高考数学一轮复习(热点难点)专题11 零点根交点教你如何转化
新高考数学一轮复习考点知识专题讲解与练习 11 指数与指数函数
新高考数学一轮复习考点知识专题讲解与练习考点知识总结11指数与指数函数高考概览高考在本考点的常考题型为选择题,分值为5分,中等难度考纲研读1.了解指数函数模型的实际背景2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点4.体会指数函数是一类重要的函数模型一、基础小题1.设2x=8y+1,9y=3x-9,则x+y的值为()A.18 B.21 C.24 D.27答案 D解析因为2x=8y+1=23(y+1),所以x=3y+3,因为9y=3x-9=32y,所以x-9=2y,解得x=21,y=6,所以x+y=27.2.化简(a>0,b>0)的结果是()A.ba B.ab C.a2b D.ab答案 D解析3.函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案 D解析由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.故选D.4.已知a=(2)43,b=225,c=913,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b答案 A解析5.函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是()A.f(b x)≤f(c x) B.f(b x)≥f(c x)C.f(b x)>f(c x) D.与x有关,不确定答案 A解析∵f(x+1)=f(1-x),∴f(x)图象的对称轴为直线x=1,由此得b=2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).故选A.6.已知x∈(0,+∞)时,不等式9x-m·3x+m+1>0恒成立,则m的取值范围是() A.(2-22,2+22) B.(-∞,2)C.(-∞,2+22) D.[2+22,+∞)答案 C解析令t=3x(t>1),则由已知得函数f(t)=t2-mt+m+1的图象在t∈(1,+∞)上恒在x轴的上方,则对于方程f(t)=0,有Δ=(-m)2-4(m+1)<0或⎩⎪⎨⎪⎧Δ≥0,m2≤1,f (1)=1-m +m +1≥0,解得2-22<m <2+22或m ≤2-22,所以m <2+2 2.故选C. 7.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .1x 2+1>1y 2+1B .ln(x 2+1)>ln (y 2+1)C .sin x >sin yD .x 3>y 3 答案 D解析 因为实数x ,y 满足a x <a y (0<a <1),所以x >y ,根据函数y =x 2的对称性和单调性,可知x 2,y 2的大小不确定,故A ,B 中的不等式不恒成立;根据正弦函数的单调性,可知C 中的不等式也不恒成立;由于函数f (x )=x 3在R 上单调递增,所以x 3>y 3,所以D 中的不等式恒成立.故选D.8.(多选)设函数f (x )=2x ,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ) A .f (x 1+x 2)=f (x 1)·f (x 2) B .f (x 1·x 2)=f (x 1)+f (x 2) C .f (x 1)-f (x 2)x 1-x 2>0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2答案 ACD 解析9.(多选)已知函数f (x )=e x -1-e -x +1,则下列说法正确的是( ) A .函数f (x )的最小正周期是1 B .函数f (x )是单调递增函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 答案 BD解析 函数f (x )=e x -1-e -x +1,即f (x )=e x -1-1e x -1,可令t =e x -1,即有y =t -1t ,由y =t -1t 在t >0时单调递增,t =e x -1在R 上单调递增,可得f (x )在R 上为增函数,则A 错误,B 正确;由f (2-x )=e 1-x -e x -1,可得f (x )+f (2-x )=0,即有f (x )的图象关于点(1,0)对称,则C 错误,D 正确.故选BD.10.(多选)已知函数f (x )=πx -π-x 2,g (x )=πx +π-x2,则f (x ),g (x )满足( )A .f (-x )+g (-x )=g (x )-f (x )B .f (-2)<f (3)C .f (x )-g (x )=π-xD .f (2x )=2f (x )g (x ) 答案 ABD解析 f (-x )=π-x -πx 2=-f (x ),g (-x )=πx +π-x2=g (x ),所以f (-x )+g (-x )=g (x )-f (x ),A 正确;因为函数f (x )为增函数,所以f (-2)<f (3),B 正确;f (x )-g (x )=πx -π-x2-πx +π-x 2=-2π-x 2=-π-x,C 不正确;f (2x )=π2x -π-2x 2=2·πx -π-x 2·πx +π-x2=2f (x )g (x ),D 正确.11.求值:0.064-13-⎝ ⎛⎭⎪⎫-590+[(-2)3]-43+16-0.75+0.0112=________. 答案 14380解析 原式=0.4-1-1+(-2)-4+2-3+0.1=104-1+116+18+110=14380.12.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.答案 e解析 由题意得,f (x )=⎩⎨⎧e |x |,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e |x |=e x ≥e(当x =1时,取等号);当x <1时,f (x )=e |x -2|=e 2-x >e.故f (x )的最小值为f (1)=e.二、高考小题13.(2022·天津高考)设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案 D解析 因为a =30.7>1,b =⎝ ⎛⎭⎪⎫13-0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1,所以c <1<a <b .故选D.14.(2022·全国Ⅲ卷)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( )A .60B .63C .66D .69 答案 C解析 因为I (t )=K1+e -0.23(t -53),所以I (t *)=K 1+e -0.23(t *-53)=0.95K ,则e0.23(t *-53)=19,所以0.23(t *-53)=ln 19≈3,解得t *≈30.23+53≈66.故选C.15.(2022·北京高考)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A.(-1,1)B .(-∞,-1)∪(1,+∞)C .(0,1)D .(-∞,0)∪(1,+∞) 答案 D解析 因为f (x )=2x -x -1,所以f (x )>0等价于2x >x +1,在同一直角坐标系中作出y =2x 和y =x +1的图象如图:两函数图象的交点坐标为(0,1),(1,2),所以不等式2x >x +1的解集为(-∞,0)∪(1,+∞).所以不等式f (x )>0的解集为(-∞,0)∪(1,+∞).故选D.16.(2022·上海高考)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝ ⎛⎭⎪⎫p ,65,Q ⎝ ⎛⎭⎪⎫q ,-15.若2p +q =36pq ,则a =________. 答案 6解析 由已知条件知f (p )=65,f (q )=-15, 所以⎩⎪⎨⎪⎧2p 2p +ap =65,①2q 2q +aq =-15, ②①+②,得2p (2q +aq )+2q (2p +ap )(2p +ap )(2q +aq )=1,整理得2p +q =a 2pq ,又2p +q =36pq , ∴36pq =a 2pq ,又pq ≠0,∴a 2=36,∴a =6或a =-6,又a >0,∴a =6. 三、模拟小题17.(2022·云南曲靖陆良县联办高级中学模拟)函数y = 1-⎝ ⎛⎭⎪⎫12x的定义域是( )A .(0,+∞)B .(-∞,0)C .[0,+∞)D .(-∞,0] 答案 C解析 要使函数有意义,需满足1-⎝ ⎛⎭⎪⎫12x ≥0,即⎝ ⎛⎭⎪⎫12x ≤1=⎝ ⎛⎭⎪⎫120,解得x ≥0,因此,函数y =1-⎝ ⎛⎭⎪⎫12x的定义域为[0,+∞).故选C. 18.(2022·湖北武汉高三开学考试)对于函数f (x ),若在定义域内存在实数x 0满足f (-x 0)=-f (x 0),则称函数f (x )为“倒戈函数”.设f (x )=3x +m -1(m ∈R ,m ≠0)是定义在[-1,1]上的“倒戈函数”,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-23,0B .⎣⎢⎡⎦⎥⎤-23,-13C .⎣⎢⎡⎦⎥⎤-23,0 D .(-∞,0)答案 A解析 ∵f (x )=3x +m -1是定义在[-1,1]上的“倒戈函数”,存在x 0∈[-1,1]满足f (-x 0)=-f (x 0),∴3-x 0+m -1=-3 x 0-m +1,∴2m =-3-x 0-3 x 0+2,构造函数y =-3-x 0-3 x 0+2,x 0∈[-1,1],令t =3x 0,t ∈⎣⎢⎡⎦⎥⎤13,3,y =-1t -t +2=2-⎝ ⎛⎭⎪⎫t +1t 在⎣⎢⎡⎦⎥⎤13,1上单调递增,在(1,3]上单调递减,∴t =1取得最大值0,t =13或t =3取得最小值-43,y ∈⎣⎢⎡⎦⎥⎤-43,0,∴-43≤2m <0,∴-23≤m <0.故选A. 19.(多选)(2022·山东日照二模)若实数m ,n 满足5m -4n =5n -4m ,则下列关系式中可能成立的是( )A .m =nB .1<m <nC .0<m <n <1D .n <m <0 答案 ACD解析 由题意,实数m ,n 满足5m -4n =5n -4m ,可化为4m +5m =5n +4n ,设y =f (x )=4x +5x ,y =g (x )=5x +4x ,由初等函数的性质,可得f (x ),g (x )都是单调递增函数,画出函数f (x ),g (x )的图象,如图所示,作直线y =t 0,当t 0<1时,n <m <0成立;当t 0=1或t 0=9时,m =n 成立;当1<t 0<9时,0<m <n <1成立;当t 0>9时,1<n <m 成立.综上,可知可能成立的为A ,C ,D.20.(多选)(2022·江苏淮安高三第一学期五校联考)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如:[-3.5]=-4,[2.1]=2.已知函数f (x )=e x 1+e x -12,则关于函数g (x )=[f (x )]的叙述中正确的是( )A .g (x )是偶函数B .f (x )是奇函数C .f (x )在R 上是增函数D .g (x )的值域是{-1,0,1} 答案 BC解析 ∵g (1)=[f (1)]=⎣⎢⎡⎦⎥⎤e1+e -12=0,g (-1)=[f (-1)]=⎣⎢⎡⎦⎥⎤1e1+1e -12=⎣⎢⎡⎦⎥⎤1e +1-12=-1,∴g (1)≠g (-1),则g (x )不是偶函数,故A 错误;∵f (x )=e x 1+e x -12的定义域为R ,f (-x )+f (x )=e -x1+e -x -12+e x 1+e x -12=1e x1+1e x+e x 1+e x -1=11+e x +e x1+e x -1=0,∴f (x )为奇函数,故B 正确;∵f (x )=e x 1+e x -12=1+e x-11+e x -12=12-11+e x ,又e x在R 上单调递增,∴f (x )=12-11+e x 在R 上是增函数,故C 正确;∵e x >0,∴1+e x >1,则0<11+e x<1,可得-12<12-11+e x <12,即-12<f (x )<12.∴g (x )=[f (x )]∈{-1,0},故D 错误.故选BC. 21.(2022·南阳模拟)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则a =________,实数m 的最小值为________.答案 1 1解析 因为f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称,所以a =1.函数f (x )=2|x -1|的图象如图所示.因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.22.(2022·福建漳州高三阶段考试)函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a x (a >1).若对任意的x ∈[0,2t +1],均有f (x +t )≥[f (x )]3,则实数t 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤-12,-49解析 ∵f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a x (a >1),∴f (x )=a |x |(a >1),则[f (x )]3=(a |x |)3=a |3x |=f (3x ),则f (x +t )≥[f (x )]3等价于f (x +t )≥f (3x ),当x ≥0时f (x )为增函数,则|x +t |≥|3x |,即8x 2-2tx -t 2≤0对任意x ∈[0,2t +1]恒成立,设g (x )=8x 2-2tx -t 2,则⎩⎨⎧g (0)≤0g (2t +1)≤0⇔⎩⎨⎧-t 2≤0,27t 2+30t +8≤0,解得-23≤t ≤-49,又2t +1>0,∴-12<t ≤-49.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·黑龙江鹤岗一中期末)函数f(x)=2x-a2x是奇函数.(1)求f(x)的解析式;(2)当x∈(0,+∞)时,f(x)>m·2-x+4恒成立,求m的取值范围.解(1)∵函数f(x)=2x-a2x是奇函数,∴f(-x)=2-x-a2-x =-a·2x+12x=-2x+a2x=-f(x),故a=1,故f(x)=2x-12x.(2)当x∈(0,+∞)时,f(x)>m·2-x+4恒成立,即m+1<(2x)2-4·2x在x∈(0,+∞)上恒成立,令t=2x,t>1,h(t)=t2-4t=(t-2)2-4(t>1),显然h(t)在(1,+∞)上的最小值是h(2)=-4,故m +1<-4, 解得m <-5.故m 的取值范围为(-∞,-5).2.(2022·湖北襄阳高三阶段考试)已知函数f (x )=a |x +b |(a >0,a ≠1,b ∈R ). (1)若f (x )为偶函数,求实数b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求实数a ,b 应满足的条件. 解 (1)因为f (x )为偶函数,所以对任意的x ∈R ,都有f (-x )=f (x ), 即a |x +b |=a |-x +b |,|x +b |=|-x +b |, 解得实数b =0.(2)记h (x )=|x +b |=⎩⎨⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是增函数, 所以-b ≤2,即b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数,故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.所以f (x )在区间[2,+∞)上是增函数时,实数a ,b 应满足的条件为a >1且b ≥-2. 3.(2022·宁夏银川一中期末)已知定义在R 上的奇函数f (x ),在x ∈(0,1)时,f (x )=2x4x +1且f (-1)=f (1).(1)求f (x )在x ∈[-1,1]上的解析式; (2)证明:当x ∈(0,1)时,f (x )<12;(3)若x ∈(0,1),常数λ∈⎝ ⎛⎭⎪⎫2,52,解关于x 的不等式f (x )>1λ.解 (1)∵f (x )是R 上的奇函数且x ∈(0,1)时,f (x )=2x4x +1,∴f (0)=0,当x ∈(-1,0)时,f (x )=-f (-x )=-2-x 4-x +1=-2x4x +1,又f (-1)=-f (1),f (-1)=f (1), ∴f (-1)=f (1)=0.综上所述,当x ∈[-1,1]时,f (x )=⎩⎪⎨⎪⎧-2x 4x +1,x ∈(-1,0),2x 4x+1,x ∈(0,1),0,x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x 4x +1=⎝ ⎛⎭⎪⎫2x +12x -1,又2x +12x ≥22x ·12x =2,当且仅当2x =12x ,即x =0时取等号.∵x ∈(0,1),∴2x +12x >2,∴f (x )<12. (3)当λ∈⎝ ⎛⎭⎪⎫2,52时,1λ∈⎝ ⎛⎭⎪⎫25,12,f (x )>1λ,即4x -λ·2x +1<0,设t =2x ∈(1,2),不等式变为t 2-λt +1<0,∵λ∈⎝ ⎛⎭⎪⎫2,52,∴Δ=λ2-4>0, ∴λ-λ2-42<t <λ+λ2-42.令g (λ)=λ-λ2-42,λ∈⎝ ⎛⎭⎪⎫2,52,g ′(λ)=λ2-4-λ2λ2-4, 又λ2-4<λ,∴g ′(λ)<0, ∴g (λ)在⎝ ⎛⎭⎪⎫2,52上单调递减,∴g ⎝ ⎛⎭⎪⎫52<g (λ)<g (2),即12<λ-λ2-42<1.令h (λ)=λ+λ2-42,h (λ)在⎝ ⎛⎭⎪⎫2,52上单调递增, ∴h (2)<h (λ)<h ⎝ ⎛⎭⎪⎫52,即1<λ+λ2-42<2,∴1<t <λ+λ2-42,即0<x <log 2λ+λ2-42.综上可知,不等式f (x )>1λ的解集是⎝ ⎛⎭⎪⎫0,log 2λ+λ2-42. 4.(2022·山东枣庄高三模拟)已知函数f (x )=e x +a e -x ,x ∈R . (1)当a =1时,证明:f (x )为偶函数;(2)若f (x )在[0,+∞)上单调递增,求实数a 的取值范围;(3)若a =1,求实数m 的取值范围,使m [f (2x )+2]≥f (x )+1在R 上恒成立. 解 (1)证明:当a =1时,f (x )=e x +e -x ,定义域(-∞,+∞)关于原点对称,而f (-x )=e -x +e x =f (x ),所以f (x )为偶函数.(2)设x 1,x 2∈[0,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=e x 1+a e -x 1-(e x 2+a e -x 2) =(e x 1-e x 2)(e x 1+x 2-a )e x 1+x 2.因为x 1<x 2,函数y =e x 为增函数, 所以e x 1<e x 2,则e x 1-e x 2<0,又因为f (x )在[0,+∞)上单调递增, 所以f (x 1)<f (x 2),故f (x 1)-f (x 2)<0, 所以e x 1+x 2-a >0恒成立,即a <e x 1+x 2对任意的0≤x 1<x 2恒成立, 所以a ≤1.故实数a 的取值范围为(-∞,1].(3)由(1)(2)知,函数f (x )=e x +e -x 在(-∞,0]上单调递减,在[0,+∞)上单调递增,所以其最小值为f (0)=2,且f (2x )=e 2x +e -2x =(e x +e -x )2-2,设t =e x+e -x,则t ∈[2,+∞),1t ∈⎝ ⎛⎦⎥⎤0,12, 则不等式m [f (2x )+2]≥f (x )+1恒成立, 等价于m ·t 2≥t +1,即m ≥t +1t 2恒成立, 而t +1t 2=1t 2+1t =⎝ ⎛⎭⎪⎫1t +122-14,当且仅当1t =12,即t =2时t +1t 2取得最大值34,故m ≥34.因此实数m 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.。
