2015(高等数学二)成人高等学校招生全国统一考试5年真题
2015(数学)成人高等学校招生全国统一考试5年真题
2014年成人高等学校招生全国统一考试数学答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项的字母填涂在答题卡相应的题号的信息点上.............。
(1)设集合M={x ︱-1≤x <2},N={x ︱x ≤1},则集合M ∩N= (A){x ︱x >-1} (B ){x ︱x >1} (C ){x ︱-1≤x ≤1} (D ){x ︱1≤x ≤2} (2)函数y=51-x 的定义域为 (A)(-∞,5) (B )(-∞,+∞) (C )(5,+∞) (D )(-∞,5)∪(5,+∞) (3)函数y=2sin6x 的最小正周期为 (A)3π (B )2π(C )2π (D )3π (4)下列函数为奇函数的是(A)y=log 2x (B )y=sinx (C )y=x2(D )y=3x(5)抛物线y 2=3x 的准线方程为(A)x=﹣23 (B )x=﹣43(C )x=21 (D )x=43(6)已知一次函数y=2x+b 的图像经过点(-2,1),则该图像也经过点 (A)(1,-3) (B )(1,-1,) (C )(1,7) (D )(1,5) (7)若a,b,c 为实数,且a ≠0设甲:b 2-4ac ≥0 , 乙:ax 2+bx+c=0有实数根,则 (A)甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分条件,但不是乙的必要条件 (C )甲既不是乙的充分条件,也不是乙的必要条件 (D )甲是乙的充分必要条件(8)二次函数y=x 2+x-2的图像与x 轴的交点坐标为(A)(-2,0)和(1,0) (B )(-2,0)和(-1,0)(9)不等式︱x-3︱>2的解集是(A){x ︱x <1} (B ){x ︱x >5} (C ){x ︱x >5或x ︱x <1} (D ){x ︱1<x <5}(10)已知圆x 2+y 2+4x-8y+11=0,经过点P (1,0)作该圆的切线,切点为Q ,则线段PQ 的长为 (A)4 (B )8 (C )10 (D )16(11)已知平面向量a=(1,1),b=(1,-1),则两向量的夹角为(A)6π (B )4π(C )3π (D )2π(12)若0<lga <lgb <2,则(A)0<a <b <1 (B )0<b <a <1 (C )1<b <a <100 (D )1<a <b <100 (13)设函数xx x f 1)(+=,则)1(-x f = (A)1+x x (B )1-x x (C )11+x (D )11-x(14)设两个正数a ,b 满足a+b=20,则ab 的最大值为(A)400 (B )200 (C )100 (D )50(15)将5本不同的历史书和2本不同的数学书排成一行,则2本数学书恰好在两端的概率为(A) 101 (B )141 (C )201 (D )211(16)在等腰三角形ABC 中,A 是顶角,且cosA=21,则cosB=(A)23 (B )21(C )-21(D )-23 (17)从1,2,3,4,5中任取3个数,组成的没有重复数字的三位数共有 (A)80个 (B )60个 (C )40个 (D )30个非选择题二、填空题:本大题共4小题,每小题4分,共16分。
2015高考数学全国2卷试题及答案(清晰版)
2015年普通高等学校招生全国统一考试试题及答案理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{}21012,,,,--=A ,()(){}021<+-=x x x B ,则=B A A、{}0,1-B、{}1,0C、{}101,,-D、{}210,,2、若a 为实数,且()()i i a ai 422-=-+,则=a A、-1B、0C、1D、23、根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是A、逐年比较,2008年减少二氧化硫排放量的效果最明显B、2007年我国治理二氧化硫排放显现成效C、2006年以来我国二氧化硫年排放量呈减少趋势D、2006年以来我国二氧化硫年排放量与年份正相关4、已知等比数列{}n a 满足31=a ,21531=++a a a ,则=++753a a aA、21B、42C、63D、845、设函数()()⎩⎨⎧-+=-1222log 1x x x f ,11≥<x x ,则()()=+-12log 22f f A、3B、6C、9D、126、一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与所剩部分体积的比值为A、81B、71C、61D、517、过三点()31,A ,()24,B ,()7,1-C 的圆与y 轴交于M 、N 两点,则=MN A、62B、8C、64D、108、右边程序框图的算法思路源于我国古代算术名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a A、0B、2C、4D、149、已知A ,B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点。
2015年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)
2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}2.若a 为实数,且(2+ai)(a-2i)=-4i,则a=( ) A.-1B.0C.1D.23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21B.42C.63D.845.设函数f(x)={1+log 2(2-x ), x <1,2x -1,x ≥1,则f(-2)+f(log 212)=( )A.3B.6C.9D.126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.157.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2√6B.8C.4√6D.108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0B.2C.4D.149.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A.√5B.2C.√3D.√212.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 14.若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为 .15.(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= . 16.设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (Ⅰ)求sin∠Bsin∠C; (Ⅱ)若AD=1,DC=√22,求BD 和AC 的长.18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区: 73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B地区456789(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(本小题满分12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此(Ⅱ)若l过点(m3时l的斜率;若不能,说明理由.21.(本小题满分12分)设函数f(x)=e mx+x2-mx.(Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O为等腰三角形ABC内一点,☉O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(Ⅰ)证明:EF∥BC;(Ⅱ)若AG等于☉O的半径,且AE=MN=2√3,求四边形EBCF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1:{x =tcosα,y =tsinα(t 为参数,t≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=2√3cosθ. (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A,C 1与C 3相交于点B,求|AB|的最大值.24.