数学北师大版九年级上册同步练习

合集下载

北师大版-九年级-数学-上册-第一章-特殊平行四边形-同步练习(含答案解析)

北师大版-九年级-数学-上册-第一章-特殊平行四边形-同步练习(含答案解析)

第一章特殊平行四边形评价检测(45分钟100分)一、选择题(每小题4分,共28分)1.矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直2.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是( )A.3B.4C.5D.73.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直且平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD的面积是( )A.2B.C.D.【变式训练】如图,在矩形ABCD中,E是BC的中点,∠BAE=30°,AE=2,则矩形ABCD的面积为.5.如图,已知菱形ABCD与△ABE,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.126.如图,在矩形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将矩形ABCD沿EF折叠,使点A,D分别落在矩形ABCD外部的点A1,D1处,则阴影部分图形的周长为( )A.15B.20C.25D.307.如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC的中点;②FG=FC;③S△FGC=.其中正确的是( )A.①②B.①③C.②③D.①②③二、填空题(每小题5分,共25分)8.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是.【易错提醒】平行四边形是中心对称图形,但不是轴对称图形,本题易误认为平行四边形既是轴对称图形又是中心对称图形.【知识归纳】特殊平行四边形的对称性(1)矩形、菱形、正方形既是轴对称图形又是中心对称图形.(2)矩形与菱形有两条对称轴,正方形有四条对称轴.(3)对角线的交点是它们的对称中心,过对称中心的任一条直线均把原图形分成面积相等的两部分.9.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,试添加一个条件: ,使得平行四边形ABCD是菱形.【解析】添加AC⊥BD,则对角线互相垂直的平行四边形是菱形;添加AD=DC,则一组邻边相等的平行四边形是菱形.10.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= .【变式训练】如图,顺次连接菱形ABCD的各边中点E,F,G,H.若AC=a,BD=b,则四边形EFGH的面积是.11.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F作FG⊥EF交BC于G,连接GH,当AD,AB满足时,四边形EFGH为矩形.12.如图,四边形ABCD与AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则= .三、解答题(共47分)13.(10分)如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且CF=AE.(1)求证:四边形BECF是菱形.(2)若四边形BECF为正方形,求∠A的度数.【互动探究】四边形BECF的面积与△ABC的面积有什么关系?为什么?14.(12分)如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.(1)证明:四边形AECF是矩形.(2)若AB=8,求菱形的面积.15.(12分)(2014·新民市一模)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF.(2)若点O为CD的中点,求证:四边形DECF是矩形.16.(13分)(2013·青岛中考)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点(1)求证:△ABM≌△DCM.(2)判断四边形MENF是什么特殊四边形,并证明你的结论.明)。