2023年新高考数学大一轮复习专题11 函数的图象(解析版)
专题11 函数的图象【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称. (5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称. (6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图) 题型二:由图象选表达式 题型三:表达式含参数的图象问题 题型四:函数图象应用题 题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin 12xf x x =++的图象可能是( ) A . B .C .D .【答案】D 【解析】 【分析】通过判断()f x 不是奇函数,排除A ,B ,又因为302f π⎛⎫<⎪⎝⎭,排除C ,即可得出答案. 【详解】因为2()sin 12x f x x =++的定义域为R ,又因为()()222sin()sin 1221xx x f x x x f x -⋅-=-+=-+≠-++,所以()f x 不是奇函数,排除A ,B. 33223322sin()10221212f ππππ⎛⎫=+=-+< ⎪⎝⎭++,所以排除C.故选:D.例2.(2022·陕西·汉台中学模拟预测(理))函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的定义域与奇偶性,排除A 、B 选项;结合导数求得函数在(1,)+∞上的单调性,排除D 选项,即可求解. 【详解】由题意,函数()2ln x f x x =的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x =,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增, 所以排除D 选项,选项C 符合. 故选:C.例3.(2022·天津·二模)函数sin exx xy =的图象大致为( )A .B .C .D .【答案】D 【解析】 【分析】 分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】 令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x ----===, 所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy =>,排除C 选项. 故选:D.例4.(2022·全国·模拟预测)已知函数())lnsin f x x x =⋅则函数()f x 的大致图象为( )A .B .C .D .【答案】A【分析】先利用函数的奇偶性排除部分选项,再根据()0,x π∈时,函数值的正负判断. 【详解】易知函数)lny x =为奇函数,sin y x =也是奇函数,则函数())ln sin f x x x =⋅为偶函数,故排除选项B ,C ;因为)lnln y x ⎛⎫==,当0x >1x >恒成立,所以ln 0⎛⎫<恒成立, 且当()0,x π∈时,sin 0x >,所以当()0,x π∈时,()0f x <,故选项A 正确,选项D 错误, 故选:A .例5.(2022·全国·模拟预测)函数()22e xx xf x -=的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据f (x )的零点和x →+∞时函数值变化情况即可判断求解. 【详解】由()0f x =得0x =或2,故排除选项A ;当x →+∞时,函数值无限靠近x 轴,但与x 轴不相交,只有选项B 满足.例6.(2022·河北·模拟预测)函数4cos3()cos (ππ)33xf x x x =---≤≤的部分图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】利用函数的奇偶性和代入特殊值即可求解. 【详解】由已知条件得函数()f x 的定义域关于原点对称, ∵()()cos 34()cos 33x f x x --=---()4cos3cos 33x x f x -=-=, ∴()f x 为偶函数,函数的图象关于y 轴对称,则排除选项B 、C , 又∵4cos3π(π)cos π33f =--4181333=++=, ∴排除选项D , 故选:A .【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y 关于x 的函数图象如图所示,则实数x ,y 满足的关系式可以为( )A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-【答案】A 【解析】 【分析】将311log 0x y --=化为11133x x y ---⎛⎫== ⎪⎝⎭,结合图像变换,可判断A;取特殊值验证,可判断B;作出函数12x y -=的图象,可判断C;根据函数ln 1y x =+的性质,可判断D.【详解】 由311log 0x y --=,得31log 1x y=-, 所以3log 1y x -=-,即3log 1y x =--, 化为指数式,得11133x x y ---⎛⎫== ⎪⎝⎭,其图象是将函数1,01333,0xxx x y x ⎧⎛⎫≥⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪<⎩的图象向右平移1个单位长度得到的, 即为题中所给图象,所以选项A 正确;对于选项B ,取1x =-,则由()31121y---=,得21y =>,与已知图象不符,所以选项B 错误; 由120x y --=,得12x y -=,其图象是将函数2xy =的图象向右平移1个单位长度得到的,如图:与题中所给的图象不符,所以选项C 错误;由ln 1x y =-,得ln 1y x =+,该函数为偶函数,图象关于y 轴对称, 显然与题中图象不符,所以选项D 错误, 故选:A.例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x xx x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是( )A .()()2211--=xxex y eB .()21sin -=xxex y eC .()()2211-+=xxex y eD .()21cos -=xxex y e【答案】B【解析】 【分析】根据函数图象,可知函数为偶函数,排除A ,D ,根据C 项函数没有零点,排除C 项,最终选出正确结果. 【详解】根据函数图象,可知函数为偶函数,排除A ,D ;对于C ,当0x >时,22110,2-+>≥x xe x e x ,函数显然不存在零点,排除C . 故选:B .例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x =-【答案】B 【解析】 【分析】根据已知图象的对称性,结合AC 的奇偶性可排除AC ,根据已知图象f (0)=0可排除D ,从而正确可得B 为正确选项. 【详解】对于A ,()()()sin πsin πf x x x x x f x -=--==,故()sin πf x x x =为偶函数,图象应该关于y 轴对称,与已知图象不符;对于C ,()()sin ππf x x x =+sin πx x =-也为偶函数,故排除AC ; 对于D ,()01f =-,与已知图象不符,故排除D .对于B ,()()()()()()221sin 2(1)sin π1sin ππf x x x x x x x f x -=---=--=-=,故f (x )关于x =1对称,f (0)=0,均与已知图象符合,故B 正确. 故选:B .例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是( )A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x =+D .()cos sin f x x x x =+【答案】D 【解析】 【分析】由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对选项B 、C :由函数()f x 为偶函数即可判断,对选项A :函数()f x 为奇函数,但()cos 0222f πππ==即可判断;对选项D :函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>即可判断.【详解】解:由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对A :因为()()()cos cos ()f x x x x x f x -=--=-=-,所以函数()f x 为奇函数,但()cos 0222f πππ==,故选项A 错误;对B :因为()()()sin sin ()f x x x x x f x -=--==,所以函数()f x 为偶函数,故选项B 错误;对C :因为()()()()sin cos sin cos ()f x x x x x x x f x -=--+-=+=,所以函数()f x 为偶函数,故选项C 错误; 对D :因为()()()()cos sin cos sin ()f x x x x x x x f x -=--+-=--=-,所以函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>,符合题意,故选项D 正确. 故选:D.例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象( )A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x【答案】D 【解析】 【分析】根据图象体现的函数性质,结合每个选项中函数的性质,即可判断和选择. 【详解】由图可知,图象对应函数为奇函数,且()011f <<; 显然,A B 对应的函数都不是奇函数,故排除;对C :()()()sin e e x xy f x g x x -=⋅=⋅+,其为奇函数,且当1x =时,11sin1e e 1e 2⎛⎫⋅+>⨯> ⎪⎝⎭,故错误;对D :y =()()f xg x sin e e x xx-=+,其为奇函数,且当1x =时,sin110112e e<<<+,故正确. 故选:D .【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .【答案】ABD 【解析】 【分析】讨论0,0,0a b c >=>、0,0,0a b c <=<、0,0,0a b c =><、0,0,0a b c =<<四种情况下,()f x 的奇偶性、单调性及函数值的正负性判断函数图象的可能性. 【详解】当0,0a b ≠=时,22()()()ax axf x f x x c x c--==-=--++;当0,0a c >>时,()f x 定义域为R 且为奇函数,在(0,)+∞上()0f x >,在上递增,在)+∞上递减,A 可能;当0,0a c <<时,()f x 定义域为{|x x ≠且为奇函数,在上()0f x >且递增,在)+∞上()0f x <且递增,B 可能;当0,0,0a b c =≠<时,22()()()b bf x f x x c x c-===-++且定义域为{|x x ≠,此时()f x 为偶函数,若0b >时,在(上()0f x <(注意(0)0f <),在(,)-∞+∞上()0f x >,则C 不可能;若0b <时,在(上()0f x >,在(,)-∞+∞上()0f x <,则D 可能; 故选:ABD(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】先判断函数的奇偶性,可排除D 选项,然后对a 的取值进行分类讨论,比如0a =,可判断A 可能,再对a 分大于零和小于零的情况讨论,结合求导数判断函数单调性,即可判断B,C 是否可能. 【详解】 因为2||()x f x x a=+为定义域上的偶函数, 图象关于y 轴对称,所以D 不可能.由于()f x 为定义域上的偶函数,只需考虑,()0x ∈+∞的情况即可. ①当0a =时,函数2||11()||x f x x x x===,所以A 可能; ②当0a >时,2()xf x x a =+,()222()a x f x x a '-=+,所以()f x 在单调递增,在)+∞单调递减,所以C 可能; ③当0a <时,2()x f x x a =+,()222()0a x f x x a -'=<+,所以()f x 在单调递减,在)+∞单调递减,所以B 不可能; 故选:AC.(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是( )A .B .C .D .【答案】ABC 【解析】 【分析】根据a 的取值分类讨论函数f (x )的单调性、奇偶性、值域,据此判断图像即可. 【详解】 若a =0,则f (x )=1x,图像为C ;若a >0,则f (x )定义域为{x |x ,f (0)=0,f (-x )=-f (x ),f (x )为奇函数,x ∈(-∞,时,f (x )<0,x ∈(0)时,f (x )>0,x ∈(0,f (x )<0,x ∈+∞)时,f (x )>0,又x ≠0时,f (x )=1a x x-,函数y =x -ax 在(-∞,0)和(0,+∞)均单调递增,∴f (x )在(-∞,(0),(0,∞)均单调递减,综上f (x )图像如A 选项所示; 若a <0,则f (x )定义域为R ,f (x )为奇函数,f (0)=0, 当x >0时,f (x )>0,当x <0时,f (x )<0,当x ≠0时,f (x )=1a x x-+,函数y =x +ax-时双勾函数,x ∈((),时,y 均单调递减,x ∈)(,,+∞-∞时,y 均单调递增,∴f (x )在((),单调递增,在)(,,+∞-∞单调递减,结合以上性质,可知B 图像符合.故选:ABC.(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是( )A .B .C .D .【答案】BD 【解析】令()21,0g x ax x a =++>,得到抛物线的开口向上,对称轴的方程为12x a=-,再根据0,0∆=∆<和0∆>三种情形分类讨论,结合复合函数的单调性,即可求解. 【详解】由题意,函数21axx y e ++=,令()21,0g x ax x a =++>,可得抛物线的开口向上,对称轴的方程为102x a=-<, 当140a ∆=-=时,即14a =时,可得()21104g x x x =++≥, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增,且(2)0g -= 可得21axx y e ++=在1(,]2a -∞-递减,在1[,)2a -+∞上递增,且(2)1g e -=; 当140a ∆=-<时,即14a >时,可得()0g x >, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 由复合函数的单调性,可得21ax x y e ++=在1(,]2a -∞-递减,在1[,)2a-+∞上递增,且1y >, 此时选项B 符合题意; 当当140a ∆=->时,即104a <<时,此时函数()21g x ax x =++有两个零点, 不妨设另个零点分别为12,x x 且1212x x a<-<,此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 可得()y g x =在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()0g x g x ==,则21axx y e ++=在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()1g x g x e e ==,此时选项D 符合题意.综上可得,函数的图象可能是选项BD. 故选:BD.(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为( ) A . B .C .D .【答案】BC 【解析】 【分析】按照0a =,0a >,0a <讨论a 的取值范围,利用排除法解决. 【详解】 0a =,()(0)af x x x x x=+=≠,定义域需要挖去一个点,不是完整的直线,A 选项错误;0a <时,y x =在(,0),(0,)-∞+∞上递增,ay x=也在(,0),(0,)-∞+∞递增,两个增函数相加还是增函数,即()f x 在(,0),(0,)-∞+∞上递增,故D 选项错误,C 选项正确.;0a >时,由对勾函数的性质可知B 选项正确. 故选:BC.(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】根据给定条件对a 值进行分类讨论函数()f x 的单调性及0一侧的函数值,再结合()g x a x =-图象与y 轴交点位置即可判断作答. 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】对a 的取值进行分类讨论,利用导数对函数的单调性进行分析即可判断函数的大致图象. 【详解】当0a =时,()01f =,令21y x =+,易知,其在(),0-∞上为减函数,()0,∞+上为增函数,所以()211f x x =+在(),0-∞上为增函数,在()0,∞+上为减函数,故D 正确; 当0a <时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y <,当0x >且0x →时,0y <,所以()'0f x <,故A 正确;当0a >时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y >,当0x >且0x →时,0y >,所以()'0f x >,故B 正确;综上,()f x 的图象不可能为C. 故选:ABD.(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【解析】 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H =⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒=而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓, A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB BO OA →→),则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】根据距离随与时间的增长的变化增减情况即可判定.【详解】小明沿AB走时,与О点的直线距离保持不变,沿BO走时,随时间增加与点О的距离越来越小,沿OA走时,随时间增加与点О的距离越来越大.故选:D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A.B.C.D.【答案】A【解析】【分析】分两段,当P点在AO之间时,当P点在OB之间时,再由二次函数的性质及增长趋势可知.