(本小题满分10分)选修4—5:不等式选讲 设a,b,c,d 均为正数,且a+b=c+d,证明: (Ⅰ)若ab>cd,则√a +√b >√c +√d ;(Ⅱ)√a +√b >√c +√d 是|a-b|<|c-d|的充要条件.2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A 因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A ∩B={-1,0}.选A.2.B ∵(2+ai)(a -2i)=-4i ⇒4a+(a 2-4)i=-4i, ∴{4a =0,a 2-4=-4,解得a=0. 3.D 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,∴D 不正确.4.B 设{a n }的公比为q,由a 1=3,a 1+a 3+a 5=21得1+q 2+q 4=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=a 1q 2+a 3q 2+a 5q 2=(a 1+a 3+a 5)q 2=21×2=42.5.C ∵-2<1,∴f(-2)=1+log 2[2-(-2)]=3;∵log 212>1, ∴f(log 212)=2log 212-1=2log 26=6.∴f(-2)+f(log 212)=9.6.D 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D-ABC.设正方体的棱长为a,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.评析 本题主要考查几何体的三视图和体积的计算,考查空间想象能力. 7.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b=3-72=-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|=√(1-1)2+(3+2)2=5,于是圆P 的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2√6,则|MN|=|(-2+2√6)-(-2-2√6)|=4√6. 8.B 开始:a=14,b=18,第一次循环:a=14,b=4; 第二次循环:a=10,b=4; 第三次循环:a=6,b=4; 第四次循环:a=2,b=4; 第五次循环:a=2,b=2. 此时,a=b,退出循环,输出a=2.评析 熟悉“更相减损术”对理解框图所确定的算法有帮助. 9.C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC ⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.评析 点C 是动点,如果以△ABC 为底面,则底面面积与高都是变量,因此转化成以△OAB 为底面(S △OAB 为定值),这样高越大,体积越大.10.B 当点P 与C 、D 重合时,易求得PA+PB=1+√5;当点P 为DC 的中点时,有OP ⊥AB,则x=π2,易求得PA+PB=2PA=2√2.显然1+√5>2√2,故当x=π2时, f(x)没有取到最大值,则C 、D 选项错误.当x ∈[0,π4)时, f(x)=tan x+√4+tan 2x ,不是一次函数,排除A,故选B.11.D 设双曲线E 的标准方程为x 2a 2-y 2b 2=1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M 在第一象限内,则易得M(2a,√3a),又M 点在双曲线E 上,于是(2a)2a 2-(√3a)2b2=1,解得b 2=a 2,∴e=√1+b 2a 2=√2.12.A 令g(x)=f(x)x,则g'(x)=xf '(x)-f(x)x 2,由题意知,当x>0时,g'(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数, f(-1)=0,∴f(1)=-f(-1)=0, ∴g(1)=f(1)1=0,∴当x ∈(0,1)时,g(x)>0,从而f(x)>0; 当x ∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵g(-x)=f(-x)-x=-f(x)-x=f(x)x=g(x),∴g(x)是偶函数,∴当x ∈(-∞,-1)时,g(x)<0,从而f(x)>0; 当x ∈(-1,0)时,g(x)>0,从而f(x)<0. 综上,所求x 的取值范围是(-∞,-1)∪(0,1).评析 出现xf '(x)+f(x)>0(<0)时,考虑构造函数F(x)=xf(x),出现xf '(x)-f(x)>0(<0)时,考虑构造函数g(x)=f(x)x.二、填空题 13.答案12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a +2b 平行等价于λ1=12,即λ=12.14.答案32解析 作出可行域,如图:由z=x+y 得y=-x+z,当直线y=-x+z 过点A (1,12)时,z 取得最大值,z max =1+12=32.15.答案 3解析 设f(x)=(a+x)(1+x)4,则其所有项的系数和为f(1)=(a+1)·(1+1)4=(a+1)×16,又奇数次幂项的系数和为12[f(1)-f(-1)],∴12×(a+1)×16=32,∴a=3.评析 二项展开式问题中,涉及系数和的问题,通常采用赋值法. 16.答案 -1n解析∵a n+1=S n+1-S n,∴S n+1-S n=S n+1S n,又由a1=-1,知S n≠0,∴1S n -1S n+1=1,∴{1S n}是等差数列,且公差为-1,而1S1=1a1=-1,∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.三、解答题17.解析(Ⅰ)S△ABD=12AB·ADsin∠BAD,S△ADC=12AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得sin∠Bsin∠C =ACAB=12.(Ⅱ)因为S△ABD∶S△ADC=BD∶DC,所以BD=√2.在△ABD和△ADC中,由余弦定理知AB2=AD2+BD2-2AD·BDcos∠ADB,AC2=AD2+DC2-2AD·DCcos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(Ⅰ)知AB=2AC,所以AC=1.评析本题考查正弦定理,余弦定理的应用,以及三角形的面积公式.属常规题,中等偏易.18.解析(Ⅰ)两地区用户满意度评分的茎叶图如下:A地区B地区4 6 83 5 1 3 6 46 4 2 6 2 4 5 56 8 8 64 3 73 34 699 2 8 65 18 3 2 17 5 5 2 9 1 3通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(Ⅱ)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A 地区用户的满意度等级为非常满意”;C B1表示事件:“B 地区用户的满意度等级为不满意”;C B2表示事件:“B 地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.19.解析 (Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM ⊥AB,垂足为M,则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.于是MH=√EH 2-EM 2=6,所以AH=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n =(x,y,z)是平面EHGF 的法向量,则{n ·FE ⃗⃗⃗⃗ =0,n ·HE⃗⃗⃗⃗⃗ =0,即{10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF ⃗⃗⃗⃗⃗ =(-10,4,8),故|cos<n ,AF ⃗⃗⃗⃗⃗ >|=|n ·AF ⃗⃗⃗⃗⃗||n||AF ⃗⃗⃗⃗⃗ |=4√515. 所以AF 与平面EHGF 所成角的正弦值为4√515. 评析 本题背景常规,设问新颖,鼓励动手试验、创新尝试、独立思考.