丹东市第二十四中学 一元二次方程复习课

合集下载

(完整版)公开课-一元二次方程复习教案

(完整版)公开课-一元二次方程复习教案

课题教课课时教课准备实现目标教学要点目难点标学情剖析导入目标导入方式指引高效导入精讲目标精讲方式高效独立试试导学引领精练思想碰撞合作学习一元二次方程复习课1课时课型复习课常考题型1.理解并掌握一元二次方程的有关观点;2.能采用适合的方法解一元二次方程;3.掌握一元二次方程的根与系数的关系;4.能用一元二次方程解决生活中的实质问题.解法与应用灵巧运用各知识点解决实质问题在学习完第二单元,在月考试卷以及后边出的有关练习题,出现了好多留空,不知道怎么做,不知道哪道题用哪个知识点去解决。

答题格式不规范等存在多种问题,因此针对这一现象,进行一次对本章内容及中考常考典型种类的题目进行一节复习课。

系统归纳本章的主要内容。

导入内容1、一元二次方程的定义:知足方程一般式ax 2bx c 0 (a 0) 这类形式的方程(一个一般式)2、一元二次方程根与系数的关系:__X1+X2=-??????, X1X2= ___ (两个等式 )??3、一元二次方程根的鉴别式:△=b2-4ac(三种状况 )_△ =b2-4ac _>0,___方程有两个不相等的实数根;_△ =b2-4ac _= 0,__方程有两个相等的实数根;_△ =b2-4ac _< 0,__方程没有实数根。

4、一元二次方程的解法:(四种方法): __配方法 _ 、公式法、因式分解法、十字相乘法5、一元二次方程的应用:(五种基本种类)1、小道宽度2、鸡场边长3、勾股定理4、两次增加5、销售收益设计企图:让同学们理清思路,本单元学习的可用到的知识点有哪些。

中考常考题的训练精讲内容1、一元二次方程的一般形式:链接中考:当m____时,1) x m 21 5 x40( m是对于x的一元二次方程.2、一元二次方程的根与系数的关系:假如一元二次方程 ax2bx c0(a0)的两个根是 x1、 x2,那么????X1+X2=- ?? ,X1X2=??链接中考:已知实数a、 b 是方程x2x 1 0的两根,求b aa+ b的值。

一元二次方程复习课教案

一元二次方程复习课教案

一元二次方程复习课教案教学目标:1.知识与技能:(1)梳理全章知识,理解并掌握一元二次方程的概念及一般形式,熟练掌握方程的解法;(2)理解一元二次方程根的判别式并能运用,会用一元二次方程解决简单的实际问题。

2.过程与方法:(1)经历运用知识、技能解决问题的过程,在解题过程中培养学生的独立思考能力和创新精神;(2)经历观察、操作、想象、推理、交流等活动,发展学生发现问题、提出问题的能力。

3.情感态度与价值观:(1)鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流、合作,体会数学知识的应用价值,提高学生学习兴趣;(2)在合作交流的过程中,渗透数学解题中的方程思想、转化思想、建模思想。

教学重点:一元二次方程的解法及应用及掌握知识过程中的分析问题、解决问题的能力的培养。

教学难点:从实际问题中找等量关系,列出一元二次方程。

课前准备:学生完成课前预习作业,梳理全章知识结构;教师准备教案及课件。

教学过程:第一环节:复习引入,直击问题活动内容:学生分组交流本章知识系统图,教师巡视指导,待学生充分交流后,教师展示PPT上做好的“知识系统图”,及时评价与鼓励,从而进入本课学习。

问题1:一元二次方程的最根本特征是什么?你认为识别它的关键点又是什么?此问题的提出让学生的思维从浅层的“感知”走进深层的“凝思”,思维度增高了。

问题2:前面我们系统学习了一元二次方程的几种解法?分别是哪几种?学生根据前置的讨论易于回答,在此基础上,教师进一步提出下面问题。

问题3:这几种方法中,你认为哪一种是最基础的方法?你能说出这几种解法之间的逻辑关系吗?提出此问题的目的是让学生不仅知道表层上的“是什么?”还要让学生知道深层面上的“为什么?”,从而着力发展学生的思维能力。

问题4:你最喜欢运用上述四种方法中的哪一种去解方程?教师提出这样的问题表面看来“似乎简单”,其实质通过这个问题可引发学生两个思考:其一,适合于自己的最熟练的学得最好的;其二,适合于方程本身结构特点的。

第二章 一元二次方程 第二课时

第二章  一元二次方程      第二课时

丹东市第二十四中学 第二章 一元二次方程 第二课时主备:曹玉辉 辅备:吴玉娟、杨会 审核: 2014年8月13日 一、学习准备:1、只含有 个未知数,并且未知数的最高次数是 ,这样的 方程,叫做一元二次方程。