【详解】当P 点在AO 之间时,f (x )12=x 2(0<x ≤1),排除B,D 当P 点在OB 之间时,y 随x 的增大而增大且增加速度原来越慢,故只有A 正确 故选A . 【点睛】本题主要考查了函数图像的识别的性质,考查分类讨论思想及排除法应用,属于基础题.【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【解析】 【分析】由题可知函数()y f x =与直线()1y m x =+有5个交点,利用数形结合即得. 【详解】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【解析】 【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得. 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】利用数形结合可得210t mt ++=在[)3,1-上有两个不同的实数根,然后利用二次函数的性质即得. 【详解】设()t f x =,则()21y g t t mt ==++,作出函数()f x 的大致图象,如图所示,则函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点等价于()0g t =在[)3,1-上有两个不同的实数根, 则()()24039310,1110,31,2m g m g m m ⎧->⎪-=-+≥⎪⎪⎨=++>⎪⎪-<-<⎪⎩解得1023m <≤.故选:D. 【点睛】关键点点睛:本题的关键是利用数形结合,把问题转化为方程210t mt ++=在[)3,1-上有两个不同的实数根,即二次方程根的分布问题,利用二次函数的性质即解.例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( ) A .0m >且0n > B .0m <且0n > C .01m <<且0n = D .10m -<<且0n =【答案】C 【解析】 【分析】令()u f x =,利用换元法可得20u mu n ++=,由一元二次方程的定义知该方程至多有两个实根1u 、2u ,作出函数()f x 的图象,结合题意和图象可得10u =、2u m =-,进而得出结果. 【详解】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =,则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为( ) A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】由不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立.根据相切找临界位置,结合函数的单调性以及图像特征,即可求解. 【详解】 不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立. 当1x >时,2()=244,f x x x -+此时()f x 在1x >上单调递增,当11,()=,x x f x e x -≤+则1()=-1,x f x e -'+当<1x 时,0()<f x ',故()f x 在<1x 上单调递减.当2-y x m =与2()=244f x x x -+相切时,设切点为()00,x y ,所以00()4-4=2f x x '=,解得032x =,35()22f =,此时切线方程为35y=2x-+22⎛⎫ ⎪⎝⎭,该切线与x 轴的交点为1,04A ⎛⎫⎪⎝⎭,同理可得当-2+y x m =与1()=x f x e x -+相切时,切线与x 轴的交点为33-ln 3,02B ⎛⎫⎪⎝⎭,又因为=|2|y x m -与x 轴的交点为,02mC ⎛⎫⎪⎝⎭要使()|2|f x x m ≥-在R 上恒成立,则点C 在,A B 之间移动即可.故133-ln 3422m ≤≤,解得16-3ln 32m ≤≤故选:D例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________. 【答案】1(0,)4【解析】 【分析】转化求()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像与()1y k x =-图像交点,求出直线与1()11f x x =--相切时的k ,进而得到有4个交点时k 的范围即可 【详解】因为()()()1g x f x k x =--有4个零点, 所以方程()()1f x k x =-有4个实数根,画出()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像,以及()1y k x =-,则两函数的图象有4个公共点.其中直线()1y k x =-经过定点(1,0),斜率为k当直线与()f x 相切时,联立111(1)y x y k x ⎧=-⎪-⎨⎪=-⎩,22(12)40k k ∆=--=,可求出14k =,由图可知,当104x <<时,方程()()1f x k x =-有4个交点,故k 的取值范围为1(0,)4故答案为1(0,)4.【点睛】方法点睛:根据函数零点个数求参数取值范围的注意点:(1)结合题意构造合适的函数,将函数零点问题转化成两函数图象公共点个数的问题处理; (2)在同一坐标系中正确画出两函数的图象,借助图象的直观性进行求解;(3)求解中要注意两函数图象的相对位置,同时也要注意图中的特殊点,如本题中直线(1)y k x =-经过定点(1,0)等.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e 8⎛⎤--⎥⎝⎦【解析】 【分析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意转化为函数()g x 与直线y m =的图象有3个公共点,利用导数求得函数()g x 的极值,画出函数()g x 的图象,结合图象,即可求解. 【详解】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点,即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦. 故答案为:1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________. 【答案】3 【解析】 【分析】函数零点个数可转化为()y g x =与()y f x =图象交点的个数问题,作出图象,数形结合即可求解. 【详解】在同一直角坐标系中,作出()y g x =与()y f x =的图象如图,由()()()0h x f x g x =-=可得,()()f x g x =,即函数的零点为(),()y f x y g x ==图象交点的横坐标, 由图知()y f x =与()y g x =的图象有3个交点,即()h x 有3个零点. 故答案为:3例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解. 【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根 故正确的是①②. 故答案为:①② 【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解。
高考数学函数零点问题
专题二 函数零点问题函数的零点作为函数、方程、图象的交汇点,充分体现了函数与方程的联系,蕴含了丰富的数形结合思想.诸如方程的根的问题、存在性问题、交点问题等最终都可以转化为函数零点问题进行处理,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,备受青睐.模块1 整理方法 提升能力对于函数零点问题,其解题策略一般是转化为两个函数图象的交点.对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见.分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数()f x 的图象与x 轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数.函数的凸性1.下凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的下凸函数. 2.上凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的上凸函数.3.下凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的下凸函数⇔()f x '为(),a b 上的递增函数⇔()0f x ''≥且不在(),a b 的任一子区间上恒为零. 4.上凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的上凸函数⇔()f x '为(),a b 上的递减函数⇔()0f x ''≤且不在(),a b 的任一子区间上恒为零.例1已知函数()()2e 2e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】(1)()()()()22e 2e 12e 1e 1x x x x f x a a a '=+--=+-,2e 10x +>. ①当0a ≤时,e 10x a -<,所以()0f x '<,所以()f x 在R 上递减. ②当0a >时,由()0f x '>可得1lnx a >,由()0f x '<可得1ln x a<,所以()f x 在1,ln a ⎛⎫-∞ ⎪⎝⎭上递减,在1ln ,a ⎛⎫+∞ ⎪⎝⎭上递增.(2)法1:①当0a ≤时,由(1)可知,()f x 在R 上递减,不可能有两个零点.②当0a >时,()min 11ln 1ln f x f a a a ⎛⎫⎡⎤==-+ ⎪⎣⎦⎝⎭,令()()min g a f x =⎡⎤⎣⎦,则()2110g a a a'=+>,所以()g a 在()0,+∞上递增,而()10g =,所以当1a ≥时,()()min 0g a f x =⎡⎤≥⎣⎦,从而()f x 没有两个零点.当01a <<时,1ln 0f a ⎛⎫< ⎪⎝⎭,()22110e e e a a f -=++->,于是()f x 在11,ln a ⎛⎫- ⎪⎝⎭上有1个零点;因为()2333333ln 1121ln 11ln 10f a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+----=---> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且31ln 1ln a a ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以()f x 在1ln ,a ⎛⎫+∞ ⎪⎝⎭上有1个零点. 综上所述,a 的取值范围为()0,1.法2:()2222e e 2e 0e e 2e e e x xxxxxx x x a a x a a x a ++--=⇔+=+⇔=+.令()22e e e x x xxg x +=+,则()()()()()()()()()2222222e 1e e 2e 2e e e 2e 1e 1eeeexx x x x x x x x xx xx x x g x ++-++++-'==-++,令()e 1x h x x =+-,则()e 10x h x '=+>,所以()h x 在R 上递增,而()00h =,所以当0x <时,()0h x <,当0x >时,()0h x >, 于是当0x <时,()0g x '>,当0x >时,()0g x '<,所以()g x 在(),0-∞上递增,在()0,+∞上递减.()01g =,当x →-∞时,()g x →-∞,当x →+∞时,()0g x +→.若()f x 有两个零点,则y a =与()g x 有两个交点,所以a 的取值范围是()0,1.法3:设e 0x t =>,则ln x t =,于是()22e 2e 02ln x x a a x at at t t +--=⇔+=+⇔22ln t t a t t +=+,令()22ln t t G t t t +=+,则()()()()()222122ln 21t t t t t t G t t t ⎛⎫++-++ ⎪⎝⎭'==+ ()()()22211ln t t t tt +-+-+,令()1ln H t t t =-+,则()110H t t'=+>,所以()H t 在()0,+∞上递增,而()10H =,所以当01t <<时,()0H t <,()0G t '>,当1t >时,()0H t >,()0G t '<,所以()G t 在()0,1上递增,在()1,+∞上递减.()11G =,当0t +→时,()G t →-∞,当t →+∞时,()0G t +→.若()f x 有两个零点,则y a =与()G t 有两个交点,所以a 的取值范围是()0,1.法4:设e 0x t =>,则ln x t =,于是()22e 2e 02ln 0x x a a x at at t t +--=⇔+--=⇔()ln 12t a t t +-=.令()()12k t a t =+-,()ln t t tϕ=,则()f x 有两个零点等价于()y k t =与()y t ϕ=有两个交点.因为()21ln tt tϕ-'=,由()0t ϕ'>可得0e t <<,由()0t ϕ'<可得e t >,所以()t ϕ在()0,e 上递增,在()e,+∞上递减,()1e e ϕ=,当x →+∞时,()0t ϕ+→.()y k t =是斜率为a ,过定点()1,2A --的直线.当()y k t =与()y t ϕ=相切的时候,设切点()00,P t y ,则有()0000002ln 121ln t y t y a t ta t ⎧=⎪⎪⎪=+-⎨⎪-⎪=⎪⎩,消去a 和0y ,可得()000200ln 1ln 12t t t t t -=+-, 即()()00021ln 10t t t ++-=,即00ln 10t t +-=.令()ln 1p t t t =+-,显然()p t 是增函数,且()10p =,于是01t =,此时切点()1,0P ,斜率1a =.所以当()y k t =与()y t ϕ=有两个交点时,01a <<,所以a 的取值范围是()0,1.法5:()()20e e 2e x x x f x a x =⇔+=+,令()()2e e x x M x a =+,()2e e x x m x =+,()2e x n x x =+,则()f x 有两个零点⇔()M x 与()n x 的图象有两个不同交点.()()002m n ==,所以两个函数图象有一个交点()0,2.令()()()2e e x x T x m x n x x =-=--,则()()()22e e 12e 1e 1x x x x T x '=--=+-,由()0T x '>可得0x >,由()0T x '<可得0x <,于是()T x 在(),0-∞上递减,在()0,+∞上递增,而()00T =,所以()()m x n x ≥,因此()m x 与()n x相切于点()0,2,除切点外,()m x 的图象总在()n x 图象的上方.由(1)可知,0a >.当1a >时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象没有交点.当1a =时,()m x 的图象就是()M x 的图象,此时()M x 与()n x 的图象只有1个交点.当01a <<时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象有两个不同交点.综上所述,a 的取值范围是()0,1.法6:()()()20e e 2e e 12e x x x x xx f x a x a =⇔+=+⇔+-=,令()()e 12xp x a =+-,()e xxq x =,则()f x 有两个零点⇔()p x 与()q x 的图象有两个不同交点. ()1ex xq x -'=,由()0q x '>可得1x <,由()0q x '<可得1x >,所以()q x 在(),1-∞上递增,在()1,+∞上递减,当x →+∞时,()0q x +→.由(1)可知,0a >,所以()p x 是下凸函数,而()q x 是 上凸函数.当()p x 与()q x 相切时,设切点为()00,P x y ,则有()00000000e 12e 1e e xx x x y a x y x a ⎧=+-⎪⎪⎪=⎨⎪-⎪=⎪⎩,消去a ,0y 可得()0000021e 12e e x x x x x -+-=,即()()0002e 1e 10x x x ++-=,即00e 10x x +-=.令()e 1x W x x =+-,显然()W x 是增函数,而()00W =,于是00x =,此时切点()0,0P ,1a =.所以当()p x 与()q x 的图象有两个交点时,01a <<,所以a 的取值范围是()0,1.【点评】函数零点问题,其解题策略是转化为两个函数图象的交点,三种方式中(一平一曲、一斜一曲、两曲)最为常见的是一平一曲.法1是直接考虑函数()f x 的图象与x 轴的交点情况,法2是分离参数法,法3用了换元,3种方法的本质都是一平一曲,其中法3将指数换成了对数,虽然没有比法2简单,但是也提示我们某些函数或许可以通过换元,降低函数的解决难度.法4是一斜一曲情况,直线与曲线相切时的a 值是一个重要的分界值.法5和法6都是两曲的情况,但法6比法5要简单,其原因在于法5的两曲凸性相同而法6的两曲凸性相反.函数零点问题对函数图象说明的要求很高,如解法2当中的()g x 是先增后减且极大值()01g =,但x →-∞和x →+∞的状态会影响a 的取值范围,所以必须要说清楚两个趋势的情况,才能得到最终的答案.例2设函数设()21n n f x x x x =+++-L ,n ∈*N ,2n ≥. (1)求()2n f ';(2)证明:()n f x 在20,3⎛⎫⎪⎝⎭内有且仅有一个零点(记为n a ),且1120233nn a ⎛⎫<-< ⎪⎝⎭.【解析】(1)因为()112n n f x x nx -'=+++L ,所以()121222n n f n -'=+⨯++⋅L …①.由()2222222n n f n '=+⨯++⋅L …②,①-②,得()21212222n n n f n -'-=++++-⋅=L()12212112nn n n n --⋅=---,所以()()2121n n f n '=-+. 【证明】(2)因为()010f =-<,22213322211121202333913nn n f ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=-=-≥-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,由零点存在性定理可知()n f x 在20,3⎛⎫⎪⎝⎭内至少存在一个零点.又因为()1120n n f x x nx -'=+++>L ,所以()n f x 在20,3⎛⎫ ⎪⎝⎭内递增,因此()n f x 在20,3⎛⎫⎪⎝⎭内有且只有一个零点n a .由于()()111n n x x f x x-=--,所以()()1101n n n n n na a f a a -=-=-,由此可得11122n n n a a +=+,即11122n n na a +-=.因为203n a <<,所以111120223n n n a ++⎛⎫<< ⎪⎝⎭,所以1111212022333n nn na ++⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,所以1120233nn a ⎛⎫<-< ⎪⎝⎭.【点评】当函数()f x 满足两个条件:连续不断,()()0f a f b <,则可由零点存在性定理得到函数()f x 在(),a b 上至少有1个零点.