对空间想象力有较高要求.20.解析 (Ⅰ)设直线l:y=kx+b(k ≠0,b ≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b=9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k=-9.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点(m 3,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k ≠3. 由(Ⅰ)得OM 的方程为y=-9k x.设点P 的横坐标为x P .由{y =-9k x,9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√k 2+9. 将点(m 3,m)的坐标代入l 的方程得b=m(3-k)3,因此x M =k(k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是3√k 2+9=2×k(k -3)m3(k 2+9),解得k 1=4-√7,k 2=4+√7. 因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-√7或4+√7时,四边形OAPB 为平行四边形.评析 本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.21.解析 (Ⅰ)f '(x)=m(e mx -1)+2x.若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0, f '(x)<0;当x ∈(0,+∞)时,e mx -1≥0, f '(x)>0.若m<0,则当x ∈(-∞,0)时,e mx -1>0, f '(x)<0;当x ∈(0,+∞)时,e mx -1<0, f '(x)>0.所以, f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(Ⅱ)由(Ⅰ)知,对任意的m, f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f(x 1)-f(x 2)|≤e-1的充要条件是{f(1)-f(0)≤e -1,f(-1)-f(0)≤e -1,即{e m -m ≤e -1,e -m +m ≤e -1.① 设函数g(t)=e t -t-e+1,则g'(t)=e t -1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e -1+2-e<0,故当t ∈[-1,1]时,g(t)≤0.当m ∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m -m>e-1;当m<-1时,g(-m)>0,即e -m +m>e-1.综上,m 的取值范围是[-1,1].22.解析 (Ⅰ)由于△ABC 是等腰三角形,AD ⊥BC,所以AD 是∠CAB 的平分线.又因为☉O 分别与AB,AC 相切于点E,F,所以AE=AF,故AD ⊥EF.从而EF ∥BC.(Ⅱ)由(Ⅰ)知,AE=AF,AD ⊥EF,故AD 是EF 的垂直平分线.又EF 为☉O 的弦,所以O 在AD 上. 连结OE,OM,则OE ⊥AE.由AG 等于☉O 的半径得AO=2OE,所以∠OAE=30°.因此△ABC 和△AEF 都是等边三角形.因为AE=2√3,所以AO=4,OE=2.因为OM=OE=2,DM=12MN=√3,所以OD=1.于是AD=5,AB=10√33.所以四边形EBCF 的面积为12×(10√33)2×√32-12×(2√3)2×√32=16√33.23.解析 (Ⅰ)曲线C 2的直角坐标方程为x 2+y 2-2y=0,曲线C 3的直角坐标方程为x 2+y 2-2√3x=0. 联立{x 2+y 2-2y =0,x 2+y 2-2√3x =0,解得{x =0,y =0,或{x =√32,y =32. 所以C 2与C 3交点的直角坐标为(0,0)和(√32,32). (Ⅱ)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(2√3cos α,α).所以|AB|=|2sin α-2√3cos α|=4|sin (α-π3)|.当α=5π6时,|AB|取得最大值,最大值为4.24.解析 (Ⅰ)因为(√a +√b )2=a+b+2√ab ,(√c +√d )2=c+d+2√cd ,由题设a+b=c+d,ab>cd得(√a+√b)2>(√c+√d)2. 因此√a+√b>√c+√d.(Ⅱ)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得√a+√b>√c+√d.(ii)若√a+√b>√c+√d,则(√a+√b)2>(√c+√d)2,即a+b+2√ab>c+d+2√cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,√a+√b>√c+√d是|a-b|<|c-d|的充要条件.。
2015高考数学全国2卷试题及答案(清晰版)
2015年普通高等学校招生全国统一考试试题及答案理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{}21012,,,,--=A ,()(){}021<+-=x x x B ,则=B A A、{}0,1-B、{}1,0C、{}101,,-D、{}210,,2、若a 为实数,且()()i i a ai 422-=-+,则=a A、-1B、0C、1D、23、根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是A、逐年比较,2008年减少二氧化硫排放量的效果最明显B、2007年我国治理二氧化硫排放显现成效C、2006年以来我国二氧化硫年排放量呈减少趋势D、2006年以来我国二氧化硫年排放量与年份正相关4、已知等比数列{}n a 满足31=a ,21531=++a a a ,则=++753a a aA、21B、42C、63D、845、设函数()()⎩⎨⎧-+=-1222log 1x x x f ,11≥<x x ,则()()=+-12log 22f f A、3B、6C、9D、126、一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与所剩部分体积的比值为A、81B、71C、61D、517、过三点()31,A ,()24,B ,()7,1-C 的圆与y 轴交于M 、N 两点,则=MN A、62B、8C、64D、108、右边程序框图的算法思路源于我国古代算术名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a A、0B、2C、4D、149、已知A ,B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点。
2015年普通高等学校招生全国统一考试数学试题及答案(全word可编辑版,全解全析)
2015年普通高等学校招生全国统一考试课标全国Ⅰ理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,理1)设复数z满足1+z=i,则|z|=()A.1B.2C.3D.2答案:A解析:∵1+z=i,∴z=i−1=(i−1)(−i+1)=i,∴|z|=1.2.(2015课标全国Ⅰ,理2)sin 20°cos 10°-cos 160°sin 10°=()A.-32B.32C.-12D.12答案:D解析:sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(10°+20°)=sin30°=12.3.(2015课标全国Ⅰ,理3)设命题p:∃n∈N,n2>2n,则p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案:C解析:∵p:∃n∈N,n2>2n,∴p:∀n∈N,n2≤2n.故选C.4.(2015课标全国Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案:A解析:由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C320.62(1-0.6)+C330.63=0.648.5.