2018-2019长治市中考必备数学考前押题密卷模拟试卷3-4(共2套)附详细试题答案

合集下载

山西省长治市中考数学模拟试卷2

山西省长治市中考数学模拟试卷2

山西省长治市中考数学模拟试卷2姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题3分,共30分。

) (共10题;共30分)1. (3分) (2019九下·包河模拟) 将一个机器零件按如图方式摆放,则它的左视图为()A .B .C .D .2. (3分)下列各题中的数据,哪个是精确值?()A . 客车在公路上的速度是60km/hB . 我们学校大约有1000名学生C . 小明家离学校距离是3kmD . 从学校到火车站共有10个红灯路口3. (3分)(2017·邹平模拟) 不等式组的解在数轴上表示为()A .B .C .D .4. (3分)已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A . 3cmB . 4cmC . 5cmD . 6cm5. (3分)(2019·秀洲模拟) 某电动车厂2018年第三、四季度各月产量情况如图所示。

某电动车厂2018年第三、四季则下列说法错误的是()A . 7月份产量为300辆B . 从10月到11月的月产量增长最快C . 从11月到12月的月产量减少了20%D . 第四季度比第三季度的产量增加了70%6. (3分) (2016九上·长春期中) 若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则常数c的值为()A . ±4B . 4C . ±16D . 167. (3分)如图,已知AB∥CD,∠D=50°,BC平分∠ABD,则∠ABC等于()A . 65°B . 55°C . 50°D . 45°8. (3分)甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A . 甲B . 乙C . 丙D . 不能确定9. (3分) (2019七下·梁子湖期中) 将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果∠1=130°,那么∠2的度数是()A . 105°B . 100°C . 110°D . 115°10. (3分)如图,在▱ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是()A . 5:8B . 25:64C . 1:4D . 1:16二、填空题(本大题共6小题,每小题4分,共24分) (共6题;共24分)11. (4分)列分式方程的步骤:(1)审清题意,明确题目中的未知数;(2)根据题意找________,列出分式方程.12. (4分)(2018·宜宾) 分解因式: ________.13. (4分)小杨、小刚用摸球游戏决定谁去看电影,袋中有一个红球和一个白球(除颜色不同外都相同),这个游戏对双方________(填“公平”或“不公平”)的.14. (4分)(2017·萍乡模拟) 如图,AB、AC是⊙O的两条弦∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数是________.15. (4分)等边三角形的周长是30cm,一边上的高是5 cm,则该三角形的面积为________ cm2 .16. (4分)(2018·青羊模拟) 如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan∠A'FE的值为________三、解答题(本大题共8小题,共66分) (共8题;共45分)17. (10分)计算:(1)(﹣3ab2)(﹣ a5b);(2)(﹣2x2y)3+8(x2)2•(﹣x2)•(﹣y)3;(3)(﹣2a)6﹣(﹣3a3)2+[﹣(2a)3]3.18. (10分)(2016·甘孜) 计算下面各题.(1)计算: +(1﹣)0﹣4cos45°.(2)解方程组:.19. (5分)已知:AB=CD,AE⊥BC于E,DF⊥BC于F,且CE=BF 。

山西省长治市数学中考全真模拟试卷(三)

山西省长治市数学中考全真模拟试卷(三)

山西省长治市数学中考全真模拟试卷(三)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·沙洋期中) 绝对值不大于5的整数有()A . 10个B . 11个C . 20个D . 21个2. (2分)(2016·安顺) 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A . 20或16B . 20C . 16D . 以上答案均不对3. (2分)在下列图形中,是中心对称图形的是()A .B .C .D .4. (2分)据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A . 4.6×108B . 46×108C . 4.6×109D . 0.46×10105. (2分) (2017九上·河源月考) 在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为()。

A .B .C .D . 16. (2分)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠7=180°.其中能判定a∥b的条件的个数有().A . 1个B . 2个C . 3个D . 4个7. (2分) (2018九上·辽宁期末) 已知点A(-1,5)在反比例函数y= (k≠0)的图象上,则该函数的解析式为()A . y=B . y=C . y=-D . y=5x8. (2分)(2019·莲湖模拟) 如图,A,D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A . 68°B . 58°C . 72°D . 56°9. (2分)(2017·青海) 不等式组的解集在数轴上表示正确的是()A .B .C .D .10. (2分)如图为二次函数y=ax2+bx+c的图象,此图象与x轴的交点坐标分别为(-1,0)、(3,0).下列说法正确的个数是()①ac<0②a+b+c>0③方程ax2+bx+c=0的根为x1=-1,x2=3④当x>1时,y随着x的增大而增大.A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分)若x2﹣9=(x﹣3)(x+a),则a=________12. (1分)(2013·连云港) 计算: =________.13. (1分) (2019·和平模拟) 的半径为1,,将射线绕点P旋转度()得到射线,若直线恰好与相切,则的值为________.14. (1分) (2014九上·宁波月考) 有长度为3cm,5cm,7cm,9cm的四条线段,从中任取三条线段,能够组成三角形的概率是________.15. (1分)(2017·洛阳模拟) 如图矩形ABCD中,AD=5,AB=6,点E为DC上一个动点,把△ADE沿AE折叠,点D的对应点为F,当△DFC是等腰三角形时,DE的长为________.16. (1分)(2020九上·新乡期末) 如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则 ________. 的整数).三、解答题 (共10题;共100分)17. (5分)(2017·临沂模拟) 计算: + ﹣﹣()﹣1 .18. (5分)先化简,再求值:,其中x=﹣2,y=1.19. (5分) (2016八下·宝丰期中) 解不等式组,并求出它的整数解的和.20. (20分) (2017八下·楚雄期末) 某教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了某校八年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a的值,并求出该校八年级学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图;(3)在这次抽样调查中,众数和中位数分别是多少?(4)如果该市共有八年级学生6000人,请你估计”活动时间不少于4天”的大约有多少人?21. (10分)(2018·黄冈) 如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22. (10分)(2017·赤峰) 为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.23. (10分)(2018·深圳模拟) 如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.24. (10分)(2016·山西模拟) 如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y= 的图象交于点A(﹣3,2)和点B(1,m),连接BO并延长与反比例函数y= 的图象交于点C.(1)求一次函数y=k1x+b和反比例函数y= 的表达式;(2)是否在双曲线y= 上存在一点D,使得以点A、B、D、C为顶点的四边形成为平行四边形?若存在,请直接写出点D的坐标,并求出该平行四边形的面积;若不存在,请说明理由.25. (10分) (2016九上·仙游期末) 如图所示,E是圆内的两条弦AB、CD的交点,直线EF∥CB,交AD的延长线于F,FG切圆于G.连接AG、DG.求证:(1)△DFE∽△EFA(2) EF=FG26. (15分)(2013·义乌) 小明合作学习小组在探究旋转、平移变换.如图△ABC,DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D(,0),E(2 ,0),F(,﹣).(1)他们将△ABC绕C点按顺时针方向旋转45°得到△A1B1C1.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;(2)他们将△ABC绕原点按顺时针方向旋转45°,发现旋转后的三角形恰好有两个顶点落在抛物线y=2 x2+bx+c 上,请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC绕某个点旋转45°,若旋转后的三角形恰好有两个顶点落在抛物线y=x2上,则可求出旋转后三角形的直角顶点P的坐标,请你直接写出点P的所有坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共100分)17-1、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。