零点存在性定理是高中阶段一个比较弱的定理,首先,该定理的两个条件缺一不可,其次,就算满足两个条件,也只能得到有零点的结论,究竟有多少个零点,也不确定.零点存在性定理常与单调性综合使用,这是处理函数零点问题的一种方法.例3已知函数()()e ln x f x x m =-+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明:()0f x >. 【解析】(1)()1e xf x x m'=-+,由0x =是()f x 的极值点,可得()00f '=,解得1m =.于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1e 1xf x x '=-+,则()()21e 01x f x x ''=+>+,所以()f x '在()1,-+∞上递增,又因为()00f '=,所以当10x -<<时()0f x '<,当0x >时()0f x '>,所以()f x 在()1,0-上递减,在()0,+∞上递增.【证明】(2)法1:()f x 定义域为(),m -+∞,()1e xf x x m'=-+,()()21e 0xf x x m ''=+>+,于是()f x '在(),m -+∞上递增.又因为当x m +→-时,()f x '→-∞,当x →+∞时,()f x '→+∞,所以()0f x '=在(),m -+∞上有唯一的实根0x ,当0m x x -<<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()0,m x -上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值.由()00f x '=可得001e 0x x m-=+,即()00ln x m x +=-,于是()()000000011e ln 2xf x x m x x m m m x m x m=-+=+=++-≥-++.当2m <时,()00f x >;当2m =时,等号成立的条件是01x =-,但显然()11e 012--≠-+,所以等号不成立,即()00f x >.综上所述,当2m ≤时,()()00f x f x ≥>.法2:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()()e ln 20x x x ϕ=-+>,()2,x ∈-+∞,就能证明当2m ≤时,()0f x >.()1e 2x x x ϕ'=-+,()()21e 02x x x ϕ''=+>+,于是()x ϕ'在()2,-+∞上递增.又因为()1110eϕ'-=-<,()10102ϕ'=->,所以()0x ϕ'=在()2,-+∞上有唯一的实根0x ,且()01,0x ∈-.当02x x -<<时,()0x ϕ'<,当0x x >时,()0x ϕ'>,所以()x ϕ在()02,x -上递减,在()0,x +∞上递增,所以当0x x =时,()x ϕ取得最小值.由()00x ϕ'=可得001e 02x x -=+,即()00ln 2x x +=-.于是()()()0200000011e ln 2022x x x x x x x ϕ+=-+=+=>++,于是()()00x x ϕϕ≥>.综上所述,当2m ≤时,()0f x >.法3:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()e ln 20x x -+>(2x >-),就能证明当2m ≤时,()0f x >.由ln 1x x ≤-(0x >)可得()ln 21x x +≤+(2x >-),又因为e 1x x ≥+(x ∈R ),且两个不等号不能同时成立,所以()e ln 2x x >+,即()e ln 20x x -+>(2x >-),所以当2m ≤时,()0f x >.【点评】法1与法2中出现的0x 的具体数值是无法求解的,只能求出其范围,我们把这种零点称为“隐性零点”.法2比法1简单,这是因为利用了函数单调性将命题()e ln 0x x m -+>模块2 练习巩固 整合提升练习1:设函数()2e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【解析】(1)()f x 的定义域为()0,+∞,()22e x af x x'=-. ()f x '的零点的个数⇔22e x x a =的根的个数⇔()22e x g x x =与y a =在()0,+∞上的交点的个数.因为()()2221e 0x g x x '=+>,所以()g x 在()0,+∞上递增,又因为()00g =,x →+∞时,()g x →+∞,所以当0a ≤时,()g x 与y a =没有交点,当0a >时,()g x 与y a =有一个交点.综上所述,当0a ≤时,()f x '的零点个数为0,当0a >时,()f x '的零点个数为1. 【证明】(2)由(1)可知,()f x '在()0,+∞上有唯一的零点0x ,当00x x <<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值,且最小值为()0f x .因为0202e 0x a x -=,所以020e 2x a x =,00ln ln 22ax x =-,所以()020000002e ln ln 22ln 2ln 2222x a a aa f x a x a x ax a a a x x a ⎛⎫=-=--=+-≥+ ⎪⎝⎭. 练习2:设函数()2e 2ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(1)当0k ≤时,求函数()f x 的单调区间;(2)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.【解析】(1)函数()f x 的定义域为()0,+∞,()32e 2e 21x x x f x k x xx -⎛⎫'=--+= ⎪⎝⎭ ()()32e x x kx x--.当0k ≤时,e 0x kx ->,所以当02x <<时,()0f x '<,当2x >时,()0f x '>.所以()f x 的递减区间为()0,2,递增区间为()2,+∞.(2)函数()f x 在()0,2内存在两个极值点()0f x '⇔=在()0,2内有两个不同的根. 法1:问题e 0x kx ⇔-=在()0,2内有两个不同的根.设()e x h x kx =-,则()e x h x k '=-. 当1k ≤时,()0h x '>,所以()h x 在()0,2上递增,所以()h x 在()0,2内不存在两个不同的根.当1k >时,由()0h x '>可得ln x k >,由()0h x '<可得ln x k <,所以()h x 的最小值为()()ln 1ln h k k k =-.e 0xkx -=在()0,2内有两个不同的根()()()()20102e 20ln 1ln 00ln 2g g k g k k k k ⎧=>⎪=->⎪⇔⎨=-<⎪⎪<<⎩,解得2e e 2k <<.综上所述,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.法2:问题e x k x ⇔=在()0,2内有两个不同的根y k ⇔=与()e xg x x=在()0,2内有两个不同的交点.()()221ee e xx x x x g x x x --'==,当01x <<时,()0g x '<,当1x >时,()0g x '>.()1e g =,()2e22g =,当0x +→时,()g x →+∞.画出()g x 在()0,2内的图象,可知要使y k =与()g x 在()0,2内有两个不同的交点,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.练习3:已知函数()e x f x =和()()ln g x x m =+,直线l :y kx b =+过点()1,0P -且与曲线()y f x =相切.(1)求切线l 的方程;(2)若不等式()ln kx b x m +≥+恒成立,求m 的最大值;(3)设()()()F x f x g x =-,若函数()F x 有唯一零点0x ,求证:0112x -<<-. 【解析】(1)设直线l 与函数()f x 相切于点()11,e x A x ,则切线方程为()111e e x x y x x -=-,即1111e e e x x x y x x =-+,因为切线过点()1,0P -,所以11110e e e x x x x =--+,解得10x =,所以切线l 的方程为1y x =+.(2)设()()1ln h x x x m =+-+,()1x m h x x m+-'=+.当(),1x m m ∈--时,()0h x '<,当()1,x m ∈-+∞时,()0h x '>,所以()h x 在1x m =-时取极小值,也是最小值.因此,要原不等式成立,则()120h m m -=-≥,所以m 的最大值是2.【证明】(3)由题设条件知,函数()1e x F x x m'=-+(x m >-),令()()H x F x '=,则()()21e 0x H x x m '=+>+,于是()H x 在(),m -+∞上单调递增.因为当x m +→-时,()F x '→-∞,当x →+∞时,()F x '→+∞,所以()0F x '=有唯一的实根,设为1x ,则当()1,x m x ∈-时,()0F x '<,当()1,x x ∈+∞时,()0F x '>,于是()F x 有唯一的极小值1x ,也是最小值.当x m +→-时,()F x →+∞,当x →+∞时,()F x →+∞.因此函数()F x 有唯一零点的充要条件是其最小值为0,即()00F x =(01x x =),所以()00e ln 0x x m -+=,又因为001e x x m=+,所以00e 0x x +=.设()e x x x ϕ=+,则()e 10x x ϕ'=+>,所以()x ϕ在(),m -+∞上单调递增,又因为1211e 022ϕ-⎛⎫-=-> ⎪⎝⎭,()1110e ϕ-=-<,由零点存在性定理可知0112x -<<-.。
零点、根、交点教你如何转化 学案(全国通用)
专题11 零点、根、交点教你如何转化考纲要求:1.函数的零点、方程根的个数是历年高考的重要考点.2.利用函数的图形及性质判断函数的零点,及利用它们求参数取值范围问题是重点,也是难点.基础知识回顾:一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点。
函数的零点不是一个点的坐标,而是一个数,类似的有截距、极值点等。
(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得f(c)=0,这个也就是方程的根。
函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件。
【注】零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决。
二、二分法 (1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法。
(2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε。
mst导数专题零点与交点问题
106专题玖 破气式——零点与交点问题函数零点问题是最近几年高考常考的重点与难点,本章主要介绍函数零点概念,函数存在性定理,函数零点,函数图像交点,方程的根等内在联系,函数零点的难点部分在于取点问题,本章不做具体介绍,取点问题我们在下面的专题章节会详细介绍. 第一仁零点相关定理 1.函数的零点对于函数()y f x =,我们把使()0f x =的实数的值叫做函数()y f x =的零点. 2.方程的根与函数零点的关系方程()0f x =有实数根⇔函数()y f x =的图像与x 轴有公共点⇔函数()y f x =有零点. 3.函数零点存在性定理设函数()f x 在闭区间[,]a b 上连续,且()()0f a f b ⋅<,那么在开区间(,)a b 内至少有函数()f x 的一个 零点,即至少有一点0(,)x a b ∈,使得()00f x =.(1)()f x 在[,]a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”与“一定”(假设()f x 连续)①若()()0f a f b ⋅<,则()f x 的零点不一定只有一个,可以有多个, ②若()()0f a f b ⋅>,那么()f x 在[,]a b 不一定有零点, ③若()f x 在[,]a b 有零点,则()()f a f b ⋅不一定必须异号,④若()f x 在[,]a b 上单调,则()()0()f a f b f x <⇒在(,)a b 的一定有唯一零点. 【例1】(2020•安宁模拟)函数21()log f x x x=-的零点所在的区间为( ) A .1(0)2,B .112(,)C .(23),D .(12),【例2】(2020•武昌期中)已知0x 是()21xf x x=+-的一个零点.若101x x ∈(,),20x x +∈∞(,),则( )A .1()0f x <,2()0f x <B .1()0f x <,2()0f x >C .1()0f x >,2()0f x <D .1()0f x >,2()0f x >【例3】(2013•天津)设函数2()f x x e =+-,()ln 3g x x x =+-若实数,b 满足,,则( ) A .()0()g a f b <<B .()0()f b g a <<107C .0()()g a f b <<D .()()0f b g a <<【例4】(2020•临高县期末)设函数()f x 是定义在R 上的奇函数,当0x >时,()3x f x e x =+-,则()f x 的零点个数为() A .1B .2C .3D .4【解析】因为函数()f x 是定义域为R 的奇函数,所以(0)0f =,所以0是函数()f x 的一个零点当0x >时,令()30xf x e x =+-=,则3xe x =-+,分别画出函数xy e =,和3y x =-+的图像,如图所示,有一个交点,所以函数()f x 有一个零点,又根据对称性知,当0x <时函数()f x 也有一个零点.综上所述,()f x 的零点个数为3个,故选C .【例5】(2020•浙江月考)已知12a <≤,函数()x f x e x a =--,其中 2.71828e =⋯为自然对数的底数. 证明:函数()y f x =在(0)+∞,上有唯一零点; 【解析】证明:因为()0(0)x f x e x a x =--=>,所以()10xf x e '=->恒成立,所以()f x 在(0,)+∞上单调递增,因为12a <≤,所以22(2)240f e a e =--≥->,又(0)10f a =-<,所以函数()y f x =在(0,)+∞上有唯一零点. 第二讲 曲线交点问题曲线交点问题的两种等价形式108曲线交点问题,实质是函数图像与x 轴交点,或者两函数图像交点问题等价关系1:函数()y f x =的图像与x 轴公共点个数⇔函数()y f x =零点个数⇔方程()0f x =实数根个数 等价关系2:函数1()y f x =与2()y g x =的图像有交点⇔方程()()()0F x f x g x =-=实数根个数⇔方程组12()()y f x y g x =⎧⎨=⎩有实数根⇔函数()()()F x f x g x =-零点个数.【例6】(2020•南开一模)设函数3y x =与21()2x y -=的图像的交点为00()x y ,,若0(1)x n n ∈+,,n N ∈, 则0x 所在的区间是.则正实数m 的取值范围是() A .01]+⋃∞(,)B .01][3+⋃∞(,,)C .0+⋃∞()D .0[3+⋃∞(,)1⎛⎫1⎛⎫109【例8】(2020•香坊月考)已知函数2()f x x m =+与函数11()ln 3([2])2g x x x x =--∈,的图像上至少存在一对关于x 轴对称的点,则实数m 的取值范围是 .【例9】(2012•大纲版)已知函数3y x x c =-+的图像与轴恰有两个公共点,则() A .2-或2B .9-或3C .1-或1D .3-或1【解析】求导函数可得3(1)(1),y x x '=+-令0,y '>可得1x >或1;x <-令0,y '<可得11x -<<;所以函数在(,1),(1,)-∞-+∞上单调增,(-1,1)上单调减,所以函数在1x =-处取得极大值,在1x=处取得极小值.因为函数33y x x c =-+的图像与x 轴恰有两个公共点,所以极大值等于0或极小值等于0.所以130c -+=或130c -++=,所以2c =-或2,故选A.【例10】(2013•湖南)函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为()A .3B .2C .1D .0【解析】二次函数2()45g x x x =-+的图像开口向上,在x 轴上方,对称轴为2x =,g(2)1,(2)2ln 2ln 41f ===>.所以(2)(2)g f <,从图像上可知交点个数为2个.【例11】(2020•临渭区期末)若曲线x y xe -=与直线y a =恰有两个交点,则实数a 的取值范围为( )A .1()e-∞,B .1(0)e ,C .(0)+∞,D .1[0]e,1x -1x -1x-110【例12】(2011•福建)已知,b 为常数,且0a ≠,函数,( 2.71828e =⋯是自然对数的底数). (1)求实数b 的值;(2)求函数()f x 的单调区间;(3)当1a =时,是否同时存在实数m 和()M m M <,使得对每一个[]t m M ∈,,直线y t =与曲线()y f x =,1[]x e e∈,都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.1.零点个数问题的两种等价形式(同上一章内容)等价关系①:函数()y f x =零点个数⇔方程()0f x =实数根个数⇔函数()y f x =的图像与x 轴交点个数 等价关系②:函数()()()F x f x g x =-零点个数⇔方程()()()0F x f x g x =-=实数根个数⇔方程组12()()y f x y g x =⎧⎨=⎩有实数根⇔函数1()y f x =与2()y g x =的图像有交点. 2.零点问题处理方法:111概括起来就是(一个原理、两种方法、三种转换) 一个原理——零点存在性定理.两种方法——解出来或画出来(直接法或图像法);三种转化——于转化为()0f x =型,()f x c =型或者()()f x g x =型.(1)()0f x =型.求导,对参数分类讨论进而讨论函数的单调性,确定函数图像的特征,找参数的限制条件;判断函数图像与x 轴交点个数情况;(适用于解答题)(2)()f x c =型.将函数变形,把参数置于一边,对新构造的确定函数求导,讨论函数单调性,确定图像的特征,最后平移直线y c =,找到参数的限制条件;(适用于选填题)(3)()()f x g x =型。
高中数学函数零点,交点,数形结合的综合应用!
高中数学函数零点,交点,数形结合的综合应用!
高考热点导航:函数零点,交点,以及含有参数的存在性或任意性问题,或是有关不等式问题,考察同学们对函数综合知识的掌握情况,涉及知识面广,高考题目中,常以压轴题的形式出现,下面介绍几种常见的题型和解题策略,只要掌握住了,辅以相应的练习,并非你想象中那么难 .
这一部分需要用到有关函数图像变换的知识点,现总结如下:
一﹑零点个数(数形结合)一个函数零点转化为两个函数的交点.
分析:本题是典型的复合函数零点问题,分清楚每个复合函数的内外层,从内层向外层扫根,具体如下:
三、分离参变量:含参类的综合题型
含参函数的零点问题:
求解含参函数的零点,分离参变量是最简便的一种方法,可以避免对参数的讨论,简化计算过程,分离参变量参变量应用
范围非常广,在个别压轴的填选题和大题中,均有涉及,要求掌握,下面以零点问题,对分离参变量做出解析.