(2015课标全国Ⅰ,理5)已知M(x0,y0)是双曲线C:x 22-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是()A. −3,3B. −3,3C. −22,22D. −23,23答案:A解析:由条件知F1(-3,0),F2(3,0),∴MF1=(-3-x0,-y0),MF2=(3-x0,-y0),∴MF1·MF2=x02+y02-3<0.①又∵x022−y02=1,∴x02=2y02+2.代入①得y02<13,∴-3<y0<3. 6.(2015课标全国Ⅰ,理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 答案:B解析:设底面圆半径为R ,米堆高为h.∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π.∴体积V=1×1·πR 2h=1×π× 16 2×5.∵π≈3,∴V ≈3209(尺3). ∴堆放的米约为3209×1.62≈22(斛).7.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,BC =3CD ,则( )A .AD =-1AB +4AC B .AD =1AB −4AC C .AD =43AB +13AC D .AD=43AB −13AC 答案:A解析:如图:∵AD =AB +BD,BC =3CD , ∴AD =AB +43BC =AB +43(AC −AB )=-13AB +43AC. 8.(2015课标全国Ⅰ,理8)函数f (x )=cos(ωx+φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A . kπ−1,kπ+3 ,k ∈Z B . 2kπ−1,2kπ+3 ,k ∈Z C . k −14,k +34 ,k ∈Z D . 2k −1,2k +3 ,k ∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2× 54−14=2,所以2πω=2,解得ω=π. 所以f (x )=cos(πx+φ).由图像可知,当x=12 14+54=34时,f (x )取得最小值,即f 3 =cos3π+φ =-1,解得3π4+φ=2k π+π(k ∈Z ),解得φ=2k π+π4(k ∈Z ).令k=0,得φ=π,所以f (x )=cos πx +π.令2k π≤πx+π≤2k π+π(k ∈Z ),解得2k-14≤x ≤2k+34(k ∈Z ).所以函数f (x )=cos πx +π4的单调递减区间为 2k−14,2k +34(k ∈Z ).结合选项知应选D .9.(2015课标全国Ⅰ,理9)执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .8答案:C解析:∵S=1,n=0,m=1,t=0.01,∴S=S-m=12,m=m 2=14,n=n+1=1,S>0.01,∴S=14,m=18,n=2,S>0.01,∴S=1,m=1,n=3,S>0.01,∴S=1,m=1,n=4,S>0.01,∴S=132,m=164,n=5,S>0.01,∴S=1,m=1,n=6,S>0.01,∴S=1,m=1,n=7,S<0.01,∴n=7.10.(2015课标全国Ⅰ,理10)(x 2+x+y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案:C解析:由于(x 2+x+y )5=[(x 2+x )+y ]5,其展开式的通项为T r+1=C 5r (x 2+x )5-r y r (r=0,1,2,…,5),因此只有当r=2,即T 3=C 52(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i+1=C 3i (x 2)3-i ·x i =C 3i x 6-i(i=0,1,2,3),令6-i=5,得i=1,则(x 2+x )3的展开式中x 5项的系数是C 31=3,故(x 2+x+y )5的展开式中,x 5y 2的系数是C 52·3=10×3=30. 11.(2015课标全国Ⅰ,理11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件知,该几何体是由一个圆柱被过圆柱底面圆直径的平面所截剩下的半个圆柱及一个半球拼接而成,其表面积是一个矩形面积、两个半圆面积、圆柱侧面积的一半、球表面积的一半相加所得,所以表面积为S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,理12)设函数f (x )=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A. −32e ,1B. −32e,34C.32e ,34D.32e,1答案:D解析:设g(x)=e x(2x-1),h(x)=a(x-1),则不等式f(x)<0即为g(x)<h(x).因为g'(x)=e x(2x-1)+2e x=e x(2x+1),当x<-12时,g'(x)<0,函数g(x)单调递减;当x>-12时,g'(x)>0,函数g(x)单调递增.所以g(x)的最小值为g −1.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=e x(2x-1)与h(x)=a(x-1)的大致图像.显然,当a≤0时,满足不等式g(x)<h(x)的整数有无数多个.函数g(x)=e x(2x-1)的图像与y轴的交点为A(0,-1),与x轴的交点为D1,0.取点C −1,−3e.由图可知,不等式g(x)<h(x)只有一个整数解时,须满足k PC≤a<k PA.而k PC=0−−3e=3,k PA=0−(−1)=1,所以32e ≤a<1.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,理13)若函数f(x)=x ln(x+ a+x2)为偶函数,则a=.答案:1解析:∵f(x)是偶函数,∴f(-1)=f(1).又f(-1)=-ln(-1+a+1)=ln a+1+1a,f(1)=ln(1+a+1),因此ln(a+1+1)-ln a=ln(a+1+1),于是ln a=0,∴a=1.14.(2015课标全国Ⅰ,理14)一个圆经过椭圆x 2+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案: x−32+y2=25解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以(a−0)2+(0−2)2=4-a,解得a=32,故圆心为32,0,此时半径r=4-32=52,因此该圆的标准方程是 x−322+y2=254.15.(2015课标全国Ⅰ,理15)若x,y满足约束条件x−1≥0,x−y≤0,x+y−4≤0,则yx的最大值为.答案:3解析:画出约束条件对应的平面区域(如图),点A为(1,3),要使y最大,则y−0最大,即过点(x,y),(0,0)两点的直线斜率最大,由图形知当该直线过点A时,yx max =3−01−0=3.16.(2015课标全国Ⅰ,理16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 答案:( 6− 2, 6+ 2) 解析:如图.作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°. 在△CBE 中,由正弦定理得,EB= − 延长CD 交BA 的延长线于F ,则∠F=30°. 在△BCF 中,由正弦定理得,BF= 6+ 2, 所以AB 的取值范围为( 6− 2, 6+ 2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,理17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a n 2+2a n =4S n +3,可知a n +12+2a n+1=4S n+1+3.可得a n +12−a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n +12−a n 2=(a n+1+a n )(a n+1-a n ). 由于a n >0,可得a n+1-a n =2.又a 12+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1. 6分(2)由a n =2n+1可知b n =1n n +1=1=11−1.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12 13−15 + 15−17 +⋯+12n +1−12n +3=n . 