一次函数与三角形面积
一次函数与反比例函数求三角形面积
一次函数与反比例函数求三角形面积一次函数与反比例函数求三角形面积摘要:本文将介绍如何使用一次函数和反比例函数来求解三角形的面积。
这两种函数都与直线相关,而直线在几何学中起着重要的作用。
通过将三角形分割成矩形、直角三角形和平行四边形,我们可以使用一次函数来计算三角形的面积。
另外,我们还可以使用反比例函数来求解含有直角三角形斜边的三角形面积。
本文将详细介绍如何使用这两种函数来计算三角形的面积,并且提供了详细的计算步骤和示例。
第1节:一次函数与三角形面积的关系我们知道,一次函数是指变量的最高次数为1的函数。
在平面几何中,一次函数通常表示直线,直线的方程可以用一次函数的形式表示。
因此,我们可以使用一次函数来描述三角形的边界。
首先,让我们来看一个简单的例子。
假设有一个三角形ABC,其中顶点A的坐标为(x1, y1),顶点B的坐标为(x2, y2),而顶点C的坐标为(x3, y3)。
通过顶点A和顶点B,我们可以得到一条直线AB。
假设直线AB的方程为y = kx + b,其中k为直线的斜率,b为直线与y轴的交点。
接下来,我们可以使用直线AB的方程来计算三角形的面积。
三角形的面积可以通过底乘以高的方式计算,其中,底为两个顶点的横坐标之差,高为顶点A到直线AB的距离。
用数学公式表示,三角形ABC的面积为:S = 1/2 * (x2 - x1) * (y1 - (k * x1 + b))在这个公式中,我们已经通过直线AB的方程得到了斜率k和常数b。
通过代入底和高的数值,就可以计算出三角形的面积。
第2节:反比例函数与三角形面积的关系反比例函数是指函数的形式为y = k/x,其中k为常数。
在几何学中,我们可以使用反比例函数来描述平面上的角。
导出三角形的面积公式:假设有一个三角形ABC,其中角A的度数为x°,角的余弦值为y。
根据三角函数的定义,我们可以得到以下关系:cos(x) = y然后,我们可以通过求解cos(x) = y的方程,得到角A的度数x。
一次函数中的三角形面积问题
1K 0,b 0 k 0,b 0 k 0,b 0 k 0,b 0一次函数中的三角形面积问题【学习目标】1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究面积相关的性质;3、巩固一次函数的性质,并会应用于相关面积计算;4、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美。
【学习重点与难点】教学重点:复习巩固一次函数的图象和性质,并能简单应用于相关面积计算。
教学难点:在理解的基础上结合数学思想分析、解决面积相关问题。
【学习过程】一、知识梳理(先独立填空,再在小组内交流纠错、讲解、补充。
) (1)一次函数与正比例函数的概念一般地,形如 的函数,叫做正比例函数。
一般地,形如 的函数,叫做一次函数。
(2)一次函数的图象和性质1.形状一次函数的图象是一条 2.画法确定 个点就可以画一次函数图像。
一次函数与x 轴的交点坐标( ,0),与y 轴的交点坐标(0, ),正比例函数的图象必经过两点分别是(0, )、(1, )。
3.性质(1)一次函数)0(≠+=k b kx y ,当k 0时,y 的值随x 值得增大而增大;当k 0时,y 的值随x 值得增大而减小。
(2)正比例函数,当k 0时,图象经过一、三象限;当k 0时,图象经过二、四象限。
(3)一次函数)0(≠+=k b kx y 的图象如下图,请你将空填写完整。
(3)一次函数与正比例函数的关系:正比例函数是特殊的一次函数,一次函数包含正比例函数。
一次函数当k 0,b 0时是正比例函数。
一次函数b kx y +=可以看作是由正比例函数kx y =平移︱b ︱个单位得到的,当b >0时,向 平移b 个单位;当b <0时,向 平移︱b ︱个单位。
二、基础自测1、下列函数中是一次函数的是( ) A.122-=x yB.x y 1-= C.31+=x y D.1232-+=x x y2、关于函数x y 51-=,下列说法中正确的是( ) A.函数图象经过点(1,5) B.函数图像经过一、三象限 C. y 随x 的增大而减小 D.不论x 取何值,总有0<y 3、一次函数34y x =-的图象不经过...( )。
一次函数与三角形面积
一次函数与三角形面积作者:凌营来源:《中学生数理化·八年级数学人教版》2015年第04期提到求三角形的面积,我们首先想到的会是直接使用面积公式:三角形面积=底×高÷2.但在函数问题中,经常会碰到一些底或高不容易求的三角形(这样的三角形我们不妨称之为“不规则三角形”),这时直接用面积公式并不会奏效,对此,我们要有意识地去运用一种新的求面积的方法——割补法.其实,不论是直接法(公式法)还是间接法(割补法),其中的关键都在于找出或构造出有关的三角形的底和高,一次函数与三角形的面积相结合,考查方式主要有以下两类.一、根据条件求不规则三角形的面积常用的解题方法是“割补法”,即先将所给的三角形分割成两个(或更多个)三角形,再利用公式分别求出小三角形的面积,然后加在一起;或者在所表示的三角形外面补上一个特殊的几何图形,然后用该几何图形的面积减掉其他补出的小三角形的面积.规则三角形的面积可直接运用公式求出,我们不再赘述.例1 如图1,一次函数y=的图象过点A(4,3),且与x轴交于点B.设C(3,1),求△ABC的面积.分析:该三角形是不规则三角形,其面积用公式不好直接求,所以使用间接法,可将△ABC分割成两个三角形.如过点C作y轴的平行线,构造出同底的两个三角形,然后再结合A,B,C三点的横坐标即可求出面积,解:过点C作CD//y轴,交直线AB于点D,如图2.将A(4,3)代入一次函数解析式中,可解得点评:当然,也可以过C点作x轴的平行线,将△ABC分成上下两个三角形,如图3.这种割的方法与例1中的方法本质上是相同的,就是让分割出来的三角形的底和高与坐标轴平行,另外,我们也可以将该不规则三角形通过“补”的方法放在一个规则的几何图形中,然后用大几何图形减去多出的几个小几何图形来求出面积,如图4所示,分别过点A,C作x轴的垂线,垂足分别为E,D,所以三、根据三角形的面积求坐标或解析式在这种考查方式下,将面积表示出来是解题的关键.至于是用公式法还是用割补法,可根据条件具体分析.需要注意的是,所求点的坐标或直线的解析式往往不止一个,因此要有分类讨论的意识.例2 如图5,点A(1,6),B(m,1)在一次函数y=kx+7的图象上.AD⊥x轴于点D,BC⊥x轴于点C.在x轴上是否存在一点E.使△ABE的面积为57若存在,求出点E的坐标;若不存在,请说明理由.分析:这类求点的坐标的题目,往往需要分类讨论,因为所求的点可能会不止一个.本题中,虽然点E在x轴上并且△ABE的面积一定,但是如果点E相对于其他已知点的位置不同,那么面积的表达形式就会不同,解:将A(l,6)代人y=kx+7,得k=-l.∴一次函数的解析式为y=-x+7.将B(m,1)代入y=-x+7,得m=6.故B(6,1).设E(n.0).一次函数的图象与x轴交于M点,则M(7,0).(1)当点E在点D,M之间时,如图6.解得n=5,故E(5,0).(2)当点E在点D左侧时,如图7.解得n=5,故E(5,0).但这与题设矛盾,故点E不可能在点D的左侧.(3)当点E在点M右侧时,如图8.解得n=9,故E(9,0).综上,点E的坐标为(5,0)或(9,0).点评:本题中△ABE的面积的表示,还是采用了间接法,只不过不是“割补法”,而是“大减小”,即利用现有图形,求出一个大图形的面积,然后减掉其他几个小图形的面积.这种解法同学们也一定要掌握,侧3 已知直线y=x+3与x轴和y轴交于A,B两点.直线2经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分.求直线f的解析式,解:由题意可知A(-3,0),B(O,3),故A0=B0=3.点评:当我们不能确定两个图形的面积谁大谁小时,一定要想到分类讨论.练习:1.一次函数y=x+3的图象与两坐标轴所围成的三角形的面积为().A.6B.3C.9D. 4.52.已知一次函数y=kx+b的图象与正比例函数的图象交于点A,并与y轴交于点B(O,-4).点O为坐标原点.若△AOB的面积为6.则一次函数的解析式为______.3.如图11所示.一次函数的图象经过点A,且与正比例函数y=-x的图象交于点B.求一次函数图象、正比例函数图象与x轴围成的三角形的面积.4.一次函数V=kx +b的图象经过A(2,3),B(-3,一2)两点.若P是y轴上的一点,且使△ABP的面积是5.求OP的长.5.一次函数v-kx-k的图象经过点A(2,2).设一次函数y=kx-k的图象与y轴交于点B.若点P是x轴上一点,且满足△PAB的面积是4,求P点的坐标.参考答案:1.D2.y=-x-4或(提示:以OB为底,则高为3.点A的横坐标为±3)3.1(提示:先根据正比例函数的解析式确定出点B的坐标为(-1,1),然后利用待定系数法求出一次函数的解析式).4.1或3(提示:先求出一次函数的解析式,设该一次函数的图象与y轴的交点为C,将△ABP的面积分解为△ACP的面积与△BCP的面积之和,求出P点的坐标.注意分类讨论,还有一点需要注意,就是求出点P的坐标后,不要习惯性地以为就结束了,要写出OP的长才可以).5.(3,0)或(-1,0)(提示:将三角形以x轴为分界线,分为两个三角形进行计算).。
一次函数与三角形面积问题专题练习