长治市2018年中考数学猜题卷及答案

长治市2018年中考数学猜题卷及答案

长治市2018年中考数学猜题卷及答案注意事项:1、本试卷满分 120 分,考试时间 100 分钟。

2、本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在 试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.-14的倒数是( )A .4B .-14 C.14D .-42. 下列运算结果正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a6C .a 3÷a 2=aD .(a 2)3=a 53.为了考察某种小麦的长势,从中抽取了10株麦苗,量得它们的长度如下(单位:cm ):16、9、14、11、12、10、16、8、17、16则这组数据的中位数为( ) A .9B .11C .13D .164.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠35.如图所示的是三通管的立体图,则这个几何体的俯视图是( )A .B .C .D .6.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .矩形B .三角形C .平行四边形D .等腰梯形7.如图,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于AC 的长为半径画弧两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°8.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24C.6 D.129.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个B.2个C.3个D.4个10.如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.二、填空题(每小题3分,共15分)11. 我国是世界上13个贫水国之一,人均水资源占有量只有2520立方米,用科学记数法表示2520立方米是_____________立方米。

山西省长治市数学中考模拟试卷(3月)

山西省长治市数学中考模拟试卷(3月)

山西省长治市数学中考模拟试卷(3月)姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共25分)1. (2分) (2019七上·偃师期中) 马虎同学做了以下4道计算题:①0﹣(﹣1)=1;② ÷(﹣)=﹣1;③﹣ + =﹣;④(﹣1)2005=﹣2005,请你帮他检查一下,他一共做对了()A . 1题B . 2题C . 3题D . 4题2. (3分) (2018九上·右玉月考) 下列图形中,是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个3. (3分)如如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于()A .B .C .D .4. (2分)(2013·梧州) 如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A .B .C .D .5. (2分)(2016·余姚模拟) 下列计算不正确的是()A . x2•x3=x5B . (x3)2=x6C . x3+x3=x6D . ( x)2=3x26. (2分)(2019·河北模拟) 如图,公园A在公园B的北偏东50°方向,公园C在公园B的北偏西25°方向,若A,B两公园到公园C的两直线的夹角∠C为35°,那么公园C在公园A的()A . 西北方向B . 北偏西60°方向C . 北偏西70°方向D . 南偏东75°方向7. (3分)把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2-2x+1,则b,c 的值分别是()A .b=2,c=-2B . b=-2,c=-2C .b=-6,c=-6D . b=-6,c=68. (3分) (2017八下·林甸期末) 下列命题中,逆命题是假命题的是()A . 全等三角形的对应角相等B . 直角三角形两锐角互余C . 全等三角形的对应边相等D . 两直线平行,同位角相等9. (2分)关于x的二次函数y=-(x-1)2+2,下列说法正确的是()A . 图象的开口向上B . 图象与y轴的交点坐标为(0,2)C . 图象的顶点坐标是(-1,2)D . 当x>1时,y随x的增大而减小10. (3分)(2017·溧水模拟) 如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A,P,E三点为顶点的直角三角形的个数为()A . 2B . 3C . 4D . 5二、填空题(每小题4分,共24分) (共6题;共18分)11. (4分)(2017·滨湖模拟) 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达860 000 000元,这个数用科学记数法表示为________元.12. (4分)(2014·内江) a﹣4ab2分解因式结果是________.13. (4分)(2020·锦州模拟) 某果园种植甲、乙、丙、丁四个品种的苹果树,为了解每种苹果树的产量情况,从这四个品种中各随机选取10棵进行采摘,经统计,每种苹果树10棵产量的平均数(单位:kg)及方差S2如表所示:甲乙丙丁平均数(kg)180185190192方差S27.98.28.07.9准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植,应选的品种为________.14. (2分) (2017九上·拱墅期中) 如图,任两个竖直或水平相邻的点都相距个单位长度.已知线段交线段于点,则线段的长是________.15. (2分) (2020八下·丹东期末) 如图,平行四边形ABCD的对角线AC,BD交于点O,点E是AD的中点,△ 的周长为6,则△ 的周长为________.16. (2分)(2017·浦东模拟) 如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是________.三、解答题(本题共8小题,共66分) (共8题;共28分)17. (6分)(2020·温州模拟)(1)计算:(π-3.14)0-2 cos30°+()-2(2)化简:18. (6分) (2019七下·濉溪期末) 解不等式组.19. (6分)(2020·皇姑模拟) 如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AF=CE,DF=BE,且DF∥BE,过点C作CG⊥AB交AB延长线与点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB= ,∠CBG=45°,BC= ,则ABCD的面积是________.20. (2分) (2020八下·瑞安期末) 如图,菱形放置在平面直角坐标系中,已知点,,点D在y轴正半轴上,反比例函数的图象经过点C.(1)求反比例函数的表达式;(2)将菱形向上平移,使点恰好落在双曲线上,此时A,B,C,D的对应点分别为,,,,且与双曲线交于点,求点的坐标.21. (2分)遵义市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________ 人(2)将条形统计图补充完整(3)本次调查测试成绩中的中位数落在________ 组内(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数22. (2分) (2019九上·宁波月考) 如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1) AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.23. (2分) (2019八下·卢龙期中) 甲、乙两人进行比赛的路程与时间的关系如图所示.(1)这是一场________米比赛;(2)前一半赛程内________的速度较快,最终________赢得了比赛;(3)两人第________秒在途中相遇,相遇时距终点________米;(4)甲在前8秒的平均速度是多少?甲在整个赛程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整个赛程的平均速度是多少?24. (2分)(2017·灌南模拟) 若两条抛物线的顶点相同,则称它们为“友好抛物线”,已知抛物线C1:y1=﹣x2+ax+b与抛物线C2:y2=2x2+4x+6为“友好抛物线”,抛物线C1与x轴交于点A、C,与y轴交于点B.(1)求抛物线C1的表达式.(2)若F(t,0)(﹣3<t<0)是x轴上的一点,过点F作x轴的垂线交抛物线与点P,交直线AB于点E,过点P作PD⊥AB于点D.①是否存在点F,使PE+PD的值最大,若存在,请求出t的值;若不存在,请说明理由.②连接PA,以AP为边作图示一侧的正方形APMN,随着点F的运动,正方形的大小、位置也随之改变.当正方形APMN中的边MN与y轴有且仅有一个交点时,求t的取值范围.参考答案一、选择题(每小题3分,共30分) (共10题;共25分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题4分,共24分) (共6题;共18分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题共8小题,共66分) (共8题;共28分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、23-4、24-1、。