就给大家分享到这里,分离参变量需要重点掌握,它可以应用到有关参数的各种题型中,但是不是所有的含参等式或不等式都可以分离,而且即使可以分离,那么分立后的函数也不一定好分析,但是如果能够使用,计算过程会简化很多,避免各种谈论.。
考点11 对数与对数函数(重点)-备战2022年高考数学一轮复习考点微专题(新高考地区专用)
考向11 对数与对数函数1.(2020·海南高考真题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( )A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞【答案】D 【分析】首先求出()f x 的定义域,然后求出2()lg(45)f x x x =--的单调递增区间即可.【详解】由2450x x -->得5x >或1x <- 所以()f x 的定义域为(),1(5,)-∞-⋃+∞ 因为245y x x =--在(5,)+∞上单调递增 所以2()lg(45)f x x x =--在(5,)+∞上单调递增 所以5a ≥ 故选:D 【点睛】在求函数的单调区间时一定要先求函数的定义域.2.(2020·全国高考真题(文))Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A .60 B .63C .66D .69【答案】C 【分析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I tK *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C. 【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化. 4.识别对数函数图象时,要注意底数a 以1为分界:当a >1时,是增函数;当0<a <1时,是减函数.注意对数函数图象恒过定点(1,0),且以y 轴为渐近线.5.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.6. 比较对数值的大小(1)若对数值同底数,利用对数函数的单调性比较 (2)若对数值同真数,利用图象法或转化为同底数进行比较 (3)若底数、真数均不同,引入中间量进行比较 7.解决对数函数的综合应用有以下三个步骤: (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,若涉及其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性1.对数的概念如果a x=N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质 (1)对数的性质:①alog aN=N ;②log a a b=b (a >0,且a ≠1).(2)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a M N=log a M -log a N ;③log a M n =n log a M (n ∈R);④log a m M n=n mlog a M (m ,n ∈R,且m ≠0).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1).3.对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞) 值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 【知识拓展】1.换底公式的两个重要结论 (1)log a b =1log b a ;(2)log a m b n=n mlog a b .其中a >0,且a ≠1,b >0,且b ≠1,m ,n ∈R.2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎪⎫1a,-1,函数图象只在第一、四象限.1.(2021·新沂市第一中学高三其他模拟)函数ln(1)11x y xx -=++的定义域是( ) A .[1,0)(0,1)- B .[1,0)(0,1]-⋃ C .(1,0)(0,1)-D .(1,0)(0,1]-⋃2.(2021·合肥市第六中学高三其他模拟(理))已知2log 3,37ba ==,则21log 56=( ) A .3ab a ab++B .3a ba ab++C .3ab a b++ D .3b a ab++3.(2021·全国高三其他模拟(理))已知4log 3a =,5log 3b =,4log 5c =,则( ) A .b a c <<B .a b c <<C .a c b <<D .c a b <<4.(2021·广东茂名市·高三二模)(多选题)已知函数()()12log 1,0,(1),0,x x f x f x x ⎧+≥⎪=⎨⎪+<⎩若函数()()g x f x x a =--有且只有两个不同的零点,则实数a 的取值可以是( )A .-1B .0C .1D .21.(2021·四川遂宁市·高三三模(理))已知函数()f x 为R 上的奇函数,当0x >时,()f x x =-;若0.250.3a -=,0.25log 0.3b =,0.3log 2.5c =,则( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f a f b f c <<2.(2021·四川成都市·石室中学高三三模)已知函数()1y f x =-的图像关于1x =对称,满足()()2f x f x -=,且()f x 在()1,0-上递减,若125a f ⎛=⎫⎪⎝⎭,()12b f n =-,()3 log 18c f =,则a ,b ,c 的大小关系为( )A .a c b <<B .c b a <<C .a b c <<D .b a c <<3.(2021·新安县第一高级中学高三其他模拟(文))被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :S N 为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍( ) A .2B .99C .101D .99994.(2021·济南市·山东师范大学附中高三其他模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭5.(2021·广东佛山市·高三其他模拟)(多选题)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是( )A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称6.(2021·黑龙江哈尔滨市·哈九中高三月考(文))已知函数()21log 1f x x ⎛⎫=+ ⎪ ⎪⎝⎭,则不等式()lg 3f x >的解集为___________.8.(2021·全国高三其他模拟)已知不为1的正实数,m n 满足1133log log ,m n >则下列不等式中一定成立的是 _____.(将所有正确答案的序号都填在横线上) ①1111m n >--;②m n e e > ;③()ln 0n m ->;④31m n -<;⑤11m n>. 9.(2019·吉林高三其他模拟(理))已知等比数列{}n a 满足()212345log 5a a a a a =,等差数列{}n b 满足33b a =,则12345b b b b b ++++=___________.10.(2021·山东高三其他模拟)已知数列{}n a 满足22log 1n n a n +⎛⎫=⎪+⎝⎭.给出定义:使数列{}n a 的前k 项和为正整数的k ()*k ∈N 叫做“好数”,则在[]1,2021内的所有“好数”的和为______.11.(2021·辽宁铁岭市·高三二模)设()f x 定义域为R ,已知()f x 在[)1,+∞上单调递减,()1f x +是奇函数,则使得不等式()()()22log 3log 0f x f x -+>成立的x 取值范围为___________.12.(2021·全国高三其他模拟)已知函数()()log 1a f x x =+,函数()y g x =的图象上任意一点P 关于原点的对称点Q 的轨迹恰好是函数()f x 的图象. (1)写出()g x 的解析式:(2)若1a >,[)0,1x ∈时,总有()()f x g x m +≥成立,求实数m 的取值范围.1.(2020·全国高考真题(文))设3log 2a =,5log 3b =,23c =,则( ) A .a c b <<B .a b c <<C .b c a <<D .c a b <<2.(2008·山东高考真题(文))已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<3.(2013·辽宁高考真题(文))已知函数()()()21ln 1931,.lg 2lg 2f x x x f f ⎛⎫=+-++= ⎪⎝⎭则A .1-B .0C .1D .24.(2019·北京高考真题(理))在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1B .10.1C .lg10.1D .10.110-5.(2020·海南高考真题)(多选题)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1n i i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )6.(2020·北京高考真题)函数1()ln 1f x x x =++的定义域是____________. 7.(2019·上海高考真题)函数()()20f x x x =>的反函数为___________8.(2014·重庆高考真题(理))函数22()log log (2)f x x x =⋅的最小值为__________.9.(2014·广东高考真题(理))若等比数列的各项均为正数,且,则1220ln ln ln a a a +++= .10.(2017·上海高考真题)已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =________1.【答案】C 【分析】根据题意列不等式组,化简得出结论. 【详解】由题意得10,10,0,x x x ->⎧⎪+>⎨⎪≠⎩解得10x -<<或01x <<.所以原函数的定义域为(1,0)(0,1)-.故选:C. 2.【答案】A 【分析】运用对数运算法则和换底公式进行求解. 【详解】由37b =,可得3log 7b =, 所以()()33213log 72log 56log 37⨯=⨯33333log 7log 2log 3log 7+=+131b a b +⨯=+3ab a ab+=+. 故选:A 3.【答案】A 【分析】先由对数的性质可得01a <<,01b <<,1c >,然后利用作差法判断,a b 的大小即可 【详解】首先01a <<,01b <<, 因为lg 3lg 4a =,lg 3lg 5b =,所以()lg 3lg 5lg 4lg 3lg 30lg 4lg 5lg 4lg 5a b --=-=>⋅,所以01b a <<<,因为4log 51c =>,所以b a c <<.故选:A. 4.【答案】BCD 【分析】作出函数()f x 的图象如下图所示,将原问题转化为函数()f x 的图象与直线+y =x a 有两个不同的交点,根据图示可得实数a 的取值范围. 【详解】根据题意,作出()f x 的图像如下所示:令()0g x =,得()f x x a =+,所以要使函数()()g x f x x a =--有且只有两个不同的零点, 所以只需函数()f x 的图像与直线y x a =+有两个不同的交点, 根据图形可得实数a 的取值范围为(1,)-+∞, 故选:BCD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.1.【答案】D 【分析】由奇函数性质及0x >的解析式,求得()f x x =-,在实数范围内单调递减,比较数的大小a b c >>,从而有()()()f a f b f c <<. 【详解】当0x >时,()f x x =-,由奇函数的性质知,()f x x =-,x ∈R ,函数单调递减;又0.250.31a -=>,0.25log 0.3(0,1)b =∈,0.3log 2.50c =< 则a b c >>由函数单减知,()()()f a f b f c << 故选:D 2.【答案】A 【分析】根据题意得出()f x 是以2为周期的周期函数,且在()0,1上递增函数,再根据指数函数与对数函数的性质,32log 2ln 2<<<,结合单调性,即可求解. 【详解】由函数()1y f x =-关于1x =对称,可得函数()f x 关于0x =对称,即()()f x f x -=, 又由函数()f x 满足()()2f x f x -=,可得()()2f x f x -=-,即()()2f x f x =+, 所以函数()f x 是以2为周期的周期函数,则1122()552()a f f ==-,()1(ln2)2b f n f ==-,333log 18log 182()()(log 2)f c f f =-==,1222<=,且331log log 2ln 22=<, 因为()f x 在()1,0-上递减,可得函数()f x 在()0,1上递增函数,所以3(log 18)(ln 2)f f f <<-,即a c b <<. 故选:A. 3.【答案】C 【分析】利用香农公式求1C 的值,根据12C 的值求SN的值,从而就能求出信噪比变为原来的多少倍. 【详解】 当99SN =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭, 由228000log 102000log 1S N ⎛⎫=+ ⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999SN =, 所以999910199=,即信噪比变为原来的101倍. 故选:C . 4.【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A 5.【答案】AD 【分析】分别考虑函数的定义域、单调性及对称性就可以对每一个选项作出判断. 【详解】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确; ()()12()ln 1ln 1ln ln(1)11x xxx x e f x e e e e +=+--==+--,令211x y e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令)()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确. 故选:AD 6.【答案】()1,11,1010⎛⎫ ⎪⎝⎭【分析】确定函数的奇偶性与单调性,然后由奇偶性与单调性解不等式. 【详解】函数定义域是{|0}x x ≠,21()log 1f x x ⎛⎫-=+ ⎪ ⎪⎝⎭()f x =,()f x 是偶函数,0x >时,21()log 1f x x ⎛⎫=+ ⎪⎝⎭又(1)3f =,所以由(lg )3f x >得lg 1x <,1lg 1x -<<且lg 0x ≠,解得11010x <<且1x ≠.故答案为:()1,11,1010⎛⎫⎪⎝⎭【点睛】关键点点睛:本题考查解函数不等式,解题关键是确定函数的奇偶性与单调性,然后利用函数的性质解不等式,解题时注意函数的定义域,否则易出错. 7.【答案】6 【分析】首先利用换底公式表示3log 2a =,再代入39a a +求值. 【详解】 由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=. 故答案为:6 8.【答案】④⑤. 【分析】根据对数函数单调性先分析出,m n 的大小关系,然后结合函数性质以及不等式的性质逐项分析. 【详解】 因为1133log log m n >且,m n 不为1,由对数函数13log y x =的单调性可知0m n <<, ①当01,1m n <<>时,110,011m n <>--,所以1111m n <--,故①不一定成立; ②因为m n <,由指数函数xy e =的单调性可知m n e e <,故②不成立; ③当01m n <<<时,01n m <-<,所以()ln 0n m -<,故③不一定成立; ④因为0m n -<,所以0331m n -<=,故④一定成立; ⑤因为0m n <<,所以110m n>>,故⑤一定成立; 故答案为:④⑤.9.【答案】10 【分析】由已知结合等比数列的性质可求3a ,然后结合等差数列的性质即可求解. 【详解】因为等比数列{}n a 中,()()521234523log log 5a a a a a a ==,所以32a =, 因为332b a ==,则由等差数列的性质得123453510b b b b b b ++++==. 故答案为:10. 10.【答案】2026 【分析】先计算出数列{}n a 的前k 项和,然后找到使其为正整数的k ()*k ∈N ,相加即可得到答案.【详解】 由题,22212222log log log 11211n n S n +++⎛⎫⎛⎫⎛⎫=+++⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭222342log log log 231n n +⎛⎫=+++ ⎪+⎝⎭()()22222log log 2log 2log 212n n n +==+-=+-. 所以,()2log 21k S k =+-.因为k S 为正整数,所以()2log 210k +->,即220k k +>⇒>. 令()2log 2m k =+,则22=-m k . 因为[]1,2021k ∈,所以[]23,2023m∈.因为2xy =为增函数,且12101122,24,,21024,22048====所以[]2,10m ∈.所以所有“好数”的和为210231022222222229202612-⨯-+-++-=-⨯=-.故答案为:2026. 【点睛】本题考查了数列的新定义、对数运算法则,解题时应认真审题,找到规律,注意等比数列求前n 项和公式的灵活运用. 11.【答案】()3,4 【分析】根据()1f x +是奇函数判断函数的对称中心1,0(),()()120f x f x +>等价于122x x +<,()()()22log 3log 0f x f x -+>等价于()22log 3log 2x x -+<,即可得到关于x 的不等式,求出x 的范围. 【详解】因为()1f x +是奇函数,故()f x 图像关于()1,0 对称,由题设()()110f x f x -++=,因为()f x 在[)1,+∞上单调递减, 所以()()120f x f x +>等价于122x x +<,因此不等式()()()22log 3log 0f x f x -+>等价于()22log 3log 2x x -+<, 即22log [(3)]log 4x x -< ,即234x x -< 且30x -> , 解得x 取值范围为()3,4. 故答案为:()3,412.【答案】(1)()1log 1a g x x=-;(2)(],0-∞. 【分析】(1)设(),P x y 是函数()y g x =图象上的任意一点,则P 关于原点的对称点Q 的坐标在函数()f x 的图象上得log (1)a y x =--+,再(),P x y 是函数()y g x =图象上的点,可得答案; (2)求[)0,1x ∈时,利用换元法求出()()f x g x +的最小值可得答案. 【详解】(1)由题意,设(),P x y 是函数()y g x =图象上的任意一点, 则P 关于原点的对称点Q 的坐标为(),x y --, 因为已知点Q 在函数()f x 的图象上, 所以()y f x -=-,而()()log 1a f x x =-+, 所以()log 1a y x -=-+,所以log (1)a y x =--+, 而(),P x y 是函数()y g x =图象上的点, 所以()1log (1)log 1a a y g x x x==--+=-. (2)当[)0,1x ∈时,()()11log (1)log log 11a aa x f x g x x x x++=++=--, 下面求当[)0,1x ∈时,()()f x g x +的最小值,令11x t x +=-,则11t x t -=+, 因为[)0,1x ∈,即1011t t -≤<+,解得1t ≥, 所以111xx+≥-, 又1a >,所以1log log 111aa xx+≥=-, 所以()()0f x g x +≥,所以[)0,1x ∈时,()()f x g x +的最小值为0, 因为当[)0,1x ∈时,总有()()f x g x m +≥成立, 所以0m ≤,即所求m 的取值范围为(],0-∞.1.【答案】A 【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==, 所以a c b <<. 故选:A. 【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题. 2.【答案】A 【解析】本小题主要考查正确利用对数函数的图象来比较大小.由图易得1a >,101a -∴<<;取特殊点01log 0a x y b =⇒-<=<,11log log log 10aa ab a⇒-=<<=,101a b -∴<<<.选A . 3.【答案】D 【详解】试题分析:设lg 2a =,则1lgln 22a =-=-,()())ln 31f a f a a +-=++()22ln 31ln 1992ln122a a a ⎫+=+-+=+=⎪⎭,所以()1lg 2lg 22f f ⎛⎫+= ⎪⎝⎭,所以答案为D.考点:1.对数函数的运算律;2.换元法.4.【答案】A 【分析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值. 【详解】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选A.本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算. 5.【答案】AC 【分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出 ()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项. 【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确. 对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n==,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且 ()21j m jP Y j p p +-==+( 1,2,,j m =).()2222111log log mmi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅.()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++由于()01,2,,2i p i m >=,所以2111i i m i p p p +->+,所以 222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 故选:AC 【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题. 6.【答案】(0,)+∞ 【分析】根据分母不为零、真数大于零列不等式组,解得结果. 【详解】 由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞ 【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题. 7.【答案】0y x => 【分析】求解出原函数的值域,得到反函数的定义域,再求解出反函数的解析式,得到结果. 【详解】当0x >时,20x >,即()0f x > 又x=y ⇒=∴反函数为:y x =,0x >【点睛】本题考查反函数的求解,易错点为忽略反函数的定义域. 8.【答案】14- 【解析】试题分析:()()()2222222111log 2log 1log log log 224f x x x x x x ⎛⎫⎡⎤=⋅+=+=+- ⎪⎣⎦⎝⎭ 所以,当21log 2x =-,即22x =时,()f x 取得最小值14-. 所以答案应填:14-. 考点:1、对数的运算;2、二次函数的最值.9.【答案】50. 【详解】 由得551011101122,a a e a a e ==,所以1220ln ln ln a a a +++=105012201011ln()ln()ln 50.a a a a a e ⋅⋅===【点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 10.【答案】2 【详解】由2n a n =,若对于任意{},n n N b +∈的第n a 项等于{}n a 的第n b 项,则2()n n a b n b a b ==,则22221429311641()(),(),,()b b b b b b b b ===== 所以2149161234()b b b b b b b b =,所以21491612341234123412341234lg()lg()2lg(2lg()lg()()lg )b b b b b b b b b b b b b b b b b b b b b b b b ===.。
高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?