2、一元二次方程的一般形式: ,其中 二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数。

3、将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。

(1)8142=x (2))2(5)1(3+=-x x x二、学习目标:了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.用“夹逼”方法估算方程的根. 三、自学提示: (一)自主学习:1、一元二次方程的解是:2、一元二次方程的解也叫一元二次方程的根3、如何估算地毯花边的宽和梯子底端滑动的距离? (二)合作探究:1.下面哪些数是方程2x 2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 2、.若x=1是关于x 的一元二次方程a x 2+bx+c=0(a ≠0)的一个根,求代数式2007(a+b+c)的值 3、关于x 的一元二次方程(a-1) x 2+x+a 2-1=0的一个根为0,则求a 的值 4.要剪一块面积为150cm 2的长方形铁片,使它的长比宽多5cm ,•这块铁片应该怎样剪? 设长为xcm ,则宽为 cm列方程 ,即 请根据列方程回答以下问题:(1)x 可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:(3)你知道铁片的长x 是多少吗?5、你能用以前所学的知识求出下列方程的根吗? (1)x 2-64=0 (2)3x 2-6=0 (3)x 2-3x=0 6.方程x (x-1)=2的两根为( ).A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 7.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.8.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.四、学习小结:五、夯实基础:(一)选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②a x2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数(二)填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.六、能力提升:1.a满足什么条件时,关于x的方程a(x2+x)(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3,判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-5x=0 (4) x2-4=(x+2) 2(5) a x2+bx+c=04,方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?5,下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.6,.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值。

初三九年级数学 一元二次方程(复习课) ppt课件

初三九年级数学 一元二次方程(复习课) ppt课件
移项(常数项移到方程右边) 二次项系数化为1
配方:方程两边都加上一次项系 数绝对值一半的平方
写成完全平方式 用直接开平方法解方程
公式法:
例 2x2-1=x
解: 2x2-x – 1=0 a=2, b= -1, c= -1
(1) 9 1 3 2 2 4
化为一般形式(方程右边为0) 找出 a, b, c(注意符号) 算出b 2-4ac的值
C.11或13
D.11和13
4.一根长 64cm 的铁丝被剪成两段,每段均折成 正方形,已知两个正方形的面积之和等于160cm2, 求两个正方形的边长。
课时小结:
如图,AO=BO=50cm,OC是射线, 蚂蚁甲以2cm/s的速度从A爬到B,蚂蚁 乙以3cm/s的速度从O到C,问:经过几 秒两只蚂蚁和O点围成的三角形的面积 为450cm2? O P
腰或底边
能力提高
1. 写出一个一根为-1,另一根为正数的一 注意:K的 x2-1=0.等 符号 。 元二次方程
2=h的形式, 2.把方程 2x2-7 x +3=0 配方成 ( x +k ) 25 7 , h= 则k= 16 . 4
3.如图是一个正方体的展开图,标注了 -2 字母A的面是正方体的正面,如果正 x x2 1 方体的左面与右面所标注的代数式的 A 值相等,求x的值。
用适当的方法解下列方程:
(1) (x-1) 2 =3 (3) 2y2-4y-2=0 (2) t2-4t=1 (4) x(x-1)=3-3x
小贴士
选择一元二次方程的解法的优先顺序是:先特殊, 后一般。即先考虑能否用直接开平方法和因式分解法, 如果不能用这两种特殊方法,再用公式法和配方法。
1.方程x2= 2x 的解是 x1=0; x2=2 . 2. 若一元二次方程x2-4x+3=0的两根恰好 是一等腰三角形的两边,则该三角形的 周长是 . 7

一元二次方程复习课(1)公开课课件新

一元二次方程复习课(1)公开课课件新

一元二次方程的应用
判断下列方程是不是一元二次方程,若不是 一元二次方程,请说明理由? 1、(x-1)2=4 √ 2、x3-2x2=1 × ×
1 3、 x 1 x
2=y+1 4、 x ×
5、x(x-2)=8x+x2 √ 6、ax2 + bx + c=0 ×
2 m 2 x m 2x 2 0 是关于x的一元二次 1、若
1.下列方程中两根之和为1的是
A B C D x2+x-1=0 x2+x+1=0 x2-x+1=0 x2-x-1=0
(D)
2.已知方程x2+kx+3=0的一个根是-1,则
k=
4 , 另一根为______ x=-3

在等腰三角形ABC中,∠A, ∠ B, ∠ C的
对边长分别为a,b,c,已知a=3,b,c是关于x的 1 2 方程 x mx 2 m 0 的两个实数根, 2 求三角形ABC的周长
12
2 [ (2 m 3)] 4(m 2)(m 2) 0
注意:当一元二次方程的二次项系数也含有待 定的字母时,要注意二次项系数不能为0。
如果一元二次方程ax2+bx+c=0(a≠0), 的两个根分别x1、x2,那么:
b c , x1 x2 x1 x2 a a
1、掌握一元二次方程的概念,会用直接 开平方法、配方法、公式法、因式分解 法解一元二次方程。 2、会用根的判别式、根与系数的关系的 解决问题。
一元二次方程的定义
只含有一个未知数 未知数的最高次数是2
是整式方程 直接开平方法
一 配 方 法 元 二 一元二次方程的解法 公 式 法 次 方 因 式 分解法 程 一元二次方程根与系数的关系

