴∠ACB=∠ECD=90°∴∠ACB+∠BCE=∠ECD+∠BCE,即∠ACE=∠BCD在△ACE和△BCD中∴△ACE ≌△BCD (SAS ) ∴AE =BD(2)解:如图,设AE 与BC 交于点N∵△ACE ≌△BCD ∴∠A =∠B对顶角性质可知:∠ANC =∠BNF ∵∠ACB =90° ∴∠A +∠ANC =90° ∴∠B +∠BNF =90°∴∠NFD =90°即∠AFD =90°【点评】本题考查全等三角形的判定与性质、三角形内角和与外角定理,解决问的关键在于找到全等的三角形. 【跟踪训练】6.(2021·威海)如图,在△ABC 和△ADE 中,∠CAB =∠DAE =36°,AB =AC ,AD =AE .连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分∠ABC ,则下列结论错误的是( )A .∠ADC =∠AEB B .CD ∥ABC .DE =GED .BF 2=CF ·AC【解析】①∵∠CAB =∠DAE =36°∴∠CAB ﹣∠CAE =∠DAE ﹣∠CAE ,即∠DAC =∠EAB⎪⎩⎪⎨⎧=∠=∠=DC EC BCD ACE BC AC又∵AB=AC,AD=AE∴△DAC≌△EAB(SAS)∴∠ADC=∠AEB,故A选项不符合题意;②∵∠CAB=∠DAE=36°∴∠ACB=∠ABC=(180°﹣36°)÷2=72°∵BE平分∠ABC∴∠ABE=∠CBE=36°由①可知∠DCA=∠EBA=36°,∠CAB=36°∴CD∥AB,故B选项不符合题意;③假设DE=GE,则∠DGE=∠ADE=72°,∠DEG=180°﹣2×72°=36°∴∠AEG=∠AED﹣∠DEG=72°﹣36°=36°∵∠ABE=36°,∠AEG是△ABE的一个外角∴∠AEG=∠EAB+∠ABE而事实上∠AEG≠∠EAB+∠ABE∴假设不成立,故C选项符合题意;④∵∠CAB=∠CBF=36°,∠C=∠C=72°∴△ABC∽△BCF∴BC2=CF·AC又∵BC=BF∴BF2=CF·AC,故D选项不符合题意故选:C.★★★真题达标演练★★★1.(2021·兰州)如图,点E ,C 在线段BF 上,∠A =∠D ,AB ∥DE ,BC =EF.求证:AC =DF .【解析】证明:∵AB ∥DE ∴∠B =∠DEF 在△ABC 和△DEF 中 ∴△ABC ≌△DEF (SSS ) ∴AC =DF2.(2021·新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且BE =CF .求证:(1)△ABE ≌△DCF ; (2)四边形AEFD 是平行四边形.【解析】证明:(1)∵四边形ABCD 是矩形∴AB =CD ,∠ABC =∠DCB =90°,AD =BC ,AD ∥BC ∴∠ABE =∠DCF =90° 在△ABE 和△DCF 中 ∴△ABE ≌△DCF (SAS ) (2)∵四边形ABCD 为矩形⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEF B D A ⎪⎩⎪⎨⎧=∠=∠=CF BE DCF ABE DC AB∴AD ∥BC ,即AD ∥EF ,AD =BC ∵BE =CF∴BE +EC =CF +EC ,即BC =EF ∴AD =EF∴四边形AEFD 是平行四边形3.(2021·盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB 的两边OA 、OB 上分别在取OC =OD ,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是∠AOB 的平分线.这里构造全等三角形的依据是( )A .SASB .ASAC .AASD .SSS【解析】证明:在△COM 和△DOM 中 ∴△COM ≌△DOM (SSS )∴∠COM =∠DOM ,即OM 是∠AOB 的平分线 故选:D .4.(2021·济宁)如图,四边形ABCD 中,∠BAC =∠DAC ,请补充一个条件 ,使△ABC ≌△ADC .【解析】当AB =AD 时,△ABC ≌△ADC (SAS ); 当∠B =∠D 时,△ABC ≌△ADC (AAS ); 当∠ACB =∠ACD 时,△ABC ≌△ADC (ASA );⎪⎩⎪⎨⎧===MD MC OM OM OD OC故答案为:AB =AD 或∠B =∠D 或∠ACB =∠ACD.5.(2021·台州)如图,在四边形ABCD 中,AB =AD =20,BC =DC =.(1)求证:△ABC ≌△ADC ;(2)当∠BCA =45°时,求∠BAD 的度数. 【解析】(1)证明:在△ABC 和△ADC 中 ∴△ABC ≌△ADC (SSS )(2)如图,过点B 作BE ⊥AC 于点E∵BE ⊥AC ,∠BCA =45° ∴△BCE 为等腰直角三角形 ∴BE =BC ·sin45°=10 在RT △ABE 中,,即∠BAE =30° ∵△ABC ≌△ADC ∴∠BAC =∠DAC∴∠BAD =2∠BAE =2×30°=60°6.(2021·重庆)如图,在△ABC 和△DCB 中,∠ACB =∠DBC ,添加一个条件,不能证明△ABC 和△DCB 全等的是( )210⎪⎩⎪⎨⎧===AC AC DC BC AD AB 212010sin ===∠AB BEBAEA .∠ABC =∠DCB B .AB =DC C .AC =DBD .∠A =∠D【解析】在△ABC 和△DCB 中,∠ACB =∠DBC ,BC =BC A :当∠ABC =∠DCB 时,△ABC ≌△DCB (ASA ),故A 能证明; B :当AB =DC 时,不能证明两三角形全等,故B 不能证明; C :当AC =DB 时,△ABC ≌△DCB (SAS ),故C 能证明; D :当∠A =∠D 时,△ABC ≌△DCB (AAS ),故D 能证明; 故选:B .7.(2021·无锡)已知:如图,AC ,DB 相交于点O ,AB =DC ,∠ABO =∠DCO . 求证:(1)△ABO ≌△DCO ;(2)∠OBC =∠OCB .【解析】证明:在△ABO 和△DCO 中 ∴△ABO ≌△DCO (AAS ) (2)由(1)知,△ABO ≌△DCO ∴OB =OC ∴∠OBC =∠OCB8.(2021·南京) 如图,AC 与BD 交于点O ,OA =OD ,∠ABO =∠DCO ,E 为BC 延长线上一点,过点E 作EF ∥CD ,交BD 的延长线于点F . (1)求证:△AOB ≌△DOC ;(2)若AB =2,BC =3,CE =1,求EF 的长.【解析】(1)证明:∵OA =OD ,∠ABO =∠DCO⎪⎩⎪⎨⎧=∠=∠∠=∠DC AB DCO ABO COD AOB又∵∠AOB =∠DOC ∴△AOB ≌△DOC (AAS )(2)∵△AOB ≌△DOC ,AB =2,BC =3,CE =1 ∴AB =DC =2,BE =BC +CE =3+1=4 ∵EF ∥CD ∴△BEF ∽△BCD ∴,即 ∴EF =9.(2021·福建)如图,在△ABC 中,D 是边BC 上的点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且DE =DF ,CE =BF .求证:∠B =∠C .【解析】证明:∵DE ⊥AC ,DF ⊥AB ∴∠DEC =∠DFB =90° 在△DEC 和△DFB 中 ∴△DEC ≌△DFB (SAS ) ∴∠B =∠C10.(2021·成都)如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定△ABE ≌△ADF 的是( )BC BE CD EF =342=EF 38⎪⎩⎪⎨⎧=∠=∠=BF CE DFB DEC DFDEA .BE =DFB .∠BAE =∠DAFC .AE =AD D .∠AEB =∠AFD【解析】由四边形ABCD 是菱形可得:AB =AD ,∠B =∠D A :添加BE =DF ,可用SAS 证明△ABE ≌△ADF ,故不符合题意; B :添加∠BAE =∠DAF ,可用ASA 证明△ABE ≌△ADF ,故不符合题意; C :添加AE =AD ,不能证明△ABE ≌△ADF ,故符合题意;D :添加∠AEB =∠AFD ,可用AAS 证明△ABE ≌△ADF ,故不符合题意; 故选:C .11.(2021·菏泽)如图,在菱形ABCD 中,点M 、N 分别在AB 、CB 上,且∠ADM = ∠CDN ,求证:BM =BN .【解析】证明:∵四边形ABCD 为菱形 ∴AD =CD =AB =BC ,∠A =∠C 在△AMD 和△CND 中 ∴△AMD ≌△CND (ASA ) ∴AM =CN∴AB ﹣AM =BC ﹣CN ,即BM =CN12.