12分18.(本小题满分12分)(2015课标全国Ⅰ,理18)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. 解:(1)连结BD ,设BD ∩AC=G ,连结EG ,FG ,EF.在菱形ABCD 中,不妨设GB=1. 由∠ABC=120°,可得AG=GC=由BE ⊥平面ABCD ,AB=BC ,可知AE=EC. 又AE ⊥EC ,所以EG= 3,且EG ⊥AC. 在Rt △EBG 中,可得BE= 2,故DF= 2. 在Rt △FDG 中,可得FG= 62.在直角梯形BDFE 中,由BD=2,BE= 2,DF= 22,可得EF=3 22. 从而EG 2+FG 2=EF 2,所以EG ⊥FG. 又AC ∩FG=G ,可得EG ⊥平面AFC.因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC. 6分(2)如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴、y 轴正方向,|GB |为单位长,建立空间直角坐标系G-xyz.由(1)可得A (0,- E (1,0, F −1,0,2,C (0, 3,0),所以AE =(1, 3, 2),CF= −1,− 3, 2 . 10分故cos <AE ,CF >=AE ·CF|AE ||CF|=- 33. 所以直线AE 与直线CF 所成角的余弦值为 3.12分19.(本小题满分12分)(2015课标全国Ⅰ,理19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i = x i ,w =18∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i −u )(v i −v )∑i =1n(u i −u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i −w )(y i −y )∑i =18(w i −w )2=108.81.6=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.12分20.(本小题满分12分)(2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线C :y=x 24与直线l :y=kx+a (a>0)交于M ,N两点.(1)当k=0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 解:(1)由题设可得M (2 a ,a ),N (-2 a ,a ),或M (-2 a ,a ),N (2 a ,a ).又y'=x 2,故y=x 24在x=2 a 处的导数值为 a ,C 在点(2 a ,a )处的切线方程为y-a= a (x-2 a ),即 a x-y-a=0. y=x 2在x=-2 a 处的导数值为- a ,C 在点(-2 a ,a )处的切线方程为y-a=- a (x+2 a ),即 a x+y+a=0. 故所求切线方程为 a x-y-a=0和 a x+y+a=0. 5分(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y=kx+a 代入C 的方程得x 2-4kx-4a=0. 故x 1+x 2=4k ,x 1x 2=-4a.从而k 1+k 2=y 1−b x 1+y 2−bx 2=2kx 1x 2+(a−b )(x 1+x 2)x 1x 2=k (a +b )a.当b=-a 时,有k 1+k 2=0,则直线PM 的倾角与直线PN 的倾角互补,故∠OPM=∠OPN ,所以点P (0,-a )符合题意. 12分21.(本小题满分12分)(2015课标全国Ⅰ,理21)已知函数f (x )=x 3+ax+1,g (x )=-ln x.(1)当a 为何值时,x 轴为曲线y=f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x>0),讨论h (x )零点的个数. 解:(1)设曲线y=f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f'(x 0)=0,即 x 03+ax 0+1=0,3x 02+a =0.解得x 0=1,a=-3.因此,当a=-34时,x 轴为曲线y=f (x )的切线. 5分(2)当x ∈(1,+∞)时,g (x )=-ln x<0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)无零点. 当x=1时,若a ≥-54,则f (1)=a+54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x=1是h (x )的零点;若a<-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x=1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x>0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f'(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a+54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a<0,则f (x )在 0, −3单调递减,在 −3,1 单调递增,故在(0,1)中,当x= −3时,f (x )取得最小值,最小值为f −a =2a −a +1. ①若f −a >0,即-3<a<0,f (x )在(0,1)无零点; ②若f −a =0,即a=-3,则f (x )在(0,1)有唯一零点;③若f −3 <0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.10分综上,当a>-3或a<-5时,h (x )有一个零点;当a=-3或a=-5时,h (x )有两个零点;当-5<a<-3时,h (x )有三个零点. 12分请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)(2015课标全国Ⅰ,理22)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(1)若D为AC的中点,证明:DE是☉O的切线;(2)若OA=3CE,求∠ACB的大小.解:(1)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.5分(2)设CE=1,AE=x,由已知得AB=2,BE=2.由射影定理可得,AE2=CE·BE,所以x2=12−x2,即x4+x2-12=0.可得x=3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,理23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.5分(2)将θ=π4代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN|= 2.由于C2的半径为1,所以△C2MN的面积为1.10分24.(本小题满分10分)(2015课标全国Ⅰ,理24)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.解:(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为 x2<x<2.5分(2)由题设可得,f(x)=x−1−2a,x<−1,3x+1−2a,−1≤x≤a,−x+1+2a,x>a.所以函数f(x)的图像与x轴围成的三角形的三个顶点分别为A2a−13,0,B(2a+1,0),C(a,a+1),△ABC的面积为2(a+1)2.由题设得23(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).10分。
15年数二真题答案解析
15年数二真题答案解析学二真题答案解析在备考高考的过程中,一份完整的真题答案解析是非常重要的。
而在今年的高考数学二卷中,也有一些考点和解题思路是需要我们特别关注和掌握的。
下面,将针对学二真题进行一些详细的解析和讲解。
首先,我们来看第一题,该题目是一道概率题。
题目给出了一个骰子的每个面的数字范围,并要求求出投掷两次之后,恰好两次都是奇数的概率。
这道题主要考察的是概率的基本计算。