《一元二次方程复习》_教学设计(公开课用)

《一元二次方程复习》_教学设计(公开课用)

《⼀元⼆次⽅程复习》_教学设计(公开课⽤)《⼀元⼆次⽅程复习》教学设计⼀、教学内容分析《⼀元⼆次⽅程》是初三数学下册第⼋章的内容,是在学习《⼀元⼀次⽅程》、《⼆元⼀次⽅程》、《分式⽅程》等基础之上学习的,它也是⼀种数学建模的⽅法.学好⼀元⼆次⽅程是学好⼆次函数不可或缺的,是学好⾼中数学的奠基⼯程.应该说,⼀元⼆次⽅程是本书的重点内容.本节是全章复习的第⼀课,即⼀元⼆次⽅程的概念及其解法,根的判别式,根与系数关系⼏部分内容,重点是复习⼀元⼆次⽅程的解法以及梳理全章知识,形成系统认识。

它既是对学完全章后的⼀次⼩结、提⾼,同时⼜为第⼆节复习课(⼀元⼆次⽅程的应⽤)做准备。

⼆、学⽣学习情况分析学⽣学完本章知识后,对全章还没有⼀个整体的、系统的认识,只知道在这⼀章中学习了的⼀些零散的知识点,并不很清楚这些知识之间的联系。

能解⼀些简单的⼀元⼆次⽅程,以及运⽤⼀元⼆次⽅程的知识解决⼀些问题,但综合运⽤知识的能⼒不强,还需要在原有的基础上进⾏提⾼、拓展。

三、设计思想数学教学应培养学⽣⾃主探究学习的能⼒,⾃主探究不仅是知识的构建与运⽤、技能的形成与巩固,也包含了⽣活经验的激活丰富与提升,学习策略的完善,情感的丰富和价值观的形成,复习课更应该注重。

教学中通过多媒体直观地展⽰了⽣活中的实例,从⽽引出⽣活中的数学问题。

上课伊始,就充分调动了他们的数学思维,跟随⽼师进⼊本节课的内容,整个教学过程中,选⽤能激发学⽣的最⼤潜⼒的攻关式。

让他们⼀直保持积极的⼼态⾯对本节课的复习任务,在学习兴趣快要消退时,⼜选⽤了⼀组学⽣们喜欢的⽔果为代表进⾏的做题⽐赛,将他们的注意⼒⼜转移到本节课的复习内容。

教师在教学过程中真正做⼀个组织者、引导者、合作者,对学⽣交流过程中有意义的结论要适时地进⾏拓展,对积极参与活动和认真思考的学⽣进⾏⿎舞,帮助他们树⽴学习数学的信⼼,充分拓宽学⽣在数学活动中的空间。

四、教学⽬标1.会辨别⼀元⼆次⽅程,知道解⼀元⼆次⽅程的⽅法和步骤,会利⽤根的判别式判断⽅程根的情况,能借助根与系数的关系解决有关的类型题.2. 能根据具体问题的实际意义检验结果的合理性,体会数学建模、转化的数学思想⽅法.3. 能⾃主发现问题和提出问题,进⽽顺利地分析问题和解决问题,提升⾃⾝数学核⼼素养能⼒.五、教学重点和难点重点:1、会灵活运⽤不同⽅法解⼀元⼆次⽅程。

一元二次方程的复习课件

一元二次方程的复习课件

是使方程成立的未知数值。
解方程
是找到使方程成立的未知数值。
一元二次方程的标准形式及其含义
1 标准形式
一元二次方程的标准形式为ax2 + bx + c = 0,其中a、b、c为实数且a≠0。
2 含义
方程中的a决定了抛物线的开口方向,b决定了抛物线的位置,c决定了抛物线与坐标轴的 交点。
解一元二次方程的一般步骤
一元二次程的应用:空气动力 学方程
在空气动力学中,一元二次方程被广泛应用于描述飞机的起飞距离、爬升率 和滑行的相关问题。
一元二次方程的应用:金融问题
金融领域中,一元二次方程可以用于解决投资回报率、利润最大化、财务规划等问题,帮助我们做出更明智的 金融决策。
一元二次方程可以通过完全平方公式(a ± b)2 = a2 ± 2ab + b2来求解。
一元二次方程的求解方法:图 像法
利用抛物线的图像来求解一元二次方程,可以通过观察抛物线与坐标轴的交 点和抛物线的开口方向得到解。
一元二次方程的根的性质
一元二次方程的根有以下性质: • 当判别式>0时,方程有两个不相等的实根。 • 当判别式=0时,方程有两个相等的实根。 • 当判别式<0时,方程没有实根。
一元二次方程的复习ppt 课件
本ppt课件将帮助你复习一元二次方程的基本概念和解法,学会如何应用于不 同领域中。
引言:什么是一元二次方程
一元二次方程是由一个未知数的平方项、一次项和常数项组成的二次方程。 它的一般形式为ax2 + bx + c = 0。
方程的定义
方程
是一个等式,其中含有一个或多个未知数。
步骤1
将方程化为标准形式。
步骤2