(2021·铜仁)如图,AB 交CD 于点O ,在△AOC 与△BOD 中,有下列三个条件:①OC =OD ,②AC =BD ,③∠A =∠B .请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法). (1)你选的条件为 ,结论为 ; (2)证明你的结论.【解析】(1)由AAS ,选的条件是:①,③,结论是:②;⎪⎩⎪⎨⎧∠=∠=∠=∠CDN ADM CDAD C A(2)证明:在△AOC 和△BOD 中 ∴△AOC ≌△BOD (AAS ) ∴AC =BD13.(2021·柳州)如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B ,连接AC 并延长到点D ,使CD =CA ,连接BC 并延长到点E ,使CE =CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【解析】证明:在△DEC 和△ABC 中 ∴△DEC ≌△ABC (SAS ) ∴DE =AB14.(2021·广州)如图,点E 、F 在线段BC 上,AB ∥CD ,∠A =∠D ,BE =CF. 证明:AE =DF .【解析】证明:∵AB ∥CD ∴∠B =∠C 在△ABE 和△DCF 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠OD OC BOD AOC B A ⎪⎩⎪⎨⎧=∠=∠=CB CE ACB DCE CA CD ⎪⎩⎪⎨⎧=∠=∠∠=∠CF BE C B D A∴△ABE ≌DCF (AAS ) ∴AE =DF15.(2021·怀化)已知:如图,四边形ABCD 为平行四边形,点E 、A 、C 、F 在同一直线上,AE =CF .求证:(1)△ADE ≌△CBF ;(2)ED ∥BF .【解析】证明:(1)∵四边形ABCD 为平行四边形 ∴DA =BC ,DA ∥BC ∴∠DAC =∠BCA∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180° ∴∠EAD =∠FCB 在△ADE 和△CBF 中 ∴△ADE ≌△CBF (SAS ) (2)由(1)知,△ADE ≌△CBF ∴∠E =∠F ∴ED ∥BF16.(2021·哈尔滨)如图,△ABC ≌△DEC ,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF ⊥CD ,垂足为点F ,若∠BCE =65°,则∠CAF 的度数为( )A .30°B .25°C .35°D .65°【解析】解:∵△ABC ≌△DEC ∴∠ACB =∠DCE ∵∠BCE =65°∴∠ACD =∠BCE =65°⎪⎩⎪⎨⎧=∠=∠=CB AD FCB EAD CF AE∴∠AFC=90°∴∠CAF+∠ACD=90°∴∠CAF=90°﹣65°=25°故选:B.17.(2021·齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)【解析】证明:∵∠1=∠2∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD∵AC=AD∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为:∠B=∠E或∠C=∠或AB=AE.18.(2021·湘西州)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C 旋转到CE的位置,使得∠ECA=∠DCB,连接DE与AC交于点F,且∠B=70°,∠A =10°.(1)求证:AB=ED;(2)求∠AFE的度数.【解析】(1)证明:∵∠ECA=∠DCB∴∠ECA+∠ACD=∠DCB+∠ACD,即∠ECD=∠ACB∵AC=EC,CB=CD∴△ACB≌△ECD(SAS)(2)解:∵CB =CD ,∠B =70° ∴∠DCB =180°-2×70°=40° ∴∠ECA =∠DCB =40° ∵△ACB ≌△ECD ,∠A =10° ∴∠E =∠A =10°∴∠AFE =∠E +∠ECA =50°19.(2020·黔东南)如图1,△ABC 和△DCE 都是等边三角形. 探究发现(1)△BCD 与△ACE 是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用(2)若B 、C 、E 三点不在一条直线上,∠ADC =30°,AD =3,CD =2,求BD 的长. (3)若B 、C 、E 三点在一条直线上(如图2),且△ABC 和△DCE 的边长分别为1和2,求△ACD 的面积及AD 的长.【解析】(1)△BCD 与△ACE 全等 证明:∵△ABC 和△DCE 都是等边三角形 ∴AC =BC ,DC =EC ,∠ACB =∠DCE =60°∴∠ACB+∠ACD =∠DCE+∠ACD ,即∠BCD =∠ACE 在△ACE 和△BCD 中∴△ACE ≌△BCD ( SAS ) (2)由(1)得:△BCD ≌△ACE ∴BD =AE∵△DCE 是等边三角形⎪⎩⎪⎨⎧=∠=∠=CD CE BCD ACE BC AC∴∠CDE =60°,CD =DE =2 ∵∠ADC =30°∴∠ADE =∠ADC+∠CDE =30°+60°=90° 在Rt △ADE 中, ∴BD =(3)如图,过A 作AF ⊥CD 于点F∵△ABC 和△DCE 都是等边三角形 ∴∠BCA =∠DCE =60° ∵B 、C 、E 三点在一条直线上∴∠BCA+∠ACD+∠DCE =180°,即∠ACD =60° 在Rt △ACF 中,AF =AC ·sin ∠ACF =1×=,CF =AC ·cos ∠ACF =1×=∴S △ACD =CD ·AF =×2×FD =CD ﹣CF =2-=在Rt △AFD 中,AD 2=AF 2+FD 2=,即AD = 20.(2021·深圳)如图,已知反比例函数过A ,B 两点,A 点坐标(2,3),直线AB 经过原点,将线段AB 绕点B 顺时针旋转90°得到线段BC ,则C 点坐标为 .13232222=+=+=DE AD AE 132323212121212321233)23()23(22=+3【解析】如图,过点B 作y 轴的平行线l ,过点A 、C 作l 的垂线,分别交于D ,E 两点由题意及作图可知:B (﹣2,﹣3),D (2,﹣3) ∵∠ABD +∠CBE =90°,∠ABD +∠BAD =90° ∴∠CBE =∠BAD 在△ABD 与△BEC 中 ∴△ABD ≌△BEC (AAS ) ∴BE =AD =6,CE =BD =4 ∴C (4,﹣7) 故答案为:(4,﹣7).21.(2021·福建)如图,在Rt △ABC 中,∠ACB =90°.线段EF 是由线段AB 平移得到的,点F 在边BC 上,△EFD 是以EF 为斜边的等腰直角三角形,且点D 恰好在AC 的延长线上.(1)求证:∠ADE =∠DFC ;(2)求证:CD =BF .⎪⎩⎪⎨⎧=∠=∠∠=∠AB BC BAD CBE ADB BEC【解析】(1)证明:∵△EFD 是以EF 为斜边的等腰直角三角形 ∴∠ADE +∠ADF =90° ∵∠ACB =90° ∴∠ADF +∠DFC =90° ∴∠ADE =∠DFC(2)证明:如图,连接AE平移性质可知:AE ∥BF ,AE =BF ∴∠EAD =∠ACB =90° ∴∠EAD =∠DCF ∵△EFD 是等腰直角三角形 ∴DE =FD由(1)可知:∠ADE =∠DFC 在△AED 和△CDF 中 ∴△AED ≌△CDF (AAS ) ∴AE =CD ∴CD =BF22.(2021·西藏)如图,AB ∥DE ,B ,C ,D 三点在同一条直线上,∠A =90°,EC ⊥BD ,且AB =CD .求证:AC =CE .⎪⎩⎪⎨⎧=∠=∠∠=∠FD DE CFD ADE DCF EAD【解析】证明:∵AB ∥DE∴∠B =∠D∵EC ⊥BD ,∠A =90°∴∠DCE =90°=∠A在△ABC 和△CDE 中∴△ABC ≌△CDE (ASA )∴AC =CE23.(2021·陕西)如图,BD ∥AC ,BD =BC ,且BE =AC .求证:∠D =∠ABC .【解析】证明:∵BD ∥AC∴∠ACB =∠EBD在△ABC 和△EDB 中∴△ABC ≌△EDB (SAS )∴∠ABC =∠D ⎪⎩⎪⎨⎧∠=∠=∠=∠ECD A CDAB D B ⎪⎩⎪⎨⎧=∠=∠=EB AC EBD C BD CB。