一次函数与三角形面积问题专题练习思路:画出草图,把要求的图形构建出来,根据面积公式,把直线与坐标轴的交点计算出来,把坐标转化成线段,代入面积公式求解。
规则图形 (公式法) 不规则图形 (切割法) 不含参数问题 含参数问题(用参数表示点坐标,转化成线段)注意:坐标的正负、线段的非负性。
求面积时,尽量使底或高中的一者确定下来(通过对图像的观察,确定底和高),然后根据面积公式,建立等式。
1、求直线y = -2x +4,y = 2x -4及y 轴围成的三角形的面积。
2、已知正比例函数y = 2x 与一次函数y = x +2相交于点P ,则在x 上是否存在一点A ,使S △POA=4?若存在,求出点有坐标;若不存在,请说明理由。
3、如下图,一次函数的图像交正比例函数的图像于M 点,交x 轴于点N (-6,0),已知点M 在第二象限,其横坐标为-4,若S △NOM=15,求正比例函数的解析式。
x4、如图,直线1l 的解析表达式为y=-3x+3,且1l 与xB ,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接写出点P 的坐标.图115、如图,直线L 的解析表达式为y = -x +2,且与x 轴、y 轴交于点A 、B ,在y 轴上有一21点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。
(1)求A 、B 两点的坐标;(2)△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当何值时△COM ≌△AOB ,并求出此时M 点的坐标。
x6、如图,直线的解析式为y=-x+4,它与轴、轴分别相交于两点.平行于直线的直线从l x y A B 、l m 原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两O x x y M N 、点,设运动时间为秒(0<t 《4).t (1)求两点的坐标;(2)用含的代数式表示的面积;A B 、t MON △1S (3)以为对角线作矩形,记和重合部分的面积为,MN OMPN MPN △OAB △2S ①当2<t 《4时,试探究与之间的函数关系式;2S t ②在直线的运动过程中,当为何值时,为面积的?m t2S OAB △516m7、如图,直线与两坐标轴分别相交于A.B 点,点M 是线段AB 上任意一点(A.B 两点除4+-=x y 外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与的函数关系式并画出该函数的)40<<a a (a 图象.8、在中,现有两个动点P 、ABC ∆,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。
一次函数动点中的三角形全等以及面积
A B C O y 2y1x yP例1、如图,在平面直角坐标系xOy 中,一次函数1223y x =-+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO 分成两部分. (1)求△ABO 的面积;(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。
例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-83经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,③若直线1l 经过点F ⎪⎭⎫⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.例2、如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C在y 轴上,点B 的坐标为(-2,32),点E 是BC 的中点,点H 在OA 上,且AH=21,过点H 且平行于y 轴的HG 与EB 交于点G,现将矩形折叠,使顶点C 落在HG 上 ,并与HG 上的点D 重合,折痕为EF,点F 为折痕与y 轴的交点.(1)求∠CEF 的度数和点D 的坐标;(3分) (2)求折痕EF 所在直线的函数表达式;(2分)(3)若点P 在直线EF 上,当△PFD 为等腰三角形时,试问满足条件的点P 有几个,请求出点P 的坐标,并写出解答过程.(5分)xyF CE B GAHO Dxy FCE B GAH O D2、如图,过A(8,0)、B(0,83)两点的直线与直线x交于点C.平y3行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l的运动时间为t(秒).(1)直接写出C点坐标和t的取值范围;(2)求S与t的函数关系式;(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.。
一次函数与三角形面积问题教学设计
一次函数与三角形面积问题教学设计本教学设计旨在介绍一次函数与三角形面积问题的重要性和应用背景。
一次函数与三角形面积问题是数学中重要的概念,其应用广泛,能够帮助学生理解和应用数学知识。
一次函数是数学中最简单的一种函数,它的表达式为 y = ax + b,其中 a 和 b 是常数。
一次函数可以描述线性关系,如直线的斜率和截距。
三角形面积问题是几何学中的经典问题,涉及到三角形的面积计算与相关性质。
通过解决三角形面积问题,学生不仅能够掌握计算面积的方法,还能加深对三角形的认识和理解。
在日常生活和实际工作中,一次函数与三角形面积问题有着重要的应用。
例如,建筑师需要计算房屋的地板面积;经济学家需要分析市场的需求曲线;物理学家需要测量三角形形状的物体的面积等等。
因此,通过研究一次函数和三角形面积问题,学生能够培养数学思维和解决实际问题的能力。
接下来,我们将介绍一次函数和三角形面积问题的基本概念,并设计教学活动帮助学生理解和应用这些概念。
教学目标明确学生在研究过程中应达到的目标,例如掌握一次函数与三角形面积问题的基本概念和计算方法。
本教学设计将详细列举教学内容和分步骤的教学方法,包括一次函数的定义、性质和常见例题,以及三角形面积计算公式和实际问题的解决方法。
一次函数的定义和性质一次函数的定义:介绍一次函数的定义,即形如 y = kx + b 的函数,其中 k 和 b 是常数。
一次函数的性质:讲解一次函数的性质,如斜率 k 的含义、截距 b 的含义、函数图像的倾斜方向等。
一次函数的例题演练一次函数的图像绘制:给出几个一次函数的表达式,要求学生绘制出相应的函数图像,并分析图像的特征。
一次函数的斜率计算:给出一些一次函数的表达式,要求学生计算出相应函数的斜率,并解释其意义。
一次函数的解方程:提供一些一次函数的方程,要求学生解出方程的根,并用图像验证结果。
三角形面积的计算三角形面积的计算公式:介绍三角形面积的计算公式,即面积等于底边长乘以高的一半。
用一次函数解三角形面积问题
可 设 y = . 一4
9
.
4点的坐标 为 ( 3 0 . - ,)
+6 ,
由y- - 一
当y =0时 ,=4 x ,
・
. .
B点 的坐标 为 ( , ) 40 .
.
( 由 3 一5 一9 可得y 3 2) y , = +
维普资讯
维普资讯
解㈩ } 导 : +,
当y =0时 , 一3, :
・
。 .
第一象 限内且在函数 图象上 , C点坐标 为 ( , 一2
0 ,求 : ) △ C的面积 5与 间 的函数关 系 之 式, 并指 出 自变量 的取值范围. 分析 :首先要确定 直线 的解 析式 , 然后利 用三角形 的面积公式可 以建 立 .与 函数关 s 的
对值 与三角形 的高相等 的关系不变 , 而且 三角
形 的底 边 长为定 值 , 这是 解题 的突破 口. 后 最 要 注意 自变量 的取值 范围.
习 ( 中版 ) 初
=÷ l- ( 2). 1[ 3 ] Y
: 一 计 ‘1 0
年 级 数 学 篇
s c =一了 什 1 ( < <3) 1 0 00
.
4’ B \
\P, ()
。j
一
/
图6
。
H \x 3 一
2
点评 :虽然 P点为动点 , 其纵坐标 的绝 但
把 ,=一4 =6Y 代入 , 可得 =一- 4 _
.
同理 , 3 +2 =1 , 由 x y 2 可得y =一— +6 .
・ . .
一次函数求坐标三角形面积问题
(0,8)
P
o
6
A
(8,0)x
能力训练
3、点P(x,y)在第一象限,且在直线y=8-x上, 点A(6,0),设△OPA的面积为S.
(1)求S关于x的函数解析式; (2)当点P横坐标为5时, 求△OPA的面积? (3)当S=12时,求P点坐标?
考纲要求:C(掌握) 教学目标: 1.通过复习使学生熟悉直线与坐标轴的交 点坐标的求法,会求出两直线交点坐标, 进一步体会函数、坐标、几何图形之间的 相互转化,在解决函数相关问题中的重要 作用. 2.初步掌握由若干条直线所围成的图形的 面积的计算方法,体会一次函数的有关面 积问题的解决思路.
1、一次函数的图象是一条直线, 如何画出一次函数的 图象? 两点作图法
直线与两条坐标轴所围成的三角形的面积是__8___.
B (2)直线经过点P(3,a),求△OAP的面积?
P(3,1)
如何求△OBP
A
的面积?
二、由面积关系求点坐标
例2.已知直线y=kx+b与y轴交于点A(0,4),与x轴交于 点B,且△OAB的面积为4,求B点坐标。
解:∵直线与y轴交于点A(0,4)
y=2x-4
DA
O
2
x
EC
-4 B
这节课你学到了什么?