一元二次方程复习课

一元二次方程复习课
知识点2: 一元二次方程的一般形式
项及项的系数

A.1
B.2
C.3
D.4
一般形式
其他形式
二次项: ax ,二次项系数: a
2
ax2 bx 0(a, b是常数,a 0) ax2 c 0(a, c是常数,a 0) ax2 0(a是常数,a 0)
ax2 bx c 0 (a, b, c是常数,a 0)
2 “ ”,即若 x 2 k (k 0) ,则 x k ; 若(x h) k (k 0),则x h k
1 2 ( 1 )x 2 9 0;(2) ( 4 x 2) 2 36 0;(3 ) (x 3 ) 4 小试牛刀: 2
知识点 4:配方法

根的判别式
b 2 4ac 0 方程有两个不相等的实 数根 0 方程有两个相等的实数 根 0 方程没有实数根
根与系数关系

当b 2 4ac 0时, b c x1 x2 , x1 x2 a a
审:审清题意
用一元二 次方程解 决问题
把一个一元二次方程化为 运用直接开平 (x h) k (h, k为常数)的形式,当 k 0时,
2
配方法
方法求出方程的解,这种解一元二次方程的方法叫做配方法。 一移 二除 步骤 三配 四开 如果是一个负数,原方程无实数根。 配方法,可通用,配方过程可不轻, 口诀 一化二移三配方,然后开方才能行, 配方时,要注意,同加一系半之方。 说明 解方程时,可根据方程的特点选择合适的步骤,灵活处理 将常数项移到方程等号的右边,含未知数的项移到等号左边 如果二次项系数不是 1,将方程两边同时除以二次项系数,将其化为 1 方程两边加上一次项系数一半的平方,将方程左边配成完全平方的形式 如果方程的右边是一个非负数,就可以直接降次解方程;

《一元二次方程解法》复习课教案设计

《一元二次方程解法》复习课教案设计

《一元二次方程解法》复习教案设计复习目标:、能说出一元二次方程及其相关概念。

2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。

复习重难点:一元二次方程的解法教学过程一、情景导入前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节我们就一起来复习一元二次方程的解法(板书题)二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。

)复习提纲.-元二次方程的定义:只含有_______叫做一元二次方程。

2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,叫做_______项。

3.一元二次方程的解法:用直接开平方法解方程(2x+1)2=9形如x2=p的方程的根为________。

用配方法解方程x2+2x=3用配方法解方程步骤:,,,。

用求根公式法解方程x2-3x-=0,x2-3x+=0。

一元二次方程ax2+bx+=0的根的判别式△=________,根x=。

当△&gt;0时,方程有两个_______的实数根。

当△=0时,方程有两个_______的实数根。

当△&lt;0时,_______。

三、展示归纳、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。

2、教师发动全班学生进行评价,补充,完善。

3、教师画龙点睛的强调。

四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:可用直接开平方法;用配方法或公式法;可用公式法;方程都有共同的因式,故可用因式分解法。

)、判断下列哪些方程是一元二次方程?(1)4x2-16x+1=0(2)2x2-3=0(3)ax2+bx+=02、请将方程=1化为一般形式_______。

02-一元二次方程复习-教案

02-一元二次方程复习-教案

辅导讲义例2.:解方程222()5()60x x x x ---+=解:令2y x x =- 则原方程可化为:2560y y -+= 解得:12y = 23y = ①当22x x -=时,求得:121,2x x =-=②当23x x -=时,求得:3,41132x ±=(原方程共有4个解) 教法说明:注意换元法在因式分解中的应用试一试:若实数x 、y 满足()()023=++-+y x y x ,则x +y 的值为解:令t x y =+,则原方程为:(3)20t t -+=,2320t t -+=解得:121,2t t ==例3.:某人将1000元人民币按一年定期存入银行,到期后将这1000元本金和所得利息又按一年定期全部存入。

已知这两年存款的利率不变,这样,第二年到期后,他共取得本金和利息1210元,求这种存款方式的利率是多少?解:设这种存款方式的利率是x ,则:()2100011210x += ()2112.1x += ()120.1,-2.1x x ∴==舍去答:这种存款方式的利率是10%教法说明:利润=总收入—总成本 利息=本金×利率×时间 利润=单价利润×数量试一试:某同学存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,求这种存款的年利率.答案:10%储蓄问题常用量是:时间,本金、利率、利息、本息和。