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1.3正方形的性质与判定》同步练习题(附答案)一.选择题1.正方形具有而矩形不一定具有的性质是()A.对角线相等B.四个角都是直角C.对角线互相垂直D.两组对边分别平行2.下列说法正确的是()A.正方形既是矩形,又是菱形B.有一个内角是直角的四边形是矩形C.两条对角线互相垂直平分的四边形是正方形D.对角线互相垂直的四边形是菱形3.如图,已知四边形ABCD是平行四边形,下列结论正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是矩形C.当AC⊥BD时,四边形ABCD是菱形D.当∠ABC=90°时,四边形ABCD是正方形4.在正方形ABCD中,BF平分∠DBC交CD于F点,则∠DBF的度数是()A.15°B.22.5°C.30°D.45°5.如图,点E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE相交于点G,下列结论不正确的是()A.AF=BE B.AF⊥BEC.AG=GE D.S△ABG=S四边形CEGF6.如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是()A.∠AFP=∠BPQB.EF∥QPC.四边形EFPQ是正方形D.四边形PQEF的面积是四边形ABCD面积的一半7.如图1是由一根细铁丝围成的正方形,其边长为1.现将该细铁丝围成一个三角形(如图2所示),则AB的长可能为()A.3.0B.2.5C.2.0D.1.58.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2.其中正确结论有几个()A.1B.2C.3D.49.如图,在平面直角坐标系xOy中,P(4,4),A、B分别是x轴正半轴、y轴正半轴上的动点,且△ABO的周长是8,则P到直线AB的距离是()A.4B.3C.2.5D.210.如图四块同样大小的正方形纸片,围出一个菱形ABCD,一个小孩顺次在这四块纸片上轮流走动,每一步都踩在一块纸片的中心,则这个小孩走的路线所围成的图形是()A.平行四边形B.矩形C.菱形D.正方形二.填空题11.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,则此正方形的面积为.12.添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是(只需添加一个即可)14.边长为4的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如图,正方形ABCD内部有一个等边△ABE,则∠DAE=°.16.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,点D的坐标是(2,3),则点B的坐标是.17.如图,点D,E,F分别是△ABC三边的中点,连接AD,DE,DF,有下列结论:①四边形AEDF一定是平行四边形;②若∠BAC=90°,则四边形AEDF是矩形;③若AD平分∠BAC,则四边形AEDF是正方形;④若AD⊥BC,则四边形AEDF是菱形.其中正确的有.(填序号)三.解答题18.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且AB=4,CF=1.(1)求AE,EF,AF的长;(2)求证:∠AEF=90°.19.如图,在正方形ABCD中,PD=QC,求证:PB=AQ,BP⊥AQ.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长.参考答案一.选择题1.解:∵正方形的性质为:对边平行且相等,四条边相等,四个角为直角,对角线互相垂直平分,相等,且每条对角线平分一组对角,矩形的性质为:对边平行且相等,四个角为直角,对角线互相平分,相等,∴正方形具有而矩形不一定具有的性质是:对角线互相垂直,故选:C.2.解:A.正方形既是矩形,又是菱形,正确,符合题意;B.有一个内角是直角的四边形是矩形,错误,不符合题意;C.两条对角线互相垂直平分的四边形是正方形,错误,不符合题意;D.对角线互相垂直的四边形是菱形,错误,不符合题意.故选:A.3.解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;故选:C.4.解:∵BD是正方形ABCD的对角线,∴∠DBC=45°.∵BF平分∠DBC,∴∠DBF=∠DBC=22.5°.故选:B.5.解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∵BF=CE,∴△ABF≌△BCE(SAS),∴AF=BE,∠BAG=∠CBE,∴选项A不符合题意;∵∠ABG+∠CBE=∠ABC=90°,∴∠BAG+∠ABG=90°,∴∠AGB=90°,∴AF⊥BE,∴选项B不符合题意;∵△ABF≌△BCE,∴S△ABF=S△BCE,∴S△ABF﹣S△BFG=S△BCE﹣S△BFG,∴S△ABG=S四边形CEGF,∴选项D不符合题意;∵无法证明AG=GE,∴选项C符合题意;故选:C.6.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AF=BP=CQ=DE,∴DF=CE=BQ=AP,∴△APF≌△DFE≌△CEQ≌△BQP(SAS),∴EF=FP=PQ=QE,∠AFP=∠BPQ,故A选项正确,不符合题意;∵EF=FP=PQ=QE,∴四边形EFPQ是菱形,∴EF∥PQ,故B选项正确,不符合题意;∵△APF≌△BQP,∴∠AFP=∠BPQ,∵∠AFP+∠APF=90°,∴∠APF+∠BPQ=90°,∴∠FPQ=90°,∴四边形EFPQ是正方形.故C选项正确,不符合题意;∵四边形PQEF的面积=EF2,四边形ABCD面积=AB2,若四边形PQEF的面积是四边形ABCD面积的一半,则EF2=AB2,即EF=AB.若EF≠AB,则四边形PQEF的面积不是四边形ABCD面积的一半,故D选项不一定正确,符合题意.故选:D.7.解:∵由一根细铁丝围成的正方形,其边长为1,∴该细铁丝的长度为4.∴AC+BC+AB=4,∴AC+BC=4﹣AB.∵AC+BC>AB,∴4﹣AB>AB,∴AB<2.∴AB的长可能为1.5,故选:D.8.解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠ABC=∠ADC=∠BCD=90°,∠PDC=∠DBC=45°,AB=BC=CD=AD=4,又∵PE⊥BC,PF⊥CD,∴∠PEC=∠PEB=∠PFC=∠PFD=90°=∠BCD,∴∠DPF=∠PDF=∠BPE=∠DBC=45°,∴PF=DF,PE=BE,即△PDF和△BPE均为等腰直角三角形,∴PD=PF,∵∠PEC=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴CE=PF=DF,PE=FC,∴PD=CE,故①正确;②由①知:PE=BE,且四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,故③正确;④由③得:EF=PC=AP,∴当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故④错误;综上,①②③正确.故选:C.9.解:方法一:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,设OB=a,OA=b,AB=c,P到直线AB的距离是h,∵△ABO的周长是8,∴a+b+c=8,∴a+b=8﹣c,∴a2+2ab+b2=64﹣16c+c2根据勾股定理得:a2+b2=c2,∴ab=32﹣8c,∵S△P AB=4×4﹣ab﹣4(4﹣b)﹣4(4﹣a)=2(a+b)﹣ab=2(8﹣c)﹣(32﹣8c)=16﹣2c﹣16+4c=2c,∵S△P AB=×c•h,∴2c=×c•h,∴h=4.∴P到直线AB的距离为4.方法二:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,∵P(4,4),∴四边形CODP是边长为4的正方形,∴PC=PD=OC=OD=4,∵A、B分别是x轴正半轴、y轴正半轴上的动点,∴将△P A′D沿P A′折叠得到△P A′E,延长A′E交y轴于点B,∴∠P A′D=∠P A′E,PE=PD,A′D=A′E,∠PDA′=∠PEA′=90°,∴PE=PC,在Rt△PEB和Rt△PCB中,,∴Rt△PEB≌Rt△PCB(HL),∴BE=BC,∵△A′BO的周长是8,∴A′O+BO+A′B=A′O+BO+BE+A′E=A′O+BO+BC+A′D=CO+DO=8,∴△A′BO符合题意中的△ABO,∴P到直线AB的距离PE=4,故选:A.10.解:如图,根据题意,顺次连接四个正方形的中心,所构成的图形是正方形,所以这个小孩走的路线所围成的图形是正方形.故选:D.二.填空题11.解:∵阴影部分是一个正方形,∴∠ACB=90°,∵∠B=45°,∴△ABC是等腰直角三角形,∴AC===2,∴正方形的面积为(2)2=8,故答案为:8.12.解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,故答案为:AB=AD(或AC⊥BD答案不唯一).13.解:条件为∠ABC=90°或AC=BD,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°或AC=BD,∴四边形ABCD是正方形,故答案为:∠ABC=90°或AC=BD.14.解:过C作CD⊥AB交AB延长线与D,如图:∵∠CBD=180﹣90°﹣60°=30°,∠D=90°,∴CD=BC=×4=2,∴△ABC的面积为AB•CD=×4×2=4,故答案为:4.15.解:∵四边形ABCD是正方形,∴∠DAB=90°,∵△ABE是等边三角形,∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,故答案为:30.16.解:∵四边形ABCD为正方形,∴AD=CD=BC=AB,∵点D的坐标是(2,3),∴AD=CD=BC=3,OC=2,∴OB=1,∴点B的坐标是(﹣1,0).故答案为:(﹣1,0).17.解:①∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC的中位线,∴ED∥AC,且ED=AC=AF;DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,故正确;②若∠BAC=90°,则平行四边形AEDF是矩形,故正确;③若AD平分∠BAC,则∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴不能判定四边形AEDF是正方形,故错误;④若AD⊥BC,则AD垂直平分BC,∴AB=AC,∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,故正确.故答案为:①②④.三.解答题18.(1)解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,∵E为AB的中点,∴BE=CE=2,∴AE===2,EF===,AF===5;(2)证明:∵AE2+EF2=20+5=25,AF2=52=25,∴AE2+EF2=AF2,∴∠AEF=90°.19.证明:由题意可得:AD=AB=BC=DC,∠BAD=∠ADC=∠ABC=∠C=90°,∵PD=QC,∴AP=DQ,在△ADQ和△BAP中,,∴△ADQ≌△BAP(SAS),∴BP=AQ,∠APB=∠AQD,∵∠DAQ+∠AQD=90°,∴∠DAQ+∠APB=90°,∴BP⊥AQ,∴BP=AQ,BP⊥AQ.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)解:如图2,在Rt△ABC中,AB=2,∴AC=AB=4,∵CE=2,∴AE=4﹣2=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴CG=CE=2.。

北师大版九年级数学上册第一章特殊平行四边形《正方形的性质与判定》同步练习

北师大版九年级数学上册第一章特殊平行四边形《正方形的性质与判定》同步练习

正方形的性质与判定(典型题)第1课时正方形及其性质1.如图1,已知P是正方形ABCD的对角线BD上一点,且BP=BC,则∠ACP的度数是()图1A.45°B.22.5°C.67.5°D.75°2.正方形的一条对角线的长为4,则这个正方形的面积是()A.8 B.4 2C.8 2D.163.如图2,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图24.如图,在正方形ABCD的外侧作等边三角形ADE,AC,BE交于点F,则∠BFC的度数为()A.45°B.55°C.60°D.75°5.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,Rt△FEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.23a2B.14a2C.59a2D.49a26.如图5,正方形ABCD的边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,F A⊥AE,交CB的延长线于点F,则EF的长为________.图57.如图6,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC相交于点G,连接AE,CF.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图68.如图7,正方形ABCD绕点A逆时针旋转45°与正方形AEFG重合,EF与CD交于点M,得四边形AEMD,正方形ABCD的边长为2,则两正方形重合部分(阴影部分)的面积为()图7A.4 2-4 B.4 2+4 C.8-4 2 D.2+19.如图8,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG 绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()图8A.2+6B.3+1C.3+2D.3+610.如图9,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为________.图911.如图10所示,在正方形ABCD中,点E,F分别在边AD,CD上,且∠EBF=45°.(1)求证:EF=FC+AE;(2)若AB=2,求△DEF的周长.图1012.如图11,在正方形ABCD中,点E,F分别在BC,CD上移动,但点A到EF的距离AH始终保持与AB的长相等,则在点E,F移动的过程中:(1)∠EAF的大小是否发生变化?请说明理由;(2)△ECF的周长是否发生变化?请说明理由.图1113.如图12,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1,A2,A3,A4,…在射线ON上,点B1,B2,B3,B4,…在射线OM上……依此类推,则第n个正方形的周长C n=________.图1214.如图13①,在正方形ABCD中,E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图②,若E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请做出判断并给予证明;(3)如图③,若E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案1.B2.A3.证明:∵四边形ABCD是正方形,∴AB=BC,∠A=∠CBE=90°.∵BF⊥CE,∴∠BCE+∠CBG=90°.∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF.在△BCE和△ABF中,∠BCE=∠ABF,BC=AB,∠CBE=∠A,∴△BCE≌△ABF(ASA),∴AF=BE.4.C5.D6.6 2[解析]7.解:(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,∴∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°.∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠GBE+∠BEF=80°.8.A9.A10.3211.解:(1)证明:将△ABE绕点B顺时针旋转90°得到△CBM,则BA=BC,AE=CM,BE=BM,∠ABE=∠CBM,∠A=∠BCM.∵四边形ABCD是正方形,∴∠A=∠ABC=∠BCD=90°,∴F,C,M三点共线,∠EBM=90°.∵∠EBF=45°,∴∠FBM=45°.在△BEF与△BMF中,BE=BM,∠EBF=∠MBF,BF=BF,∴△BEF≌△BMF,∴EF=FM=FC+CM=FC+AE.(2)由(1)知EF=FC+AE,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=2AB=4. 12.解:(1)∠EAF的大小不发生变化.理由如下:根据题意,知AB=AH,∠B=∠AHE=90°.又∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE.同理,Rt△HAF≌Rt△DAF,∴∠HAF=∠DAF,∴∠EAF=12∠BAH+12∠HAD=12(∠BAH+∠HAD)=12∠BAD.又∵∠BAD=90°,∴∠EAF=45°,∴∠EAF的大小不发生变化.(2)△ECF的周长不发生变化.理由如下:C△ECF=EF+EC+FC.由(1),得Rt△BAE≌Rt△HAE,∴EB=HE.同理,HF=DF.∴C△ECF=EF+EC+FC=EB+DF+EC+FC=2BC,∴△ECF的周长不发生变化.13.2n+114.解:(1)相等互相平行(2)成立.证明:如图,过点G作GH⊥CB交其延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE.在△HGE与△CED中,∠GHE=∠DCE=90°,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED,∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.又∵GH∥BF且∠GHE=90°,∴四边形GHBF是矩形,∴FG=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=CE,∴FG=CE.(3)成立.FG=CE,FG∥CE.第2课时正方形的判定(典型题)1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是________.3.如图14,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.图14A.30°B.45°C.60°D.90°4.已知四边形ABCD各边的中点分别是E,F,G,H,如果四边形ABCD满足____________________,那么四边形EFGH是正方形.5.如图15,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.图156.如图16,在Rt△ABC中,∠BAC=90°,AD=CD,E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF,CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.图167.⑥如图17,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()图17A.7 B.8 C.7 2D.7 38.2017·宜昌如图18,正方形ABCD的边长为1,O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,请直接填空:ON________(填“可能”或“不可能”)过点D;(图①仅供分析)(2)如图②,在ON上截取OE=OA,过点E作EF垂直于直线BC,垂足为F,作EH⊥CD 于点H,求证:四边形EFCH为正方形.图189.如图19,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求出四边形EDFG面积的最小值.图1910.矩形的四个内角平分线围成的四边形是()A.正方形B.矩形C.菱形D.一般平行四边形11.如图0,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是________.图012.如图1,E是矩形ABCD的边BC的中点,P是边AD上的一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?并证明;(2)在(1)的条件下,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?图113.如图2,AC,BD是正方形ABCD的对角线,将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.(1)求证:△AED≌△GED;(2)求证:四边形AEGF是菱形;(3)若AC=1,求BC+FG的值.图214.如图3①,△ABC中,AD平分∠BAC交BC于点D,在线段AB上截取AE=AC,过点E作EF∥BC交AD于点F.连接DE,DF.(1)试判断四边形CDEF是何种特殊的四边形.(2)当AB>AC,∠ABC=20°时,四边形CDEF能是正方形吗?如果能,求出此时∠BAC 的度数;如果不能,请说明理由.(3)若AD平分∠BAC的外角交直线BC于点D,在直线AB上截取AE=AC,过点E作EF∥BC交直线AD于点F,如图②”,设∠ABC=x,其他条件不变,四边形CDEF能是正方形吗?如果能,求出此时∠BAC关于x的关系式;如果不能,试说明理由.图3参考答案1.D2.①③④3.D.4.对角线互相垂直且相等5.解:(1)证明:∵AF∥BC,∴∠EAF=∠EDB.∵E是AD的中点,∴AE=DE.在△AEF和△DEB中,∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,∴△AEF≌△DEB(ASA),∴AF=BD.∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=12BC,∴AD=AF.(2)四边形ADCF是正方形.证明:∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形.∵AB=AC,AD是中线,∴AD⊥BC.又∵AD=AF,∴四边形ADCF是正方形.6.证明:(1)∵AD=CD,E是边AC的中点,∴DE⊥AC,∴DE是线段AC的垂直平分线,∴AF=CF,∴∠F AC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠F AC+∠BAF=90°,∴∠B=∠BAF,∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵E是边AC的中点,∴AE=CE.在△AEG和△CEF中,∠AGE=∠CFE,∠AEG=∠CEF,AE=CE,∴△AEG≌△CEF(AAS),∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.又∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF,即F是边BC的中点.又∵AB=AC,∴AF⊥BC,即∠AFC=90°,∴四边形AFCG是正方形.7.C8.解:(1)不可能.理由如下:若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过点D,故答案为:不可能.(2)证明:∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°.又∠HCF=90°,∴四边形EFCH为矩形.∵∠MON=90°,∴∠EOF=90°-∠AOB.在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO.在△OFE和△ABO中,∠EOF=∠BAO,∠EFO=∠B,OE=AO,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB.又OF=CF+OC,AB=BC=BO+OC,∴CF=BO=EF,∴四边形EFCH为正方形.9.解:(1)证明:连接CD,如图①所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,AE=CF,∠A=∠DCF,AD=CD,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形.(2)过点D作DE′⊥AC于点E′,如图②所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=12BC=2,AB=42,点E′为AC的中点,∴2≤DE<22(点E与点E′重合时取等号),∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.10.A11.3212.解:(1)当矩形ABCD的长是宽的2倍时,四边形PHEF是矩形.证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD.∵E是BC的中点,∴AB=BE=EC=CD,则△ABE,△DCE均是等腰直角三角形,∴∠AEB=∠DEC=45°,∴∠AED=90°.在四边形PHEF中,∵∠PFE=∠FEH=∠EHP=90°,∴四边形PHEF是矩形.(2)当点P是AD的中点时,矩形PHEF变为正方形.理由如下:由(1)可得∠BAE=∠CDE=45°,∴∠F AP=∠HDP=45°.又∵∠AFP=∠DHP=90°,AP=DP,∴Rt△AFP≌Rt△DHP,∴PF=PH,∴矩形PHEF是正方形.13.解:(1)证明:由旋转可知DG=DC,∠DGH=∠DCB=90°. ∵AD=CD,∴AD=DG.又∵ED=ED,∴Rt△AED≌Rt△GED(HL).(2)证明:由(1)知△AED≌△GED,∴AE=EG,∠ADE=∠GDE=12∠BDA=22.5°,∴∠CDF=67.5°,∠CFD=67.5°,∴∠CDF=∠CFD,∴CF=CD.又∵AC=BD,CD=DG,∴AF=BG=EG.由旋转知∠H=∠DBC=45°.又∵∠DAC=45°,∴AF∥EG,∴四边形AEGF是平行四边形.又∵AE=EG,∴▱AEGF是菱形.(3)由(2)知四边形AEGF是菱形,∴AF=FG.由(2)知CF=CD,∴BC=CF,∴BC+FG=CF+AF=AC=1.。