1、由一次函数解析式求面积
函数解析式
与坐标轴的 交点坐标
2、由面积关系求点的坐标
线段长
三角形面积
三角形面积 底或高 的长度
与坐标轴的 交点坐标
3.要掌握分类讨论,数形结合,转化的数学思想。
一次函数与几何综合(题型齐全)
一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。
或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。
专题09 一次函数中的三角形问题(解析版)
1专题09 一次函数中的三角形问题知识对接考点一、怎样解直线与坐标轴围成图形的面积问题1.求直线与坐标围成的三角形的面积时,一般将在坐标轴上的其中一边作为底,另一边作为高来求面积专项训练一、单选题1.已知直线1:1l y kx k =++与直线2:(1)2l y k x k =+++,(k 为正整数),记直线1l 和2l 与x 轴围成的三角形面积为k S ,则12310S S S S +++⋅⋅⋅+的值为( ) A .511B .1011C .920D .50101【答案】A 【分析】变形解析式得到两条直线都经过点(1,1)-,即可证出无论k 取何值,直线1l 与2l 的交点均为定点(1,1)-;先求出1y kx k =++与x 轴的交点和(1)2y k x k =+++与x 轴的交点坐标,再根据三角形面积公式求出k S ,求出11112124S =⨯=⨯,21(2S =⨯11)23-,以此类推101(2S =⨯11)1011-,相加后得到11(1)211⨯-. 【详解】解:直线1:1(1)1l y kx k k x =++=++,∴直线1:1l y kx k =++经过点(1,1)-;直线2:(1)2(1)(1)1(1)(1)1l y k x k k x x k x =+++=++++=+++,∴直线2:(1)2l y k x k =+++经过点(1,1)-.∴无论k 取何值,直线1l 与2l 的交点均为定点(1,1)-.直线1:1l y kx k =++与x 轴的交点为1(k k+-,0), 直线2:(1)2l y k x k =+++与x 轴的交点为2(1k k +-+,0), 1121||1212(1)K k k S k k k k ++∴=⨯-+⨯=++, 11112124S ∴=⨯=⨯;123101111[]212231011S S S S ∴+++⋯+=++⋯⨯⨯⨯111111[(1)()()]22231011=-+-+⋯+- 11(1)211=⨯- 110211=⨯ 511=, 故选:A . 【点睛】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x 轴的交点的纵坐标为0,与y 轴的交点的横坐标为0.2.已知2,2a b b a +=≤,那么对于一次函数y ax b =+,给出下列结论:①函数y 一定随x 的增大而增大;①此函数图象与坐标轴所围成的三角形面积最大为43,下列判断正确的是( )A .①正确,①错误B .①错误,①正确C .①,①都正确D .①,①都错误【答案】A 【分析】根据一次函数的性质、配方法即可解决问题; 【详解】 解:2a b +=,2b a ∴=-,2b a ≤,22a a ∴-≤,23a ∴≥, 2y ax a ∴=+-,0a >,y ∴随x 的增大而增大,故①正确,函数图象与坐标轴所围成的三角形面积211||||22b b S b a a==,此函数没有最大值,故①错误, 故选:A . 【点睛】本题考查一次函数的性质,一次函数与坐标轴的交点问题,解题的关键是灵活运用一次函数3知识解决问题,属于中考常考题型.3.将一次函数y =2x +4的图象向右平移后所得直线与坐标轴围成的三角形面积是9,则平移距离是( ) A .4 B .5 C .6 D .7【答案】B 【分析】直接利用一次函数的图象平移规律得出平移后的解析式,进而根据三角形面积公式得出答案 【详解】设平移的距离为k (k >0),则将一次函数y =2x +4向右平移后所得直线解析式为:y =2(x -k )+4=2x -2k +4. 易求得新直线与坐标轴的交点为(k -2,0)、(0,-2k +4)所以,新直线与坐标轴所围成的三角形的面积为:2?2429k k --+÷=,变形得229k -=(),解得k =5或k =-1(舍去). 故选:B . 【点睛】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键. 4.下列关于一次函数2y x =-+的图象性质的说法中,不正确的是( ) A .直线与x 轴交点的坐标是(0,2) B .与坐标轴围成的三角形面积为2 C .直线经过第一、二、四象限 D .若点(1,)A a -,(1,)B b 在直线上,则a b >【答案】A 【分析】根据一次函数的图像与性质可直接进行排除选项. 【详解】解:由一次函数2y x =-+,可得:10,20k b =-<=>, ①一次函数经过第一、二、四象限,故C 不符合题意; 令x=0时,则y=2,令y=0时,则02x =-+,解得:2x =, ①直线与x 、y 轴的交点坐标为()2,0和()0,2,故A 错误,符合题意; ①直线与坐标轴围成的三角形面积为12222⨯⨯=,故B 正确,不符合题意;①k <0,①y 随x 的增大而减小,①若点(1,)A a -,(1,)B b 在直线上,则a b >,故D 正确,不符合题意; 故选A .【点睛】本题主要考查一次函数的图像与性质,熟练掌握一次函数的图像与性质是解题的关键.5.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP①AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与①AOB 全等,则OD的长为()A.2B.3C.2D.3【答案】D【分析】利用一次函数与坐标轴的交点求出①AOB的两条直角边,并运用勾股定理求出AB.根据已知可得①CAD=①OBA,分别从①ACD=90°或①ADC=90°时,即当①ACD①①BOA时,AD =AB,或①ACD①①BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:①直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,①A(1,0),B(0,2).①OA=1,OB=2.①AB=①AP①AB,点C是射线AP上,①①BAC=90°,即①OAB+①CAD=90°,①①OAB+①OBA=90°,①①CAD=①OBA,若以C、D、A为顶点的三角形与①AOB全等,则①ACD=90°或①ADC=90°,即①ACD①①BOA或①ACD①①BAO.如图1所示,当①ACD①①BOA时,①ACD=①AOB=90°,AD=AB,5①OD =AD +OA1;如图2所示,当①ACD①①BAO 时,①ADC =①AOB =90°,AD =OB =2,①OD =OA +AD =1+2=3. 综上所述,OD 的长为31. 故选:D . 【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.6.将一次函数y =3x 向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离( ) A .4 B .6C .D .12【答案】A 【分析】根据题意直接利用一次函数的图象平移规律得出平移后的解析式,进而根据三角形面积公式得出答案. 【详解】解:设平移的距离为k (k >0),则将一次函数y =3x 向左平移后所得直线解析式为:y =3(x+k )=3x+3k .易求得新直线与坐标轴的交点为(﹣k ,0)、(0,3k ) 所以,新直线与坐标轴所围成的三角形的面积为:12k •3k =24, 解得:k =4或﹣4(舍去). 故选:A . 【点睛】本题主要考查一次函数图象与几何变换,由题意正确得出平移后解析式是解题的关键. 7.已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为( ) A .y=1.5x+3 B .y=1.5x -3 C .y=-1.5x+3 D .y=-1.5x -3【答案】C 【分析】设这个一次函数的表达式为y=kx+b (k≠0),与x 轴的交点是(a ,0),根据三角形的面积公式即可求得a 的值,然后利用待定系数法即可求得函数解析式. 【详解】设这个一次函数的表达式为y=kx+b (k≠0),与x 轴的交点是(a ,0), ①一次函数y=kx+b (k≠0)图象过点(0,3), ①b=3,①这个一次函数在第一象限与两坐标轴所围成的三角形面积为3, ①12×3×|a|=3, 解得:a=2,把(2,0)代入y=kx+3,解得:k=-1.5,则函数的解析式是y=-1.5x+3; 故选:C . 【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求得与x 轴的交点坐标是解题的关键.8.如图,在直角坐标系中,一次函数25y x =-+的图象1l 与正比例函数的图象2l 交于点(,3)M m ,一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 能围成三角形,则在下列四个数中,k 的值能取的是( )7A .﹣2B .1C .2D .3【答案】C 【分析】把M (m ,3)代入一次函数y=-2x+5得到M (1,3),求得l 2的解析式为y=3x ,根据l 1,l 2,l 3能围成三角形,l 1与l 3,l 3与l 2有交点且一次函数y=kx+2的图象不经过M (1,3),于是得到结论. 【详解】解:把M (m ,3)代入一次函数y=-2x+5得,可得m=1, ①M (1,3),设l 2的解析式为y=ax , 则3=a , 解得a=3,①l 2的解析式为y=3x , ①l 1,l 2,l 3能围成三角形,①l 1与l 3,l 3与l 2有交点且一次函数y=kx+2的图象不经过M (1,3), ①k≠3,k≠-2,k≠1, ①k 的值能取的是2, 故选C . 【点睛】本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.9.在平面直角坐标系中,一次函数26y x =-+与坐标轴围成的三角形面积是:( ) A .6 B .9 C .15 D .18【答案】B 【分析】根据函数关系式求出图像与坐标轴的交点坐标,即可求出图像与坐标轴围成的三角形的面积. 【详解】根据题中的关系式,可画出函数图像当0x =时,6y =,所以点A 的坐标为()06, 当0y =时,3x =,所以点B 的坐标为()30,12OABS OB OA =⨯ 1362=⨯⨯ 9=故答案为B. 【点睛】解题的关键是能够根据函数关系式求出函数与坐标轴的交点坐标.10.如图,在Rt①ABO 中,AB①OB ,且AB=OB=3,设直线x=t 截此三角形所得的阴影部分 的面积为S ,则S 与t 之间的函数关系式为( )A .S=t (0<t ≤3)B .S=12t 2 (0<t ≤3) C .S=t 2 (0<t ≤3) D .S=12t 2 -1(0<t ≤3)【答案】B 【分析】由AB 、OB 的长度求出点A 、点B 的坐标,进而求出OA 所在直线的解析式,令x =t ,求出y ,确定t 的范围,利用三角形面积公式表示出S 即可. 【详解】 ①AB =OB =3, ①A (3,3),①OA 所在直线解析式为y =x , 当0<t ≤3时,令x =t ,则y =t , ①S =12t 2(0<t ≤3).故选B.9【点睛】本题为一次函数与几何综合题,主要考查一次函数解析式的求解. 二、填空题11.直线44y x =-与坐标轴所围成的三角形面积为__________. 【答案】2 【分析】利用一次函数图象上点的坐标特征可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式可求出直线与坐标轴所围成的三角形面积. 