三角形全等的判定+性质+辅助线技巧

三角形全等的判定+性质+辅助线技巧

三角形全等的判定+性质+辅助线技巧都在这里了,请收好!在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。

有时证不出来,急不可耐、恨它恨的牙痒痒。

王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。

有时证不出来,急不可耐、恨它恨的牙痒痒。

王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

(中考考点梳理)三角形及其全等-中考数学一遍过

(中考考点梳理)三角形及其全等-中考数学一遍过

考点14 三角形及其全等一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形1.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;学科-网(3)全等三角形对应的中线、高线、角平分线、中位线都相等.考向一三角形的三边关系在判断三条线段能否组成一个三角形时,可以根据两条较短线段的长度之和是否大于第三条线段的长度来判断.典例1 小芳有两根长度为6cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为__________的木条.A.2cm B.3cmC.12cm D.15cm【答案】C【解析】设木条的长度为x cm,则9–6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选C.1.以下列各组线段为边,能组成三角形的是A.2cm,5cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.1cm,2cm,3cm考向二三角形的内角和外角在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.典例2 如图,下列有四个说法,正确的个数是①∠B >∠ACD ;②∠B +∠ACB =180°–∠A ;③∠A +∠B =∠ACD ;④∠HEC >∠ B .A .1个B .2个C .3个D .4个【解答】解:①∠B <∠ACD ,故①错误; ②∠B +∠ACB =180°–∠A ,故②正确; ③∠A +∠B =∠ACD ,故③正确;④∠HEC =∠AED >∠ACD >∠B ,则∠HEC >∠B ,故④正确. 故选C .2.如图,CE 是△ABC 的外角ACD ∠的平分线,若3560,B ACE ∠=︒∠=︒,则A ∠=__________.3.如图,在△ABC 中,∠ACB =68°,若P 为△ABC 内一点,且∠1=∠2,则∠BPC =__________.考向三 三角形中的重要线段三角形的高、中线、角平分线是三条线段,由三角形的高可得90°的角,由三角形的中线可得线段之间的关系,由三角形的角平分线可得角之间的关系.另外,要注意区分三角形的中线和中位线.中线:连接三角形一个顶点和它对边中点的线段;中位线:连接三角形两条边中点的线段.典例3 在△ABC 中,AB =3,BC =4,AC =2,D ,E ,F 分别为AB ,BC ,AC 中点,连接DF ,FE ,则四边形DBEF 的周长是A .5B .7C .9D .11【答案】B典例4 如图,点G 为△ABC 的重心,则S △ABG ∶S △ACG ∶S △BCG 的值是A .1∶2∶3B .2∶1∶2C .1∶1∶1D .无法确定【答案】C【解析】如图,分别延长AG 、CG 、BG ,交BC 、AB 、AC 于点D 、F 、E ,根据三角形重心的定理得到AD 、BE 、CF 是△ABC 的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,ABD ACD BDG CDG S S S S ∆∆∆==,即可得ABG ACG S S ∆∆=,同理可得ABG BCG S S ∆∆=,所以=ABG BCG ACG S S S ∆∆∆=,即S △ABG ∶S △ACG ∶S △BCG =1∶1∶1,故选C .4.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考向四 全等三角形1.从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路:(1)已知两边SAS HLSSS ⎧⎪⎨⎪⎩找夹角→找直角→找第三边→ (2)已知一边、一角AAS SAS ASA AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩一边为角的对边→找另一角→找夹角的另一边→一边为角的邻边找夹角的另一角→找边的对角→ (3)已知两角ASAAAS ⎧⎨⎩找夹边→找其中一角的对边→ 2.若题中没有全等的三角形,则可根据题中条件合理地添加辅助线,如运用作高法、倍长中线法、截长补短法、分解图形法等来解决运动、拼接、旋转等探究性题目.典例5 如图,已知∠ADB =∠CBD ,下列所给条件不能证明△ABD ≌△CDB 的是A .∠A =∠CB .AD =BC C .∠ABD =∠CDB D .AB =CD【答案】D【解析】A .∵∠A =∠C ,∠ADB =∠CBD ,BD =BD ,∴△ABD ≌△CDB (AAS ),故正确;B .∵AD =BC ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (SAS ),故正确;C .∵∠ABD =∠CDB ,∠ADB =∠CBD ,BD =DB ,∴△ABD ≌△CDB (ASA ),故正确;D .∵AB =CD ,BD =DB ,∠ADB =∠CBD,不符合全等三角形的判定方法,故不正确,故选D.【名师点睛】本题考查了全等三角形的判定方法,①三边对应相等的两个三角形全等,简记为“SSS”;②两边及其夹角对应相等的两个三角形全等,简记为“SAS”;③两角及其夹边对应相等的两个三角形全等,简记为“ASA”;④两角及其中一角的对边对应相等的两个三角形全等,简记为“AAS”;⑤斜边及一直角边对应相等的两个三角形全等,根据这几种判定方法解答即可.5.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC,②△ACE≌△BDE,③点E在∠O的平分线上,其中正确的结论个数是A.0 B.1C.2 D.36.如图,在△BCE中,AC⊥BE,AB=AC,点A、点F分别在BE、CE上,BF、AC相交于点D,BD=CE.求证:AD=AE.1.如图所示,其中三角形的个数是A.2个B.3个C.4个D.5个2.下列图形不具有稳定性的是A.正方形B.等腰三角形C.直角三角形D.钝角三角形3.直角三角形中两锐角之差为20°,则较大锐角为A.45° B.55°C.65° D.50°4.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC__________的交点.A.角平分线B.高线C.中线D.边的中垂线5.如图所示,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠1=∠26.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是A .∠DAE =∠CBEB .△DEA 不全等于△CEBC .CE =DED .△EAB 是等腰三角形7.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__________度.8.如图所示,AB ⊥BE 于点B ,DE ⊥BE 于点E .(1)若∠A =∠D ,AB =DE ,则△ABC 与△DEF 全等的理由是__________; (2)若∠A =∠D ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (3)若AB =DE ,BC =EF ,则△ABC 与△DEF 全等的理由是__________; (4)若AB =DE ,AC =DF ,则△ABC 与△DEF 全等的理由是__________.学-科网9.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是中线,AF ⊥BD ,F 为垂足,过点C 作AB 的平行线交AF 的延长线于点E .求证:(1)∠ABD =∠FAD ;(2)AB =2CE .10.如图,,,于D ,于E ,且.求证:.AB AC =90BAC ∠= BD AE ⊥CE AE ⊥BD CE >BD EC ED =+11.如图,操场上有两根旗杆CA与BD之间相距12m,小强同学从B点沿BA走向A,一定时间后他到达M 点,此时他测得CM和DM的夹角为90°,且CM=DM,已知旗杆AC的高为3m,小强同学行走的速度为0.5m/s,则:(1)请你求出另一旗杆BD的高度;(2)小强从M点到达A点还需要多长时间?1.(2018•柳州)如图,图中直角三角形共有A.1个B.2个C.3个D.4个2.(2018•河北)下列图形具有稳定性的是A.B.C.D.3.(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是A.中线B.角平分线C.高D.中位线4.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的A.重心B.外心C.内心D.中心5.(2018•毕节市)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是A.4 B.6C.8 D.106.(2018•贵阳市)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是A.线段DE B.线段BEC.线段EF D.线段FG7.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为A.90°B.95°C.100°D.120°8.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于A.150°B.180°C.210°D.270°9.