北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)

北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)

北师版九上 6.1 反比例函数一、选择题(共9小题)1. 下列关系式中,y是x的反比例函数的是( )A. y=5xB. yx =3 C. y=−1xD. y=x2−32. 下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,其中,y是x的反比例函数的个数是( )A. 0B. 1C. 2D. 33. 下列函数是y关于x的反比例函数的是( )A. y=1x+1B. y=1x2C. y=−12xD. y=−x24. 下列关系中,两个量之间为反比例函数关系的是( )A. 正方形的面积S与边长a的关系B. 正方形的周长C与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,其长a与宽b之间的关系5. 下列关系式中,不是y关于x的反比例函数的是( )A. xy=2B. y=5x8C. x=57yD. x=5y−36. 下列函数中,y是x的反比例函数的是( )A. y=34x B. y=12x2 C. y=13x D. y=1x27. 函数y=(k2−▫)x k2+k−1是反比例函数,“▫”处在印刷时被油墨盖住了,若要保证k的值有两个,则“▫”处的数字不能是( )A. 1,0B. −1,0C. 2,1D. 2,08. 当k=−1时,下列函数是反比例函数的是( )A. y=k+1xB. y=(k2+k)x−∣k∣C. y=−kx−1D. y=(k−1)x9. 在函数y=−2(m+1)x−m中,y是x的反比例函数,则比例系数为( )A. −2B. 2C. −4D. 0二、填空题(共5小题)的比例系数为.10. 反比例函数y=18x11. 下列函数中,如果是反比例函数,就在括号里打“√”,并写出比例系数k的值;否则打“×”..()(1)y=1x.()(2)y=−2x+1.()(3)y=1xx.()(4)y=32.()(5)y=2x−1.()(6)y=35x12. 若函数y=x m−2是y关于x的反比例函数,则m的值为.+(k2−2k)是反比函数,则k=.13. 如果y=k−2x14. 如果函数y=(m−1)x m2−2是反比例函数,那么m的值是.三、解答题(共4小题)15. 在下列函数关系式中,x均表示自变量,那么哪些是关于x的反比例函数?若是反比例函数,相应的比例系数k是多少?(1)y=5;2x;(2)y=x2(3)xy=2;(4)y=7x−1;.(5)y=0.4x−116. 写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.(1)底边为3cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)一艘轮船从相距200km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;(3)在检修100m长的管道时,每天能完成10m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.17. 在下列关系式中,x均为自变量,哪些是反比例函数?每一个反比例函数相应的k值是多少?(1)y=5;x(2)y=0.4x−1;;(3)y=x2(4)xy=2;(5)y=6x+3;(6)xy=−7;;(7)y=5x2x.(8)y=15,求a的值,并确定函数解析式.18. 已知y关于x的反比例函数的解析式为y=a+3x∣a∣−2答案1. C【解析】y=5x是一次函数;yx=3可化为y=3x(x≠0),是一次函数;y=−1x是反比例函数;y=x2−3是二次函数.2. C【解析】②③是反比例函数.3. C【解析】A.y=1x+1,是y与x+1成反比例函数,故此选项不合题意;B.y=1x2,是y与x2成反比例,故此选项不合题意;C.y=−12x,符合反比例函数的定义,故此选项符合题意;D.y=−x2是正比例函数,故此选项不合题意.故选C.4. D【解析】A.S=a2,S是a的二次函数;B.C=4a,C是a的正比例函数;C.S=20a,S是a的正比例函数;D.a=40b,故a与b是反比例函数关系.5. B【解析】A选项、C选项、D选项:反比例函数的形式有:y=kx(k≠0,x≠0),变形:xy=k(k≠0),y=kx−1(k≠0,x≠0),故ACD正确;B选项:y=5x8是一次函数,故B错误.6. A【解析】y=34x 可化为y=34x,是反比例函数,符合题意;y=12x2,y=13x,y=1x2都不是反比例函数.故选A.7. A【解析】由题意得k2+k−1=−1,解得k1=0,k2=−1,又∵系数不为0,∴k2−▫≠0,∴k 2≠▫,∵k 的值有两个,∴▫≠0,▫≠1.8. C【解析】A 中,当 k =−1 时,k +1=0,此时 y =k+1x 不是反比例函数;B 中,当 k =−1 时,−∣k ∣=−1,k 2+k =0,此时 y =(k 2+k )x −∣k∣ 不是反比例函数;C 中,当 k =−1 时,函数 y =−kx −1 为 y =1x ,是反比例函数;D 中,当 k =−1 时,函数 y =(k −1)x 为 y =−2x ,不是反比例函数.9. C【解析】由题意得 m =1,则比例系数为 −2×(1+1)=−4.故选C .10. 18【解析】∵y =18x =18x ,∴ 反比例函数 y =18x 的比例系数是 18. 11. √,1,√,−2,×,×,×,√,3512. 1【解析】∵ 函数 y =x m−2 是 y 关于 x 的反比例函数,∴m −2=−1,解得:m =1.13. 0【解析】由题意得:{k −2≠0,k 2−2k =0,解得 k =0,故答案为:0.14. −1【解析】根据题意 m 2−2=−1,m =±1,又 m −1≠0,m ≠1,所以 m =−1.15. (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)xy=2是反比例函数,k=2.(4)y=7x−1是反比例函数,k=7.(5)y=0.4x−1不是反比例函数.16. (1)根据三角形的面积公式可得y=32x,所以不是反比例函数.(2)因为vt=200,所以两个变量之间的函数表达式为v=200t,是反比例函数.(3)因为y+10x=100,所以两个变量之间的函数表达式为y=100−10x,不是反比例函数.17. (1)(2)(4)(6)是反比例函数,相应的k值分别是5,0.4,2,−7.18. 由反比例函数的解析式y=a+3x∣a∣−2得{∣a∣−2=1,a+3≠0,解得a=3.故函数解析式为y=6x.。