【详解】解:当0x =时,4044y =⨯-=-,①直线44y x =-与y 轴的交点坐标为()0,4-; 当0y =时,440x -=,解得:1x =, ①直线44y x =-与x 轴的交点坐标为()1,0.①直线44y x =-与坐标轴所围成的三角形面积14122=⨯⨯=.故答案为:2. 【点睛】本题考查的知识点是一次函数图象上点的坐标特征,解题关键是把求线段的长的问题转化为求函数的交点.12.已知点A (7,0),B (0,m ),且直线AB 与坐标轴围成的三角形面积等于28,则m 的值是__________. 【答案】8± 【分析】先分别求出点A 、点B 到坐标轴的距离即OA 、OB ,再利用三角形的面积公式求解即可. 【详解】解:①点A (7,0),B (0,m ), ①OA =7,OB =|m |,①直线AB 与坐标轴围成的三角形面积等于28, ①12×7×|m |=28, 解得:m =±8, 故答案为:±8. 【点睛】本题考查了坐标与图形性质、三角形的面积公式,熟练掌握坐标与图形的性质,会利用点的坐标求图形的面积的方法是解答的关键.13.已知直线1l :23y x =-+,和直线2l :6y x =-,若直线3l :2y kx =-与1l 、2l 不能围成三角形,则k =_________.【答案】2-或1或13-【分析】由题分析可得,平面直角坐标系中,三条直线123,,l l l 不能围成三角形,有三种情况:①l 1①l 3,①l 2①l 3,①三条直线交于同一点,由此展开讨论即可求得答案. 【详解】解:若l 1①l 3则2k =-; 若l 2①l 3,则1k =; 若三条直线交于一点,236y x y x =-+⎧⎨=-⎩,解得33x y =⎧⎨=-⎩, 即1l 与2l 交于一点(3,3)-, 则3l 过该点,代入: 332k -=-,解得13k =-,综上所述,k 为2-或1或13-,故填:2-或1或13-.【点睛】本题考查一次函数图像和性质,两直线平行k 相等,一次函数与二元一次方程组,解题关键是理解和掌握一次函数图像与性质与求两一次函数交点的方法.14.已知一次函数4y kx =-的图像与两坐标轴围成的三角形周长为12,则k 的值为________. 【答案】43±【分析】先求出直线与坐标轴的交点坐标,再根据三角形的周长列出方程求得k 即可. 【详解】解:令x =0,有y =0−4=−4, 令y =0,有kx −4=0,x =4k,①直线4y kx =-与坐标轴的交点坐标为(0,−4)和(4k,0),①一次函数4y kx =-的图象与两坐标轴所围成的三角形的周长等于12,①|−4|+|4 k①k=43±,经检验:k=43±是方程的解,故答案是:43±.【点睛】本题考查的是一次函数图象与坐标轴的交点坐标,根据三角形的周长列出方程是解答此题的关键.15.将平面直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标轴三角形.如图中的一次函数图像与,x y轴分别交于点,,A B那么ABO为此一次函数的坐标轴三角形.一次函数142y x=-+的坐标轴三角形的面积是_____.【答案】16【分析】求出点A,点B坐标,根据三角形的面积公式解答即可.【详解】解:对于142y x=-+,当x=0时,y=4,当y=0时,x=8①A(8,0)B(0,4),所以OA=8,OB=4,①S①AOB=12×8×4=16.故答案为:16.【点睛】本题考查了一次函数问题,本题中根据一次函数和坐标轴的交点坐标,求坐标三角形的三边长是解题的基础.三、解答题1116.如图,在平面直角坐标系中,ABC 的各顶点坐标分别()2,0A -,()2,0B ,(0,C ,直线l 过点B ,且与x 轴的正半轴成60︒角,将ABC 绕点B 按顺时针方向旋转,记旋转角为α.解答下列问题:(1)填空:ABC 为________三角形(选择“等腰”或“等边”一种),直线l 的函数表达式为_______;(2)若0180α<<︒,在ABC 的旋转过程中,当ABC 的一边与直线l 互相垂直时,记A 点的对应点为A ',求点A '的坐标;(3)当210α︒=时,记旋转后顶点A ,C 的对应点分别为M ,N PQ 在直线l 上移动,连结MQ ,NP ,试求四边形MQPN 周长的最小值.【答案】(1)等边,y -(2)A ´(2-2)或(2,4)或(2);(3).【分析】(1)利用点的坐标,求出OA =OB =2,OC ,利用勾股定理得出边长即可;设l :y =kx +b ,把B 、E 点的坐标代入即可;(2)分'A B l ⊥,''A C l ⊥,'BC l ⊥三种情况分别画出符合的图形,然后再分别求解即可;(3)由题意先确定出点N 坐标,在四边形MQPN 中,MN=4,则只需要MQ +PN 的值最小即可,如图,过点M 作MH //BE ,然后取MF =PQ 作出点M 、F 关于直线l 的对称点M ′,F ′,再分别过点M ′、F ′作x 轴、y 轴的垂线,两垂线交于点G ,连接NF ′,则NF ′的长就是MQ +PN 长的最小值,求出NF ′的长即可. 【详解】(1)①x 轴①y 轴,13①OC ①AB ,又①A (-2,0),B (2,0),C (0,), ①OA =OB =2,OC, ①OC 是AB 的垂直平分线, ①BC =BA ,在Rt OBC 中,BC4= , AB =OA +OB , ①AB =BC =AC =4, ①ABC 为等边三角形;设直线l 与y 轴的交点为E ,在Rt OBE 中,①OBE =60°,OB =2 ①OE. ①E (0,-, 设l :y=kx +b ,代入B (2,0),E (0,-,① 20k b b +=⎧⎪⎨=-⎪⎩,解得k b ⎧=⎪⎨=-⎪⎩,①y-(2)如图,当'A B l ⊥时,过点'A 作'A F x ⊥轴于点F ,①'90A BE ∠=︒,'90A FB ∠=︒, ① ①OBE =60°,①α=①A′BF =90°-60°=30°, ①A′F =1'22A B =,BF=, ①OF =BF -OB =A´B -OB-2,①A ´(2-2);如图,当''A C l ⊥时,垂足为F ,①1'''302A BF A BC ∠=∠=︒,'90A FB ∠=︒,① ①OBE =60°,①α=①A′BA =180°-30°-60°=90°, ①'A B AB ⊥,即'A B x ⊥轴, ①A ´(2,4);如图,当'BC l ⊥时,''A C 交x 轴于点F ,①'90EBC ∠=︒, ① ①OBE =60°,①①FBC ′=180°-90°-60°=30°,①①A′BF =①A′BC ′-①FBC ′=60°-30°=30°, ①α=①A′BA =180°-30°=150°,①A′FB =90°, ①''A C AB ⊥,即''A C x ⊥轴,①A′F =2,BF =①OF=OB+BF①A´(2);综上,A′的坐标为:(2-2)或(2,4)或(2);(3)α=210°时,①ABM=360°-210°=150°,①①ABN=①ABM-①MBN=90°,①N(2,-4)在四边形MQPN中,MN=4,MQ+PN的值最小即可,如图,过点M作MH//BE,然后取MF=PQ分别作出点M、F关于直线l的对称点M′,F′,再分别过点M′、F′作x轴、y轴的垂线,两垂线交于点G,连接NF′,则NF′的长就是MQ+PN长的最小值,①''M F=由对称性可知点①M′BA=30°,又(1)可知M′(2-2),在①M′F′G中,1'''2F G M F==3'4M G=,①3'224F⎛⎫--⎪⎪⎝⎭,即5'24F⎛⎫⎪⎪⎝⎭,①'F N①15【点睛】本题考查了旋转,一次函数的应用等知识,熟练掌握相关知识,正确进行分类讨论是解题的关键.17.如图,在平面直角坐标系中,直线1l :43y x =与直线2l :y kx b =+相交于点A ,点A 的横坐标为3,直线2l 交y 轴负半轴于点B ,且OB OA =. (1)求点B 的坐标及直线2l 的函数表达式;(2)过点B 作31//l l 交x 轴于点C ,连接AC ,求ABC 的面积.【答案】(1)35y x =-;(2)758【分析】(1)利用直线1l 的解析式求出点A 的坐标,再根据勾股定理求出OA 的长度,从而可以得到OB 的长度,根据图象求出点B 的坐标,然后利用待定系数法列式即可求出直线2l 的函数表达式;(2)根据题意易求得直线3l 为453y x =-,即可求得15(4C ,0),根据直线2l 的解析式求得与x 轴的交点D 的坐标,然后根据三角形面积公式即可求得结果.【详解】解:(1)点A 的横坐标为3, ①将x =3代入43y x =,得:4343y =⨯=,∴点A 的坐标是(3,4),5OA ∴=,OA OB =,5OB OA ∴==,17∴点B 的坐标是(0,5)-,把A 、B 的坐标代入y kx b =+得:345k b b +=⎧⎨=-⎩, 解得35k b =⎧⎨=-⎩,∴直线2l 的函数表达式是35y x =-;(2)①31//l l 且点B 的坐标是(0,5)-,∴直线3l 为453y x =-, 令0y =,则154x =, 15(4C ∴,0),设直线2l 与x 轴的交点为D , 将y =0代入35y x =-,得:53x =,5(3D ∴,0),155254312CD ∴=-=, ABC ∴的面积12575(45)2128=⨯⨯+=.【点睛】本题考查了两直线相交或平行的问题,待定系数法求直线的解析式,三角形的面积,求出交点的坐标是解题的关键.18.定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知ABC ,请用尺规作出ABC 的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴的正半轴上、OC 在y 轴的正半轴上,6,4OA OC ==. ①请判断直线4833y x =-是否为矩形OABC 的面积等分线,并说明理由; ①若矩形OABC 的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式.(3)如图3,在ABC 中,点A 的坐标为()2,0-,点B 的坐标为()4,3,点C 的坐标为()2,0,点D 的坐标()0,2-,求过点D 的一条ABC 的面积等分线的解析式.(4)在ABC 中点A 的坐标为()1,0-,点B 的坐标为()1,0,点C 的坐标为()0,1,直线()0y ax b a =+>是ABC 的一条面积等分线,请直接写出b 的取值范围.【答案】(1)见解析;(2)①直线4833y x =-不是矩形OABC 的面积等分线;①y =2x −4或y =29x +43;(3)22y x =-;(4)01b << 【分析】(1)作出线段BC 的垂直平分线,找到BC 中点D ,连接AD ,AD 即所求的ABC 的一条面积等分线.(2)①连接AC ,OB 交于点M ,根据6,4OA OC ==求出点M 的坐标,然后由矩形性质可知形OABC 的面积等分线必过点M ,将M 点的坐标代入4833y x =-判断M 点不在一次函数图像上,即可判断出直线4833y x =-不是矩形OABC 的面积等分线; ①先设出矩形面积等分线的解析式,利用和坐标轴围城的三角形面积是4建立方程求解即可; (3)根据题意设出三角形面积等分线的解析式,求出直线AB 的解析式,然后两条直线联立表示出交点坐标,根据三角形面积的一半列出方程求解即可; (4)根据图像结合面积等分线的性质即可求出b 的取值范围.19【详解】解:(1)如图1所示,作出BC 的垂直平分线交BC 于点D ,连接AD , ①AD 是三角形ABC 的中线,①AC 所在直线即要求的ABC 的一条面积等分线.(2)①如图2所示,连接AC ,OB 交于点M .