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于A.40°B.45°C.50°D.55°10.(2018•聊城市)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°–α–β11.(2018•黔西南州市)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙B.乙和丙C.甲和丙D.只有丙12.(2018•安顺市)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACDA.∠B=∠C B.AD=AEC.BD=CE D.BE=CD13.(2018•南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥A D.若CE=a,BF=b,EF=c,则AD的长为A.a+c B.b+cC.a–b+c D.a+b–c14.(2018•辽阳市)如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为A.5 B.24 5C.4 D.12 515.(2018•绵阳市)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=__________.16.(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.17.(2018•陇南市)已知a,b,c是△ABC的三边长,a,b满足|a–7|+(b–1)2=0,c为奇数,则c=__________.18.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△ED C.19.(2018•云南)如图,已知AC平分∠BAD,AB=A D.求证:△ABC≌△ADC.4.【答案】3【解析】由勾股定理知AD3=,BD平分∠ABC交AC于D点,所以PD=AD最小,PD=3,故答案为:3.5.【答案】D【解析】∵OA=OB,∠A=∠B,∠O=∠O,∴△AOD≌△BOC(ASA),故①正确;∴OD=CO,∴BD=AC,∴△ACE≌△BDE(AAS),故②正确;∴AE=BE,连接OE,∴△AOE≌△BOE(SSS),∴∠AOE =∠BOE ,∴点E 在∠O 的平分线上,故③正确, 故选D .6.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CEAB AC =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .1.【答案】D【解析】图中的三角形有:△ABC ,△BCD ,△BCE ,△ABE ,△CDE 共5个.故选D . 2.【答案】A【解析】根据三角形具有稳定性可知,只有选项A 不具有稳定性,故选A . 3.【答案】B【解析】设两个锐角分别为x 、y ,由题意得,,解得,所以最大锐角为55°.故选B . 4.【答案】A【解析】∵到角的两边的距离相等的点在角的平分线上, ∴这个点是三角形三条角平分线的交点.故选A . 5.【答案】D【解析】根据全等“SAS”判定可知,要证△ABE ≌△DBC 还需补充条件AB ,BE 与BC ,BD 的夹角相等,即∠ABE =∠CBD 或者∠1=∠2,故选D . 6.【答案】B【解析】∵∠1+∠C +∠ABC =∠2+∠D +∠DAB =180°,且∠1=∠2,∠C =∠D , ∴∠ABC =∠DAB ,∴∠ABC –∠2=∠DAB –∠1,∴∠DAE =∠CBE .故A 正确;∵∠1=∠2,∴AE =BE .在△DEA 和△CEB 中DAE CBE C D AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEA ≌△CEB (AAS ),故B 错误;由△DEA ≌△CEB 可得CE =DE .故C 正确.∵∠1=∠2,∴BE =AE ,∴△EAB 是等腰三角形故D 正确;故选B .=90=20x y x y +︒-︒⎧⎨⎩=55=35x y ︒︒⎧⎨⎩7.【答案】135 【解析】如图所示:由题意可知△ABC ≌△EDC ,∴∠3=∠BAC , 又∵∠1+∠BAC =90°,∴∠1+∠3=90°,∵DF =DC ,∴∠2=45°,∴∠1+∠2+∠3=135度, 故答案是:135.8.【答案】ASA ,AAS ,SAS ,HL【解析】(1)在△ABC 和△DEF 中,因为∠B =∠E =90°, AB =DE ,∠A =∠D ,所以△ABC ≌△DEF (ASA); (2)在△ABC 和△DEF 中,因为∠B =∠E =90°, ∠A =∠D ,BC =EF ,所以△ABC ≌△DEF (AAS); (3)在△ABC 和△DEF 中,因为AB =DE ,∠B =∠E =90°, BC =EF ,所以△ABC ≌△DEF (SAS);(4)在Rt △ABC 和Rt △DEF 中,因为AC =DF ,AB =DE , 所以Rt △ABC ≌Rt △DEF (HL). 故答案为:ASA ;AAS ;SAS ;HL.10.【解析】,,,,,, ,90BAC ∠= CE AE ⊥BD AE ⊥90ABD BAD ∠∠∴+= 90BAD DAC ∠∠+= 90ADB AEC ∠∠== ABD DAC ∠∠∴=在和中,,∴≌(AAS ),,, ,∴BD =EC +ED .11.【解析】(1)如图,∵CM 和DM 的夹角为90°,∴∠1+∠2=90°,∵∠DBA =90°,∴∠2+∠D =90°,∴∠1=∠D ,在△CAM 和△MBD 中,,∴△CAM ≌△MBD (AAS ),∴AM =DB ,AC =MB , ∵AC =3m ,∴MB =3m ,∵AB =12m ,∴AM =9m ,∴DB =9m ; (2)9÷0.5=18(s ).学_科网答:小强从M 点到达A 点还需要18秒.1.【答案】CABD CAE ABD EAC BDA E AB AC ∠=∠∠=∠=⎧⎪⎨⎪⎩ABD CAE BD AE ∴=EC AD =AE AD DE =+ 1A B D CM MD ∠=∠∠=∠=⎧⎪⎨⎪⎩【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选C.2.【答案】A【解析】三角形具有稳定性.故选A.3.【答案】A【解析】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.4.【答案】A【解析】三角形三条中线的交点是三角形的重心,故选A.5.【答案】C【解析】设第三边长为x,则8–2<x<2+8,6<x<10,故选C.6.【答案】B【解析】根据三角形中线的定义知线段BE是△ABC的中线,故选B.7.【答案】B【解析】∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B.8.【答案】C【解析】如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°–∠C=30°+90°+180°–90°=210°,故选C . 9.【答案】C【解析】∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°, ∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°,故选C . 10.【答案】A【解析】由折叠得:∠A =∠A ',∵∠BDA '=∠A +∠AFD ,∠AFD =∠A '+∠CEA ', ∵∠A =α,∠CEA ′=β,∠BDA '=γ,∴∠BDA '=γ=α+α+β=2α+β,故选.11.【答案】B【解析】乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等; 在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等; 不能判定甲与△ABC 全等;故选B .13.【答案】D【解析】∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD ,∴∠AFB =∠CED =90°,∠A +∠D =90°,∠C +∠D =90°,∴∠A =∠C ,∵AB =CD ,∴△ABF ≌△CDE ,∴AF =CE =a ,BF =DE =b , ∵EF =c ,∴AD =AF +DF =a +(b –c )=a +b –c ,故选D . 14.【答案】B【解析】由题意可得,OC 为∠MON 的平分线, ∵OA =OB ,OC 平分∠AOB ,∴OC ⊥AB , 设OC 与AB 交于点D ,作BE ⊥AC 于点E ,∵AB =6,OA =5,AC =OA ,OC ⊥AB ,∴AC =5,∠ADC =90°,AD =3, ∴CD =4,∵2AB CD ⋅=2AC BE ⋅,∴642⨯=52BE ⨯,解得,BE =245,故选B . 15【解析】∵AD 、BE 为BC ,AC 边上的中线,∴BD =12BC =2,AE =12AC =32,点O 为△ABC 的重心,∴AO =2OD ,OB =2OE , ∵BE ⊥AD ,∴BO 2+OD 2=BD 2=4,OE 2+AO 2=AE 2=94,∴BO 2+14AO 2=4,14BO 2+AO 2=94,∴54BO 2+54AO 2=254,∴BO 2+AO 2=5,∴AB. 16.【答案】5【解析】根据三角形的三边关系,得4<第三边<6. 又第三条边长为整数,则第三边是5.故答案为:5. 17.【答案】7【解析】∵a ,b 满足|a –7|+(b –1)2=0,∴a –7=0,b –1=0,解得a =7,b =1, ∵7–1=6,7+1=8,∴6<c <8,又∵c 为奇数,∴c =7,故答案是:7.18.【解析】∵在△ABC 和△EDC 中,,∴△ABC ≌△EDC (ASA ).19.【解析】∵AC 平分∠BAD ,∴∠BAC =∠DAC ,在△ABC 和△ADC 中,,∴△ABC ≌△ADC .A EAC EC ACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩AB AD BAC DAC AC AC =∠=∠=⎧⎪⎨⎪⎩。