北师大版九年级数学上册《4.1成比例线段》同步练习题-附答案

北师大版九年级数学上册《4.1成比例线段》同步练习题-附答案

北师大版九年级数学上册《4.1成比例线段》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共有10个小题,每小题3分,共30分) 1.已知23a b=,则下列变形不正确...的是( ) A .32a b = B .32a b = C .32b a = D .32b a =2.已知()520,0a b a b =≠≠,下列变形错误..的是( ) A .25b a = B .52b a = C .25a b = D .25a b = 3.若23x y =,则x y y +等于( )A .25B .53C .23D .834.已知ab cd =,则把它改写成比例式后,正确的是( )A .a c b d= B .a d c b= C .d c a b= D .b c a d= 5.已知23b a =,则a b b -的值是( )A .13- B .13C .12-D .126.下列各组线段中,能成比例的是( )A .1cm 3cm 4cm 6cmB .1cm 3cm 4cm 12cmC .1cm 2cm 3cm 4cmD .2cm 3cm 4cm 5cm7.已知a ,b ,c ,d 是成比例线段,其中1a =,b=3,c=4,则线段d 的长是( )A .14B .2C .8D .128.若a ,b ,b ,c 是成比例的线段,其中3a =,12c =则线段b 的长为( )A .2B .4C .6D .159.若234a b c==,18a b c ++=则a 的值为( ) A .1 B .2 C .3 D .410.在比例尺为150000:的图纸上长度为10cm 的线段表示实际长为( )A .50kmB .10kmC .5kmD .1km二、填空题(本大题共有8个小题,每小题3分,共24分) 11.已知25a b =,则ba的值为 .12.若34b a ,则a ba += .13.若34a b =,且7a b +=,则a 的值为 . 14.若23x x y =+,则yx = . 15.若线段a 、b 、c 、d 成比例,其中3cm a =,6cm b =和2cm c =,则d = .16.已知234a b c==,则a b c += . 17.已知2a c eb d f ===,且0b d f ++≠,若10ac e ++=,则bd f ++= .18.如果312234x y z +--==,且18x y z ++=,那么2x y z --的值为_______ 三、解答题(本大题共有6个小题,共46分)19.已知:74x y y +=,求x y的值.20.已知线段a ,b ,c ,d 是成比例线段,其中4a =,b=5,c=10,求线段d 的长.21.已知a :b :c =3:2:1,且a ﹣2b +3c =4,求2a +3b ﹣4c 的值.22.已知线段a 、b 、c ,且345a b c ==. (1)求a bb+的值; (2)若线段a 、b 、c 满足60a b c ++=,求a 、b 、c 的值. 23.已知::235a b c =:::. (1)求代数式2a b ca b c+-++的值;(2)如果24a b c +-=,求a 的值.24.已知线段a 、b 、c ,且456a b c ==. (1)求a bb+的值; (2)若线段a 、b 、c 满足45a b c ++=,求a b c -+的值.参考解答二、选择题(本大题共有10个小题,每小题3分,共30分)1.A 2.A 3.B 4.B 5.D 6.B 7.D 8.C 9.D 10.C 三、填空题(本大题共有8个小题,每小题3分,共24分)11.25 12.7413.3 14.12 15.4cm 16.54 17.5 18.15-三、解答题(本大题共有6个小题,共46分) 19.解:将74x y y +=两边减去1得744x y y y +--=. ∴34x y = . 20.解:已知a ,b ,c ,d 是成比例线段 根据比例线段的定义得:ad cb = 代入4a =,5b =和10c = 解得:252d =. 21.解:∵a :b :c =3:2:1 ∴设a =3k ,b =2k ,c =k ∵a ﹣2b +3c =4 ∴3k ﹣4k +3k =4 ∴k =2∴a =6,b =4,c =2∴2a +3b ﹣4c =12+12﹣8=16. 22.解;(1)设345a b ck === 则3a k = 4b k = 5c k = ∴34744a b k k b k ++== (2)∵60a b c ++= ∴34560k k k ++= 解得5k =∴15a = 20b = 25c =23.(1)解:设2a k =,则35b k c k ==, 2223521235105a b c k k k k a b c k k k k +-⨯+-===++++(2)设2a k =,则35b k c k ==, ∵24a b c +-=∴22354k k k ⨯+-= 解得k =2∴24a k ==24.解:(1)设456ab c k === 则a =4k ,b =5k ,c =6k 45955a b k k b k ++==; 设456a b c k ===则a =4k ,b =5k ,c =6k ∵a +b +c =45 ∴4k +5k +6k =45 ∴k =3∴a =12,b =15,c =18∴a ﹣b +c =12﹣15+18=15.。