首先我们要计算出每次投掷都是奇数的概率,然后再将两次的概率相乘即可。
具体计算如下:首先,每次投掷都是奇数的概率为:1/2 * 1/2 = 1/4然后,两次都是奇数的概率为:1/4 * 1/4 = 1/16接下来我们来看第二题,该题目是一道函数题。
题目给出了一个函数的定义,要求求出函数在给定点的斜率。
这道题主要考察的是导数的计算和运用。
首先,根据函数的定义可以得到函数的表达式为f(x) = x^3 - 3x^2 + 2x + 1。
然后,我们需要求出该函数在给定点的导数,即斜率。
具体计算如下:首先,对函数进行求导,得到f'(x) = 3x^2 - 6x + 2然后,将给定的x值代入导数公式中,即可求得所求的斜率。
接下来我们来看第三题,该题目是一道几何题。
题目给出了一个图形,要求求出该图形的面积。
这道题主要考察的是几何图形的分析和计算。
首先,我们需要分解该图形为两个几何图形的组合,然后分别计算出这两个几何图形的面积,最后将两个面积相加即可得到所求的总面积。
具体计算如下:首先,将该图形分解为一个矩形和一个三角形的组合。
然后,分别计算出矩形和三角形的面积,最后将两个面积相加即可得到所求的总面积。
以上是对学二真题中三道题目的解析和讲解。
通过这些题目的分析和计算,我们可以发现,在备考过程中,要注重细节的处理和计算的准确性。
同时,要注意运用已学知识的结合和综合运用,从而更好地应对高考数学二卷中的各种题型。
总的来说,在备考高考的过程中,在掌握基础知识的基础上,还需要通过练习和解析真题来不断提高解题能力和技巧。
2015年(全国卷II)(含标准答案)高考文科数学
2015年普通高等学校招生全国统一考试(2全国Ⅱ卷)
数学(文)试题
一、选择题 ( 本大题 共 12 题, 共计 60 分)
1.已知集合A ={}{}=<<=<<-B A x x B x x 则,30,21( )
A.( −1,3) B.( −1,0 ) C.(0,2) D .(2,3)
2.若a 实数,且=+=++a i i
ai 则,312( ) A.-4 B . -3 C. 3 D . 4
3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )
A .逐年比较,2008年减少二氧化碳排放量的效果最显著;
B.2007年我国治理二氧化碳排放显现成效;
C.2006年以来我国二氧化碳排放量呈减少趋势;
D .2006年以来我国二氧化碳年排放量与年份正相关。
4.已知向量=•+-=-=a b a b a )则(2),2,1(),1,0(( )
A. -1 B. 0 C. 1 D . 2
5.设{}项和,的前是等差数列n a S n n 若==++5531,3S a a a 则( )
2700
2600
2500
2400
2100
2000
1900)
A. 5 B. 7 C. 9 D . 11
6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 ( )
A. 81
B.71
C. 6
1 D. 51 7.已知三点)32()30(),01(,,,,
C B A ,则ABC 外接圆的圆心到原点的距离为( )
A . 35 B. 321 C. 352 D . 34。
2015年高考理科数学(全国二卷)真题版
2015年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)(青海、西藏、甘肃、贵州、内蒙古、新疆、宁夏、吉林、黑龙江、云南、辽宁、广西、海南等)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-2,-1,0,1,2},B={X|(X-1)(X+2)<0},则A B=()A.{-1,0} B.{0,1} C.{-1,0,1}D.{0,1,2}2.若a为实数,且(2+ai)(a-2i)= - 4i,则a=()A.-1 B.0 C.1 D.23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫排放量呈减少趋势D.2006年以来我国二氧化硫排放量与年份正相关4.已知等比数列{错误!未找到引用源。
} 满足错误!未找到引用源。
=3,错误!未找到引用源。
+错误!未找到引用源。
=21,则错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
=()A.21 B.42 C.63 D.845.设函数f(x)=错误!未找到引用源。
则f(-2)+f(错误!未找到引用源。
)=()A.3 B.6 C.9 D.126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则IMNI=()A.2错误!未找到引用源。
成人高考专升本历年真题2015年高等数学(二)
1. lim x →−1x +1x 2+1=<>A. 0B.12C.1D.22.当x →0时,sin 3x 是2x 的〔A.低阶无穷小量B.等阶无穷小量C. 同阶但不等价无穷小量D.高阶无穷小量3.函数f<x>= x+1,x <0,在x=0处〔x 2, x ≥0A.有定义且有极限B.有定义但无极限C.无定义但有极限D.无定义且无极限4.设函数f<x>=x e π2,则f'<x>=〔A.<1+x>e π2B. <12+x>e π2C. <1+x 2>e π2D. <1+2x>e π25.下列区间为函数f<x>=x 4-4x 的单调增区间的是〔A.<-∞,+∞>B. <-∞,0>C.〔-1,1D. <1,+∞>6.已知函数f<x>在区间[−3,3]上连续,则∫f (3x )1−1dx=<>A.0B.13∫f (t )3−3dtC. 13∫f (t )1−1dtD.3∫f (t )3−3dt 7.∫(x −2+sin x )dx=<>A. -2x -1+cos x +cB. -2x -3+cos x +cC. -x −33-cos x +c D. –x -1-cos x +c8.设函数f<x>=∫(t −1)dt x 0,则f"<x>=<> A.-1 B.0 C.1 D.29.设二元函数z=x y ,则∂z ∂x=<>A.yx y-1B. yx y+1C.y x ln xD.x y10.设二元函数z=cos (xy ),∂2y ∂x 2=〔 A.y 2sin (xy ) B.y 2cos (xy ) C.-y 2sin (xy )D.- y 2cos (xy )11.lim x →0sin 1x=. 0 12.lim x →∞(1−2x )x 3=.e −2313.设函数y=ln (4x −x 2),则y ′(1)=.23 14.设函数y=x+sin x ,则dy=.〔1+cos x dx15.设函数y=x 32+e −x ,则y"=.34x −12+e -x 16.若∫f (x )dx =cos (ln x )+C ,则f (x )=.-sin (ln x )x17.∫x |x |1−1dx =. 018.∫d (x ln x )=. x ln x +C 19.由曲线y=x 2,直线x=1及x 轴所围成的平面有界图形的面积S=.1320.设二元函数z=e y x ,则∂z ∂x|<1,1>=. -e21.计算lim x →1e x −e ln x lim x →1e x −e ln x =lim x →1e x 1x =e22.设函数y=cos (x 2+1),求y'.y'=[cos (x 2+1)]'=-sin (x 2+1)∙<x 2+1>'=-2xsin (x 2+1)23.计算∫x 4+x 2dx ∫x 4+x 2dx=12∫14+x 2d<4+x 2>=12ln (4+x 2)+C24.计算∫f (x )4 0 dx ,其中 f (x )={x ,x <1 11+x ,x ≥1 ∫f (x )4 0 dx =∫xdx 1 0+∫11+x 1 0dx=x 22|10+ln (1+x )|41=12+ln 5225.已知f<x>是连续函数,且∫f (t )x 0e −t dt=x,求∫f (x )1 0dx . 等式两边对x 求导,得f<x>e −x =1f<x>=e x∫f (x )1 0dx =∫e x 1 0dx =e x |10=e-126.已知函数发f<x>=ln x -x.<1>求f<x>的单调区间和极值;f<x>的定义域为〔0,+∞,f'<x>=1x -1.令f'<x>=0得驻点x=1.当0<x <1时,f'<x>>0;当x >1时,f'<x><0.f<x>的单调增区间是〔0,1,单调减区间是〔1,+∞.f<x>在x=1处取得极大值f<1>=-1<2>判断曲线y=f<x>的凹凸性。
2015年_全国II卷数学(原卷+答案)
【点睛】易于理解集补集的概念、交集概念有误.