初中数学全等三角形

初中数学全等三角形

初中数学全等三角形
目录
1. 几何基础知识
1.1 点、线、面的概念
1.2 角的概念
1.3 直线、射线、线段的区别
2. 三角形的性质
2.1 三角形的定义
2.2 三角形的内角和为180°
2.3 等边三角形、等腰三角形、直角三角形的特点
3. 三角形的分类
3.1 依据边长分类
3.2 依据角度分类
4. 三角形的全等性质
4.1 全等三角形的定义
4.2 全等三角形的性质
4.3 证明全等三角形的方法
5. 三角形全等定理
5.1 SSS全等定理
5.2 SAS全等定理
5.3 ASA全等定理
6. 全等三角形的应用
6.1 利用全等三角形证明几何定理
6.2 利用全等三角形解决实际问题
7. 总结与拓展
7.1 总结全等三角形的重要性
7.2 拓展全等三角形的相关知识
以上是目录,接下来将根据目录内容展开写作。

中考数学考点专题复习 三角形与全等三角形

中考数学考点专题复习 三角形与全等三角形

剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5

【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )

中考数学 考点系统复习 第四章 三角形 第四节 全等三角形

中考数学 考点系统复习 第四章 三角形 第四节 全等三角形

5.(2021·兰州第20题5分)如图,点E,C在线段BF上,∠A=∠D,AB∥
DE,BC=EF.求证:AC=DF. 证明:∵AB∥DE,
∴∠ABC=∠DEF,
在△ABC与△DEF中,
∠A=∠D,
∠ABC=∠DEF, BC=EF, ∴△ABC≌△DEF(AAS),∴AC=DF.
6.(2022·兰州第19题6分)如图①是小军制作的燕子风筝,燕子风筝的 骨架图如图②所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求 ∠D的大小.
解:∵∠BAD=∠EAC, ∴∠BAD+∠CAD=∠EAC+∠CAD, 即∠BAC=∠EAD, 在△BAC与△EAD中, AB=AE,
∠BAC=∠EAD, AC=AD, ∴△BAC≌△EAD(SAS), ∴∠D=∠C=50°.
.(只需填一个即可)
∠B=∠E
4.(2020·兰州第20题6分)如图,在△ABC中,AB=AC,点D,E分别是
AC和AB的中点.求证:BD=CE. 证明:∵AB=AC,点D,E分别是AC和AB的中点,
∴AD=AE.
在△ABD和△ACE中, AB=AC,
∠A=∠A, AD=AE, ∴△ABD≌△ACE(SAS),∴BD=CE.
=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以
是_∠_∠AA==∠∠FF或或ACA∥CE∥F或EBFC=或DBE_C_.(只需填一个即可) =DE
3.(2013·庆阳第19题3分)如图,已知∠1=∠2,AC=AD.请添加一个
条件,使△ABC≌△AED,则添加的条件是∠∠CC==∠∠D或DA或B=AABE=或∠ABE=或∠
命题点:全等三角形的性质与判定(省卷近5年考查5次,兰州近5年考

初三数学全等图形判定方法

初三数学全等图形判定方法

初三数学全等图形判定方法全等图形是初中数学中的重要概念,它在实际生活和几何学中具有广泛的应用。

全等图形的判定方法则是我们学习的重点之一。

本文将介绍几种常用的初三数学全等图形判定方法,帮助同学们深入理解和掌握这一内容。

一、SAS判定法SAS判定法是指两个三角形的边、角和边对应相等时,这两个三角形全等。

具体判定步骤如下:1. 比较两个三角形的两边是否相等,如果两个三角形的两边相等,则条件一成立。

2. 比较两个三角形的夹角是否相等,如果两个三角形的夹角相等,则条件二成立。

3. 比较两个三角形的另一边是否相等,如果两个三角形的另一边相等,则条件三成立。

如果以上三个条件同时满足,那么可以判断这两个三角形全等。

需要注意的是,SAS判定法判断的是两个三角形全等,而不是其他图形的全等。

二、SSS判定法SSS判定法是指两个三角形的三边长度相等时,这两个三角形全等。

具体判定步骤如下:1. 比较两个三角形的第一条边是否相等,如果两个三角形的第一条边相等,则条件一成立。

2. 比较两个三角形的第二条边是否相等,如果两个三角形的第二条边相等,则条件二成立。

3. 比较两个三角形的第三条边是否相等,如果两个三角形的第三条边相等,则条件三成立。

如果以上三个条件同时满足,那么可以判断这两个三角形全等。

三、ASA判定法ASA判定法是指两个三角形的两角和一边分别相等时,这两个三角形全等。

具体判定步骤如下:1. 比较两个三角形的第一角是否相等,如果两个三角形的第一角相等,则条件一成立。

2. 比较两个三角形的第二角是否相等,如果两个三角形的第二角相等,则条件二成立。

3. 比较两个三角形的一边是否相等,如果两个三角形的一边相等,则条件三成立。

如果以上三个条件同时满足,那么可以判断这两个三角形全等。

四、其他判定法除了SAS、SSS和ASA判定法之外,还有一些其他的判定法,比如AAS判定法、RHS判定法等。

这些判定法都是通过特定的条件来判断两个三角形是否全等,同学们可以根据具体题目的条件选择合适的判定法进行判断。

初三复习专题--全等三角形

初三复习专题--全等三角形


OA=OC,EA=EC,

请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E

D
1
l
2
B
C

• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。

中考数学全等三角形的五种模型

中考数学全等三角形的五种模型
图形
结论
①△ABF≌△BCE; ②EC=AB-FC
模型应用
7. (2016·深圳改编)如图,CB=CA,∠ACB= 90°,点D在边BC上(与B,C不重合),四边 形ADEF为正方形,过点F作FG⊥CA,交CA 的延长线于点G,连接FB,交DE于点Q,给 出以下结论:①AC=FG;②S△FAB∶S四边形 CBFG=1∶2;③∠ABC=∠ABF. 其中正确的结论的个数是( )
∵∠1=∠2,AD⊥FG于D,AH⊥EF于H, ∴AD=AH, ∵AD=AB, ∴AH=AB, 又∵AH⊥EF于H,AB⊥BC于B, ∴AE平分∠BEF,故①正确; ∵AE平分∠BEF, ∴∠AEB=∠AEH, ∵∠AEB+∠BAE=90°,
∠AEH+∠HAE=90°, ∴∠BAE=∠HAE,
又∵EH⊥AH于H,EB⊥AB于B, ∴BE=HE, ∵BE=DG, ∴HE=DG, ∵EF=HE+FH,GF=DG+FD,EF=GF, ∴FH=FD,故②正确; ∵△AEF≌△AGF, ∴S△EAF=S△GAF. ∵△ABE≌△ADG,
叠到DF,延长EF交AB于G,连接DG,现在
有如下4个结论:
①△ADG≌△FDG;②GB=2AG;③∠GDE
=45°;④DG=DE.
在以上4个结论中,正确的共有
()
A. 1个
B. 2 个
C. 3 个
D. 4个
3. C 解析:由折叠可知,DF=DC=DA,∠DFE= ∠C=90°, ∴∠DFG=∠A=90°, ∴△ADG≌△FDG,①正确; ∵正方形边长是12, ∴BE=EC=EF=6, 设AG=FG=x,则EG=x+6,BG=12-x, 由勾股定理,得EG2=BE2+BG2, 即(x+6)2=62+(12-x)2,解得x=4, ∴AG=GF=4,BG=8, ∴BG=2AG,②正确;

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法2 全等三角形的常见模型

2025年湖南中考数学一轮复习考点研析 第四章 三角形技法2 全等三角形的常见模型
∠B=∠DEF,BE=CF.下面给出四个条件:①AC=DF;②AB=DE;③AC∥DF;④
∠A=∠D.请你从中任选一个条件,使△ABC≌△DEF,并写出证明过程.
解:答案不唯一,如选择条件②.证明如下:
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF.
= ,
在△ABC和△DEF中,ቐ∠ = ∠,
证:△BDC≌△CEB.
证明:∵AB=AC,∴∠DBC=∠ECB.
∵AD=AE,∴AB-AD=AC-AE,即DB=EC.
= ,
在△DBC和△ECB中,ቐ∠ = ∠,∴△BDC≌△CEB(SAS).
= ,
证明
3.如图,AD⊥AE,AB⊥AC,∠B=∠C,AB=AC.求证:△ABD≌△ACE.
= ,
∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN.
∵ ∠ MDP + ∠ DMP + ∠ MPD= ∠ CAM + ∠ AMC +
∠ACM=180°,∠MDP=∠CAM,∠DMP=∠AMC,
∴∠APD=∠ACM=模型类别
一线三等
已知条件
图示
相关结论
腰三角形
已知条件
CA=CB,CD=CE,
∠ACB=∠DCE
图示
相关结论
△BCD≌△ACE
4.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,DE分别交BC,AC
于点F,G.
(1)求证:∠C=∠E.
(2)若∠CAE=24°,求∠EFC的度数.
(1)证明:∵∠BAD=∠CAE,
2025年湖南中考数学一轮复习考点研析
第一部分 考点研析
第四章 三角形
技法2 全等三角形的常见模型