山西省长治市中考数学三模考试试卷

山西省长治市中考数学三模考试试卷

山西省长治市中考数学三模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)地球上的陆地面积约为149000000平方千米,将149000000用科学记数法表示应为()A .0.149×109B . 1.49×107C . 1.49×108D . 1.49×1092. (2分)(2017·衢州) 下图是由四个相同的小立方块搭成的几何体,它的主视图是()A .B .C .D .3. (2分) (2019八上·阜新月考) 下列说法错误的是()A .B .C . 2的平方根是±D . -81的平方根是±94. (2分) (2017七下·泗阳期末) 下列各式正确的是()A . a2·a3=a6B . a3÷a2=aC . (a3)2=a5D . a2+a2=2a45. (2分) (2018九上·青海期中) 下列方程是关于的一元二次方程的是()A .B .C .D .6. (2分) (2019七下·唐河期末) 如图所示,小明从点出发,沿直线前进8米后左转,再沿直线前进8米,又左转,照这样走下去,他第一次回到出发点时,一共走了()米.A . 70B . 72C . 74D . 767. (2分) (2019九上·瑞安开学考) 如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于点A,B,若反比例函数y= (x>0)的图像与△ABC有公共点,则k的取值范围是()A . 2≤k≤9B . 2≤k≤8C . 2≤k≤5D . 5≤k≤88. (2分)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A . 当x=3时,EC<EMB . 当y=9时,EC>EMC . 当x增大时,EC•CF的值增大D . 当y增大时,BE•DF的值不变9. (2分)如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A .B .C .D . 110. (2分) (2017七下·宝丰期末) 如图,爸爸从家(点O)出发,严沿着扇形AOB上OA→弧AB→BO的路径区匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A .B .C .D .二、填空题 (共6题;共17分)11. (1分) (2019八上·城厢月考) 约分: ________.12. (1分) (2019九上·丰县期末) 甲、乙、丙三位选手各射击次的成绩统计如下:选手甲乙丙平均数(环)9.39.39.3方差0.250.380.14其中,发挥最稳定的选手是________.13. (1分)(2020·滨州) 如图,是正方形ABCD的内切圆,切点分别为E、F,G,H,ED与相交于点M,则sin∠MFG的值为________.14. (2分)(2019·青白江模拟) 如图,在平面直角坐标系中,矩形ABOC的顶点O在坐标原点,边BO在x 轴的负半轴上,AC长为,若将边AC平移至A'C'处,此时A'坐标为(-4,2),分别连接A'B,C'O,反比例函数y= 的图象与四边形A'BOC'对角线A'O交于D点,连接BD,则当BD取得最小值时,k的值是________ .15. (5分) (2016九上·九台期末) 计算:16. (7分) (2017八上·盐城开学考)(1)填空: 31-30=2×3(________), 32-31=2×3(________), 33-32=2×3(________),…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)利用上述规律计算:30+31+32+33+…+32015+32016= ________,其末位数字是 ________ .三、解答题 (共7题;共65分)17. (5分)(2020·诸暨模拟) 我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛。

山西省长治市数学中考三模试卷

山西省长治市数学中考三模试卷

山西省长治市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2020七上·卫辉期末) 在有理数,,,,,中,非负整数有()A . 个B . 个C . 个D . 个2. (2分) (2018七上·襄州期末) 下列计算正确的是()A . x4·x4=x16B . (a3)2·a4=a9C . (ab2)4÷(−ab)2=−ab4D . (a−1b3)2=3. (2分) (2017八上·临洮期中) 已知一个多边形的内角和是外角和的2倍,则此多边形的边数为()A . 6B . 7C . 8D . 94. (2分) (2018七上·碑林月考) 如图,左面的图形绕虚线旋转一周,可以得到的几何体是A .B .C .D .5. (2分) (2019八上·达县期中) 正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,点A1 , A2 ,A3…和点C1 , C2 , C3 ,…分别在直线 y=x+1 和 x 轴上,则点A2019 的坐标是()A . (22018 ,22019)B . (22018 − 1,22018)C . (22019 ,22018)D . (22018 − 1,22019 )6. (2分)将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=60°,则∠AED的大小是()A . 60°B . 50°C . 75°D . 55°二、填空题 (共10题;共12分)7. (1分) (2020八上·南京期末) 地球上的海洋面积约为361 000 000km2 ,将361 000 000精确到10 000 000,并用科学记数法表示这个近似数为________.8. (1分) (2020八上·西安月考) 观察下列等式:① ;② ;③ .利用你观察到的规律,计算 ________.9. (1分) (2020九上·端州期末) 分解因式:4x3﹣9x=________.10. (1分) (2020八下·鹤山期中) 射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为,,,,则四人中成绩最稳定的是________.11. (2分)不等式组的解集是________.12. (1分) (2019九上·钦州港期末) 已知反比例函数y=,x>0时,y________0,这部分图象在第________象限,y随着x值的增大而________.13. (1分)(2017·临高模拟) 如图,在直角坐标系中,以点P为圆心的圆弧与x轴交于A,B两点,已知P (4,2)和A(2,0),则点B的坐标是________.14. (1分)(2020·合肥模拟) 如图,在中,,,,以点A 为圆心,以AC为半径画弧,交AB于D,则扇形CAD的周长是________(结果保留).15. (1分)(2020·长宁模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4,点P在边BC上,联结AP ,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B′,则BB′的长等于________.16. (2分)(2020·济宁模拟) 如图,O为正方形ABCD对角线的交点,E是线段OC的中点,DE的延长线交BC边于点F ,连接并延长FO交AD于点G .若AB=2,则GF=________.三、解答题 (共11题;共82分)17. (5分) (2019七上·徐汇月考) 先化简再求值:,;18. (7分)(2017·游仙模拟) 计算题(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+ ;(2)先化简,再求值:(﹣x﹣1)÷ ,其中x是不等式组的一个整数解.19. (10分) (2020七下·福州期末) 请补全证明过程及推理依据.已知:如图,点,,分别是三角形的边,,上的点,若,.求证:.证明:∵ ,∴ ▲.(▲)∵ ,∴ ,(▲)∴ ,(▲)∴ .20. (6分)深圳市某校艺术节期间,开展了“好声音”歌唱比赛,在初赛中,学生处对初赛成绩做了统计分析,绘制成如下频数、频率分布表和频数分布直方图(如图),请你根据图中提供的信息,解答下列问题:分组频数频率74.5≤x<79.520.0479.5≤x<84.5a0.1684.5≤x<89.5200.4089.5≤x<94.5160.3294.5≤x<100.54b合计501(1)频数、频率分布表中a=________,b=________;(2)补全频数分布直方图;(3)初赛成绩在94.5≤x<100.5分的四位同学恰好是七年级、八年级各一位,九年级两位,学生处打算从中随机挑选两位同学谈一下决赛前的训练,则所选两位同学恰好都是九年级学生的概率为________.21. (10分) (2016八上·宁海月考) 某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车情况如图所示:(1)请你根据上图填写下表:销售公司平均数方差中位数众数甲9乙917.08(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).22. (2分)(2019·沈阳模拟) 如图,某塔观光层的最外沿点E为蹦极项目的起跳点,已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB 方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据≈1.4,≈1.7)23. (10分)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如表所示:x…012345…y…410149…(1)顶点坐标为________;(2)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:________;(3)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数y=ax2+bx+c的图象上,问:当m<﹣3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?24. (11分)(2018·无锡模拟) 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.25. (5分) (2019八下·灞桥期末) 如图,已知,,请用尺规作图在上取一点,使得 .26. (6分) (2019九上·马山期中) 某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)当售价定为多少元时,每天的利润为140元?(2)商人为了获得最大利润,应将该商品每件售价定为多少元?最大利润是多少元27. (10分) (2018九下·潮阳月考) 如图,已知⊙O的直径AC与弦BD相交于点 F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,连接BC,求证:△EAF∽△CBA.(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共82分)17-1、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、26-1、26-2、27-1、27-2、27-3、。