高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?函数零点问题的4种解题方法一、依据概念化为方程求根对于函数y=f(x),我们把f(x)=0使的实数x叫做函数y=f(x)的零点,因此,该方法就是将函数的零点问题转化为方程f(x)=0的问题来解答。
二、由数到形实现零点交点的互化函数y=f(x)的零点,即函数y=f(x)的图像与x轴的交点的横坐标。
因此,求函数的零点问题可转化为函数y=f(x)图像与x轴的交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)形式,然后在同一直角坐标系下,画出两函数的图像,交点的横坐标即为函数的零点,交点的个数即为函数的零点个数。
注:在解题中,若遇到函数形式复杂难以作图时,则不妨先整理表达式,一般以所涉及的函数能作其图像为整理要求。
接着在同一坐标系下,规范作图,然后确定交点的位置或个数,特别在部分区间上是否存在交点,要细心对待,有时还需计算相关的函数值(函数值的趋势)来确定是否有交点。
三、依存定理凭号而论如果函数y=f(x)在区间[a,b]上的图像时联系不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点。
即存在c∈(a,b),使得f(c)=0。
通常将此论述称为零点存在性定理。
因此,该解题策略就是将函数零点分布问题转化为判断不等式f(a)f(b)<0是否成立。
四、借助单调确定问题如果函数y=f(x)在区间[a,b]上的图像时连续不断的一条具有单调性曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有唯一零点,即存在唯一的c∈(a,b),使得f(c)=0。
通常将此论述称为零点唯一性定理。
因此,该策略解题需要考虑两个条件:条件一是f(a)f(b)<0是否成立;条件二是否具有单调性。
题型一:已知零点个数求参数范围题型二:求零点所在区间题型三:求零点个数。
高考数学热点难点突破技 函数的零点问题处理方法
第05讲:函数的零点问题处理方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数(,把使成立的实数叫做函数(的零点.函数的零点不是一个点的坐标,而是一个数,类似的数学概念有截距和极值点等.(2)函数零点的意义:函数的零点就是方程的实数根,亦即函数的图像与轴的交点的横坐标,即:方程有实数根函数的图像与轴有交点函数有零点.(3)零点存在性定理:如果函数在区间上的图像是一条连续不断的曲线,并且有,那么函数在区间内至少有一个零点,即存在使得,这个也就是方程的根.函数在区间上的图像是一条连续不断的曲线,并且有是函数在区间内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决.二、二分法(1)二分法及步骤对于在区间上连续不断,且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法.(2)给定精确度,用二分法求函数的零点近似值的步骤如下:第一步:确定区间,验证,给定精确度.第二步:求区间的中点.第三步:计算:①若=0,则就是函数的零点;②若,则令(此时零点)③若,则令(此时零点)第四步:判断是否达到精确度即若,则得到零点值或,否则重复第二至第四步.三、一元二次方程的根的分布讨论一元二次方程的根的分布一般从以下个方面考虑列不等式组:(1)的符号;(2)对称轴的位置;(3)判别式的符号;(4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入.五、方法总结1、函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法.2、高考考查单调函数的零点时,一般要找到两个变量,并且要证明.这是一个难点,一般利用放缩法证明.【方法讲评】方法一方程法使用情景方程可以直接解出来.解题步骤先解方程,再求解.【例1 】已知函数区间内有零点,求实数的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的一元二次函数要比较敏感,看到它就要想到因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数在区间上的零点个数是()A.4B.5C.6D. 7方法二图像法使用情景函数是一些简单的初等函数(反比例函数、一次函数、二次函数、指数函数、对数函数、三角函数等)或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再根据函数的单调性画出函数的图像分析.【例2】(2016年北京高考文科)设函数(1)求曲线在点处的切线方程;(2)设,若函数有三个不同零点,求c的取值范围;(3)求证:是有三个不同零点的必要而不充分条件.(2)当时,,所以.令,得,解得或.与在区间上的情况如下:所以,当且时,存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.(3)当时,,,此时函数在区间上单调递增,所以不可能有三个不同零点.当时,只有一个零点,记作.当时,,在区间上单调递增;当时,,在区间上单调递增.所以不可能有三个不同零点.【点评】(1)本题的第2问是用数形结合解答的,画图分析得只有满足极大值大于零且极小值小于零,则函数图像与轴会有三个不同的交点,函数有三个不同零点.(2)本题的第3问,,是一个二次函数,但是由于该二次函数与轴的交点的个数不确定,所以要就判别式分类讨论,分类讨论时结合数形结合比较直观地看到函数的单调性,从而得到零点的个数.【例3】(2017全国高考新课标I理科数学)已知函数. (1)讨论的单调性;(2)若有两个零点,求a的取值范围.(2) ①若由(1)知至多有一个零点.②若,由(1)知当时,取得最小值,. (i)当时,=0,故只有一个零点.(ii)当时,由于>0,即,故没有零点. (iii)当时,,即.故在只有一个零点.【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当时,要先判断的零点的个数,此时考查了函数的零点定理,,还必须在该区间找一个函数值为正的值,它就是要说明,这里利用了放缩法,丢掉了.(3) 当时,要判断上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是,再放缩证明>0. (4)由此题可以看出零点定理在高考中的重要性.【反馈检测2】已知函数,其中为实数,常数.(1) 若是函数的一个极值点,求的值;(2) 当时,求函数的单调区间;(3) 当取正实数时,若存在实数,使得关于的方程有三个实数根,求的取值范围.方法三方程图像法使用情景函数比较复杂,不方便解方程,也不容易求函数的单调性.先令,重新构造方程,再画函数的图解题步骤像分析解答.【例4】【2017江苏,14】设是定义在且周期为1的函数,在区间上,其中集合,则方程的解的个数是 .因此,则,此时左边为整数,右边为非整数,矛盾,因此,因此不可能与每个周期内对应的部分相等,只需考虑与每个周期的部分的交点,画出函数图象,图中交点除外其他交点横坐标均为无理数,属于每个周期的部分,且处,则在附近仅有一个交点,因此方程的解的个数为8.【点评】直接求方程的解的个数比较困难,所以转化为方程的解的个数. 所以要先化出函数和函数的图像,再分析它们的交点个数,即得到方程的解的个数.【例5】函数.(1)当时,若函数与的图象有且只有3个不同的交点,求实数的值的取值范围;(2)讨论的单调性.【解析】(1)当时,由题得,两式相减得,故.令,,故当时,;当时,;当时,;,.故.【点评】(1)由于函数与函数的图像不好画,即使能画出来,也不方便研究两个函数图像的交点个数,所以把交点转化成方程组的解来解答,再转化成方程的解来解答,再分离参数化成的形式,利用数形结合分析解答. (2)对于一个函数如果不方便解方程,也不方便画图,则可以尝试利用重新构造方程,再分别画出函数和函数的图像分析解答.【例6】函数的零点个数是个.当时,所以函数在上只有一个零点.综上所述,函数零点个数为2.【点评】(1)函数是一个分段函数,求出每一段的函数的零点个数再相加即可. (2)上面一段宜选用解方程的方法求零点,因为它可以整理成一个关于的一元二次方程. 下面的一段宜选用图像法求零点.因为它的单调性比较容易求得. (3)要想灵活选择,主要取决于熟练生巧.【反馈检测3】设函数.(1)求函数的单调区间;(2)当时,讨论函数与图象的交点个数.高考数学热点难点突破技巧第05讲:函数的零点问题处理方法参考答案【反馈检测1答案】【反馈检测2答案】(1);(2)的单调增区间是,;的单调减区间是,,;(3)的取值范围是. 【反馈检测2详细解析】(1)因为是函数的一个极值点,所以,即.而当时,,可验证:是函数的一个极值点.因此.(2) 当时,令得,解得,而.所以当变化时,、的变化是极小极大值值因此的单调增区间是,;的单调减区间是,,;(3) 当取正实数时,,令得,当时,解得.在和上单调递增,在上单调递减,但是函数值恒大于零,极大值,极小值,并且根据指数函数和二次函数的变化速度可知当时,,当时,.因此当时,关于的方程一定总有三个实数根,结论成立;当时,的单调增区间是,无论取何值,方程最多有一个实数根,结论不成立.因此所求的取值范围是.【反馈检测3答案】(1)单调递增区间是, 单调递减区间是;(2).【反馈检测3详细解析】(1)函数的定义域为.(2)令,问题等价于求函数的零点个数,,当时,,函数为减函数,注意到,所以有唯一零点;当时,或时,时,,所以函数在和上单调递减,在上单调递增,注意到,所以有唯一零点.综上,函数有唯一零点,即两函数图象总有一个交点.。
【高考数学冲刺解题技巧】高考数学导数中的零点问题解决方法
导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。
一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。
ag(x),()ln()已知函数1.例x?f(xgf)xx?x???2xe只有一个实的方程,若关于2xxa数根,求的值。
g(x)lnxlnx解析:22?f(x)?2e?a??x?2exh(x)??x?2ex,,令2xxx1?lnx''x?e0?h(x)e(x)?h?2x?2,令,则2x0?x?e时,当''ex?(x)hh?(x)?00h(x(x))h 单调递时,单调递增;当,,1减,2?ee)?h(x)?h(max eh(x)的单调性不是硬解出来的,因为你会发现注意这里'(xh)的式子很复杂,但是lnxh(x)当成两个函数的和,即如果把2m(??xx?2ex)?),n(x)xn(),m(x的,此时x)h(x单调性和极值点均相同,因此可以整体判断出的单调性和极值点。
1所以2?ea?(注意:有一个根转化为图像只有一个交点即可)e二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函f(x)(0,1)上有零在区间数必定有两个极值点,且极大值和极小值之积为负数,例如点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,f(x)在区间只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着(0,1)上存在极值点。
在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间.的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。
高中数学-函数的交点与根问题及例题解析
高中数学-函数的交点与根问题及例题解析介绍本文档将讨论高中数学中与函数的交点和根相关的问题,并提供例题解析。
通过研究本文档,读者将获得对这些概念的基本理解以及如何解决相关的数学问题的技巧。
函数的交点在数学中,函数的交点是指两个不同函数的图像在某一点上相交。
交点通常表示为一个坐标,包括横坐标和纵坐标。
要确定函数的交点,首先需要明确哪些函数需要比较。
通过方程式,可以找到交点的横坐标。
将这些横坐标代入对应的函数中,可以找到纵坐标,从而确定交点的坐标。
函数的根函数的根是指函数的图像与x轴相交的点。
根通常被表示为一个或多个实数。
要找到函数的根,需要解决函数的方程式。
通过将方程式设置为0,可以找到x的值,即函数的根。
解决函数的方程式通常需要运用代数运算和解方程的技巧。
可以使用因式分解、配方法、求根公式等方法求解方程。
例题解析例题1已知函数f(x) = x^2 - 4x + 3和g(x) = 2x - 1,求两个函数的交点。
解析:首先,将f(x)和g(x)设置为相等,即x^2 - 4x + 3 = 2x - 1。
通过整理方程,得到x^2 - 6x + 4 = 0。
然后,可以使用配方法或求根公式等方法解决这个方程。
在这个例子中,我们使用求根公式来解方程。
根据求根公式x = (-b ± √(b^2 - 4ac)) / 2a,代入方程的系数,即可得到x的值。
通过计算,得到x = 1和x = 3。
将这些x的值代入原来的函数中,可以得到相应的y值。
因此,交点的坐标为(1, -1)和(3, 5)。
例题2已知函数h(x) = x^3 + 2x^2 - x - 2,求h(x)的根。
解析:要找到h(x)的根,我们需要解决方程x^3 + 2x^2 - x - 2 = 0。
这是一个三次方程,可以使用因式分解、配方法、牛顿法等方法求解。
在这个例子中,我们使用因式分解方法来解决方程。
通过试除法,我们可以找到x = 1是方程的一个解。
2023年高考数学一轮复习课件——利用导数研究函数零点
教师备选
(2022·淄博质检)已知 f(x)=13x3+32x2+2x,f′(x)是 f(x)的导函数. (1)求 f(x)的极值;
因为f′(x)=x2+3x+2=(x+1)(x+2), 令f′(x)=0,得x1=-1,x2=-2, 当x变化时,f′(x),f(x)的变化如表所示:
x (-∞,-2) -2 (-2,-1) -1 (-1,+∞)
当x∈(0,e)时,f′(x)<0;
当x∈(e,+∞)时,f′(x)>0,
∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,
∴当x=e时,f(x)取得极小值f(e)=2.
(2)讨论函数 g(x)=f′(x)-3x零点的个数.
由题意知 g(x)=f′(x)-3x=1x-xm2-3x(x>0), 令 g(x)=0,得 m=-13x3+x(x>0). 设 φ(x)=-13x3+x(x>0), 则φ′(x)=-x2+1=-(x-1)(x+1).
④当m≤0时,函数g(x)有且只有一个零点.
综上所述,当 m>23时,函数 g(x)无零点; 当 m=23或 m≤0 时,函数 g(x)有且只有一个 零点; 当 0<m<23时,函数 g(x)有两个零点.
题型二 利用函数性质研究函数零点
例2 已知函数f(x)=x-aln x(a>0). (1)求函数f(x)的单调区间;
在(-1,+∞)上单调递减, 所以φ(x)max=φ(-1)=e,且x→-∞时, φ(x)→-∞;x→+∞时,φ(x)→0,
所以
0<1a<e,解得
1 a>e.