①OA =6,OC =4, ①()6,0A ,()0,4C , ①()3,2M ,①四边形OABC 是矩形,①矩形OABC 的面积等分线必过点M , 将x =3代入4833y x =-中,得: 48432333y =⨯-=≠,①直线4833y x =-不过点M , ①直线4833y x =-不是矩形OABC 的面积等分线; ①如图所示,由①知,矩形OABC的面积等分线必过点M(3,2),设矩形OABC的面积等分线的解析式为y=kx+b与x轴相交于点E,与y轴相交于F,①3k+b=2,①b=2−3k,①矩形OABC的面积等分线的解析式为y=kx+2−3k,令x=0,y=2−3k,①F(0,2−3k),①OF=|2−3k|,令y=0,①x=32kk-,①E(32kk-,0),①OE=32kk-,①矩形OABC的面积等分线与坐标轴所围成的三角形面积为4,①142OE OF•=,①OE①OF=8,①|2−3k|①|32kk-|=8,①k=2或k=29,①矩形OABC的面积等分线函数表达式为y=2x−4或y=29x+43.(3)如图所示,设三角形ABC面积的等分线的表达式为y kx b=+,交x轴于点F,交AB 于点E.21①三角形ABC 面积的等分线y kx b =+过点D , ①将D ()0,2-代入表达式得:b =-2, ①表达式为2y kx =-.将y =0代入2y kx =-得:x =2k ,①F 20k ⎛⎫⎪⎝⎭,. ①AF =22k+. ①点A 的坐标为()2,0-,点B 的坐标为()4,3, 利用待定系数法可得AB 的表达式为112y x =+, ①DE 和AB 交于点E , ①联立表达式得:1122y x y kx ⎧=+⎪⎨⎪=-⎩,解得:6216221x k y k ⎧=⎪⎪-⎨⎪=-⎪-⎩.①14362ACB S =⨯⨯=△,①132AEF ACB S S ==△△, ①132E AF y ⨯⨯=, 代入得:126223221k k k ⎛⎫⎛⎫⨯+⨯-= ⎪⎪-⎝⎭⎝⎭, 整理得:24720k k --=,解得:12124k k ==-,(舍去),①三角形ABC 面积的等分线的表达式为22y x =-. (4)如图所示,①直线()0y ax b a =+>是ABC 的一条面积等分线, 由图像可知,当1b ≥或0b ≤时,无论a 取何值,直线()0y ax b a =+>都不能把ABC 的面积平分, ①01b <<. 【点睛】此题考查了待定系数法求一次函数表达式,三角形中线的性质,基本作图,矩形的性质等知识,解题的关键是设出直线表达式,根据三角形面积列出方程求解.19.在如图所示的平面直角坐标系中,直线n 过点A (0,﹣2)且与直线l 交于点B (3,2),直线l 与y 轴正半轴交于点C . (1)求直线n 的函数表达式;(2)若①ABC 的面积为9,求点C 的坐标;(3)若①ABC 是等腰三角形,且AB =BC ,求直线l 的函数表达式.【答案】(1)y =423x -;(2)C (0,4);(3)y =463x -+.【分析】(1)用待定系数法求直线n 的函数解析式;23(2)根据①ABC 的面积为9可求得AC 的长,可得出结论;(3)过点B 作BD ①y 轴于点D ,则CD =AD =4,得C (0,6),设直线l 的解析式为:y =kx +b ,将B ,C 代入即可. 【详解】解:(1)设直线n 的解析式为:y =kx +b ,①直线n :y =kx +b 过点A (0,﹣2),点B (3,2),①232b k b =-⎧⎨+=⎩,解得:432k b ⎧=⎪⎨⎪=-⎩, ①直线n 的函数解析式为:y =423x -; (2)①若①ABC 的面积为9, ①9=132AC , ①AC =6, ①OA =2,①点C 在y 轴正半轴, ①C (0,4);(3)当AB =BC 时,过点B 作BD ①y 轴于点D ,①CD =AD =4, ①C (0,6),设直线l 的解析式为:y =kx +b , 将B (3,2),C (0,6)代入得:326k b b +=⎧⎨=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩,①直线l 的解析式为:y =463x -+.【点睛】本题主要考查一次函数的综合问题,待定系数法求一次函数解析式,两直线交点问题,一次函数与坐标轴交点问题,解题的关键是运用数形结合的思想解题. 20.如图,直线135y x =-与反比例函数21k y x-=的图象交于点()2,A m 、(),6B n -两点,连接OA 、OB .(1)求m 、n 、k 的值; (2)求AOB 的面积;(3)直接写出12y y <时,x 的取值范围.【答案】(1)11,,33m n k ==-=;(2)356;(3)02x << 或13x <-【分析】(1)根据题意可先出m ,n ,可得()2,1A 、1,63⎛⎫⎪⎝--⎭B ,再代入反比例函数解析式求出即可;(2)先求出直线与y 轴的交点坐标,可得AOB 的面积AODBODSS=+,即可求解;(3)观察一次函数图象在反比例函数图象下方时的x 的取值范围,即可求解. 【详解】解:(1)①直线135y x =-与反比例函数21k y x-=的图象交于点()2,A m 、(),6B n -两点, ①当2x = 时,2351m =⨯-= ,当6y =- 时,635n -=- ,解得:13n =- ,①()2,1A 、1,63⎛⎫⎪⎝--⎭B ,将()2,1A 代入反比例函数21k y x -=,得:112k -=, 解得:3k = ,(2)设直线AB 与x 轴交于点C ,交y 轴于点D ,25当0x = ,15y =- , ①()0,5D - , 即OD =5, ①AOB 的面积1112223AODBODSSOD OD =+=⨯⨯+⨯⨯ 111352552236=⨯⨯+⨯⨯= ; (3)①直线135y x =-与反比例函数21k y x -=的图象交于点()2,1A 、1,63⎛⎫⎪⎝--⎭B , ①由图象可知,当12y y <时,02x << 或13x <- . 【点睛】本题主要考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,利用反比例函数与一次函数的交点解答是解题的关键. 21.如图直线l 1=kx +5与y 轴交于点A 直线l2=﹣x +1与直线l 1交于B ,与y 轴交于C ,已知点B 的纵坐标为2.(1)确定直线l 1的解析式;(2)直线l 1、l 2与y 轴所围成的三角形的面积为 ;(3)垂直于x 轴的直线x =a 与直线l 1、l 2分别交于M 、N ,若线段MN 的长为2,求a 的值.【答案】(1)35y x ==;(2)2;(3)12a =-或32a =-【分析】(1)根据B 点的纵坐标为2且B 是两直线的交点,先把B 纵坐标代入l 2求出B 点坐标,然后代入l 1解析式即可求解;(2)分别求出A 、C 两点的坐标,然后求解面积即可得到答案;(3)把x a =代入两直线解析式分别求出M 、N 的坐标,然后根据MN =2求解即可得到答案. 【详解】解:(1)解:把2y =代入1y x =-+中 得1x =-①B 点坐标为(-1,2)把1x =-时2y =代入5y kx =+中 得25k =-+3k =直线l 1的解析式为35y x =+(2)①直线l 1的解析式为35y x =+ 与y 轴交于A 点 ①A (0,5)①直线l 2的解析式为1y x =-+ 与y 轴交于C 点 ①C (0,1)27①两直线与y 轴围成的面积=14122⨯⨯=(3)把x a =分别代入21y x =-+,和135y x =+中 得21y a =-+ 135y a =+①M (a ,3a +5),N (a ,-a +1) ①1352a a -+--= 112a +=①12a =-或32a =-【点睛】本题主要考查了两一次函数的交点问题,与坐标轴围成的面积问题,解题的关键在于能够熟练掌握一次函数的相关知识点.22.如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与反比例函数12y x=-的图象交于A 、B 两点,且与x 轴交于点C ,与y 轴交于点D ,点A 的横坐标与点B 的纵坐标都是3. (1)求一次函数的表达式; (2)求①AOB 的面积.【答案】(1)y=-x-1;(2)7 2【分析】(1)根据题意得出A,B点坐标,进而利用待定系数法得出一次函数解析式;(2)求出一次函数与x轴交点,进而利用三角形面积求法得出答案.【详解】解:(1)把x=3代入12yx=-,得y=-4,故A(3,-4),把y=3代入12yx=-,得x=-4,故B(-4,3),把A,B点代入y=kx+b得:34 43k bk b+=-⎧⎨-+=⎩,解得:11kb=-⎧⎨=-⎩,故直线解析式为:y=-x-1;(2)由(1)知:当y=0时,x=-1,故C点坐标为:(-1,0),则①AOB的面积为:12×1×3+12×1×4=72.【点睛】本题主要考查了反比例函数与一次函数的交点问题以及待定系数法求一次函数解析式、三角形面积求法等知识,正确得出A,B点坐标是解题关键.23.已知直线L1为y1=x+1,直线L2为y2=ax+b(a≠0),两条直线如图所示,这两个图象的交点在y轴上,直线L2与x轴的交点B的坐标为(2,0).(1)求a、b的值.(2)求使y1、y2的值都大于0的x的取值范围.(3)求这两条直线与x轴所围成的①ABC的面积.【答案】(1)a=12-,b=1;(2)-1<x<2;(3)32【分析】(1)首先根据直线l1的解析式可求得C点的坐标,进而可由B、C的坐标,利用待定系数法确定a、b的值.(2)根据两个函数的图象以及A、B点的坐标进行解答即可.(也可通过解不等式来求得)(3)根据(1)得到的直线l1的解析式,可求得点A的坐标,以AB为底、OC为高即可求得①ABC的面积.【详解】解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);则依题意可得:201a bb+=⎧⎨=⎩,解得:a=12-,b=1;(2)由(1)知,直线l2:112y x=-+,①y1=x+1>0,①x>-1;①y2=112x-+>0,①x<2;①-1<x<2.(3)由题意知A(-1,0),则AB=3,且OC=1;①S①ABC=12AB•OC=12×3×1=32.【点睛】此题主要考查了一次函数解析式的确定、一次函数与一元一次不等式的联系以及三角形面积29的计算方法,难度适中.。
人教版数学八年级下册第19章一次函数一次函数与三角形面积教学设计
5.小组合作任务:
-以小组为单位,选择一个复杂的实际问题,共同讨论并建立一次函数模型,求解三角形面积。
-每个小组需要在下节课上展示解题过程和结果,并分享在解决问题过程中的经验和体会。
作业布置时,我会强调以下几点:
-作业的目的是帮助学生巩固所学知识,提高解题能力,鼓励学生主动思考和探索。
(五)总结归纳
在总结归纳环节,我会与学生一起回顾本节课所学的一次函数与三角形面积的关系,强调关键点和注意事项。此外,我会引导学生反思学习过程,总结自己在解决问题时的成功经验和不足之处,以便在今后的学习中取得更好的效果。
五、作业布置
为了巩固学生对一次函数与三角形面积的理解,提高其解决实际问题的能力,我设计了以下几项作业:
“已知一个三角形的底边长为10米,底边上的高为5米,且这个三角形与一次函数y=2x+1有关。请同学们讨论并求解这个三角形的面积。”
在讨论过程中,我会巡回指导,关注学生的思维过程和方法,适时给予提示和建议,帮助他们突破难点。
(四)课堂练习
在课堂练习环节,我会设计不同难度层次的练习题,以便让学生巩固所学知识,并提高解决问题的能力。以下是一个练习题示例:
4.掌握利用一次函数求解三角形面积的各种方法,如底乘高除以二、海伦公式等;
5.能够通过具体案例,理解一次函数的单调性及其在几何中的应用。
(二)过程与方法
在教学过程中,学生将通过以下方式培养探究与解决问题的能力:
1.通过小组合作和讨论,探究一次函数的性质和它在几何中的应用;
2.利用数形结合的方法,观察一次函数图像与三角形面积的关系,从中发现规律;
(二)教学设想
1.教学方法:
考点08 一次函数的图象与性质-备战2023届中考数学一轮复习考点梳理(解析版)
考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。