山西省长治市2019-2020学年中考数学第四次押题试卷含解析

山西省长治市2019-2020学年中考数学第四次押题试卷含解析

山西省长治市2019-2020学年中考数学第四次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在Rt △ABC 中,∠C=90°,如果sinA=12,那么sinB 的值是( ) A .3 B .12C .2D .2 2.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )A .B .C .D .3.如图,CE ,BF 分别是△ABC 的高线,连接EF ,EF=6,BC=10,D 、G 分别是EF 、BC 的中点,则DG 的长为 ( )A .6B .5C .4D .34.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->5.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4D .1或46.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( ) A .14.4×103B .144×102C .1.44×104D .1.44×10﹣47.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟8.如图,O 为坐标原点,四边彤OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=,反比例函数在第一象限内的图象经过点A ,与BC 交于点F ,删△AOF 的面积等于( )A .10B .9C .8D .69.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有( ) A .1个 B .2个 C .3个 D .4个10.如图,已知OP 平分∠AOB ,∠AOB =60°,CP =2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A .2B .2C 3D .311.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 12.下列计算正确的是( ) A .a 2•a 3=a 6B .(a 2)3=a 6C .a 6﹣a 2=a 4D .a 5+a 5=a 10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______14.太阳半径约为696000千米,数字696000用科学记数法表示为千米.15.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF 面积的最大值为_____.16.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.甲乙丙丁x7 8 8 7s2 1 1.2 0.9 1.817.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.18.正多边形的一个外角是72o,则这个多边形的内角和的度数是___________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?20.(6分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3o ,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7o ,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈o ,cos32.30.85≈o ,tan32.30.63≈o ,sin55.70.83≈o ,cos55.70.56≈,tan55.7 1.47)≈o21.(6分)解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解. 22.(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?23.(8分)如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求ADDB的值.24.(10分)如图1,直线l:y=34x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=12x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.25.(10分)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=35,请求出AC的长.26.(12分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?27.(12分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sin∠BEF=35时,求BFCF的值;(2)如图2,当tan∠ABC=12时,过D作DH⊥AE于H,求EH EA⋅的值;(3)如图3,连AD交BC于G,当2FG BF CG=⋅时,求矩形BCDE的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】【详解】∵Rt△ABC中,∠C=90°,sinA=12,∴cosA=22131=1()2sin A --=, ∴∠A+∠B=90°, ∴sinB=cosA=3. 故选A . 2.D 【解析】 【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可. 【详解】解:A 、不是中心对称图形,故此选项错误; B 、不是中心对称图形,故此选项错误; C 、不是中心对称图形,故此选项错误; D 、是中心对称图形,故此选项正确; 故选:D . 【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义. 3.C 【解析】 【分析】连接EG 、FG ,根据斜边中线长为斜边一半的性质即可求得EG =FG =12BC ,因为D 是EF 中点,根据等腰三角形三线合一的性质可得GD ⊥EF ,再根据勾股定理即可得出答案. 【详解】解:连接EG 、FG ,EG 、FG 分别为直角△BCE 、直角△BCF 的斜边中线, ∵直角三角形斜边中线长等于斜边长的一半 ∴EG =FG =12BC=12×10=5,∵D 为EF 中点 ∴GD ⊥EF , 即∠EDG =90°, 又∵D 是EF 的中点, ∴116322DE EF ==⨯=, 在Rt EDG ∆中,4DG ==,故选C. 【点睛】本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD ⊥EF 是解题的关键. 4.C 【解析】 【分析】根据各点在数轴上位置即可得出结论. 【详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b ,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误. 故选C. 5.C 【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0, 解得 a 1=-2,a 2=1. 即a 的值是1或-2. 故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.C【解析】【分析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.8.A【解析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b,b).∵点F在反比例函数y=的图象上,∴(10+b)×b=12,S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故选A.“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找。