北师大版九年级数学上册第一章 1.2矩形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.2矩形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.2矩形的性质与判定同步练习题第1课时矩形的性质1.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DAE=(B)A.10° B.20° C.30° D.45°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠COD=60°,AB=3,则AC的长是(A)A.6 B.8 C.10 D.123.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,则△ABE的周长等于(C)A.4.83 B.4 2C.22+2 D.32+24.如图,在矩形ABCD中,O是两对角线的交点,AE⊥BD,垂足为E.若OD=2OE,AE=3,则DE的长为(B)A.2 3 B.3 C.4 D.3+15.如图,在矩形ABCD中,EG垂直平分BD于点G.若AB=4,BC=3,则线段EG的长度是(B)A.32B.158C.52D .3 6.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若OM =3,BC =10,则OB7.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 至F ,使CF =12BC.若EF =13,则线段AB 的长为26.8.如图,在矩形ABCD 中,AB =3,BC =4,AC 为对角线,∠DAC 的平分线AE 交DC 于点E ,则CE 的长为53.9.如图,在矩形ABCD 中,AB =3,AD =4,P 为AD 上一动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为125.10.如图,在矩形ABCD 中,AB =4,BC =6,将△ABE 沿着AE 折叠至△AB′E.若BE =CE ,连接B′C,则B′C 的长为185.11.如图,在矩形ABCD 中,AD =AE ,DF ⊥AE 于点F.求证:AB =DF.证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B =90°. ∴∠AEB =∠DAF. ∵DF ⊥AE ,∴∠AFD =∠B=90°.在△ABE 和△DFA 中,⎩⎪⎨⎪⎧∠AEB=∠DAF,∠B =∠AFD,AE =DA ,∴△ABE ≌△DFA(AAS). ∴AB =DF.12.如图,BE ,CF 是锐角△ABC 的两条高,M ,N 分别是BC ,EF 的中点.若EF =6,BC =24.(1)求证:∠ABE=∠ACF;(2)判断EF 与MN 的位置关系,并证明你的结论; (3)求MN 的长.解:(1)证明:∵BE,CF 是△ABC 的两条高, ∴∠ABE +∠A=90°,∠ACF +∠A=90°. ∴∠ABE =∠ACF. (2)MN 垂直平分EF. 证明:连接EM ,FM ,∵BE ,CF 是△ABC 的两条高,M 是BC 的中点, ∴EM =FM =12BC.∵N 是EF 的中点,∴MN ⊥EF. ∴MN 垂直平分EF. (3)∵EF=6,BC =24,∴EM =12BC =12×24=12,EN =12EF =12×6=3.在Rt △EMN 中,MN =EM 2-EN 2=122-32=315.13.如图,在矩形ABCD 中,AB =3,BC =4.M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM≌△CDN;(2)若G 是对角线AC 上的点,∠EGF =90°,求AG 的长.解:(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AB ∥CD. ∴∠MAB =∠NCD.在△ABM 和△CDN 中, ⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD,AM =CN ,∴△ABM ≌△CDN(SAS). (2)连接EF ,交AC 于点O.在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA=∠FOC,∠EAO =∠FCO,AE =CF ,∴△AEO ≌△CFO(AAS).∴EO =FO ,AO =CO.∴O 为EF ,AC 的中点. ∵∠EGF =90°,∴OG =12EF =12AB =32.在Rt △ABC 中,AC =AB 2+BC 2=5, ∴OA =52.∴AG =OA -OG =1或AG =OA +OG =4. ∴AG 的长为1或4.14.如图,在矩形ABCD 中,∠BAC =30°,对角线AC ,BD 交于点O ,∠BCD 的平分线CE 分别交AB ,BD 于点E ,H ,连接OE.(1)求∠BOE 的度数;(2)若BC =1,求△BCH 的面积; (3)求S △CHO ∶S △BHE .解:(1)∵四边形ABCD 是矩形, ∴AB ∥CD ,AO =CO =BO =DO.∴∠DCE =∠BEC.∵CE 平分∠BCD,∴∠BCE =∠DCE=45°. ∴∠BCE =∠BEC=45°.∴BE =BC.∵∠BAC =30°,AO =BO =CO ,∴∠OBA =30°. ∴∠BOC =60°. ∴△BOC 是等边三角形. ∴BC =BO =BE.∴∠BOE =180°-30°2=75°.(2)过点H 作HF⊥BC 于点F.∵△BOC 是等边三角形,∴∠FBH =60°. ∴BH =2BF ,FH =3BF.∵∠BCE =45°,∴CF =FH =3BF. ∴BC =3BF +BF =1.∴BF=3-12. ∴FH =3-32.∴S △BCH =12BC·FH=3-34.(3)过点C 作CN⊥BO 于点N , ∵BC =3BF +BF =BO =BE , ∴OH =OB -BH =3BF -BF. ∵∠CBN =60°,CN ⊥BO , ∴CN =32BC =3+32BF. ∵S △CHO ∶S △BHE =(12OH·CN)∶(12BE·BF),∴S △CHO ∶S △BHE =3-32.第2课时 矩形的判定1.已知▱ABCD ,下列条件中,不能判定这个平行四边形为矩形的是(B) A .∠A =∠B B .∠A =∠C C .AC =BD D .AB ⊥BC2.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是(D)A .四边形AEDF 是平行四边形B .若∠BAC=90°,则四边形AEDF 是矩形C .若AD =EF ,则四边形AEDF 是矩形 D .若AD 平分∠BAC,则四边形AEDF 是矩形3.如图,在▱ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是(A)A .OM =12AC B .MB =MOC .BD ⊥AC D .∠AMB =∠CND4.如图,在▱ABCD 中,在不添加任何辅助线的情况下,请添加一个条件∠A =90°,使平行四边形ABCD 是矩形.5.如图,已知MN∥PQ,EF 与MN ,PQ 分别交于A ,C 两点,过A ,C 两点作两组内错角的平分线,交于点B,D,则四边形ABCD是矩形.6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,有下列四个条件:①AB=BE;②DE⊥DC;③∠ADB=90°;④CE⊥DE.如果添加其中一个条件就能使四边形DBCE成为矩形,那么正确的条件是①③④(填序号).7.如图,在△ABC中,D是AB边的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.当△ABC满足AC=BC(答案不唯一)时(请添加一条件),四边形BDCF 为矩形.8.如图,在▱ABCD中,AB=6,BC=10,对角线AC⊥AB,点E,F分别是边BC,AD上的点,且BE=DF.当BE的长度为3.6时,四边形AECF是矩形.9.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B,C,D为顶点的四边形是矩形,则点D的坐标为(5,3)或(-3,2)或(3,1).410.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,∠BAC≠60°,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC时,四边形AEFD是菱形;④当∠BAC=90°时,四边形AEFD是矩形.其中正确的结论是①②③.(填序号)11.已知:如图,▱ABCD 的两条对角线相交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E ,F ,且BE =CF.求证:▱ABCD 是矩形.