2.渐近线方程为 x y 0 的双曲线的离心率是( )
2
A. 2
B. 1
C. 2
D. 2
【答案】C 【解析】
【分析】
本题根据双曲线的渐近线方程可求得 a b 1 ,进一步可得离心率.容易题,注重了双曲线基
础知识、基本计算能力的考查.
【详解】因为双曲线的渐近线为 x y 0 ,所以 a=b=1,则 c a2 b2 2 ,双曲线的
数 a 的最大值是____.
17.已知正方形 ABCD 的边长为 1,当每个 i (i 1, 2, 3, 4, 5, 6) 取遍 1时, uuur uuur uuur uuur uuur uuur
| 1 AB 2 BC 3CD 4 DA 5 AC 6 BD | 的最小值是________,最大值是
x, 2a
求 a 的取值范围.
注:e=2.71828…为自然对数的底数.
2019 年普通高等学校招生全国统一考试(浙江卷)
数学
参考公式:
若事件 A, B 互斥,则 P( A B) P( A) P(B) 若事件 A, B 相互独立,则
P( AB) P( A)P(B) 若事件 A 在一次试验中发生的概率是 p ,则
x y 0
A. 1
B.1
C.10
D.12
4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原
理,利用该原理可以得到柱体体积公式 V 柱体=Sh,其中 S 是柱体的底面积,h 是柱体的
高.若某柱体的三视图如图所示,则该柱体的体积是
A.158
B.162
C.182
D.32
5.若 a>0,b>0,则“a+b≤4”是 “ab≤4”的
2015年全国2卷数学高考真题
绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学2注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z 满足1+z1=i ,则|z|=(A )1 (B (C (D )2 (2)sin20°cos10°-con160°sin10°=(A )2- (B )2 (C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是(A )( (B )((C )(3-,3) (D )()(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)设D为ABC所在平面内一点=3,则(A)=+ (B)=(C)=+ (D)=(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(),k (b)(),k(C)(),k(D)(),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)的展开式中,y²的系数为(A)10 (B)20 (C)30(D)60(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题一、选择题:1—10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项的字母填涂在答题卡相应题号的信息点上............。
1.0lim →x 22sin xx= A.0 B.1 C.2 D.∞ 2.设函数)(x f 在x=1处可导,且)1('f =2,则0lim→x xf x f )1()1(--=A.-2B. -21C.21D.23. d(sin2x)=A.2cos2xdxB.cos2xdxC.-2cos2xdxD.-cos2xdx4.设函数)(x f 在区间[a ,b]连续且不恒为零,则下列各式中不恒为常数.....的是 A.)()(a f b f - B.⎰badx x f )( C. 0lim →x )(x f D. ⎰xadt t f )(5.设)(x f 为连续函数,且⎰xdt t f 0)(=)1ln(3++x x ,则)(x f =A.1132++x x B. 113++x x C.3x 2D. 11+x6.设函数)(x f 在区间[a ,b]连续,且I (u )=,)()(dx t f dx x f uaua⎰⎰-a<u<b ,则I (u )A.恒大于零B.恒小于零C.恒等于零 D 可正,可负. 7.设二元函数z=x y,则yz∂∂= A. x yB. x ylny C. x ylnx D.yx y-18.设函数)(x f 在区间[a ,b]连续,则曲线y=)(x f 与直线x=a ,x=b 及x 轴所围成的平面图形的面积为 A.⎰badx x f )( B. -⎰b adx x f )( C. ⎰b adx x f )( D.⎰badx x f )(9.设二元函数z=xcosy ,则yx z∂∂∂2=A.xsinyB.-xsinyC.sinyD.-siny 10.设事件A ,B 相互独立,A,B 发生的概率分别为0.6;0.9,则A ,B 都不发生的概率为 A.0.54 B.0.04 C.0.1 D.0.4非选择题二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后........。
11.函数)(x f =12-x 的间断点为x= . 12、设函数)(x f =⎩⎨⎧<≥-0,,0,13x a x e x 在x=0处连续,则a= .13.设y=sin (2x+1),则y n= . 14函数)(x f =x+x1的单调增区间为 . 15.曲线y=e x+x 2在点(0,1)处的切线斜率为 . 16.设)('x f 为连续函数,则⎰dx x f )('= .17.⎰-+113)1cos (dx x x = .18. ⎰-15)12(dx x = .19.设二元函数z=yx e+1,则yz∂∂= . 20.设二元函数z=x 3y 2,则yx z∂∂∂2= .三、解答题:21~28题,共70分,解答应写出推理、演算步骤,并将其写在答题卡相应题号后........。
21.(本题满分8分)计算0lim →x 2212x e e x x +-22.(本题满分8分)已知x=-1是函数)(x f =ax 3+bx 2的驻点,且曲线y=)(x f 过点(1,5),求a ,b 的值。
计算dx x x ⎰-13.24.(本题满分8分) 计算⎰exdx 1ln25.(本题满分8分)设y=y (x )是由方程e y+xy=1所确定的隐函数,求dxdy 。
设曲线y=sinx (0≤x ≤2π),x 轴及直线x=2π所围成的平面图形为D ,在区间(0,2π)内求一点x 0,使直线x= x 0将D 分为面积相等的两部分。
27.(本题满分10分) 设50件产品中,45件是正品,5件是次品,从中任取3件,求其中至少有1件是次品的概率.(精确到0.01)28.(本题满分10分)设曲线y=4-x 2(x ≥0)与x 轴,y 轴及直线x=4所围成的平面图形为D (如图中阴影部分所示)。
(1)求D 的面积S 。
(2)求图中x 轴上方的阴影部分绕y 轴旋转一周所得旋转体的体积2014年成人高等学校专升本招生全国统一考试高等数学(二)试题答案及评分参考一、选择题:每小题4分,共40分1.B2.A3.A4.D5.A6.C7.C8.C9.D 10.B二、填空题:每小题4分,共40分。