利息=本金×利率。

1.下列方程是关于x 的一元二次方程的是( );A .02=++c bx axB .2112=+x xC .1222-=+x x xD .)1(2)1(32+=+x x 2.方程()()24330x x x -+-=的根为( );A .3x =B .125x =C .12123,5x x =-=D .12123,5x x == 3.解下面方程:(1)()225x -=(2)2320x x --=(3)260x x +-=,较适当的方法分别为( )A .(1)直接开平法方(2)因式分解法(3)配方法B .(1)因式分解法(2)公式法(3)直接开平方法C .(1)公式法(2)直接开平方法(3)因式分解法D .(1)直接开平方法(2)公式法(3)因式分解法主要是对本次课所学知识点进行巩固练习1. 代数式是完全平方式,则_______.答案:1或52. 用适当的方法解方程:(1); (2); (3).答案:(1),;(2),;(3),. 3. 求证:无论m 取何值,方程03)7(92=-++-m x m x 都有两个不相等的实根。

人教版九年级数学上册《一元二次方程复习课》教学设计

人教版九年级数学上册《一元二次方程复习课》教学设计

《一元二次方程复习课》教案教学环节教学过程师生活动设计意图一知识梳理一、引入1、类比一元一次方程说一说什么是一元二次方程?2、小组思维导图展示并讲解。

师问生答,学生类比一元一次方程来复习一元二次方程,小组间互相补充,最后得出一元二次方程所有的知识点网络图。

在学生已有认知的基础上查漏补缺。

二教材回顾知识点1:一元二次方程的概念出示习题生练小组代表解答,师补充。

把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。

同时培养学生的表达能力。

知识点2:一元二次方程的解法解下列一元二次方程:(1)(2018·柳州)092=-x(2)(2018·梧州)030422=--xx出示习题,生练习,一题一小组通过师生,生生的互动练习,以(3)01322=--xx(4)0)1(2)1(3=---xxx 展示,一题一小组批改。

师总结。

小组为单位,让每个学生都参与课堂,做到题题过关。

二教材回顾知识点3:一元二次方程的应用1.出示习题,生练习,小组代表解答,师补充。

把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。

同时培养学生的表达能力。

三真题体验(2017·北部湾24题10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.求该社区的图书借阅总量从2014年至2016年的年平均增长率.出示习题,生练习,小组代表解答,师补充.把讲解的任务交给学生,学生在表达自己的想法的同时,加深了对重要知识点的印象。

同时。

初中数学九年级《一元二次方程复习课》公开课教学设计

初中数学九年级《一元二次方程复习课》公开课教学设计

教师概括:本章重点学习 4114 ,其中 “四个一”是一个概念:一
元二次方程; 一种思想: 降次;一个应用 : 列一元二次方程解应用题; 一种关系: 一元二次方程根与系数的关系; “一个四” 是一元二次方
程的四种解法(略)。注意:( 1)一元二次方程与一元一次方程、
一元一次不等式、一次函数、反比例函数之间的联系。(
( 2 )结合问题 1(3 ) 解答强调配方法的 关键——系数化为 1 后给方程两边同 加上一次项系数一 般的平方。
( 3 )结合 1 ( 4 ) 解答, 追问:什么叫 一元二次方程根的 判别式?如何运用 其判别根的情况? 结合学生回答以表 格形式呈现根的判 别式判别根的情况
重难点突
破 设计
练习设计
作业布置 板书设计
(5) 若直角三角形的两条直角边长分别是方程 根,则此直角三角形的周长是 _________.
x 2 -7x+12=0 的两
(6 )尧柏水泥厂今年的一季度生产水泥 a 吨, 以后每季度比上一季 度增产 x% ,则第三季度生产水泥的吨数是 _____________.
集体备课
活动四 全课小结,提炼升华
个性备课
1 、针对前面复习提 纲,提问检查, 结用 实物展台展示评价 学生建构的知识结 构图。
2 、随机强调注意事 项: 1 )一元二次方 程概念中的必须加 以体会三个条件缺 一不可合检查情况, 板书知识结构图,; 2 )降次是解一元二
【 学生 活动 】
1 、一名学生 朗读复习要 求
2 、结合要求 反思回顾
2 、举例说明什么叫一元二次方程 ? 一元二次方程的解法思想是什 么?常用解法有哪些?各种解法的适应范围分别是怎样的?
3 、怎样利用一元二次方程根的判别式判别根的情况? 4 、一元二次方程根与系数又怎样的关系?在应用时应注意什么? (二)你认为本章知识之间有怎样的关系?请用你喜欢的方式构建本 章知识结构图,并与同伴交流。 活动二: 知识梳理,建构体系