所以 a 的取值范围是1e,+∞.
教师备选
已知函数f(x)=xex+ex. (1)求函数f(x)的单调区间和极值;
2025届高考数学一轮复习教案:导数-导数的函数零点问题
第2课时导数的函数零点问题【命题分析】函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查基本初等函数、三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.【核心考点·分类突破】题型一利用导数探究函数的零点个数[例1]设函数f(x)=ln x+,m∈R,讨论函数g(x)=f'(x)-3零点的个数.【解析】由题意知g(x)=f'(x)-3=1-2-3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x>0),则φ'(x)=-x2+1=-(x-1)(x+1).当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减.所以x=1是φ(x)的唯一极值点,且是极大值点,所以x=1也是φ(x)的最大值点,所以φ(x)的最大值为φ(1)=23.结合y=φ(x)的图象(如图)可知,①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;当0<m<23时,函数g(x)有两个零点.【解题技法】利用导数确定函数零点或方程的根的个数的方法(1)构造函数:构建函数g(x)(要求g'(x)易求,g'(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)应用定理:利用零点存在定理,先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.【对点训练】(2023·郑州质检)已知函数f(x)=e x-ax+2a,a∈R.(1)讨论函数f(x)的单调性;(2)求函数f(x)的零点个数.【解析】(1)f(x)=e x-ax+2a,定义域为R,且f'(x)=e x-a,当a≤0时,f'(x)>0,则f(x)在R上单调递增;当a>0时,令f'(x)=0,则x=ln a,当x<ln a时,f'(x)<0,f(x)单调递减;当x>ln a时,f'(x)>0,f(x)单调递增.综上所述,当a≤0时,f(x)在R上单调递增;当a>0时,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(2)令f(x)=0,得e x=a(x-2),当a=0时,e x=a(x-2)无解,所以f(x)无零点,当a≠0时,1=-2e,令φ(x)=-2e,x∈R,所以φ'(x)=3-e,当x∈(-∞,3)时,φ'(x)>0;当x∈(3,+∞)时,φ'(x)<0,所以φ(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x)max=φ(3)=1e3,又x→+∞时,φ(x)→0,x→-∞时,φ(x)→-∞,所以φ(x)的大致图象如图所示.当1>1e3,即0<a<e3时,f(x)无零点;当1=1e3,即a=e3时,f(x)有一个零点;当0<1<1e3,即a>e3时,f(x)有两个零点;当1<0,即a<0时,f(x)有一个零点.综上所述,当a∈(0,e3)时,f(x)无零点;当a∈(-∞,0)∪{e3}时,f(x)有一个零点;当a∈(e3,+∞)时,f(x)有两个零点.【加练备选】已知函数f(x)=x e x+e x.(1)求函数f(x)的单调区间和极值;(2)讨论函数g(x)=f(x)-a(a∈R)的零点的个数.【解析】(1)函数f(x)的定义域为R,且f'(x)=(x+2)e x,令f'(x)=0得x=-2,则f'(x),f(x)的变化情况如表所示:x(-∞,-2)-2(-2,+∞)f'(x)-0+f(x)单调递减-12单调递增所以f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞).当x=-2时,f(x)有极小值,为f(-2)=-1e2,无极大值.(2)令f(x)=0,得x=-1,当x<-1时,f(x)<0;当x>-1时,f(x)>0,且f(x)的图象经过点(-2,-1e2),(-1,0),(0,1).当x→-∞时,f(x)→0;当x→+∞时,f(x)→+∞,根据以上信息,画出f(x)大致图象如图所示.函数g(x)=f(x)-a(a∈R)的零点的个数为y=f(x)的图象与直线y=a的交点个数,所以关于函数g(x)=f(x)-a(a∈R)的零点个数有如下结论:当a<-1e2时,零点的个数为0;当a=-1e2或a≥0时,零点的个数为1;当-1e2<a<0时,零点的个数为2.题型二利用函数零点问题求参数范围[例2]已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-x-2,则f'(x)=e x-1.当x<0时,f'(x)<0;当x>0时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)f'(x)=e x-a.当a≤0时,f'(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意;当a>0时,由f'(x)=0可得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).(i)若0<a≤1e,则f(ln a)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意; (ii)若a>1e,则f(ln a)<0.因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)上存在唯一零点.易知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e2·e2-a(x+2)>e ln(2a)+2-a(x+2)=2a>0.故f(x)在(ln a,+∞)上存在唯一零点,从而f(x)在(-∞,+∞)上有两个零点.综上,a,+∞.【解题技法】由函数零点求参数范围的策略(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.(3)含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x表示参数的函数,作出该函数图象,根据图象特征求参数的范围.【对点训练】(一题多法)(2020·全国Ⅰ卷)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-(x+2),f'(x)=e x-1,令f'(x)<0,解得x<0,令f'(x)>0,解得x>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)方法一:当a≤0时,f'(x)=e x-a>0恒成立,f(x)在(-∞,+∞)上单调递增,不符合题意;当a>0时,令f'(x)=0,解得x=ln a,当x∈(-∞,ln a)时,f'(x)<0,f(x)单调递减,当x∈(ln a,+∞)时,f'(x)>0,f(x)单调递增,所以f(x)的极小值也是最小值为f(ln a)=a-a(ln a+2)=-a(1+ln a).又当x→-∞时,f(x)→+∞,当x→+∞时,f(x)→+∞;所以要使f(x)有两个零点,只要f(ln a)<0即可,则1+ln a>0,可得a>1e.综上,若f(x)有两个零点,则a的取值范围是(1e,+∞).方法二:若f(x)有两个零点,即e x-a(x+2)=0有两个解,显然x=-2不成立,即a=e r2(x≠-2)有两个解,令h(x)=e r2(x≠-2),则有h'(x)=e(r2)-e(r2)2=e(r1)(r2)2,令h'(x)>0,解得x>-1,令h'(x)<0,解得x<-2或-2<x<-1,所以函数h(x)在(-∞,-2)和(-2,-1)上单调递减,在(-1,+∞)上单调递增,且当x<-2时,h(x)<0,而当x→(-2)+(从右侧趋近于-2)时,h(x)→+∞,当x→+∞时,h(x)→+∞,所以当a=e r2(x≠-2)有两个解时,有a>h(-1)=1e,所以满足条件的a的取值范围是(1e,+∞).【加练备选】已知函数f(x)=x ln x,g(x)=(-x2+ax-3)e x(a∈R).(1)当a=4时,求曲线y=g(x)在x=0处的切线方程;(2)如果关于x的方程g(x)=2e x f(x)在区间[1e上有两个不等实根,求实数a的取值范围.【解析】(1)当a=4时,g(x)=(-x2+4x-3)e x,g(0)=-3,g'(x)=(-x2+2x+1)e x,g'(0)=1,所以所求的切线方程为y+3=x-0,即y=x-3.(2)由g(x)=2e x f(x),可得2x ln x=-x2+ax-3,a=x+2ln x+3.设h(x)=x+2ln x+3(x>0),所以h'(x)=1+2-32=(r3)(-1)2,所以x在[1e,e]上变化时,h'(x),h(x)的变化如表:x[1,1)1(1,e]h'(x)-0+h(x)单调递减极小值(最小值)单调递增又h(1e)=1e+3e-2,h(1)=4,h(e)=3e+e+2,且h(e)-h(1e)=4-2e+2e<0,所以实数a的取值范围为(4,e+2+3e].题型三与函数零点有关的证明[例3](2022·新高考Ⅰ卷改编)已知函数f(x)=e x-x,g(x)=x-ln x.(1)判断直线y=b与曲线y=f(x)和y=g(x)的交点分别有几个;(2)证明:曲线y=f(x)和y=g(x)有且只有一个公共点;(3)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)设S(x)=e x-x-b,S'(x)=e x-1,当x<0时,S'(x)<0,当x>0时,S'(x)>0,故S(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以S(x)min=S(0)=1-b.当b<1时,S(x)min=1-b>0,S(x)无零点;当b=1时,S(x)min=1-b=0,S(x)有1个零点;当b>1时,S(x)min=1-b<0,而S(-b)=e->0,S(b)=e b-2b,设u(b)=e b-2b,其中b>1,则u'(b)=e b-2>0,故u(b)在(1,+∞)上单调递增,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点.设T(x)=x-ln x-b,T'(x)=-1,当0<x<1时,T'(x)<0,当x>1时,T'(x)>0,故T(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以T(x)min=T(1)=1-b.当b<1时,T(x)min=1-b>0,T(x)无零点;当b=1时,T(x)min=1-b=0,T(x)有1个零点;当b>1时,T(x)min=1-b<0,而T(e-)=e->0,T(e b)=e b-2b>0,所以T(x)=x-ln x-b有两个不同的零点.综上可知,当b<1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是0;当b=1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是1;当b>1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是2.(2)由f(x)=g(x)得e x-x=x-ln x,即e x+ln x-2x=0,设h(x)=e x+ln x-2x,其中x>0,故h'(x)=e x+1-2.设s(x)=e x-x-1,x>0,则s'(x)=e x-1>0,故s(x)在(0,+∞)上单调递增,故s(x)>s(0)=0,即e x>x+1,所以h'(x)>x+1-1≥2-1>0,所以h(x)在(0,+∞)上单调递增,而h(1)=e-2>0,h(1e3)=e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,且1e3<x0<1,当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),所以曲线y=f(x)和y=g(x)有且只有一个公共点.(3)由(2)知,若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的解x1,x0(x1<0<x0),x-ln x=b有两个不同的解x0,x2(0<x0<1<x2),故e1-x1=b,e0-x0=b,x2-ln x2-b=0,x0-ln x0-b=0,所以x2-b=ln x2,即e2-=x2,即e2--(x2-b)-b=0,故x2-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,所以{x1,x0}={x0-b,x2-b},而b>1,故0=2-,1=0-,即x1+x2=2x0.【解题技法】1.证明与零点有关的不等式,函数的零点本身就是一个条件,即零点对应的函数值为0;2.证明的思路一般对条件等价转化,构造合适的新函数,利用导数知识探讨该函数的性质(如单调性、极值情况等),再结合函数图象来解决.【对点训练】已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.(1)求证:f'(x)在(0,π)上存在唯一零点;(2)求证:f(x)有且仅有两个不同的零点.【证明】(1)设g(x)=f'(x)=1-1+2cos x,当x∈(0,π)时,g'(x)=-2sin x-12<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π-1+1>0,g(π2)=2π-1<0,所以g(x)在(0,π)上有唯一的零点.(2)设f'(x)在(0,π)上的唯一零点为α,由(1)知π3<α<π2.①当x∈(0,α)时,f'(x)>0,f(x)单调递增;当x∈(α,π)时,f'(x)<0,f(x)单调递减;所以f(x)在(0,π)上存在唯一的极大值点α,所以f(α)>f(π2)=lnπ2-π2+2>2-π2>0,又因为f(1e2)=-2-1e2+2sin1e2<-2-1e2+2<0,所以f(x)在(0,α)上恰有一个零点.又因为f(π)=lnπ-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点.②当x∈[π,2π)时,sin x≤0,f(x)≤ln x-x,设h(x)=ln x-x,h'(x)=1-1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x∈[π,2π)时,f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2.设φ(x)=ln x-x+2,φ'(x)=1-1<0,所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个不同的零点.。
高中数学解解析几何中的交点问题分析
高中数学解解析几何中的交点问题分析高中数学解析几何中的交点问题分析解析几何是高中数学中的一门重要学科,其中涉及到的交点问题是解析几何的基础内容之一。
在解析几何中,交点问题主要指的是确定两个或多个图形之间的交点坐标。
本文将通过具体的例题分析,重点讲解交点问题的解题技巧和应用。
一、直线与直线的交点问题直线与直线的交点问题是解析几何中最基础的问题之一。
下面我们通过一个例题来说明解决该问题的方法。
例题:已知直线L1过点A(2, 3),斜率为k,直线L2过点B(4, -1),斜率为-2/3,求L1与L2的交点坐标。
解析:我们可以通过斜率公式来解决这个问题。
斜率公式表示为:k = (y2 - y1) / (x2 - x1)。
根据题意,直线L1的斜率为k,过点A(2, 3),因此可以得到直线L1的方程为:y - 3 = k(x - 2)。
直线L2的斜率为-2/3,过点B(4, -1),因此可以得到直线L2的方程为:y + 1 = (-2/3)(x - 4)。
将直线L1和L2的方程联立,解得交点坐标为(10/7, 11/7)。
通过这个例题,我们可以看出,解决直线与直线交点问题的关键在于确定直线的方程,并将方程联立求解。
二、直线与圆的交点问题直线与圆的交点问题是解析几何中较为复杂的问题之一。
下面我们通过一个例题来说明解决该问题的方法。
例题:已知圆C的圆心为O(3, 4),半径为5,直线L过点A(1, 2),斜率为2,求直线L与圆C的交点坐标。
解析:我们可以通过圆的方程和直线的方程联立来解决这个问题。
圆的方程表示为:(x - a)^2 + (y - b)^2 = r^2,其中(a, b)为圆心坐标,r为半径。
根据题意,圆C的圆心为O(3, 4),半径为5,因此可以得到圆C的方程为:(x - 3)^2 + (y - 4)^2 = 25。
直线L过点A(1, 2),斜率为2,因此可以得到直线L的方程为:y - 2 = 2(x - 1)。
高考数学一轮复习-零点知识梳理2-苏教版
零点应用一.瞄准高考 1.函数的零点(1)三个等价关系:方程 f (x )=0 有实根⇔函数 y =f (x )的图象与 x 轴有交点⇔函 数y =f (x )有零点.(2)函数零点存在性定理:如果函数 y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且 f (a )f (b )<0,那么函数 y =f (x )在区间(a ,b )内有零点,即存在 c ∈(a ,b ), 使得 f (c )=0,这个 c 也就是方程 f (x )=0 的根.(尤其注意,f (a )f (b )<0 是“函数 y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,那么函数 y =f (x )在区间(a ,b )内有零点”的充分不必要条件)。