山西省长治市2019-2020学年中考数学第三次押题试卷含解析

山西省长治市2019-2020学年中考数学第三次押题试卷含解析

山西省长治市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列计算错误的是( ) A .4x 3•2x 2=8x 5 B .a 4﹣a 3=aC .(﹣x 2)5=﹣x 10D .(a ﹣b )2=a 2﹣2ab+b 2 2.计算3×(﹣5)的结果等于( ) A .﹣15 B .﹣8 C .8 D .153.如图,正方形被分割成四部分,其中I 、II 为正方形,III 、IV 为长方形,I 、II 的面积之和等于III 、IV 面积之和的2倍,若II 的边长为2,且I 的面积小于II 的面积,则I 的边长为( )A .4B .3C .423-D .423+4.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是( )A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等5.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.6.不等式组1040xx+>⎧⎨-≥⎩的解集是()A.﹣1≤x≤4B.x<﹣1或x≥4C.﹣1<x<4 D.﹣1<x≤47.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F,S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.278.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.9.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=210.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.11.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 动时间(小时) 3 3.5 4 4.5 人数1121A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.812.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23,则a 的值是_____.14.一个n 边形的每个内角都为144°,则边数n 为______.15.欣欣超市为促销,决定对A ,B 两种商品统一进行打8折销售,打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元,打折后,小敏买50件A 商品和40件B 商品仅需________元. 16.若代数式315x -的值不小于代数式156x-的值,则x 的取值范围是_____. 17.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎤+⎦的值为________.18.如图,为了测量铁塔AB 高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB=________米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE20.(6分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.21.(6分)已知反比例函数的图象过点A(3,2).(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.22.(8分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .23.(8分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名? 24.(10分)计算﹣14﹣23116()|3|2÷-+-25.(10分)已知:如图,在半径为2的扇形AOB 中,90AOB ︒∠=°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE CD 、.(1)若C 是半径OB 中点,求OCD ∠的正弦值;(2)若E 是弧AB 的中点,求证:2•BE BO BC ;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.26.(12分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC 中,D 为边BC 的中点,AE ⊥BC 于E ,则线段DE 的长叫做边BC 的中垂距. (1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图②,在△ABC 中,∠B=15°,AB=32,BC=8,AD 为边BC 的中线,求边BC 的中垂距. (3)如图③,在矩形ABCD 中,AB=6,AD=1.点E 为边CD 的中点,连结AE 并延长交BC 的延长线于点F ,连结AC .求△ACF 中边AF 的中垂距.27.(12分)已知抛物线y =x 2﹣(2m+1)x+m 2+m ,其中m 是常数. (1)求证:不论m 为何值,该抛物线与z 轴一定有两个公共点; (2)若该抛物线的对称轴为直线x =52,请求出该抛物线的顶点坐标. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b )1=a 1±1ab+b 1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案. 【详解】A 选项:4x 3•1x 1=8x 5,故原题计算正确;B 选项:a 4和a 3不是同类项,不能合并,故原题计算错误;C 选项:(-x 1)5=-x 10,故原题计算正确;D 选项:(a-b )1=a 1-1ab+b 1,故原题计算正确; 故选:B . 【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则. 2.A 【解析】 【分析】按照有理数的运算规则计算即可. 【详解】原式=-3×5=-15,故选择A. 【点睛】本题考查了有理数的运算,注意符号不要搞错. 3.C 【解析】 【分析】设I 的边长为x ,根据“I 、II 的面积之和等于III 、IV 面积之和的2倍”列出方程并解方程即可. 【详解】 设I 的边长为x根据题意有2222(22)x x x +=+解得4x =-4x =+ 故选:C . 【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键. 4.B 【解析】 【分析】①根据函数的图象即可直接得出结论;②求得直线OA 和DC 的解析式,求得交点坐标即可;③由图象无法求得B 的横坐标;④分别进行运算即可得出结论. 【详解】 由题意和图可得,轿车先到达乙地,故选项A 错误,轿车在行驶过程中进行了提速,故选项B 正确,货车的速度是:300÷5=60千米/时,轿车在BC 段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D 错误,设货车对应的函数解析式为y =kx , 5k =300,得k =60,即货车对应的函数解析式为y =60x , 设CD 段轿车对应的函数解析式为y =ax +b ,2.5804.5300a b a b +=⎧⎨+=⎩,得110195a b =⎧⎨=-⎩, 即CD 段轿车对应的函数解析式为y =110x -195, 令60x =110x -195,得x =3.9,即货车出发3.9小时后,轿车追上货车,故选项C 错误, 故选:B . 【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式 5.A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1. 故选A . 考点:三视图视频 6.D 【解析】试题分析:解不等式①可得:x >-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D . 7.D 【解析】 【分析】先根据AE :EB=1:2得出AE :CD=1:3,再由相似三角形的判定定理得出△AEF ∽△CDF ,由相似三角形的性质即可得出结论. 【详解】解:∵四边形ABCD 是平行四边形,AE :EB=1:2, ∴AE :CD=1:3, ∵AB ∥CD , ∴∠EAF=∠DCF , ∵∠DFC=∠AFE ,∴△AEF ∽△CDF , ∵S △AEF =3,∴AEF FCD S S V V =3FCD S V =(13)2, 解得S △FCD =1. 故选D. 【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键. 8.B 【解析】解:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大; 当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 故选B . 9.A 【解析】 【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案. 【详解】A 、a 2•a 3=a 5,故此选项正确;B 、2a+a 2,无法计算,故此选项错误;C 、(-a 3)3=-a 9,故此选项错误;D 、a 2÷a=a ,故此选项错误; 故选A . 【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键. 10.A 【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.11.C【解析】试题解析:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:3 3.542 4.55++⨯+=3.1.故选C.12.D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2+2【解析】【分析】【详解】试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=23,半径为2,∴AE=12AB=3,PA=2,根据勾股定理得:PE=1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=2∵⊙P的圆心是(2,a),∴a=PD+DC=2+2.【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.14.10【解析】【分析】【详解】解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10,故答案为:1015.1【解析】【分析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值,进而求解即可.【详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得63=54 {34=32x yx y++,解得x=8 {y=2.所以0.8×(8×50+2×40)=1(元).即打折后,小敏买50件A商品和40件B商品仅需1元.故答案为1.【点睛】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.16.x≥11 43【解析】【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】解:根据题意,得:311556x x--≥,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥11 43,故答案为x≥1143. 【点睛】 本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.17.4【解析】【分析】1的整数部分即可.【详解】∵3<4,∴4<5∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.18.【解析】【分析】在Rt △ABC 中,直接利用tan ∠ACB=tan30°=AB BC . 【详解】在Rt △ABC 中,tan ∠ACB=tan30°=AB BC =3,BC=60,解得.故答案为【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析.【解析】【分析】易证△DAC ≌△CEF ,即可得证.【详解】证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC 和△CEF 中:90DCA CFE A E CD CF ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴△DAC ≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.20.(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.【解析】【分析】(1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.【详解】(1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,∴总调查人数=20÷20%=100人;(2)参加娱乐的人数=100×40%=40人, 从条形统计图中得出参加阅读的人数为30人,∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形统计图中“其它”类的圆心角=360×10%=36°;(3)如图(4)估计一下全校课余爱好是阅读的学生约为3200×30100=960(人). 【点睛】 本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.21.(1);(2)MB=MD.【解析】【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.【详解】(1)将A(3,2)代入中,得2,∴k=6,∴反比例函数的表达式为.(2)BM=DM,理由:∵S △OMB=S△OAC=×=3,∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴,∴MB=,MD=,∴MB=MD.【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键. 22.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AG AD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BF ED DF=,由(1)知△DFD∽△DFC,∴BF DF DF CF=,∴EG DF ED CF=,∴EG·CF=ED·DF.23.(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图24.1【解析】【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【详解】原式=﹣1﹣4÷14+27=﹣1﹣16+27=1.【点睛】本题考查了实数的运算,解题的关键是熟练掌握运算顺序.25.(2)3sin CD5O∠=;(2)详见解析;(2)当DCEV是以CD为腰的等腰三角形时,CD的长为2或2.【解析】【分析】(2)先求出OC12=OB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;(2)先判断出¶¶AE BE=,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;(3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D 和点O重合,即可得出结论.【详解】(2)∵C是半径OB中点,∴OC12=OB=2.∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x34=,∴CD54=,∴sin∠OCD35ODCD==;(2)如图2,连接AE,CE.∵DE是AC垂直平分线,∴AE=CE.∵E是弧AB的中点,∴¶¶AE BE=,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴BE OBBC BE=,∴BE2=BO•BC;(3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:①当CD=CE时.∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣23-2(舍)或a=232-;∴CD=232-;②当CD=DE时.∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B 重合,∴CD=2.综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或232-.【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.26.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)9 5 .【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1(3)解:如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴= ,∴= ,∴EH= ,∴△ACF中边AF的中垂距为27.(1)见解析;(2)顶点为(52,﹣14)【解析】【分析】(1)根据题意,由根的判别式△=b 2﹣4ac >0得到答案;(2)结合题意,根据对称轴x =﹣2b a得到m =2,即可得到抛物线解析式为y =x 2﹣5x+6,再将抛物线解析式为y =x 2﹣5x+6变形为y =x 2﹣5x+6=(x ﹣52)2﹣14,即可得到答案. 【详解】(1)证明:a =1,b =﹣(2m+1),c =m 2+m , ∴△=b 2﹣4ac =[﹣(2m+1)]2﹣4×1×(m 2+m )=1>0,∴抛物线与x 轴有两个不相同的交点.(2)解:∵y =x 2﹣(2m+1)x+m 2+m ,∴对称轴x =﹣2b a =(21)21m -+⨯=212m +, ∵对称轴为直线x =52, ∴212m +=52, 解得m =2,∴抛物线解析式为y =x 2﹣5x+6,∵y =x 2﹣5x+6=(x ﹣52)2﹣14, ∴顶点为(52,﹣14 ). 【点睛】 本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.。