也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象二.一次函数图象的画法1.下列函数:①y =4x ;②y =﹣;③y =;④y =﹣4x +1,其中一次函数的个数是( )A .1B .2C .3D .4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:y =﹣4x ,y =﹣,y =﹣4x +1都符合一次函数的定义,属于一次函数;y =是反比例函数,综上所述,其中y 是x 的一次函数的个数有3个.故选:C.一次函数的图象是经过点和点的一条直线2.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是( )A.B.C.D.【分析】根据一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:∵y=k(x﹣1)(k>0),∴一次函数图象过点(1,0),y随x的增大而增大,故选项B符合题意.故选:B.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是( )A.B.C.D.【分析】根据一次函数的系数与图象的关系逐项分析即可.【解答】解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是( )A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度【分析】利用一次函数图象的平移规律,右加左减,上加下减,即可得出答案.【解答】解:设将直线y=6x﹣2向左平移a个单位后得到直线y=6x+2(a>0),∴6(x+a)﹣2=6x+2,解得:a=,故将直线y=6x﹣2向左平移个单位后得到直线y=6x+2,同理可得,将直线y=6x﹣2向上平移4个单位后得到直线y=6x+2,观察选项,只有选项C符合题意.故选:C.5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是 (1,0) .【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【解答】解:直线y=2x﹣4沿y轴向上平移2个单位,则平移后直线解析式为:y=2x﹣4+2=2x﹣2,当y=0时,则x=1,故平移后直线与x轴的交点坐标为:(1,0).故答案为:(1,0).6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是( )A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图象位置,可得k1<0,b1<0,k2<0,b2>0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图象过四、二、三象限,∴k1<0,b1<0,∵一次函数y=k2x+b2的图象过一、二、四象限,∴k2<0,b2>0,∴A、k1•k2>0,故A不符合题意;B、k1+k2<0,故B符合题意;C、b1﹣b2<0,故C不符合题意;D、b1•b2<0,故D不符合题意;故选:B.考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过( )A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限【分析】利用一次函数的性质即可确定直线经过的象限.【解答】解:∵y=﹣3x+1,∴k<0,b>0,故直线经过第一、二、四象限.故选:A.2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.大小不确定【分析】利用偶次方的非负性,可得出m2≥0,进而可得出k=m2+1>0,利用一次函数的性质,可得出y随x的增大而增大,结合﹣3<﹣1,可得出y1<y2.【解答】解:∵m2≥0,∴k=m2+1>0,∴y随x的增大而增大.又∵点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,且﹣3<﹣1,∴y1<y2.故选:B.3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是( )A.m>0B.m<0C.m>1D.m<1【分析】由“当x1<x2时,y1<y2”,可得出y随x的增大而增大,结合一次函数的性质,可得出m﹣1>0,解之即可得出m的取值范围.【解答】解:∵当x1<x2时,y1<y2,∴y随x的增大而增大,∴m﹣1>0,解得:m>1,∴m的取值范围是m>1.故选:C.4.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是( )A .函数图象经过第一、二、四象限B .图象与y 轴的交点坐标为(1,0)C .y 随x 的增大而减小D .图象与坐标轴调成三角形的面积为【分析】根据一次函数的性质分别判断后即可确定正确的选项.【解答】解:A .∵k =﹣2<0,b =1>0,∴函数图象经过第一、二、四象限,正确,不符合题意;B .当x =0时,y =1,∴函数图象与y 轴的交点坐标为(0,1),错误,符合题意;C .∵k =﹣2<0,∴y 的值随着x 增大而减小,正确,不符合题意;D .令y =0可得y =1,∴函数图象与坐标轴围成的三角形面积为:×1×=,故D 正确,不符合题意.故选:B .5.已知点(﹣2,y 1),(2,y 2)都在直线y =2x ﹣3上,则y 1 < y 2.(填“<”或“>”或“=”)【分析】由k =2>0,利用一次函数的性质可得出y 随x 的增大而增大,再结合﹣2<2即可得出y 1<y 2.【解答】解:∵k =2>0,∴y 随x 的增大而增大,又∵﹣2<2,∴y 1<y 2.故答案为:<.考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为( )A.B.C.D.【分析】利用待定系数法即可求解.【解答】解:设函数的解析式是y=kx.根据题意得:﹣2k=3.解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为( )A.2B.﹣2C.2或﹣2D.m的值不存在【分析】结合一次函数的性质,对m分类讨论,当m>0时,一次函数y随x增大而增大,此时x=1,y =2且x=3,y=6;当m<0时,一次函数y随x增大而减小,此时x=1,y=6且x=3,y=2;最后利用待定系数法求解即可.【解答】解:当m>0时,一次函数y随x增大而增大,∴当x=1时,y=2且当x=3时,y=6,令x=1,y=2,解得m=,不符题意,令x=3,y=6,解得m=﹣6,不符题意,当m<0时,一次函数y随x增大而减小,∴当x=1时,y=6且当x=3时,y=2,令x=1,y=6,解得m=﹣2,令x=3,y=2,解得m=﹣2,符合题意,故选:B.3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y= .【分析】设y=kx,把x=2,y=﹣3代入,求出k得到函数解析式,把x=﹣代入函数解析式,求出即可.【解答】解:根据题意,设y=kx,把x=2,y=﹣3代入得:﹣3=2k,解得:k=﹣,∴y与x的函数关系式为y=﹣x,把x=﹣代入y=﹣x,得y=﹣×(﹣)=,故答案为:.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.【分析】(1)设一次函数的解析式为y=kx+b(k≠0),再把A(2,0),B(0,4)代入求出k的值即可;(2)把x=﹣1代入(1)中函数解析式进行检验即可.【解答】解:(1)设一次函数的解析式为y=kx+b(k≠0),∵A(2,0),B(0,4)在函数图象上,∴,解得,∴一次函数的解析式为:y=﹣x+4;(2)由(1)知,函数解析式为:y=﹣x+4,∴当x=﹣1时,y=5≠6,∴点(﹣1,6)不一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD 的解析式.【分析】(1)把C (0,6)代入函数解析式,可得答案.(2)先求D 的坐标,再利用待定系数法求解AD 的解析式.【解答】解:(1)直线y =﹣2x +a 与y 轴交于点C (0,6),∴﹣2×0+a =6,∴a =6,∴直线的解析式为y =﹣2x +6;(2)点D (﹣1,n )在y =﹣2x +6上,∴n =﹣2×(﹣1)+6=8,∴D (﹣1,8),设直线AD 的解析式为y =kx +b ,把点A (﹣3,0)和D (﹣1,8)代入得,解得,∴直线AD 的解析式为y =4x +12.考向四:一次函数与方程不等式间的关系的交点坐标由函数图象直接写出不等式解集的方法归纳:1.已知方程2x ﹣1=﹣3x +4的解是x =1,则直线y =2x ﹣1和y =﹣3x +4的交点坐标为( )A .(1,0)B .(1,1)C .(﹣1,﹣3)D .(﹣1,1)【分析】把x =1代入直线解析式y =2x ﹣1求出y 的值即可得到交点坐标.【解答】解:∵x =1是方程2x ﹣1=﹣3x +4的解,∴把x =1代入y =2x ﹣1,得y =2×1﹣1=1.∴交点坐标为(1,1).故选:B .2.如图,直线y =ax +b (a ≠0)过点A (0,1),B (2,0),则关于x 的方程ax +b =0的解为 x =2 .【分析】所求方程的解,即为函数y =ax +b 图象与x 轴交点横坐标,确定出解即可.【解答】解:方程ax +b =0的解,即为函数y =ax +b 图象与x 轴交点的横坐标,∵直线y =ax +b 过B (2,0),∴方程ax +b =0的解是x =2,故答案为:x =2.3.如图,一次函数y =2x +1的图象与y =kx +b 的图象相交于点A ,则方程组的解是( )A.B.C.D.【分析】先求点A的横坐标,然后根据两条直线的交点坐标即可写出方程组的解.【解答】解:y=3代入y=2x+1得2x+1=3,解得x=1,所以A点坐标为(1,3),所以方程组的解是.故选:B.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y= 3 .【分析】根据由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),即可确定二元一次方程组的解,进一步求值即可.【解答】解:由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),∴二元一次方程组的解为,∴x+y=1+2=3,故答案为:3.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是( )A.4B.3C.2D.1【分析】根据新定义,逐项判断即可.【解答】解:(﹣1)@(﹣2)=﹣1﹣(﹣2)+3=4,故①正确;∵x@(x+2)=x+(x+2)﹣3=2x﹣1,∴x@(x+2)=5即是2x﹣1=5,解得x=3,故②正确;当x<2x,即x>0时,∵x@2x=3,∴x+2x﹣3=3,解得x=2;当x≥2x,即x≤0时,∵x@2x=3,∴x﹣2x+3=3,解得x=0,∴x@2x=3的解是x=2或x=0,故③错误;∵x2+1≥1,∴y=(x2+1)@1=x2+1﹣1+3=x2+3,令y=0得x2+3=0,方程无实数解,∴函数y=(x2+1)@1与x轴无交点,故④错误;∴正确的有①②,共2个,故选:C.6.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是 1 ,当y1>y2时,x的取值范围是 x<1 ,当y1<y2时,x的取值范围是 x>1 .【分析】根据两条直线的交点、结合图象解答即可.【解答】解:由图象可知,当kx﹣b=nx时,x的值是1,当y1>y2时,x的取值范围是x<1,当y1<y2时,x的取值范围是x>1.故答案为:1,x<1,x>1.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m= 0 ,n= ﹣1 .(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质: 当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大 .(3)当时,x的取值范围为 x≤﹣1或x≥2 .【分析】(1)把x=﹣1和x=4分别代入解析式即可得到m、n的值;(2)利用描点法画出图象,观察图象可得出函数的性质;(3)利用图象即可解决问题.【解答】解:(1)把x=﹣1代入y=2﹣|x﹣1|得,y=2﹣|﹣1﹣1|=0,∴m=0;把x=4代入y=2﹣|x﹣1|得,y=2﹣|4﹣1|=﹣1,∴n=﹣1;故答案为:0,﹣1;(2)画出函数的图象如图:观察图象可知:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;故答案为:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;(3)画出一次函数y=x+的图象,观察图象可知:当时,x的取值范围为x≤﹣1或x≥2,故答案为:x≤﹣1或x≥2.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳1.一次函数y=kx+b(k≠0)与坐标轴交点规律与x轴交点坐标(,0)故:当k、b同号时,直线交于x轴负半轴;当k、b异号时,直线交于x轴正半轴对于直线y=kx+b(k≠0)与y轴交点坐标(0,b)故:当b>0时,直线交于y轴正半轴;当b<0时,直线交于y轴负半轴2.求两直线交点坐标方法:联立两直线解析式,得二元一次方程组,解方程组得交点坐标;3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