数学中考总复习:全等三角形—知识讲解

数学中考总复习:全等三角形—知识讲解

数学中考总复习:全等三角形一知识讲解【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2•探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形2.全等三角形的性质(1)全等三角形对应边相等; (2 )全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等( ASA;(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL). 考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来. 应用三角形全等的判别方法注意以下几点:1.条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2.条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件•解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边 或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:① 遇到等腰三角形, 可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的② 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③ 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④ 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤ 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明•这种作法,适合于证明线段的和、差、 倍、分之类的题目.【典型例题】类型一、全等三角形 1.如图,BD CE 分别是△ ABC 的边AC 和AB 上的高,点 P 在BD 的延长线上,BP=AC . 上,CQ=AB 求证:(1) AP=AQ (2) API AQ 【思路点拨】 本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)T BD CE 分别是△ ABC 的边AC 和AB 上的高,•••/ 1 + Z CAE=90,/ 2+Z CAE=90 .•••/ 仁/2,•••在△ AQC^A PAB 中,“对折”;Q 在CECQ = AB-Zl= Z2AC^BP:.△PAB ••• AP=AQ.(2) •/ AP=AQ / QAC2 P,•••/ PAD+Z P=90°,•••/ PAD+Z QAC=90,即/ PAQ=90• API AQ【总结升华】在确定全等条件时,注意隐含条件的寻找举一反三:【变式】(2015?永州)如图,在四边形ABCD中,Z A=Z BCD=90 , BC=DC延长AD到E点,使DE=AB (1)求证:Z ABC玄EDCABCD 中,T Z BAD= Z BCD=90 °,•90 ° Z B+90 ° Z ADC=360 ° °•Z B+ Z ADC=180 °又 T Z CDE+ Z ADC=180 °•Z ABC= Z CDE ,(2)连接人。

最新九年级中考数学专题复习:全等三角形

最新九年级中考数学专题复习:全等三角形

在△EDM和△FDN中,源自∠EDM ∠FDNDM
DN
,
∠DME ∠DNF
∴△EDM≌△FDN(ASA),
∴DE=DF.
两边及其夹角对 三边对应相等的两
应相等的两个三 个三角形全等.
角形全等.
两角及其夹边对应 相等的两个三角形 全等.
两角及其中一个角 的对边对应相等的 两个三角形全等.
斜边和一条直角边对应相 等的两个直角三角形全等.
模型一、平移模型
知识点3:全等模型
模型展 示
模型特 沿同一直线(BC)平移可得两三角形重合(BE=CF)
证明:∵AD∥BC,∠A=90°,∠1=∠2, ∴∠A=∠B=90°,DE=CE. 在Rt△ADE和Rt△BEC中,
AD DE
BE EC
,
∴Rt△ADE≌Rt△BEC(HL);
模型四、一线三等角模型
知识点3:全等模型
一般通过一线三等角找等角或进行角度转换,证三角形全等时必须还有一组边相等这个条件. 常见基本图形如 下: 1.两个三角形在直线同侧,点P在线段AB上,已知:∠1=∠2=∠3,AP=BD.
模型应用
2. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折 叠,使点B落在点E处,AE交CD于点F,连接DE.若矩形ABCD的周 长为18,则△EFC的周长为___9_____.
模型三、一线三垂直模型
知识点3:全等模型
常用三个垂直作条件进行角度等量代换,即同(等)角的余角相等,相等的角就是 对应角,证三角形全等时必须还有一组边相等. 基本图形1 如图①,已知:AB⊥BC,DE⊥CE,AC⊥CD,AB=CE.
锐角一线三等角
钝角一线三等角
结论:△CAP≌△PBD.

中考数学专题复习全等三角形

中考数学专题复习全等三角形
∵AE=AC,∠EAD=∠CAD,AD=AD
∴△ADE≌△ADC。DE=CD,∠AED=∠C
∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE
∠B=∠EDB
∠C=∠B+∠EDB=2∠B
12证明:
∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM
∵BE=CF
∴△BEM≌△CFM
∴BM=CM
∴AM是△ABC的中线。
9作AG∥BD交DE延长线于G
AGE全等BDE
AG=BD=5
AGF∽CDF
AF=AG=5
所以DC=CF=2
10证明:
做BE的延长线,与AP相交于F点,
∵PA//BC
∴∠PAB+∠CBA=180°,
又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
13证明:因为AB=AC,
所以∠EBC=∠DCB
因为BD⊥AC,CE⊥AB
所以∠BEC=∠CDB
BC=CB (公共边)
则有三角形EBC全等于三角形DCB
所以BE=CD
14
11.证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG≌△BDE

2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)

2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)

2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。

2.三角形的内角和定理:三角形的三个内角之和等于180°。

3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。

大于它不相邻的任意一个内角。

4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。

5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。

②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。

③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。

④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。

⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。

全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。

在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。

专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。

2024年中考数学一轮复习考点精讲课件—全等三角形

2024年中考数学一轮复习考点精讲课件—全等三角形
【详解】∵△ ≌△ ,
∴ = ,∠ = ∠,
∵∠ + ∠ = 180°,∠ + ∠ = 180°,
∴∠ = ∠,
∴ ∥ .
考点一 全等三角形及其性质
题型05 利用全等的性质证明线段之间的数量/位置关系
【对点训练1】(2023·陕西西安·校考模拟预测)如图,、相交于点,且△ ≌△ ,在上,在
1. 形状相同的两个图形不一定是全等图形,面积相同的两个图形也不一定是全等图形.
2. 通过平移、翻折、旋转后得到的图形与原图形是全等图形.
考点一 全等三角形及其性质
题型01 利用全等三角形的性质求角度
【例1】(2023·湖北襄阳·统考模拟预测)已知△ ≌△ ,若∠ = 50°, ∠ = 40°,则∠1的度数为
5.对于特殊的直角三角形:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或
“HL”).
【小技巧】从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素
(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有


A.40°
Hale Waihona Puke B.25°C.15°D.无法确定
【对点训练1】(2023·浙江金华·校联考三模)如图,已知△ ≌△ ,∠ = 75°,∠ = 30°,则∠的
度数为(
A.105°

B.80°
C.75°
D.45°
考点一 全等三角形及其性质
题型02 利用全等三角形的性质求长度
【例2】(2023·广东·校联考模拟预测)如图,△ ≅△ ,A的对应顶点是B,C的对应顶点是D,若 =

中考备考数学总复习14讲三角形与全等三角形(含解析)

中考备考数学总复习14讲三角形与全等三角形(含解析)