长治市九年级数学中考仿真试卷(三)

长治市九年级数学中考仿真试卷(三)

长治市九年级数学中考仿真试卷(三)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·海曙模拟) 如图所示,点M表示的数是()A . 2.5B . ﹣1.5C . ﹣2.5D . 1.52. (2分) (2018七下·宝安月考) 新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A . 2×10﹣5B . 5×10﹣6C . 5×10﹣5D . 2×10﹣63. (2分)(2018·遵义模拟) 如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是()A . ①②③B . ①②④C . ①③④D . ①②③④4. (2分)(2018·河南模拟) 形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A .B .C .D .5. (2分)(2018·河南模拟) 一次中学生田径运动会上,参加男子跳高的20名运动员成绩如下所示:成绩(单位:米) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23245211则下列叙述正确的是()A . 这些运动员成绩的中位数是1.70B . 这些运动员成绩的众数是5C . 这些运动员的平均成绩是1.71875D . 这些运动员成绩的中位数是1.7266. (2分)(2018·河南模拟) 在平面直角坐标系中,已知点P( t,2﹣t)在第二象限,则t的取值范围在数轴上可表示为()A .B .C .D .7. (2分)(2018·秦皇岛模拟) 如图, ABCD中,点E,F分别在AD,AB上,依次连接EB,EC,FC,FD,图中阴影部分的面积分别为S1、S2、S3、S4 ,已知S1=2、S2=12、S3=3,则S4的值是()A . 4B . 5C . 6D . 78. (2分)(2018·河南模拟) 如图,是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是()A .B .C .D .9. (2分)(2018·河南模拟) 在直角坐标平面内的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走a个单位长度.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[2,60°]后位置的坐标为()A . (-1,)B . (-1,-)C . (-, -1)D . (-,1)10. (2分) (2016九上·相城期末) 如图,菱形的边长为,,弧是以点为圆心、长为半径的弧,弧是以点为圆心、长为半径的弧,则阴影部分的面积为()A .B .C .D .二、填空题 (共6题;共9分)11. (1分) (2017七下·靖江期中) 若是方程组的解,则 + =________12. (1分)(2018·河南模拟) 如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.13. (1分)(2018·河南模拟) 若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m ﹣1=0中至少有一个方程有实根,则m的取值范围是________.14. (1分)(2018·河南模拟) 如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC 的面积为________.15. (1分)(2018·河南模拟) 如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为 BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为________.16. (4分)(2018·河南模拟) 为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155;B组:155≤x<160;C组:160≤x<165;D组165≤x<170;E组:x≥170)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在________组,中位数在________ 组.(2)样本中,女生的身高在E组的人数有________人.(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有________人?三、解答题 (共7题;共95分)17. (10分) (2017九上·淅川期中)(1)计算(2)解方程18. (15分)(2018·河南模拟) 如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O 的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.19. (10分)(2018·河南模拟) 如图:两个观察者从A,B两地观测空中C处一个气球,分别测得仰角为45°和60°,已知A,B两地相距200m,当气球沿着与AB平行地漂移40秒后到达C1 ,在A处测得气球的仰角为30度.求:(1)气球漂移的平均速度(结果保留3个有效数字);(2)在B处观测点C1的仰角(精确到度).20. (10分)(2018·河南模拟) 已知:点P(m,4)在反比例函数y= 的图象上,正比例函数的图象经过点P和点Q(6,n).(1)求正比例函数的解析式;(2)在x轴上求一点M,使△MPQ的面积等于18.21. (15分)(2018·河南模拟) 某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B 种台灯多少盏?(3)若该商场预计用不少于2500元且不多于2600元的资金购进这批台灯,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a<20),问该商场该如何进货,才能获得最大的利润?22. (20分)(2018·河南模拟) 定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD即为线段BD的“对角线正方形”.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB以5cm/s的速度运动,当点P与点B不重合时,作线段PB的“对角线正方形”,设点P的运动时间为t(s),线段PB的“对角线正方形”的面积为S(cm2).(1)如图③,借助虚线的小正方形网格,画出线段AB的“对角线正方形”.(2)当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,求t的值.(3)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式.(4)在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠A的平分线上时,直接写出t 的值.23. (15分)(2018·河南模拟) 抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、16-3、三、解答题 (共7题;共95分)17-1、17-2、18-2、18-3、19-1、19-2、20-1、20-2、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、23-3、。

长治市数学中考模拟试卷

长治市数学中考模拟试卷

长治市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·衡阳) 的相反数是A . 4B .C .D .2. (2分)武汉不仅是“江城”、“湖城“、“钢城”、“车城”、“诗城”,还是“桥城”喔!坐拥大小桥梁1200多座,令武汉充满诗情画意和文化魅力.将1200这个数用科学记数法表示为()A . 0.12×106B . 12×104C . 1.2×103D . 1.2×1043. (2分)下图空心圆柱体的主视图的画法正确的是()A .B .C .D .4. (2分) (2019九上·湖州月考) 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A .B .C .D .5. (2分) (2017七上·杭州月考) 下列计算正确的是()A . (-3) - (+3) =0B . ( + )×(-35)=(-35)×(- )+(-35)×C . ÷(-3)=3×(-3)D . 18÷()=18÷ -18÷6. (2分) (2016八上·扬州期末) 给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形.②对角线相等的四边形是矩形.③对角形互相垂直且相等的四边形是正方形.④有一条对角线平分一个内角的平行四边形为菱形.其中,不正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分)△ABC中,已知∠A=30°,AB=2,AC=4,则△ABC的面积是()A .B . 4C .D . 28. (2分) (2017八上·上城期中) 如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则().A .B .C .D .9. (2分)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A .B .C .D .10. (2分) (2016八上·昌江期中) 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则BC边上的高是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2017·南山模拟) 已知a+b=3,a-b=5,则代数式a2-b2的值是________.12. (1分)(2016·滨州) 甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做________个零件.13. (1分) (2018九上·临沭期末) 如图,半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.14. (1分) (2016九上·广饶期中) 在△ABC中,AB=12 ,AC=13,cos∠B= ,则BC边长为________.15. (1分)(2015·杭州) 在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y= 的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y= 的图象经过点Q,则k=________.16. (1分) (2017八下·临泽期末) 如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C 与点A重合,折痕为DE,则△ABE的周长为________.三、解答题 (共8题;共100分)17. (10分)(2017·临沂模拟) 计算:÷ +(2﹣)0﹣(﹣1)2014+| ﹣2|+(﹣)﹣2 .18. (15分)(2017·昌平模拟) 近几年,中国在线旅游产业发展迅猛,在线旅游产业是依托互联网,以满足旅游消费者信息查询、产品预订及服务评价为核心目的,囊括了包括航空公司、酒店、景区、租车公司、海内外旅游服务供应商及搜索引擎、OTA、电信运营商、旅游资讯及社区网站等在线旅游平台的新产业.据数据统计:2012年中国在线旅游市场交易金额约为2219亿元,2013年中国在线旅游市场交易金额约为3015亿元,2014年中国在线旅游市场交易金额相比2013年增加了1117亿元,2015年中国在线旅游市场交易金额约为5424亿元,2016年中国在线旅游市场交易金额为6622亿元,在人们对休闲旅游观念的不断加强之下,未来两年中国在线旅游市场交易规模会持续上涨.(1)请用折线统计图或条形统计图将2012﹣2016年中国在线旅游市场交易金额的数据描述出来,并在图中标明相应数据;(2)根据绘制的统计图中提供的信息,预估2017年中国在线旅游市场交易金额约为________亿元,你的预估理由是________.19. (10分)(2017·广州模拟) 如图,两艘海监船刚好在某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍船只停在C处海域,AB=60( +1)海里,在B处测得C在北偏东45°反向上,A处测得C在北偏西30°方向上,在海岸线AB上有一灯塔D,测得AD=100海里.(1)分别求出AC,BC(结果保留根号).(2)已知在灯塔D周围80海里范围内有暗礁群,在A处海监穿沿AC前往C处盘查,途中有无触礁的危险?请说明理由.20. (10分)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标21. (15分) (2017八下·丰台期末) 小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD,线段EF分别表示s1 , s2与t之间的函数关系的图象.(1)求s2与t之间的函数表达式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?22. (10分)(2017·西安模拟) 已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.23. (15分)(2011·义乌) 如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P 与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1 ,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在________关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.24. (15分) (2018九上·瑞安期末) 如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.(1)求∠BAC的度数;(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;(3)在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD, DE,直接写出△BDE的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共100分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