一次函数与面积综合运用(原卷版)
专题07 一次函数与面积综合运用(三大题型)【题型1 常规三角形面积】【题型2 铅垂法求面积】【题型3 等底转化】【题型1 常规三角形面积】【解题技巧】当三角形的底或高在坐标轴上,或者平行于坐标轴上,这样的三角形为常规三角形,可以直接利用三角形的面积公式进行求解。
【典例1】(2023春•永定区期末)综合与探究:如图,平面直角坐标系中,一次函数y=图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C,点P是直线AB上的一个动点.(1)求A,B两点的坐标;(2)并直接写出点C的坐标并求直线BC的表达式;(3)试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由.【变式1-1】(2023春•凤山县期末)如图,在平面直角坐标系中,已知Rt△AOB 的两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,且OA,OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C,过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求直线AB的解析式;(2)若△ABC的面积为15,求点C的坐标;【变式1-2】(2023春•涪陵区期末)如图,在平面直角坐标系中,直线l1:y=﹣x﹣3与x轴、y轴分别交于点A,B,直线l2交x轴、y轴分别于点C(﹣6,0),D(0,6),直线l2与直线l1交于点E,连接BC.(1)求直线l2的解析式;(2)求△BCE的面积;(3)连结OE,若点P是x轴上一动点,连结PE,当△POE为等腰三角形时,请直接写出点P的坐标.【变式1-3】(2023春•兰陵县期末)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.【变式1-4】(2023春•连城县期末)如图,在平面直角坐标系xOy中,直线y =﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB =S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【变式1-5】(2023春•文登区期中)如图,直线l1表达式为y=﹣3x+3,且与x轴交于点D,直线l2经过点A(4,0),B(3,),直线l1,l2交于点C.(1)求直线l2的表达式;(2)在直线l2上存在点P,能使S△ADP=3S△ACD,求点P的坐标.【变式1-6】(2023•花都区一模)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;②当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标.【题型2 铅垂法求面积】【解题技巧】对于一般三角形,我们可以选择铅垂法求解三角形的面积。
一次函数中的面积问题
一次函数中的面积问题学情分析:本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。
文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。
文章还提供了三个典型例题,以帮助读者更好地理解。
研究目标与考点分析:研究目标:1、关于一次函数的面积问题利用面积求解析式;2、利用解析式求面积以及对于动点问题学会熟练的解决。
考点分析:1、一次函数的解析式与面积的充分结合。
研究重点:1、一次函数与面积的综合结合与运用;2、对于动点问题与一次函数的熟练结合与把握。
研究方法:讲练结合练巩固。
研究内容与过程:一、本节内容导入本节内容主要介绍了一次函数相关的面积问题,包括规则图形和不规则图形的求解方法,以及含参数问题的求解方法。
文章强调了在求解过程中,需要注意坐标的正负和线段的非负性。
二、典例精讲本节提供了三个典型例题,分别介绍了如何利用面积求解析式,如何求解含参数问题的面积,以及如何求解四边形的面积。
文章强调了在解题过程中,需要注意分类讨论和建立方程的思想。
本文介绍了一次函数关于面积问题的研究方法和重点,重点是一次函数与面积的综合结合与运用,以及对于动点问题与一次函数的熟练结合与把握。
文章介绍了如何利用面积求解析式,以及如何求解含参数问题的面积。
文章还提供了三个典型例题,以帮助读者更好地理解。
在研究过程中,需要注意分类讨论和建立方程的思想。
同时,需要注意坐标的正负和线段的非负性。
通过讲练结合练,可以更好地巩固所学知识。
1、已知直线y=-x+2与x轴、y轴分别交于A点和B点,另一条直线y=kx+b(k≠0)经过点C(1,m),且将△AOB分成两部分。
1)若△AOB被分成的两部分面积相等,则k=-2,b=2.2)若△AOB被分成的两部分面积比为1:5,则k=-5,b=7.2、已知一次函数y=-2/3x+3的图像与y轴、x轴分别交于点A、B,直线y=kx+b经过OA的三分之一点D,且交x轴的负半轴于点C,如果S△AOB=S△DOC,求直线y=kx+b的解析式。
一次函数面积的常见求法
一次函数面积的常见求法讲我们以一次函数中的面积问题为切入点,来看看其背后蕴含的丰富解法.一.问题分析我们知道,一次函数的图像是一条直线,其与坐标轴围成一个三角形,若要求这个“坐标三角形”的面积,则只要知道其与x轴,y轴的交点坐标即可,难度不大,故不展开.但如果有两条直线相交,你会求它们与坐标轴围成的三角形面积吗?甚至如果有三条直线相交,你能求出这三条直线围成的三角形面积吗?本讲就主要研究后2类问题及其变式.二.实例感悟(1)两线与一轴即有两条直线相交,分别求两直线与x轴,y轴围成的三角形面积.例1:已知直线y1=-x+3与y2=x+1,求两直线与坐标轴围成的三角形面积.分析:显然,我们要先求出5个关键点的坐标,y1与x轴交点A的坐标,与y轴交点B的坐标,y2与x轴交点C的坐标,与y轴交点D的坐标,以及y1与y2的交点E的坐标.并确定△CEA是两直线与x轴围成的三角形,△DEB是两直线与y 轴围成的三角形.小结:我们发现,三角形的底和高是可以不断变化的,如果两个点均在x轴上,则用横坐标相减的绝对值表示两点间的距离,若两个点均在y轴上,则用纵坐标相减的绝对值表示两点间的距离,当然,明确左右和上下的情况下,右减左和上减下,可保证为正.变式1:直线y1=k1x+b1(k1>0)和直线y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴所围成的三角形面积是4,求b1-b2.解析:变式2:在平面直角坐标系中,一条直线经过A(-1,5),B(-2,a),C(3,-3)三点,这条直线与y轴交于点D,求△OBD的面积.解析:同样操作,先将这条直线的解析式求出,从而知道点B的坐标,与y轴交点D 的坐标,画出草图,谁为高,谁为底,一目了然.变式3:直线y=kx+3(k<0)与x轴,y轴分别交于A,B两点,OB:OA=3:4,点C 为直线上一动点,若△AOC面积为4,求点C坐标.分析:首先,可知点B坐标(0,3),OB=3,则OA=4,再根据k<0,确定图像经过一二四象限,A(4,0),从而可求直线AB的解析式,画出图像,我们发现,△AOC 以AO为底,则高要用点C纵坐标的绝对值来表示.解答:(2)三线两相交即三条直线两两相交,求出三条直线围成的三角形面积.其实,这个问题可以转化为给出平面直角坐标系内任意三点的坐标,求出以这三个点为顶点的三角形的面积.由于此时的三角形的底边均为倾斜的,这就需要用到一种全新的方法——铅垂法,或称宽高法来求三角形的面积.例2:已知直线OA经过一三象限,A为第一象限内一定点,动点B不在直线OA上,且BA,BO不与y轴平行,求S△OAB分析:显然,这时候的三角形OAB的底并不在x轴,y轴上,即便求出底边长,高依旧是倾斜的,十分难算,因此,我们可以考虑割补法.如果采用补,补成一个矩形,减去周围三个小三角形的面积那也是可以的,但在今后,尤其是初三求二次函数图像上三点围成三角形面积最值时,点的坐标不能确定,就无法适用,所以今天重点介绍铅锤法.什么是铅锤法呢,就以例2来说,我们可以过点B作一条铅锤线,即作BD⊥x 轴,与OA交于点C,则△OAB的面积就可以看作是△OBC与△ABC的面积之和或面积之差,此时,铅垂线BC反而转化为底边,再过点A作AE⊥x轴,则OA水平方向上的距离:即OE的长,可以看作OD与DE的和,或差,此时OD 反而看作△OBC的高,DE看作△ABC的高,则△OAB的面积即可看成是解答:为了让大家更直观的理解,将6种情况全部展示如下,后三种与前三种类似,故只给图,“无字证明”,可对照消化.以上几种情况,属于用多题一解进行验证,均选取OA水平方向的OE长为水平宽,过点B作铅锤线,以B点与OA交点C之间的距离作为铅锤高,从而得出了宽高公式,说的再透些,那么,这个公式能否通过一题多解来验证呢,答案当然是可以的,就以第一种情况为例.以上三图,O、A、B三点的位置均不变,我们可以选取任意两点横坐标之差的绝对值作为水平宽,过第三个点作铅垂线,与之前两点所在直线交于一点,第三个点与这个交点纵坐标之差的绝对值作为铅锤高,则问题均可圆满解决.例2:已知A(-1,3),B(1,1),C(2,2),求S△ABC解析:本题是最基本的练习,现用宽高法的三种不同形式都计算一遍来检验下.分析:本题解法较多,我们重点来研究铅锤法.显然,这样的点Q有2个,在射线AB 上,或者射线AC上.因为点A的坐标可以确定,那么OA的水平宽可以确定,又因为三角形面积确定,则铅锤高也确定,则问题最后转化为一个方程即可解决.解答:小结:从2种情况综合来看,我们不难发现,铅锤高的长度,就是两直线解析式的差的绝对值,这个结论在初三还会有更大作用.当然,本题还可以先求出△OAB的面积,从而求出OBQ1的面积,确定Q1的坐标,同理,求出△AOC的面积,从而求出△OCQ2的面积,确定Q2的坐标.最后,你发现Q1,Q2关于A对称了吗?Q1A=Q2A,A是它们俩的中点哦.。
一次函数反比例函数综合三角形面积
学习目标
1、能根据已知条件准确求出函数表达式。
2、能根据条件,运用简洁的方法求出三角形 的面积。
3、在三角形面积一定的情况下,能分类讨论 确定点的位置。
根据所给条件求△ABC的面积:
思考:怎样求面积比较简单?怎样选择三角 形的底、高?