11. 1 12. 0 13.-4sin (2x+1) 14.(-∞,-1),(1,+∞) 15.116. )(x f +c 17.2 18.0 19. -y x e y x ++12)(1 20. 6x 2y 三、解答题:共70分.21.解:0lim →x 2212xe e x x +-=0lim →x x e e xx -2 …………3分 =0lim →x (2e 2x-e x) …………6分=1 …………8分22.解:)('x f =3ax 2+2bx由)1('-f =0,得3a-2b=0 ① …………3分 曲线y=)(x f 过点(1,5),故a+b=5 ② …………6分由①,②得a=2,b=3 …………8分23.解:dx x x ⎰-13=dx x x ⎰-+-1113 …………2分 =⎰-+++dx x x x )111(2…………6分 =33x +22x +x+ln ︱x-1︱+C …………8分24.解:⎰exdx 1ln =xlnx ⎰-eedx 11…………4分=e-x1e…………6分=1 …………8分25.解:方程e y+xy=1两边对x 求导,得eydx dy +y+x dx dy =0 …………6分 于是dx dy =-xe y y + …………8分26解:依题意有⎰sin x xdx =⎰20sin x x xdx ,即 …………4分-cosxx =-cosx 02x x ,1-cosx 0=cosx 0, cosx 0=21…………8分 得 x 0=3π…………10分27.解:设A={3件产品中至少有1件次品}则_A ={3件产品都为正品} …………2分 所以P(A)=1-P )(_A …………5分=1-350345C C=0.28 …………10分28.解:(1)面积S=⎰-202)4(dx x -⎰-422)4(dx x …………3分=(4x-33x )02-(4x-33x )24=16 …………5分(2)体积V=⎰402dy x π=⎰-40)4(dy y π=042)214(y y -π=8π …………10分2013年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上。
............. 1. x xx x 2cos lim2→=A.2π B.-2π C.π2 D.- π2 2. 设函数y=e x -ln3,则dxdy=A. exB. e x +13C. 13D. e x -133. 设函数f(x)=ln(3x ),则=f ’(2)=A. 6B. ln6C. 12D.164. 函数f(x)=1-x 3在区间(∞+∞-,)A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加5. dx x ⎰21= A.x 1+c B.lnx 2+c C.-x 1+c D.21x+c 6. dt t dxd x20)1(⎰+= A.(x+1)2B.0C.13 (x+1) 3 D.2(x+1)7. 曲线y=|x|与直线y=2所围成的平面图形的面积为A.2B.4C.6D.8 8. 设函数z=cos(x+y),则)1,1(xz ∂∂=A.cos2B.-cos2C.sin2D.-sin29.设函数z=xe y,则yx z∂∂∂2=A. e xB. e yC. xe yD. ye x 10. 设A ,B 是两随机事件,则事件A-B 表示A.事件A ,B 都发生B.事件B 发生而事件A 不发生非选择题二、填空题:11~20小题,每小题4分,共40分,把答案填写在答题卡相应题号后........。
11. 32lim31-→x xx = .12.设函数f(x)={,1,ln ,1,≥<-x x x x a 在x=1处连续,则a= .13.曲线y=x 3-3x 2+5x-4的拐点坐标为 . 14.设函数y=e x+1,则y n = . 15. xx x3)11(lim +∞→= . 16. 设曲线y=ax 2+2x 在点(1,a+2)处的切线与直线y=4x 平行,则a=17.dx e x⎰3= .18.dx x x ⎰-+113)3( = .19.=⎰-dx e x 01.20.设函数z=x 2+lny ,则dz= .三、解答题:21~28小题,共70分,解答应写出推理、演算步骤,并将其写在答题卡相应题号后........。
21.(本题满分8分)计算112lim 231-+-→x x x x .22. (本题满分8分) 设函数y=sinx 2+2x ,求dy计算dx xxe x⎰+51.24. (本题满分8分) 计算⎰exdx 1ln .25. (本题满分8分)已知离散型随机变量x 的概率分布为(1) 求常数a ;(2) 求x 的数学期望EX求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积V27.(本题满分10分)求函数f(x)=x3-3x2-9x+2的单调区间和极值。
28.(本题满分10分)求函数在条件f(x,y)=x2+y2在2x+3y=1下的极值。
2013年成人高等学校专升本招生全国统一考试高等数学(二) 试题答案及评分参考一、选择题:每小题4分,共40分.1.D2.A3.C4.B5.C6.A7.B8.D9.B 10.C二、填空题:每小题4分,共40分11.-1 12.1 13.(1,-1) 14.1+x e15.e 316.1 17.xe 331+c 18.0 19.1 20. 2xdx+dy y1 三、解答题:共70分21.解:xx x x x x x 223lim 112lim 21231-=-+-→→ ………….6分=12 . ………….8分22.解:y ’=cosx 2(x 2)’+2 ………….3分 =2xcosx 2+2 …………..6分dy=(2xcosx 2+2)dx . ……………8分23.解:dx e x dx x xe x x ⎰⎰⎪⎭⎫⎝⎛+=+5511 ..………….2分=ln|x|+c e x+55. …………..8分 24.解:⎰⎰-=eee x xd x xdx 111)(ln |ln ln …………..4分=e-x|e1 …………..6分=1 ………….8分 25.解:(1)因为0.2+0.1+0.5+a=1,所以a=0.2 …………..3分(2)EX=10⨯0.2+20⨯0.1+30⨯0.5+40⨯0.2=27 …………...8分26.解:1220()V dx x π=⎰………………4分140x dx π=⎰1501()5|x π= ………………8分 π27.解:函数()f x 的定义域为(,)-∞+∞.2'()3693(1)(3)x x x x x f =--=+- .………………4分令'()x f =0,得驻点11x =-,23x =.因此()f x 的单调增区间是(,1)-∞-,(3,)+∞;单调减区间是(1,3)-.()f x 的极小值为(3)25f =-,极大值为(1)7f -=. ………………10分28.解:作辅助函数(,,)(,)(231)F x y f x y x y λλ=++-22(231)x y y x λ=+++-.………………4分令'220,'230,'2310,x y xy F x y λλλ=+==+==+-=………………6分得213x =,313y =,213λ=-.………………8分因此,(,)f x y 在条件231x y +=下的极值为231(,)131313f =. ………………10分2012年成人高等学校专升本招生全国统一考试高等数学(二)答案必须答在答题卡上指定的位置,答在试卷上无效.......。