《一元二次方程》复习课 教学设计

《一元二次方程》复习课 教学设计

一元二次方程章末复习教学设计一、学生知识状况分析学生的知识技能基础:学生在七年级和八年级已经学习了一元一次方程、二元一次方程以及一次函数的相关知识及应用,在本章中,又学习了一元二次方程及其相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力;学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.为此,设置本节课的教学目标如下:1、知识与技能:①经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;③了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想;2、过程与方法:①通过让学生经历将多种实际问题抽象成数学问题的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②通过小组合作学习,经历一题多解等过程,发展学生多角度思考问题的方法.3、情感与态度:①通过对方程的认识、一题多解的思维展示,发展学生勇于展示自己的品质;②在解决富有挑战性的问题的过程中,培养学生敢于直面困难、勇于挑战的良好品质,鼓励学生大胆尝试,体会成功的喜悦,激发学生学习数学的兴趣.三、教学过程分析本节课设计了六个教学环节:第一环节:基础知识重现;第二环节:巩固提高;第三环节:课堂小结;第四环节:布置作业.第一环节:基础知识重现活动内容:在授完本章新课知识后,让学生重新回顾本章内容,整理出本章的知识结构网,理清各板块内容间的联系.此活动内容在上课前一天布置,让每一位学生都提前做好准备.上课时,选取有代表性的知识结构网络进行全班展示,其他同学对照自己的总结查缺补漏.同时,教师展示一下本章的框架,指出本节课的重点是:利用一元二次方程解决实际问题.活动目的:学生在整理本章知识结构的同时,可以回顾本章的重点内容,细细体会解一元二次方程的“转化”思想,找寻利用方程解决实际问题的关键.活动的实际效果:基于对学生两年来的不间断训练,绝大分学生可以对本章的主要内容以及注意点详细地总结出来,只是呈现形式略微不同.但也有少数同学只是泛泛地停留在书本上的定义、黑体字上,对于更深入的内容总结不到位,这部分同学在教学中往往也是需要特别关注的同学,需要我们教师从各方面来激发他们对数学学习的兴趣.附部分学生的作业:学生A的本章知识结构㈡本章的重点:一元二次方程的解法和应用.㈢本章的难点:应用一元二次方程解决实际问题的方法.学生B 的本章知识结构:本章的知识体系包括三大部分:(一)一元二次方程的定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a ,b ,c 为常数,a≠0)的形式,这样的方程叫做一元二次方程.在这里应注意的问题是:⑴只含有一个未知数;⑵未知数的最高指数必须是2;(3)二次项系数不为0)(二)一元二次方程的解法:一元二次方程的常用解法有:⑴ 直接开平方法;⑵ 配方法;⑶ 公式法;⑷ 分解因式法.(注意:在运用配方法解一元二次方程时,一般先将二次项系数化为1;在运用公式法解一元二次方程时,必须先将方程化为ax 2+bx+c=0 (a≠0)的形式,同时判断b 2-4ac 是否≥0,如果b 2-4ac ≥0,才可用公式求解) (三)一元二次方程的应用:其关键是能找出题目中的等量关系,列出方程本章的重点和难点是:一元二次方程的解法和应用.第二环节:课堂练习内容:以投影形式展示一组基础题目,内容涉及一元二次方程的定义和解法.其中,1、2小题采取口答形式,第3、4小题对比来做,体会其中的方法,第5aac b b x 242-±-=㈠ 问题情景---- —元二次方程1、定义:只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程. ⑴ 直接开平方法 ⑵ 配方法 ⑶ 公式法 ax 2+bx+c=0 (a ≠0,b 2-4ac ≥0)的解为: a ac b b x 242-±-= ⑷ 分解因式法2、解法:3、应用 :其关键是能根据题意找出等量关系.目的:上述这一组题目主要目的是巩固对一元二次方程定义的理解、熟练地解一元二次方程.其中,第1、2小题对比,加深学生对一元二次方程和一元一次方程定义的理解;第3、4小题均是对一元二次方程配方法掌握程度的检验,同时,这部分内容所涉及的方法也是后续“二次函数”学习的基础,此处,也为二次函数的学习奠定一定的基础;第5小题设置三道小题,分别限定方法让学生来解一元二次方程,让学生熟练方程的解法.实际效果:对于第1题,学生普遍掌握比较好,但对于与之对比的第2题,有部分同学存在一定的问题,尤其是对于何时是一元一次方程,更是没有思路,通过这两道题的对比,使学生对方程的定义更加深了理解,也明确了判断一个方程是何类方程时,不仅要关注未知数的次数,还要注意系数;对于第5小题中的第(3)小题,部分学生直接用分解因式法来做,这也是本题设置的一个重要意图:当方程中等式右侧不为0时,不可以直接用分解因式法来做,而要先化成一般形式,再具体选用方法.通过这几道题,让学生关注了方程中的易错点,对于今后的学习也作了部分铺垫.第三环节:重难点突破内容:在本环节中,选择具有代表性的两个题目,提出问题,帮助学生分析问题、解决问题:目的:对本节知识重难点进行巩固练习.实际效果:通过对这些题目的具体分析,发展学生分析问题、解决问题的意识和能力,也为下学期二次函数的学习奠定一定的基础,体现了教材螺旋式上升的设计意图.第四环节:课堂小结内容:师生共同总结本节课的收获,内容主要设计以下几个方面:(1)整节课的感悟:如在解决概念性题目时,要注意领会概念的实质含义;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等;(2)解决问题时所用到的方法;(3)对于某个知识点的困惑;(4)通过本节课的学习,自己的最大收获.目的:关注学生对数学知识的理解、数学方法的掌握和数学情感的感悟,力争使每个层次的学生在本节课学有所获.实际效果:学生畅所欲言自己的切身感受与实际收获,每个同学的感受也揭示了各自的良好学习方法,为其他同学的学习、听讲等方面提供了有效的借鉴.第六环节:布置作业1、本节课中涉及的所有题目在课下进行分类整理,留作资料;2、针对自己对本章的理解,每名同学命制一份试卷,要求时间在60分钟左右,重点突出,难度适宜,并配有答案(此作业不要求第二天必须上交,给学生一定的收集资料时间).四、教学反思1、作为一章的复习课,本节课设置的内容较为全面细致,重点突出,课堂容量相对来说较大,学生的分组讨论从时间上来看较为紧张,因而,应该更好地规划对某些题目的处理.2、通过课前知识网络的整理、课堂展示讲解的过程,为学生提供展示自己的机会,更利于教师在此过程中发现学生的闪光点以及思维的误区,以便指导今后的教学.3、学生的学习合作小组也应该是动态的,所学知识的不同,学生的反应也不相同,在分组时,应该将思维形态类似的同学放在一组,这样,可以避免让一些思维活跃的学生代替了其他学生的思考,掩盖了其他学生的疑问.同时,教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.此外,作为一个较大的章节复习课,希望一节课完成上面所有的任务,是比较困难的,因此,建议根据学生状况灵活选择其中部分例习题,如有可能,将例习题分解成两个课时.。