证明:∵BE⊥AC,CF ⊥BD , ∴∠OEB =∠OFC=90°. 在△BEO 和△CFO 中, ⎩⎪⎨⎪⎧∠OEB=∠OFC,∠BOE =∠COF,BE =CF ,∴△BEO ≌△CFO(AAS). ∴OB =OC.∵四边形ABCD 是平行四边形, ∴OB =12BD ,OC =12AC.∴BD =AC. ∴▱ABCD 是矩形.12.如图,已知AB∥DE,AB =DE ,AC =FD ,∠CEF =90°.求证: (1)△ABF≌△DEC; (2)四边形BCEF 是矩形.证明:(1)∵AB∥DE, ∴∠A =∠D. ∵AC =FD , ∴AC -CF =DF -CF , 即AF =CD.在△ABF 和△DEC 中, ⎩⎪⎨⎪⎧AF =DC ,∠A =∠D,AB =DE ,∴△ABF ≌△DEC(SAS). (2)∵△ABF≌△DEC, ∴EC =BF ,∠ECD =∠BFA. ∴∠ECF =∠BFC.∴EC∥BF. ∴四边形BCEF 是平行四边形. ∵∠CEF =90°, ∴四边形BCEF 是矩形.13.如图,在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,以BD 为边作等边△BDE.求证:AB =EF ,且四边形AEBF 是矩形.证明:∵在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,∴∠AFB =90°,AF =BD ,∠CBD =30°. ∵△BDE 是等边三角形, ∴BE =BD ,∠DBE =60°.∴AF =BD =BE ,∠EBF =∠AFB=90°. ∴AF ∥BE. 又∵AF=BE ,∴四边形AEBF 是平行四边形. 在△ABF 和△EFB 中, ⎩⎪⎨⎪⎧AF =EB ,∠AFB =∠EBF,BF =FB ,∴△ABF ≌△EFB(SAS). ∴AB =EF.∴四边形AEBF 是矩形.14.如图,在▱ABCD 中,BC =12 cm ,∠ABC =60°,AC ⊥AB ,O 是AC ,BD 的交点,点E ,F 分别从点O 同时出发,沿射线OA 和OC 方向移动,速度都是1 cm/s.(1)求证:在整个运动过程中,四边形BEDF 始终是平行四边形;(2)设点E 和点F 同时运动的时间为t s ,当t 为何值时,四边形BEDF 是矩形?解:(1)证明:∵四边形ABCD 是平行四边形, ∴OB =OD.由题意,得OE =OF ,∴四边形BEDF 始终是平行四边形.(2)在Rt △ABC 中,∵∠BAC =90°,∠ABC =60°,BC =12, ∴∠ACB =30°,AB =12BC =6,AC =3AB =6 3.∴OA =OC =3 3.∴BO =AB 2+AO 2=62+(33)2=37. ∵当EF =BD 时,四边形BEDF 是矩形, ∴OE =OB ,即t =37.∴当t =37时,四边形BEDF 是矩形.第3课时 矩形的性质与判定的运用1.下列关于矩形的说法,正确的是(C) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线相等且互相平分 D .矩形的对角线互相垂直且平分2.如图,已知在四边形ABCD 中,AB =DC ,AD =BC ,连接AC ,BD 交于点O.若AO =BO ,AD =3,AB =2,则四边形ABCD 的面积为(C)A .4B .5C .6D .73.如图,在矩形COED 中,点D 的坐标是(1,3),则CE4.如图,在四边形ABCD中,已知对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.5.如图,在菱形ABCD中,AC,BD交于点O,AC=6,BD=8.若DE∥AC,CE∥BD,则OE 的长为5.6.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于点E,MF⊥AC于点F,点N为EF的中点,则MN的最小值为2.4.7.如图,在矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处.若A′恰好在矩形的对称轴上,则AE的长为1或38.如图,在矩形ABCD中,AB=4 cm,AD=12 cm,点P从点A出发,向点D以每秒1 cm 的速度运动,Q从点C出发,以每秒4 cm的速度在B,C两点之间做往返运动,两点同时出发,点P到达点D为止(同时点Q也停止),这段时间内,当运动时间为2.4_s或4_s或7.2_s 时,P,Q,C,D四点组成矩形.9.如图,在▱ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.解:(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2.∴∠ABC=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.解:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC.∵CF∥AE,∴四边形AECF 是平行四边形. ∵AE ⊥BC ,∴四边形AECF 是矩形. (2)∵四边形ABCD 是菱形, ∴AD =AB =BC =CD =5. ∵AE =4,∠AEB =90°, ∴EB =AB 2-AE 2=3. ∴EC =EB +BC =8. ∴AC =AE 2+EC 2=4 5. ∵在Rt △AEC 中,AO =CO , ∴OE =12AC =2 5.11.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,∠A =∠ADC ,E ,F 分别为AD ,CD 的中点,连接BE ,BF ,延长BE 交CD 的延长线于点M.(1)求证:四边形ABCD 为矩形;(2)若MD =6,BC =12,求BF 的长度.(结果可保留根号)解:(1)证明:∵在四边形ABCD 中,AB ∥CD ,AB =CD , ∴四边形ABCD 是平行四边形. ∴∠A +∠ADC=180°. ∵∠A =∠ADC,∴∠A =90°. ∴四边形ABCD 是矩形. (2)∵AB∥CD,∴∠ABE =∠M. ∵E 为AD 的中点,∴AE =DE.在△ABE 和△DME 中, ⎩⎪⎨⎪⎧∠AEB=∠DEM ,∠ABE =∠M,AE =DE ,∴△ABE ≌△DME(AAS). ∴AB =DM =CD =6. ∵F 为CD 的中点, ∴CF =12CD =3.∵四边形ABCD 是矩形, ∴∠C =90°.在Rt △BCF 中,BF =BC 2+CF 2=122+32=317.12.如图,在▱ABCD 中,E 是AD 上一点,连接BE ,F 为BE 的中点,且AF =BF. (1)求证:四边形ABCD 为矩形;(2)过点F 作FG⊥BE,交BC 于点G.若BE =BC ,S △BFG =5,CD =4,求CG 的长度.解:(1)证明:∵F 为BE 的中点,AF =BF ,∴AF =BF =EF. ∴∠BAF =∠ABF,∠FAE =∠AEF.在△ABE 中,∠BAF +∠ABF+∠FAE+∠AEF=180°, ∴∠BAF +∠FAE=90°,即∠BAE =90°. 又∵四边形ABCD 为平行四边形, ∴四边形ABCD 为矩形.(2)连接EG ,过点E 作EH⊥BC,垂足为H ,∵F 为BE 的中点,FG ⊥BE ,∴BG =GE. ∵S △BFG =5,CD =EH =4, ∴S △BGE =12BG·EH=10.∴BG =GE =5.在Rt △EGH 中,GH =GE 2-EH 2=3. ∴BH =5+3=8.在Rt △BEH 中,BE =BH 2+EH 2=4 5. ∴CG =BC -BG =BE -BG =45-5.13.已知:如图,在▱ABCD 中,AB >AD ,∠ADC 的平分线交AB 于点E ,作AF⊥BC 于点F ,交DE 于点G ,延长BC 至H 使CH =BF ,连接DH.(1)补全图形,并证明四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB ,AG ,BF 之间的数量关系,并证明.解:(1)补全图形如图所示. 证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵CH =BF ,∴FH =BC.∴AD=FH. ∴四边形AFHD 是平行四边形. ∵AF ⊥BC ,∴四边形AFHD 是矩形. (2)猜想:AB =BF +AG.证明:延长FH 至M ,使HM =AG ,连接DM.∵AB∥CD,∴∠AED=∠EDC.∵DE平分∠ADC,∴∠ADE=∠EDC.∴∠AED=∠ADE.∴AE=AD.∵AE=AF,∴AF=AD.∵AF=DH,∴AD=DH.又∵∠GAD=∠DHM=90°,∴△DAG≌△DHM(SAS).∴∠ADE=∠HDM,∠AGD=∠M.∴∠EDC=∠HDM.∴∠GDH=∠CDM.∵AF∥DH,∴∠AGD=∠GDH.∴∠CDM=∠M.∴CD=CM=CH+HM. ∵AB=CD,CH=BF,HM=AG,∴AB=BF+AG.。