山西省长治市中考数学模拟试卷

山西省长治市中考数学模拟试卷

山西省长治市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)△ABC中,∠C=90º, A =,则tan B=()A .B .C .D .2. (2分)如果关于的一元二次方程有实数根,则的取值范围是()A .B . 且C .D . 且3. (2分)若在同一坐标系中,直线y=k1x与双曲线无交点,则有()A . k1+k2>0B . k1+k2<0C . k1k2>0D . k1k2<04. (2分)如图,将Rt△ABC绕直角边AB旋转一周,所得的几何体的主视图是()A .B .C .D .5. (2分)如图,A、B是双曲线上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A .B .C . 3D . 46. (2分) (2016九上·海盐期中) 用“嘉兴”、“平安”、“创建”三个词语组句子,那么能够组成“嘉兴平安创建”或“创建平安嘉兴”的概率是()A .B .C .D .7. (2分) (2016九下·澧县开学考) 下列各组中的四条线段成比例的是()A . a=1,b=3,c=2,d=4B . a=4,b=6,c=5,d=10C . a=2,b=4,c=3,d=6D . a=2,b=3,c=4,d=18. (2分) (2017九下·杭州期中) 如图,在平面直角坐标系中,点A(1,),点B(2,0),P为线段OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积最大值为()A .B .C .D .9. (2分)下列说法中,错误的是()A . 一组对边平行且相等的四边形是平行四边形B . 四个角都相等的四边形是矩形C . 两条对角线互相垂直且平分的四边形是菱形D . 邻边相等的四边形是正方形10. (2分)在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A .B .C .D .11. (2分)若△ABC∽△DEF,相似比为1:2,且△ABC的面积为2,则△DEF的面积为()A . 16B . 8C . 4D . 212. (2分)二次函数的图象如图所示,则函数值时,自变量x的取值范围是().A .B .C .D .二、填空题: (共6题;共6分)13. (1分) (2017九上·渭滨期末) 如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为________.14. (1分) (2017八下·萧山期中) 在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为________.15. (1分) (2017九上·义乌月考) 如图,AD是△ABC的高,EF∥BC分别交AB、AD、AC于点E、G、F,连结DF,若S△AEG= S四边形EBDG ,则 =________.16. (1分)已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=﹣3,此二次函数的解析式为________17. (1分)下列事件:①检查生产流水线上的一个产品,是合格品;②三条线段组成一个三角形;③a是实数,则|a|<0;④一副扑克牌中,随意抽出一张是红桃K;⑤367个人中至少有2个人生日相同;⑥一个抽奖活动的中奖率是1%,参与抽奖100次,会中奖.其中属于确定事件的是________.(填序号)18. (1分)(2019·重庆模拟) 在矩形ABCD中,AB=4,BC=3,取CD中点E,连接BD、BE,将沿BE翻折成为,过点C作CM⊥BF于M,则CM+FC=________.三、解答题: (共6题;共50分)19. (10分)解方程:(1) x2﹣3x=1;(2) 5(x+2)=4x(x+2).20. (10分)(2018·玄武模拟) 如图,在四边形ABCD中,AB=AD,∠C=90°,以AB为直径的⊙O交AD于点E,CD=ED,连接BD交⊙O于点F.(1)求证:BC与⊙O相切;(2)若BD=10,AB=13,求AE的长.21. (10分)(2017·泸州模拟) 如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k 为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.22. (5分)(2017·灌南模拟) 已知电流在一定时间段内正常通过电子元件的概率是0.5,用列表或画树状图的方法分别求在一定时间段内,A、B之间和C、D之间电流能够正常通过的概率.(提示:可用1、0分别表示电子元件的通与不通两种状态)23. (5分)(2012·抚顺) 如图,距小明家楼下D点20米的B处有一根废弃的电线杆AB,经测得此电线杆与水平线DB所成锐角为60°,在小明家楼顶C处测得电线杆顶端A的俯角为30°,底部点B的俯角为45°(点A、B、D、C在同一平面内).已知在以点B为圆心,10米长为半径的圆形区域外是一休闲广场,有关部门想把此电线杆水平放倒,且B点不动,为安全起见,他们想知道这根电线杆放倒后,顶端A能否落在休闲广场内?请通过计算回答.(结果精确到0.1米,参考数据:≈1.414,≈1.732)24. (10分)(2017·南宁) 为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a 的值至少是多少?四、综合题: (共2题;共20分)25. (10分)(2020·百色模拟) 如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.26. (10分)已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.(1)求过A、B、C三点的抛物线的解析式;(2)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共6题;共50分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、24-1、24-2、四、综合题: (共2题;共20分) 25-1、25-2、26-1、26-2、。