第14讲三角形与全等三角形[锁定目标考试]考标要求考查角度1.了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系.2.理解三角形内角和定理及推论.3.理解三角形的角平分线、中线、高的概念及画法和性质.4.掌握三角形全等的性质与判定,熟练掌握三角形全等的证明.中考多以填空题、选择题的形式考查三角形的边角关系,通过解答题来考查全等三角形的性质及判定.全等三角形在中考中常与平行四边形、二次函数、圆等知识相结合,考查运用知识的能力.[导学必备知识]知识梳理一、三角形的概念及性质1.概念(1)由三条线段________顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形.2.性质(1)三角形的内角和是______;三角形的一个外角等于与它不相邻的____________;三角形的一个外角大于与它________的任何一个内角.(2)三角形的任意两边之和______第三边;三角形任意两边之差________第三边.二、三角形中的重要线段1.三角形的角平分线三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这个点叫做三角形的________.2.三角形的高线从三角形的一个顶点向它的对边所在的直线作______,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点,这个点叫做三角形的______.3.三角形的中线在三角形中,连接一个顶点和它对边______的线段叫做三角形的中线.特性:三角形的三条中线交于一点,这个点叫做三角形的______.4.三角形的中位线连接三角形两边______的线段叫做三角形的中位线.定理:三角形的中位线平行于第三边,且等于它的________.三、全等三角形的性质与判定1.概念能够________的两个三角形叫做全等三角形.2.性质全等三角形的__________、__________分别相等.3.判定(1)有三边对应相等的两个三角形全等,简记为(SSS);(2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS);(3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA);(4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS);(5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).四、定义、命题、定理、公理1.定义对一个概念的特征、性质的描述叫做这个概念的定义.2.命题判断一件事情的语句.(1)命题由________和________两部分组成.命题通常写成“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.(2)命题的真假:正确的命题称为________;错误的命题称为________.(3)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的________,而第一个命题的结论是第二个命题的________,那么这两个命题称为互逆命题.每一个命题都有逆命题.3.定理经过证明的真命题叫做定理.因为定理的逆命题不一定都是真命题.所以不是所有的定理都有逆定理.4.公理有一类命题的正确性是人们在长期的实践中总结出来的,并把它们作为判断其他命题真伪的原始依据,这样的真命题叫做公理.五、证明1.证明从一个命题的条件出发,根据定义、公理及定理,经过________,得出它的结论成立,从而判断该命题为真,这个过程叫做证明.2.证明的一般步骤(1)审题,找出命题的题设和结论;(2)由题意画出图形,具有一般性;(3)用数学语言写出已知、求证;(4)分析证明的思路;(5)写出证明过程,每一步应有根据,要推理严密.3.反证法先假设命题中结论的反面成立,推出与已知条件或是定义、定理等相矛盾,从而结论的反面不可能成立,借此证明原命题结论是成立的.这种证明的方法叫做反证法.自主测试1.(浙江嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于() A.40° B.60° C.80° D.90°2.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,83. (贵阳)如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF4.下面的命题中,真命题是()A.有一条斜边对应相等的两个直角三角形全等B.有两条边和一个角对应相等的两个三角形全等C.有一条边对应相等的两个等腰三角形全等D.有一条高对应相等的两个等边三角形全等5.(四川雅安)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序号是__________.6.(广东广州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BE =CD.[探究重难方法]考点一、三角形的边角关系【例1】若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.9解析:设第三边为x,根据三角形三边的关系可得4-3<x<3+4,即1<x<7.答案:B方法总结 1.在具体判断时,可用较小的两条线段的和与最长的线段进行比较.若这两条线段的和大于最长的那条线段,则这三条线段能组成三角形.否则就不能组成三角形.2.三角形边的关系的应用:(1)判定三条线段是否构成三角形;(2)已知两边的长,确定第三边的取值范围;(3)可证明线段之间的不等关系.触类旁通1已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13考点二、全等三角形的性质与判定【例2】(云南)如图,在△ABC中,∠C=90°,点D是AB边上一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.证明:在△ABC和△MED中,∵BC∥EM,∴∠MED=∠B.∵DM⊥AB,∴∠MDE=90°,∴∠C=∠MDE.∵AC=MD,∴△ABC≌△MED.方法总结 1.判定两个三角形全等时,常用下面的思路:有两角对应相等时找夹边或任一边对应相等;有两边对应相等时找夹角或另一边对应相等.在具体的证明中,要根据已知条件灵活选择证明方法.2.全等三角形的性质主要是指全等三角形的对应边、对应角、对应中线、对应高、对应角平分线、周长、面积等之间的等量关系.触类旁通2如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:△BEC ≌△CDA . 考点三、真假命题的判断【例3】 (湖南益阳)下列命题是假命题...的是( ) A .中心投影下,物高与影长成正比B .平移不改变图形的形状和大小C .三角形的中位线平行于第三边D .圆的切线垂直于过切点的半径解析:同一时刻,平行投影下物高与影长成正比,故A 项错误;平移是全等变换,不改变图形的形状和大小,故B 项正确;三角形的中位线平行于第三边,故C 项正确;圆的切线垂直于经过切点的半径是切线的性质,故D 项正确.答案:A方法总结 对命题的正确性理解一定要准确,判定命题不成立时,有时可以举反例说明道理;命题有正、误,错误的命题也是命题.触类旁通3已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥C .其中为真命题的是__________.(填写所有真命题的序号)考点四、证明的方法【例4】 如图,已知在梯形ABCD 中,AD ∥BC ,BC =DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E.求证:(1)△BFC ≌△DFC ; (2)AD =DE .证明:(1)∵CF 平分∠BCD ,∴∠BCF =∠DCF . 在△BFC 和△DFC 中,⎩⎪⎨⎪⎧BC =DC ,∠BCF =∠DCF ,FC =FC ,∴△BFC ≌△DFC . (2)如图,连接BD .∵△BFC≌△DFC,∴BF=DF.∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又BD是公共边,∴△BAD≌△BED.∴AD=DE.方法总结 1.证明问题时,首先要理清证明的思路,做到证明过程的每一步都有理有据,推理严密.要证明线段、角相等时,证全等是常用的方法.2.证明的基本方法:(1)综合法,从已知条件入手,探索解题途径的方法;(2)分析法,从结论出发,用倒推来寻求证题思路的方法;(3)两头“凑”的方法,综合应用以上两种方法找证明思路的方法.触类旁通4如图,在△ABC中,AD是中线,分别过点B,C作AD及其延长线的垂线BE,CF,垂足分别为点E,F.求证:BE=CF.[品鉴经典考题]1.(湖南长沙)现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1 B.2 C.3 D.42.(湖南娄底)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y3.以下列各组线段为边,能组成三角形的是()A.1 cm,2 cm,4 cm B.4 cm,6 cm,8 cm C.5 cm,6 cm,12 cm D.2 cm,3 cm,5 cm4.(湖南长沙)如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=__________°.5.(湖南郴州)已知,点P是平行四边形ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.6. (湖南衡阳)如图所示,AF=DC,BC∥EF,请你只补充一个条件,使△ABC≌△DEF,并说明理由.[研习预测试题]1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得P A=16 m,PB=12 m,那么AB间的距离不可能是()A.5 m B.15 m C.20 m D.28 m2.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.2 2 B.4 C.3 2 D.4 23.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B =__________.4.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__________.5.如图所示,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__________.6.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,∠1__________(填“是”或“不是”)∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是__________(只需写出一个).7.如图,已知在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F.求证:AB=FC.8.如图,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.参考答案【知识梳理】一、1.(1)首尾2.(1)180° 两个内角的和 不相邻 (2)大于 小于 二、1.内心 2.垂线 垂心 3.中点 重心 4.中点 一半三、1.完全重合 2.对应边 对应角四、2.(1)题设 结论 (2)真命题 假命题 (3)结论 题设 五、1.逻辑推理 导学必备知识 自主测试1.A 设∠A =x ,则∠B =2x ,∠C =x +20°,则x +2x +x +20°=180°,解得x =40°,即∠A =40°.2.A3.B 由已知可得两个三角形已有两组边对应相等,还需要另一组边对应相等或夹角对应相等,只有B 能满足条件.4.D5.①②④ 由题意知AD =AD ,条件①可组成三边对应相等,条件②可组成两角和其中一角的对边对应相等,条件④可组成两边及其夹角对应相等,这三个条件都可得出△ADB ≌△ADC ,条件③组成的是两边及其一边的对角对应相等,不能得出△ADB ≌△ADC .6.证明:∵在△ABE 和△ACD 中,∠B =∠C ,AB =AC ,∠A =∠A ,∴△ABE ≌△ACD (ASA).∴BE =CD .探究考点方法触类旁通1.B 由三角形三边的关系可得13-2<x <13+2,即11<x <15, ∵x 为正整数,∴x 为12,13,14,故选B.触类旁通2.证明:∵BE ⊥CF 于点E ,AD ⊥CE 于点D , ∴∠BEC =∠CDA =90°.在Rt △BEC 中,∠BCE +∠CBE =90°, 在Rt △BCA 中,∠BCE +∠ACD =90°, ∴∠CBE =∠ACD . 在△BEC 和△CDA 中, ∵⎩⎪⎨⎪⎧∠BEC =∠CDA ,∠CBE =∠ACD ,BC =CA ,∴△BEC ≌△CDA . 触类旁通3.①②④触类旁通4.证明:∵在△ABC 中,AD 是中线, ∴BD =CD .∵CF ⊥AD ,BE ⊥AE ,∴∠CFD =∠BED =90°. 在△BED 与△CFD 中,∵∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD , ∴△BED ≌△CFD ,∴BE =CF .品鉴经典考题1.B 根据三角形三边关系,能组成三角形的是:3,7,9;4,7,9. 2.D 若x 2=y 2,则x =y 或x =-y ,所以D 是假命题. 3.B4.105 ∠ACD =∠A +∠B =45°+60°=105°. 5.证明:在平行四边形ABCD 中,AB ∥CD , ∴∠ACD =∠BAC .在△APE 和△CPF 中,⎩⎪⎨⎪⎧∠ACD =∠BAC ,∠CPF =∠APE ,PC =P A ,∴△APE ≌△CPF .∴AE =CF . 6.解:答案不唯一,如BC =EF 等. 理由:∵AF =DC ,∴AC =DF . ∵BC ∥EF ,∴∠BCA =∠EFD . 又BC =EF ,∴△ABC ≌△DEF .研习预测试题1.D 由三角形三边关系知16-12<AB <16+12,故选D. 2.B 因为由已知可证明△BDF ≌△ADC ,所以DF =CD . 3.70° 4.α=β+γ5.60° ∵∠A +∠B +∠C =180°,∠CDE +∠CED +∠C =180°, ∴∠A +∠B =∠CDE +∠CED .∴∠A +∠B +∠CDE +∠CED =2(∠A +∠B )=280°. ∵∠1+∠2+∠CDE +∠CED +∠A +∠B =360°, ∴∠1+∠2=360°-280°=80°. 又∵∠1=20°,∴∠2=60°. 6.不是 ∠B =∠E (答案不唯一)7.证明:∵FE ⊥AC 于点E ,∠ACB =90°, ∴∠FEC =∠ACB =90°.∴∠F +∠ECF =90°. 又∵CD ⊥AB 于点D ,∴∠A +∠ECF =90°. ∴∠A =∠F .在△ABC 和△FCE 中,⎩⎪⎨⎪⎧∠A =∠F ,∠ACB =∠FEC ,BC =CE ,∴△ABC ≌△FCE . ∴AB =FC .8.证明:∵AD =EB ,∴AD -BD =EB -BD ,即AB =ED .又∵BC∥DF,∴∠CBD=∠FDB. ∴∠ABC=∠EDF.又∵∠C=∠F,∴△ABC≌△EDF.∴AC=EF。