例1.已知一次函数y(4,2),B(-2,b) y x 两点. (1)求反比例函数表达式和a的值 (2)求△A OB的面积
2、你在求三角形面积的问题上有什么感受?
4 例2. 已知:反比例函数 y (x>0)与一次函 x 数 y=-x+b的图像的一个交点坐标为A(4,m) (1)求一次函数的表达式 (2)设一次函数y=-x+b的图像与y轴交于点B,P为 一次函数y=-x+b图像上的一点, 若△OBP的面积 为5,求点P的坐标
归纳收获
1、如何求函数的表达式?你有什么具体的 方法?
一次函数与三角形面积(基础)
1、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积2、如图14-2-3所示,一个正比例函数图象与一个一次函数图象交于点A (3,4),且OA=OB .求:(1)这两个函数的解析式;(2)△AOB 的面积.3、已知:一次函数的图象与正比例函数Y=-32X 平行,且通过点(0,4), (1)求一次函数的解析式.(2)若点M(-8,m)和N(n,5)在一次函数的图象上,求m,n 的值、如图,已知一次函数的图象经过A (-2,-1),B (1,3)两点.(1)求该一次函数的解析式;(2)求△AOB 的面积.5、一个正比例函数和一个一次函数的图象交于点,且一次函数的图象与y 轴相交于点(1)求这两个函数的解析式. (2)在同一坐标系内,分别画出这两个函数的图象.(3)求出的面积.6、已知一次函数的图象交正比例函数图象于M点,交x轴于点N(-6,0),又知点M位于第二象限,其横坐标为-4,若△MON面积为15,求正比例函数和一次函数的解析式.8、.如下图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.9、如图,已知直线:与直线:的图象的交点在第四象限,且点到轴的距离为。
(1)求直线的解析式。
(2)求的面积。
(3)在第一象限的角平分线上是否存在点,使得的面积是的面积的倍?如果存在,求出点的坐标,如果不存在,请说明理由。
10、如图,直线y=ax+b(a≠0)与y=x+1交于y轴上的点C,与x轴交于点B(2,0).(1)求a,b的值;(2)设直线y=x+1与x轴的交点A,求△ABC的面积.11、如图,在平面直角坐标系中,直线l:分别交x轴,y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到△A′OB′.(1)求直线A′B′的解析式;(2)若直线A′B′与直线l相交于点C,求△A′BC的面积.13、如图,一次函数y=-x+m的图象和y轴交于点B,与正比例函数图象交于点P(2,n). (Ⅰ)求m和n的值; (Ⅱ)求的面积.13、正比例函数与一次函数的图象如图-7-2所示,它们的交点坐标为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.(1)求正比例函数与一次函数的表达式;(2)求△AOB的面积.14、已知一次函数的图象经过、两点,且与x轴相交于C点.(1)求直线的解析式;(2)求的面积.16、某自来水公司为了鼓励市民节约用水,采取分段收费标准.居民每月应交水费y(元)是用水量x(吨)的函数,其图象如图所示 (1)当时,y与x的函数解析式 (2)当时,y与x的函数解析式; (3)若某用户居民该月用水3.5吨,问应交水费多少元?若该月交水费9元,则用水多少吨?17、某地出租车计费方法如图,()表示行驶里程,(元)表示车费,请根据图象解答下列问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数相关的面积问题思路:画出草图,把要求的图形构建出来,根据面积公式,把直线与坐标轴的交点计算出来,把坐标转化成线段,代入面积公式求解。
规则图形(公式法)不规则图形(切割法)不含参数问题含参数问题(用参数表示点坐标,转化成线段)注意:坐标的正负、线段的非负性。
求面积时,尽量使底或高中的一者确定下来(通过对图像的观察,确定底和高),然后根据面积公式,建立等式。
1、求直线y = -2x +4,y = 2x -4及y轴围成的三角形的面积。
2、已知正比例函数y = 2x与一次函数y = x +2相交于点P,则在x上是否存在一点A,使S△POA=4?若存在,求出点有坐标;若不存在,请说明理由。
3、如下图,一次函数的图像交正比例函数的图像于M 点,交x 轴于点N (-6,0),已知点M 在第二象限,其横坐标为-4,若S △NOM=15,求正比例函数的解析式。
yx4、如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得 ADP △与ADC △的面积相等,请直接..写出点P 的坐标.图115、如图,直线L 的解析表达式为y = -21x +2,且与x 轴、y 轴交于点A 、B ,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。
(1)求A 、B 两点的坐标;(2)△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当何值时△COM ≌△AOB ,并求出此时M 点的坐标。
x一次函数(动态问题)举一反三:如图(十二),直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;(2)用含t 的代数式表示MON △的面积1S ;(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S , ①当2t <≤4时,试探究2S 与t 之间的函数关系式; ②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516?【答案】解 (1)当0x =时,4y =;当0y =时,4x =.(40)04A B ∴,,(,); (2)1OM OA MN AB ON OB ∴==Q ∥,,211122OM ON t S OM ON t ∴==∴==,·; (3)①当24t <≤时,易知点P 在OAB △的外面,则点P 的坐标为()t t ,,F 点的坐标满足4x t y t =⎧⎨=-+⎩,,即(4)F t t -,,同理(4)E t t -,,则24PF PE t t t ==-=-(4-), 所以2MPN PEF OMN PEF S S S S S =-=-△△△△2221111324248822222t PE PF t t t t t =-=---=-+-·()(); ②当02t <≤时,2221151544221622S t t ==⨯⨯⨯=,,解得1202t t =<>,,两个都不合题意,舍去;当24t <≤时,22358822S t t =-+-=,解得34733t t ==,,综上得,当73t =或3t =时,2S 为OAB △的面积的516.模仿操练:如图,直线4+-=x y 与两坐标轴分别相交于A.B 点,点M 是线段AB 上任意一点(A.B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;图十二(2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少? (3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.6、在ABC ∆中,,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。
过点P 作PE ∥BC 交AD 于点E ,连结EQ 。
设动点运动时间为x 秒。
(1)用含x 的代数式表示AE 、DE 的长度;(2)当点Q 在BD (不包括点B 、D )上移动时,设EDQ ∆的面积为2()y cm ,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)当x 为何值时,EDQ ∆为直角三角形。
7、如图1,在平面直角坐标系中,已知点(0A ,点B 在x 正半轴上,且30ABO o ∠.动点P 在线段AB 上从点A 向点B个单位的速度运动,设运动时间为t 秒.在x 轴上取两点M N ,作等边PMN △.(1)求直线AB 的解析式;(2)求等边PMN △的边长(用t 的代数式表示),并求出当等边PMN △的顶点M 运动到与原点O 重合时t 的值;(3)如果取OB 的中点D ,以OD 为边在Rt AOB △内部作如图2所示的矩形ODCE ,点C 在线段AB 上.设等边PMN △和矩形ODCE 重叠部分的面积为S ,请求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.8、两块完全相同的直角三角板ABC 和DEF 如图1所示放置,点C 、F 重合,且BC 、DF在一条直线上,其中AC =DF =4,BC =EF =3.固定Rt △ABC 不动,让Rt △DEF 沿CB 向左平移,直到点F 和点B 重合为止.设FC =x ,两个三角形重叠阴影部分的面积为y . (1)如图2,求当x =21时,y 的值是多少?(2)如图3,当点E 移动到AB 上时,求x 、y 的值;(3)求y 与x 之间的函数关系式;9、(重庆课改卷)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.(1)当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2)设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x 的值;使得重叠部分的面积等于原ABC ∆面积的14?若不存在,请说明理由.CB D A 图1122图3C 2D 2C 1BD 1A图2P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;三角形面积与函数解析式的几种题型一、利用面积求解析式1、直线b x y +=2与坐标轴围成的三角形的面积是9,则b =________. (分类讨论)2、已知直线y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,直线l 经过原点,与线段AB 交于点C ,把,△AOB 的面积分为2:l 两部分,求直线l 名的解析式.3、如图,已知直线PA :)0(>+=n n x y 与x 轴交于A,与y 轴交于Q,另一条直线x n m m x y 与)(2>+-=轴交于B,与直线PA 交于P求: (1)A,B,Q,P 四点的坐标(用m 或n 表示) (2)若AB=2,且S 四边形PQOB=65,求两个函数的解析式.4、已知直线2+-=x y 与x 轴、y 轴分别交于A 点和B 点,另一条直线b kx y +=)0(≠k 经过点)0,1(C ,且把AOB ∆分成两部分(1)若AOB ∆被分成的两部分面积相等,则k 和b 的值(2)若AOB ∆被分成的两部分面积比为1:5,则k 和b 的值5、已知一次函数332y x =-+的图象与y 轴、x 轴分别交于点A 、B ,直线y kx b =+经过OA 上的三分之一点D ,且交x 轴的负半轴于点C ,如果AOB DOC S S ∆∆=,求直线y kx b =+的解析式.二、利用解析式求面积1、直线b kx y +=过点A (-1,5)和点)5,(-m B 且平行于直线x y -=,O 为坐标原点,求AOB ∆的面积.2、 如图,所示,一次函数b kx y +=的图像经过A ,B 两点,与x 轴交于C 求:(1)一次函数的解析式; (2)AOC ∆的面积3、已知:直线42-=x y 与直线3+=x y ,它们的交点C 的坐标是________,设两直线与x 轴分别交于A,B,则S ΔABC=_______,设两直线与y 轴交于P,Q,则S ΔPCQ=_________.4、一次函数411-=x k y 与正比例函数x k y 22=的图象都经过(2,-1),则这两个函数的图象与x 轴围成的三角形面积是________.5、已知,直线y=2x+3与直线y=-2x-1. (1)求两直线交点C 的坐标; (2)求△ABC 的面积.(3)在直线BC 上能否找到点P,使得S △APC =6,若能,请求出点P 的坐标,若不能请说明理由。
6、如图,直线y =-34x+4与y 轴交于点A ,与直线y =54x+54交于点B ,且直线y =54x+54与x 轴交于点C ,求△ABC 的面积。
7、已知直线y kx b =+经过点A (0,6),且平行于直线2y x =-. (1)求该函数的解析式,并画出它的图象;(2)如果这条直线经过点P (m ,2),求m 的值; (3)若O 为坐标原点,求直线OP 解析式;(4)求直线y kx b =+和直线OP 与坐标轴所围成的图形的面积。