九年级(上)数学教案:一元二次方程单元复习(全2课时)

九年级(上)数学教案:一元二次方程单元复习(全2课时)

主备人用案人授课时间年月日总第课时课题一元二次方程单元复习1课型新授教学目标1、能够熟练解方程2、在用方程解决实际问题的过程中,提高抽象、概括、分析问题的能力。

3、进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力。

重点能够熟练解方程难点能够熟练解方程教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:1.方程的分类:2.一元二次方程:只含有个未知数,并且未知数的最高次数是的整式方程,叫做一元二次方程,其一般形式为。

◆解一元二次方程的方法有:①;②;③;④;3.一元二次方程ax2+bx+c=0的求根公式为x= 。

4.一元二次方程ax2+bx+c=0的根的判别式。

二.交流展示:1、下列方程中是一元二次方程的是A 、x2+3x+y=0 ;B、x+y+1=0 ;C 、213122+=+xx;D、512=++xx2、关于x的一元二次方程(m-1)x2+x+m2-1=0有一根为0,则m的值为()A、1B、-1C、1或-1D、213.关于x的一元二次方程225250x x p p-+-+=的一个根为1,则实数p的值是()A.4 B.0或2 C.1D.1-学生复习整理相关内容,加深对本章知识的理解学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见。

数学九年级上一元二次方程复习课

数学九年级上一元二次方程复习课
重难点:1、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。
课时1
第1课时
教学准备
多媒体
三、教学过程
个案补充
三、知识回顾:
1有:
配方法的一般过程是怎样的?
3、一元二次方程在生活中有哪些应用?请举例说明。
例3、1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?
学生上台讲解,学生评价。
2、如图,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?
课题
24.3一元二次方程复习课
授课人
主备人
张秋生
教学目标:
1、能说出一元二次方程及其相关概念;2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。
4、利用方程解决实际问题的关键是。
在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。
提问,小组评比
四、例题解析:例1、填空
1、当m时,关于x的方程(m-1) +5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

丹东市第二十四中学一元二次方程复习课
主备:曹玉辉副备:李春贺孙芬审核: 2014年8月26日
一、学习准备:
1、一元二次方程的一般形式 ( )
2、四种解法:
3、根的判别式:△=
4、判定一元二次方程根的情况.
△>0⇔有实数根; △=0⇔有实数根;
△<0⇔实数根; △≥0⇔实数根
5、将下列方程化成一般形式,在选择恰当的方法求解。

(1)3x2=x+4 (2)(x+3)(x-4)=-6
二、学习目标:
1、了解一元二次方程的有关概念掌握其知识的应用。

2、能灵活运用配方法、公式法、•因式分解法解一元二次方程.
3、会根据根的判别式判断一元二次方程的根的情况.
4、经历运用知识、技能解决问题的过程,发展学生的独立思考能力和创新精神.培养学生对数学的好奇心与求知欲,养成质疑和独立思考的学习习惯.
三、自学提示:
1、探究合作:

探究一一元二次方程的概念与它的根(学法:先独立完成再和同组成员交流一下要求能有条理得书写步骤)1、若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是
2、方程(a2-4)x2+(a-2)x+3=0,当a 时,它是一元二次方程,当a
时,它是一元一次方程.
3、若x=2是关于x的方程x2-x-a2+5=0的一个根,则a的值为
4、已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为
探究二一元二次方程根的判别式
5、如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是
6、关于x的一元二次方程-x2+(2k+1)x+2-k2=0有实数根,则k的取值范围是
7、求证:关于x 的一元二次方程x 2-6x-k 2
=0(k 为常数)有两个不相等的实数根。