数学中考总复习(一轮复习)第17讲全等三角形

数学中考总复习(一轮复习)第17讲全等三角形

第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。

(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。

2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。

微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。

二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。

2•判定:角的内部到角的两边的距离相等的点在 ____________ 。

3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。

2•角的平分线的性质定理和判定定理互为逆定理。

注意分清题设和结论。

高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。

(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。

初中数学中考复习:30全等三角形(含答案)

初中数学中考复习:30全等三角形(含答案)

中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是().  A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。

若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。

中考重点三角形的全等判定

中考重点三角形的全等判定

中考重点三角形的全等判定三角形是几何学中一个重要的图形,具有广泛的应用。

在中考数学考试中,关于三角形的全等判定是一个重点内容。

本文将介绍中考中常见的三种全等判定方法,并举例说明。

一、全等的定义两个三角形如果对应的三边和三个内角分别相等,则这两个三角形是全等的。

全等的表示方法有多种,通常使用符号“≌”表示。

二、全等判定方法1. SAS 判定法SAS 判定法是指两个三角形的一个对应边和两个对应角相等,则这两个三角形全等。

具体表述为:已知△ABC和△DEF,若满足 AB = DE,∠BAC = ∠EDF,AC = DF,则可以得出△ABC ≌△DEF。

例题1:已知△ABC与△DEF,AB = DE,∠BAC = ∠EDF,BC = EF。

判断这两个三角形是否全等。

解析:根据已知条件,符合 SAS 判定法。

因此可以得出△ABC ≌△DEF。

2. SSS 判定法SSS 判定法是指两个三角形的三条边对应相等,则这两个三角形全等。

具体表述为:已知△ABC和△DEF,若满足 AB = DE,BC = EF,AC = DF,则可以得出△ABC ≌△DEF。

例题2:已知△ABC与△DEF,AB = DE,BC = EF,AC = DF。

判断这两个三角形是否全等。

解析:根据已知条件,符合 SSS 判定法。

因此可以得出△ABC ≌△DEF。

3. ASA 判定法ASA 判定法是指两个三角形的两个对应角和一个对应边相等,则这两个三角形全等。

具体表述为:已知△ABC和△DEF,若满足∠BAC = ∠EDF,∠ABC = ∠DEF,AC = DF,则可以得出△ABC ≌△DEF。

例题3:已知△ABC与△DEF,∠BAC = ∠EDF,∠ABC = ∠DEF,AC = DF。

判断这两个三角形是否全等。

解析:根据已知条件,符合 ASA 判定法。

因此可以得出△ABC ≌△DEF。

三、例题演练1. 已知△ABC中,∠A = 90°,AB = AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形一、选择题1. (•年山东东营,第4题3分)下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等考点:命题与定理.分析:利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.解答:解:A、错误,如3与﹣3;B、对角线互相垂直的平行四边形是菱形,故错误,是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,故错误,是假命题;D、正确,是真命题,故选D.点评:本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.2.(•四川遂宁,第9题,4分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.3.(•四川南充,第5题,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题1.(•福建福州,第15题4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使1CF BC2..若AB=10,则EF的长是.2.(•广州,第15题3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.三、解答题1.(•湖南怀化,第19题,10分)如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF 的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质可得∠1=∠2,再加上条件∠B=∠AFE,公共边AE,可利用AAS证明△ABE≌△AFE;(2)首先证明AF=CD,再证明∠B=∠AFE,∠AFD=∠C可证明△AFD≌△DCE进而得到∠FAD=∠CDE.解答:证明:(1)∵EA是∠BEF的角平分线,∴∠1=∠2,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴AB=AF,∵四边形ABCD平行四边形,∴AB=CD,AD∥CB,AB∥CD,∴AF=CD,∠ADF=∠DEC,∠B+∠C=180°,∵∠B=∠AFE,∠AFE+∠AFD=180°,∴∠AFD=∠C,在△AFD和△DCE中,,∴△AFD≌△DCE(AAS),∴∠FAD=∠CDE.点评:此题主要考查了平行四边形的性质,以及全等三角形的判定与性质,关键是正确证明△AFD≌△DCE.2.(•湖南张家界,第24题,10分)如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;菱形的判定与性质.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD 是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和CADF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BCD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.3. (山东济南,第23题,7分)(本小题满分7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =.【解析】在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =.4.(•山东聊城,第20题,8分)如图,四边形ABCD 是平行四边形,作AF ∥CE ,BE ∥DF ,AF 交BE 与G 点,交DF 与F 点,CE 交DF 于H 点、交BE 于E 点.求证:△EBC ≌△FDA .考点:平行四边形的性质;全等三角形的判定. 专题:证明题. 分析: 根据平行三边的性质可知:AD=BC ,由平行四边形的判定方法易证四边形BHDK 和四边形AMCN 是平行四边形,所以看得∠FAD=∠ECB ,∠ADF=∠EBC ,进而证明:△EBC ≌△FDA .解答:证明:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC ,∵AF ∥CE ,BE ∥DF ,∴四边形BHDK 和四边形AMCN 是平行四边形,∴∠FAD=∠ECB ,∠ADF=∠EBC ,在△EBC 和△FDA 中,∴△EBC ≌△FDA .A BC DE 第23题(1)图点评:本题考查了平行四边形的判定以及全等三角形的判定,在全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5. (•浙江杭州,第18题,8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.考点:全等三角形的判定与性质;等腰三角形的性质.分析:可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.解答:解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=BF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,是基础题,难度不大.6.(•遵义24.(10分))如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.考点:平行四边形的性质;全等三角形的判定与性质;等腰直角三角形.分析:(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后平行线分线段成比例定理即可求得.解答:(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,即=,∴AD=2,点评:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.7.(•十堰18.(6分))如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:首先根据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用SAS定理证明△ABE ≌△ACD,进而得到∠B=∠C.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).∴∠B=∠C.点评:本题主要考查三角形全等的判定方法和性质,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.8.((年河南) 22.10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE填空:(1)∠AEB的度数为60 ;(2)线段AD、BE之间的数量关系是AD=BE。

相关文档
最新文档