长治市中考数学三模试卷

长治市中考数学三模试卷

长治市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·杭州月考) 根据最新数据统计,2018 年中山市常住人口已达到 3260000 人.将3260000用科学记数法表示,下列选项正确的是()A . 3.26×105B . 3.26×106C . 32.6×105D . 0.326×1072. (2分)(2019·嘉兴模拟) 如图是五个相同的小正方体搭成的几何体,其俯视图是()A .B .C .D .3. (2分) (2016九上·思茅期中) 下列运算正确的是()A . (a3)2=a5B . a3+a2=a5C . (a3﹣a)÷a=a2D . a3÷a3=14. (2分)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB 长100m,测得圆周角,则这个人工湖的直径AD为()A .B .C .D .5. (2分)(2017·大连模拟) 一圆锥的底面直径为4cm,高为 cm,则此圆锥的侧面积为()A . 20πcm2B . 10πcm2C . 4 πcm2D . 4 πcm26. (2分) (2019八下·普陀期末) 在同一平面直角坐标系中的图像如图所示,则关于的不等式的解为().A .B .C .D . 无法确定7. (2分)受全球金融危机的影响,2008年某家电商城的销售额由第二季度的800万元下降到第四季度的648万元,则该商城第三、四季度的销售额平均下降的百分率为()A . 10%B . 20%C . 19%D . 25%8. (2分)把不等式组的解集表示在数轴上,如下图,正确的是()A .B .C .D .9. (2分)已知如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EC=()A . 3B . 4C . 5D . 610. (2分) (2019九上·滨江竞赛) 二次函数y=(x﹣a)(x﹣b)﹣2,(a<b)的图象与x轴交点的横坐标为m,n,且m<n,则a,b,m,n的大小关系是()A . a<m<n<bB . a<m<b<nC . m<a<b<nD . m<a<n<b二、填空题 (共8题;共9分)11. (1分) (2019八上·孝感月考) 如图,△ABC的顶点分别为A(0,3),B(﹣4,0),C(2,0),且△BCD 与△ABC全等,则点D坐标可以是________.12. (2分)若x2+px+8=(x﹣2)(x﹣q),则p=________,q=________.13. (1分) (2019八下·湖州期中) 已知等腰三角形的一边长为4,它的其他两条边长恰好是关于x的一元二次方程的两个实数根,则m的值 ________.14. (1分)(2017·溧水模拟) 甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手甲乙丙平均数9.39.39.3方差0.0260.0150.032则射击成绩最稳定的选手是________.(填“甲”、“乙”、“丙”中的一个)15. (1分)(2017·宁波模拟) 如图,已知原点O,A(0,4),B(2,0),将△OAB绕平面内一点P逆时针旋转90°,使得旋转后的三角形的两个顶点恰好落在双曲线上,则旋转中心P的坐标为________。

长治市中考数学模拟试卷

长治市中考数学模拟试卷

长治市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共36分) (共12题;共33分)1. (3分) (2018七下·深圳期末) 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为()A . 167×103B . 16.7×104C . 1.67×105D . 1.6710×1062. (2分) (2020七上·中山期末) 若代数式3x-9的值与-3互为相反数,则x的值为A . 2B . 4C . -2D . -43. (3分)用式子表示“比a的平方的2倍小1的数”为()A . 2a2-1B . (2a)2-1C . 2(a-1)2D . (2a-1)24. (3分) (2019七下·玉州期中) 有下列命题:(1)无理数就是开方开不尽的数;(2)无理数包括正无理数、零、负无理数;(3)在同一平面内,垂直于同一直线的两直线平行;(4)在同一平面内,过一点有且只有一条直线与已知直线垂直。

其中假命题的个数是()A . 1B . 2C . 3D . 45. (3分)(2020·福田模拟) 如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A .B .C .D .6. (2分)(2019·双柏模拟) 六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A .B .C .D .7. (3分)(2020·福田模拟) 如图为某队员射击10次的成绩统计图,该队员射击成绩的众数与中位数分别是()A . 7,7B . 7,7.5C . 8,7D . 8,7.58. (2分)(2017·安徽) 已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A .B .C .D .9. (3分)(2020·福田模拟) 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第一象限的图象经过点B,则△OAC和△BAD的面积之差S△OAC−S△BAD为()A . 2kB . 6kC .D . k10. (3分)(2020·福田模拟) 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最小值是()A . 1B . 2C . 3D . 411. (3分)(2020·福田模拟) 如图,线段AB是直线y=x+1的一部分,其中点A在y轴上,点B横坐标为2,曲线BC是双曲线()的一部分,由点C开始不断重复“A−B−C”的过程,形成一组波浪线,点P(2019,m)与Q(2025,n)均在该波浪线上,G为x轴上一动点,则△PQG周长的最小值为()A . 16B .C .D .12. (3分)(2020·福田模拟) 如图所示,已知正方形ABCD,对角线AC、BD交于点O,点P是边BC上一动点(不与点B、C重合),过点P作∠BPF,使得∠BPF= ∠ACB,BG⊥PF于点F,交AC于点G,PF交BD于点E,给出下列结论,其中正确的是()① ;②PE=2BF;③在点P运动的过程中,当GB=GP时,;④当P为BC的中点时, .A . ①②③B . ①②④C . ②③④D . ①②③④二、填空题 (共4题;共12分)13. (3分) (2017七下·南通期中) ________分数(填“是”或“不是”).14. (3分)(2018·衢州模拟) 从-,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是________.15. (3分)(2020·福田模拟) 如图所示,抛物线与x轴交于A、B两点,过点B的直线与抛物线交于点C(点C在x轴上方),过ABC三点的⊙M满足∠MBC=45°,则点C的坐标为________.16. (3分)(2020·福田模拟) 如图,矩形ABCD中,BC=4,且AB= ,连接对角线AC,点E为AC中点,点F为线段AB上的动点,连接EF,作点C关于EF的对称点C',连接C'E,C'F,若△EFC'与△ACF的重叠部分(△EFG)面积等于△ACF的,则BF=________.三、解答题 (共7题;共71分)17. (5分)(+7)+(﹣4)﹣(﹣3)﹣(+14).18. (5分) (2018九上·娄星期末) 计算:.19. (11分)(2020·福田模拟) 学生社团是指学生在自愿基础上结成的各种群众性文化、艺术、学术团体.不分年级、由兴趣爱好相近的同学组成,在保证学生完成学习任务和不影响学校正常教学秩序的前提下开展各种活动.某校就学生对“篮球社团、动漫社团、文学社团和摄影社团”四个社团选择意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在“动漫社团”活动中,甲、乙、丙、丁、戊五名同学表现优秀,现决定从这五名同学中任选两名参加“中学生原创动漫大赛”,恰好选中甲、乙两位同学的概率为________.(3)已知该校有1200名学生,请估计“文学社团”共有多少人?20. (10分)(2020·福田模拟) 如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.21. (10分)(2020·福田模拟) 为了迎接“五·一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.(1)甲种服装每件的成本是多少元?(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价−进价)不少于21100元,且不超过21700元,问小王有几种进货方案?22. (15分)(2020·福田模拟) 如图直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于点A,交x轴正半轴于点B,交y轴于C、D两点.(1)若C点坐标为(0,4),求点A坐标;(2)在(1)的条件下,在⊙M上,是否存在点P,使∠CPM=45°,若存在,求出满足条件点P;(3)过C作M的切线CE,过A作AN⊥CE于F,交M于N,当M的半径大小发生变化时.AN的长度是否变化?若变化,求变化范围,若不变,证明并求值.23. (15分)(2020·福田模拟) 抛物线与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E,当的值最大时,求出对应的点P的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2 , C的对应点分别是点O1 , C1 ,直线O1C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使在△AMN中MN=NA成立?若存在,请直接写出所有符合条件的点C1的坐标;若不存在,请说明理由.参考答案一、选择题(每题3分,共36分) (共12题;共33分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共12分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共71分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档