二.解析高考题型一 函数零点的判定例 1 已知函数 f (x )=ln x +2x -6.1) 证明:f (x ) 在其定义域上是增函数; 2) 证明:f (x ) 有且只有一个零点;3) 求这个零点所在的一个区间,使这个区间的长度不超过 1.4【思维启迪】(1) 利用导数法证明函数的单调性.(2) 利用函数在某一区间内存在零点的条件证明其存在性,利用函数的单调性说明其唯一 性. (3) 运用“二分法”求其区间.【解答】(1)证明 函数的定义域为(0,+∞). 1∵f ′(x )= +2>0,∴f (x )在(0,+∞)上是增函数.x(2) 证明 ∵f (2)=ln 2-2<0,f (3)=ln 3>0,∴f (2)·f (3)<0. ∴f (x )在(2,3)上至少有一个零点.由(1)知 f (x )在(0,+∞)上至多有一个零点.从而 f (x )在(0,+∞)上有且只有一个零点.(3)解 由 f (2)<0,f (3)>0.∴f (x )的零点 x 0∈(2,3).5 取 x 1= 2 ,∵f (5 2 5 )=ln 2 5 -1=ln 2 -ln e<0,∴f ( 5 5 )·f (3)<0,∴x 0∈( 2 2 ,3).11 11 11 1 11 111 5取 x 2=4 .∵f ( 4 )=ln - =ln 4 2 4 - ln e 2>0,∴f ( 4 )·f ( 2)<0. 5 ∴x 0∈( , 2 11 11 5 1 1).而| - |= ≤ 44 2 4 4 ∴(5, 2 11)即为符合条件的区间.4【探究提高】 (1)f (x )在[a ,b ]上连续,f (a )·f (b )<0 是 f (x )在(a ,b )上存在零点的充分 条件.存在并不能说明唯一.所以本题第(2)问还应注意,证明零点的唯一性.(2)应用二分法确定零点所在区间长度不超过 q ,可有如下思考过程:①f (a )·f (b )<0,区间使|a -b |≤q ,则零点 x 0∈(a,b ),区间(a ,b )为所求.②若 f (a )·f (b )<0,区间使|a -b |>q , a +b则取中点 2=x 0,进一步检验f (a )·f (x 0)<0(或f (x 0)·f (b )<0)及|a -x 0|与q的关系(或|b -x 0|与q 的关系),直至符合要求为止. 【变式】若函数 f (x )=|4x -x 2|-a 的零点个数为 3,则 a = .【解析】y =|x 2-4x |的图象如图∵函数 y =|x 2-4x |的图象与函数 y =4 的图象恰有 3 个公共点,∴a =4.用心 爱心 专心1,题型二 函数与方程的综合应用例 2 已知函数 f (x )=m x 2+(m -3)x +1 的图象的零点至少有一个在原点的右侧,求实 数 m 的取值范围.1,0 【解答】 (1)当 m =0 时,f (x )=-3x +1,直线与 x 轴的交点为 3点为1,在原点右侧,符合题意.3,即函数的零 (2)当 m ≠0 时,因为 f (0)=1,所以抛物线过点(0,1),若 m <0,f (x )的开口向下,如图 (1)所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若 m >0,f (x ) 的开 口向 上, 如图 (2) 所示 , 要使 函数 的零 点在原 点右 侧, 当且 仅当Δ= m -3 2-4m ≥0, 3-m>0, 解 得 2mm >0,m ≤1 或 m ≥9,0<m <3,即 0<m ≤1.综上所述,所求 m 的取值范围是(-∞,1].【探究提高】(1)函数零点(即方程的根)的确定问题,常见的有①函数零点值或大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这 类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(2)函数零点(即方程的根)的应用问题,即已知函数零点的存在情况求参数的值或取值范围 问题,解决该类问题关键是用函数方程思想或数形结合思想,构建关于参数的方程或不等式 求解.【变式】已知 a 、b 是不全为 0 的实数,求证:方程 3a x 2+2b x -(a +b )=0 在(0,1)内至 少有一个根.证明 若 a =0 时,则 b ≠0,此时方程的根为 x = 1,满足题意. 2当 a ≠0 时,令 f (x )=3a x 2+2b x -(a +b ).1 - a 1(1)若 a (a +b )<0,则 f (0)·f0,1=-(a +b )· 4 = a (a +b )<0, 4 所以 f (x )在区间 2 内有一实根.1 1- a 21 2 1(2)若 a (a +b )≥0,则 f · f (1)= 4 (2a +b )=- a - a (a +b )<0, 1,1 所以 f (x )在区间 2 4 4内有一实根.综上,方程 3ax 2+2bx -(a +b)=0 在(0,1)内至少有一个根.三.感悟高考1.判断函数的零点,要善于运用“三个转化”,时常将函数的零点问题转化为函数 图象与 x 轴的交点问题,或转化为两个函数图象交点问题.需特别注意的是下面式子是错的:“f (a )f (b )<0⇔函数 y =f (x )在区间(a ,b )内有零点”.2.对函数零点的考查,通常以函数为载体判断方程根的个数,或以此为背景求参数用心 爱心 专心21 2x x 2 1 1 1的范围,此类问题都是利用数形结合,借助函数图象(复杂函数的图象可用导数工具)加 以解决.【湖南理 22】已知函数 f (x ) = x 3 ,g ( x )= x + 。
零点交点问题
零点交点问题一.不带参数方法:(1)直接构造一个新的函数,求单调性和极值判断零点个数(2)特殊情况:()f x 和()g x 其中一个函数的最大值小于另外一个函数的最小值,无根 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数.(Ⅰ)当1a =-时,求()f x 的最大值;(Ⅱ)若()f x 在区间(]0,e 上的最大值为3-,求a 的值;(Ⅲ)当1a =-时,判断方程ln 1|()|2x f x x =+是否有实根?若无实根请说明理由,若有实根请给出根的个数.二.带参数方法:(1)直接移到一边构造一个新的函数,求单调性和极值判断零点个数(2)参变分离,构造一个新的函数1.讨论零点或交点个数 已知函数3211()(,)32a f x x x bx a ab R +=-++ ,其导函数'()f x 的图像过原点。
当1a =时,求函数()f x 的图像在3x =处的切线方程;若存在0x <,使得'()9f x =-,求a 的最大值;当0a >时,确定函数()f x 的零点个数。
设函数()ln ,(),x f x x ax g x e ax =-=-其中a 为实数.(1)若()f x 在(1,+∞)上是单调减函数,且()g x 在(1,+∞)上有最小值,求a 的取值范围;(2)若()g x 在(-1,+∞)上是单调增函数,试求()f x 的零点个数,并证明你的结论.若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为函数)(x f y =的极值点. 已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.设函数()ax x x f -=ln ,()ax e x g x -=,其中a 为实数,若()x g 在()∞+,1上是 单调增函数,试求()x f 的零点个数,并证明你的结论(2014年陕西)设函数()R m xm x x f ∈+=,ln (1)当e m =时,求()x f 的极小值;(2)讨论函数()()3x x f x g -'=零点个数; (3)若对任意0>>a b ,()()1<--ab a f b f 恒成立,求m 的取值范围; 2.已知零点或交点个数求参数值或取值范围(2012年高考(大纲))已知函数的图像与轴恰有两个公共点,则( )A .或2B .或3C .或1D .或1已知函数3()31,0f x x ax a =--(1)求()f x 的单调区间(2)若()f x 在1x =-处取得极值,直线y m =与()y f x =的图像有三个不同的交点,求m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11 零点、根、交点教你如何转化考纲要求:1.函数的零点、方程根的个数是历年高考的重要考点.2.利用函数的图形及性质判断函数的零点,及利用它们求参数取值范围问题是重点,也是难点.基础知识回顾:一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点。
函数的零点不是一个点的坐标,而是一个数,类似的有截距、极值点等。
(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。
(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得f(c)=0,这个也就是方程的根。
函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件。
【注】零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决。
二、二分法 (1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法。
(2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε。
第二步:求区间(,)a b 的中点1x 。
第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x < ,则令1b x =(此时零点01(,)x a x ∈)③若1()()0f x f b < ,则令1a x =(此时零点01(,)x x b ∈) 第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步。
三、二次函数y =ax 2+bx +c (a >0)零点的分布【注】y =ax 2+bx +c (a <0)的零点分布请自己类比。
应用举例:类型一、判断函数的零点的个数【例1】函数,,则函数的零点个数是()A.2B.3C.4D.0【答案】A点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.【例2】已知偶函数满足,当时,,则函数在区间内的零点个数为()A .8B .7C .6D .5【答案】B【解析】由题意可得f (x )对称轴,x =0,所以周期为,由图可知,在上有两个根,其中一个为x =0,根据周期性可知,上各有一个零点,所有共7个零点.选B .【点睛】对于函数零点问题,我们一般先找到己知函数区间上的零点个数,再根据对称性和周期性求出其它区间上的零点数,特别要注意每段区间端点的零个数,需不重不漏.【例3】已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2 2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .5【答案】A点评:判断函数零点个数的3种方法(1)解方程法:若对应方程f (x )=0可解时,通过解方程,则有几个解就有几个零点. (2)零点存在性定理法:利用定理不仅要判断函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数. 类型二、函数的零点所在区间的判定【例4】函数()43xf x e x =+-的零点所在的区间()AC 【答案】C 【解析】试题分析:由题意得,,根据函数零点的判定定理,故选C .【例5】函数f (x )=3x -7+lnx 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 【答案】2点评:确定函数f (x )的零点所在区间的2种常用方法:(1)定义法:使用零点存在性定理,函数y =f (x )必须在区间[a ,b ]上是连续的,当f (a )·f (b )<0时,函数在区间(a ,b )内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f (x )=g (x )-h (x ),作出y =g (x )和y =h (x )的图象,其交点的横坐标即为函数f (x )的零点.类型三、函数的零点、方程的根与函数图象的交点三者之间的互相转化【例6】【2017江西省新余市第一中学高三开学考试】已知定义域为R 的函数()y g x =满足以下条件:①()(),33x R g x g x ∀∈-=+;②()(2)g x g x =+;③当[]1,2x ∈时,2()242g x x x =-+-.若方程()()()log 10,1a g x x a a =+>≠且在[)0,+∞上至少有个不等的实根,则实数a 的取值范围为()A .0a <<B .0a <≤C .0a <<D .12a ≥【答案】C【名师点睛】在解决函数的零点或方程的根等问题时,一般把方程的根的个数转化为两函数图象的交点问题,其中一个函数要求是确定的函数,参数只在其中一个函数中出现,且随参数的变化,函数的图象变化规律易找,如能转化为直线与函数的交点更好,象本题函数()y g x =是确定的,函数log (1)a y x =+变化规律也易知,这样就容易得出结论.【例7】【江苏省南京师范大学附属中学2017届高三高考模拟一】中0t >,若函数()()1g x f f x ⎡⎤=-⎣⎦有6个不同的零点,则实数的取值范围是__________. 【答案】()3,4 【解析】由题设问题转化为()()10g x f f x ⎡⎤=-=⎣⎦有六个不等实数根,由于函数()0f x =的零点是0,x x t ==,所以()1f x =或()1f x t =+。
点睛:解答本题的关键关节有两个:其一是将函数的零点问题进行等价转化;其二是要巧妙运用数形结合思想建立不等式组。
求解时还要综合运用导数知识确定函数的极值点和极值。
灵活运用所学知识和重要是数学思想进行分析问题和解决问题是本题一大特征,体现了数学思想在解决数学问题中四两拨千斤的功能。
【例8】设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .]2,49(--B .[-1,0]C .(-∞,-2]D .),49(+∞-【答案】A【解析】令F (x )=f (x )-g (x )=x 2-3x +4-(2x +m )=x 2-5x +4-m ,则由题意知F (x )=0在[0,3]上有两个不同的实数根,因而⎪⎩⎪⎨⎧>--=∆≥≥0)4(450)3(0)0(2m F F ,即⎪⎩⎪⎨⎧->≥--≥-940204m m m ,解之得-94<m ≤-2,故选A类型四、函数的零点的应用【例9】关于x 的方程()22310x a b x a b +++++=的两个实根分别在区间()1,0-和()0,1上,则a b +的取值范围为()A【答案】A【例10】函数()f x 是定义在R 上的偶函数,且满足()()[]20,1f x f x x =+∈,当时,()2f x x =,若方程()0(0)ax a f x a +-=>恰有三个不相等的实数根,则实数a 的取值范围是()A .[]0,2C .()1,2D .[)1,+∞【答案】A方法、规律归纳: 1、函数零点的求解与判定(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.2、已知函数有零点(方程有根)求参数取值范围常用的3种方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 实战演练:1.【江西省赣州厚德外国语学校2018届高三上学期第一次阶段测试】函数()331f x x x =+-在以下哪个区间内一定有零点()A .()1,0-B .()0,1C .()1,2D .()2,3【答案】B2.【江西省六校2018届高三上学期第五次联考】设函数,若对于在定义域内存在实数满足,则称函数为“局部奇函数”.若函数是定义在上的“局部奇函数”,则实数的取值范围是( )A .[1﹣,1+)B .[﹣1,2]C .[﹣2,2]D .[﹣2,1﹣]【答案】B【解析】根据“局部奇函数”的定义可知,函数f (﹣x )=﹣f (x )有解即可, 即f (﹣x )=4﹣x ﹣m •2﹣x +m 2﹣3=﹣(4x ﹣m 2x +m 2﹣3), ∴4x +4﹣x ﹣m (2x +2﹣x )+2m 2﹣6=0,即(2x +2﹣x )2﹣m ⋅(2x +2﹣x )+2m 2﹣8=0有解即可. 设t =2x +2﹣x ,则t =2x +2﹣x ≥2,∴方程等价为t 2﹣m ⋅t +2m 2﹣8=0在t ≥2时有解, 设g (t )=t 2﹣m ⋅t +2m 2﹣8,对称轴x =, ①若m ≥4,则△=m 2﹣4(2m 2﹣8)≥0, 即7m 2≤32,此时m 不存在;②若m <4,要使t 2﹣m ⋅t +2m 2﹣8=0在t ≥2时有解,则,解得﹣1≤m <2,综上:﹣1≤m <2,故选B3,则方程()22f x x a +=(0a >)的根的个数不可能为()A .6B .5C .4D .3【答案】D4() A .()1,2B .()2,e C .(),3e D .()3,+∞【答案】B5.已知定义在R 上的函数()f x 满足()()2fx f x +=-,当(]1,3x ∈-时,3其中0t >,3个不同的实数根,则t 的取值范围为()A 【答案】B【解析】由()()2f x f x +=-,所以()()()42f x f x f x +=-+=,故()f x 的周期为4,()1,2x ∈ 时,()()1f x t x =-,()2,3x ∈时,()()3f x t x =-,()5,6x ∴∈时,()()5f x t x =-,()6,7x ∈时,()()7f x t x =-,恰有3个不同的实数B . 【方法点睛】判断方程()()g x h x =根的个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是方程根的个数,二是转化为(),y a y g x ==的图象的交点个数交点个数问题.6的图象上恰有三对关于y 轴对称的点,则实数a 的取值范围是()A 【答案】C7 A .16B .18C .19D .20【答案】C 【解析】 和sin2y x =在()0,+∞上有9个交点,和sin2y x =都是奇函数,和sin2y x =在(),0-∞上有9个零点,又两函数都经过原点()0,0,和sin2y x =有19个交点点,sin2y x =向左平移单位可得的图象仍有19个交点,的零点的个数为19,故选C .【方法点睛】判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题(2)就利用了方法③.8,则函数()()2231y f x f x ⎡⎤=-+⎣⎦的零点个数为()A .1B .2C .3D .4【答案】C9.若()f x 为奇函数,且0x 是函数()xy f x e =-的一个零点,则下列函数中,0x -一定是其零点的函数是()A .()·1x y f x e -=--B .()·1x y f x e =-+C .()·1x y f x e =-D .()·1x y f x e =+【答案】D10,若函数()()2g x f f x ⎡⎤=-⎣⎦的零点个数为() A .3B .4C .5D .6【答案】B【解析】 函数32()2,log 3x ∴∈-∞时,,令()()2f f x =,解得()22log 1log 3x =+,同理可得()2log 3,2x ∈时,函数()()2g x f f x ⎡⎤=-⎣⎦的x 零点个数为4,故选B .。