8、已知a 、b 、c 是三角形的三边,且方程0)1(2)1(22=++--x b cx x a 有两个相等的实数根,则该三角形是( )
A 、等腰三角形
B 、等边三角形
C 、直角三角形
D 、等腰直角三角形 四、学习小结: 五、夯实基础: 解一元二次方程:
1、(x -2)2
=4 2、 81(x-1)2
=16 3、x 2
+16x+64=17
4、3x(x+2)=5(x+2)
5、 4(2x-1)2
-9(x+4)2
=0 6、4(2x+1)2
-4(2x+1)+1=0
六、能力提升: 解一元二次方程:
1、 x 2
+2x-1=0 2、x 2
-6x-6=0 3、 3x 2
-4x-4=0 4、x 2
+x-1=0.
布置作业: 【评价反思】
丹东市第二十四中学 3.1 用树状图或表格求概率 第一课时
主备:曹玉辉辅备:孙芬、李春贺审核: 2014年8月31日
一、学习准备:
1、当并且时,为地列出所有可能的结果。

通常采用列表法。

2、当时,列表法就不方便了,为地列出所有可能的结果,通常采用树形图。

二、学习目标:
1、会用树形图法求事件发生的概率。

2、通过求概率体会什么时候使用列表法和树形图法中那一种方法更方便。

三、自学提示:
1、自主学习:研读教材60—61页内容,体会如何利用列表法和树形图法求事件发生的概率,并思考什么时候使用那一种方法更方便。

2、合作探究:
(1)本节课重点掌握的内容:
用列表法和数形图法求事件发生的概率的具体步骤
(2)在6张卡片上分别写有1---6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次抽取的数字能够整除第一次取出的数字的概率是多少?
例1、口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I。

从三个口袋中各随机地取出1个球。

(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?
(2)取出的三个球上全是辅音字母的概率是多少?
巩固训练:教材61页随堂练习 62页习题3.1
四、学习小结:
五、夯实基础:1.小亮把全班50名同学的期中数学测
试成绩,绘成如图所示的条形图,其中从左起第一、
二、三、四个小长方形高的比是1∶3∶5∶1.从中同
时抽一份最低分数段和一份最高分数段的成绩的概率分别是().
A.
1
10

1
10
B.
1
10

1
2
C.
1
2

1
10
D.
1
2

1
2
)
2.一个袋子中有4个珠子,期中两个红色,两个蓝色,除颜色外,其余特征均相同,若从这个袋子中取出两个珠子都是蓝色的概率是多少?
3.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是
53,这个5
3
的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的
5
3
; D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.
4.抛掷一枚质地均匀的硬币,如果每抛掷一次出现正面相上和反面向上的可能性相同,那么连掷三次硬币,求出现“一次正面,两次反面”的概率。

六、能力提升:
“六.一”儿童节,小明去商场买书包,商场在搞促销活动,买一只书包可以送2支笔和1本书.
(1)若有3支不同笔可供选择,其中黑色2支,红色1支,试用树状图(或列表法)
表示小明依次..抽取2支笔的所有可能情况,并求出抽取的2支笔均是黑色的概率;
(2)若有6本不同书可供选择,要在其中抽1本,请你帮助小明设计一种用替代物模拟抽书的方法.
布置作业: 【评价反思】
丹东市第二十四中学 3.1用树状图或表格求概率第二课时
主备:孙芬副备:曹玉辉李春贺审核:2014年8月31日
一、学习准备:
求概率的方法?
二、学习目标:
1、会用树状图求出一次试验中涉及3个或更多个因素时,不重复不遗漏地求出所有
可能的结果,从而正确地计算问题的概率.
2、正确鉴别一次试验中是否涉及3个因素或多个因素,能够从实际需要出发判断何时
选用列表法,或画树形图求概率更方便.
三、自学提示:
(一)自主学习
小明、小颖和小凡三人做“石头、剪刀、布”的游戏。

游戏规则如下:
小明、小颖和做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么就按“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖谁获
胜。

假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?
(二)合作探究
完成课本63页做一做
练习:
扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心
球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项。

(1)每位考生有选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率。

(友情提醒:各种方
案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)
四、学习小结:
五、夯实基础:基础题:
1、某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当
你抬头看信号灯时,是黄灯的概率为.
3、在一个袋子里装有10个球,6个红球,3个黄球,1个绿球,这些球除颜色外、形状、
大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是
..
红球
..的概率是__________.
3、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白 色棋子的概率是2 5 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是1
4 ,
则原来盒中有白色棋子( )
A .8颗
B .6颗
C .4颗
D .2颗
3. (2011山东威海,21,9分)甲、乙二人玩一个游戏,每人抛一个质地均匀的 小立方体(每个面分别标有数字1、2、3、4、5、6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜.你认为这个 游戏公平吗?试说明理由.
六、能力提升:
端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,
特此设计了一个游戏,其规则是:•分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
布置作业: 【评价反思】。

相关文档
最新文档