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定形》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定形》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1.3正方形的性质与判定形》同步练习题(附答案)一.选择题1.下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直且相等的平行四边形是正方形D.有一个角是直角的平行四边形是正方形2.如图,四边形ABCD是平行四边形,下列结论中正确的是()A.当平行四边形ABCD是矩形时,∠BAC=90°B.当平行四边形ABCD是菱形时,AB⊥BCC.当平行四边形ABCD是正方形时,AC=BDD.当平行四边形ABCD是菱形时,AB=AC3.如图,在正方形ABCD中,点E在对角线BD上,连接AE,EF⊥AE于点E,交DC于点F,连接AF,已知BC=4,DE=3,则△AEF的面积为()A.4B.5C.10D.54.如图,正方形ABCD中,点F为AB上一点,CF与BD交于点E,连接AE,若∠BCF =20°,则∠AEF的度数()A.35°B.40°C.45°D.50°5.如图,正方形ABCD的边长为7,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积为()A.20B.25C.30D.356.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,则线段GH的长为()A.B.C.D.7.如图,在边长为4的正方形ABCD中,点E、点F分别是BC、AB上的点,连接DE、DF、EF,满足∠DEF=∠DEC.若AF=1,则EF的长为()A.2.4B.3.4C.D.8.如图,在正方形ABCD中,点P在对角线BD上,PE⊥BC,PF⊥CD,E,F分别为垂足,连结AP,EF,则下列命题:①若AP=5,则EF=5;②若AP⊥BD,则EF∥BD;③若正方形边长为4,则EF的最小值为2,其中正确的命题是()A.①②B.①③C.②③D.①②③9.如图,正方形ABCD的边长为2,E为AB边的中点,点F在BC边上,点B关于直线EF的对称点记为B',连接B'D,B'E,B'F.当点F在BC边上移动使得四边形BEB'F成为正方形时,B'D的长为()A.B.C.2D.310.如图边长为2的正方形EFGH在边长为6的正方形ABCD所在平面上平移,在平移过程中,始终保持EF∥AB.线段CF的中点为M,DH的中点为N,则线段MN的长为()A.B.C.D.二.填空题11.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在F A上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为.12.如图,正方形ABCD和正方形DEFG的边长分别为3和2,点E、G分别为AD、CD 边上的点,H为BF的中点,连接HG,则HG的长为.13.如图,在正方形ABCD中,点E,F分别在边BC、CD上,连接AE,BF.若AB=,BE=DF,则AE+BF的最小值为.14.如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点C的坐标是(3,2),则点A的坐标是.15.如图,在正方形ABCD中,,E,F分别为边AB,BC的中点,连接AF,DE,点N,M分别为AF,DE的中点,连接MN.则MN的长为.三.解答题16.如图,正方形ABCD中,AB=6,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED交BC于点F,以DE、EF为邻边作矩形DEFM,连接CM.(1)求证:矩形DEFM是正方形;(2)求CE+CM的值.17.如图,在Rt△ABC中,两锐角的平分线AD,BE相交于O,OF⊥AC于F,OG⊥BC 于G.(1)求证:四边形OGCF是正方形.(2)若∠BAC=60°,AC=4,求正方形OGCF的边长.18.如图,已知点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,连接AF,且EA⊥AF.(1)求证:DE=BF;(2)若AH平分∠F AE交线段BC上一点H,连接EH,请判断线段DE、BH、HE三者存在怎样的数量关系?并加以证明.19.如图,点G在正方形ABCD的边CD上,且四边形CEFG也是正方形,连接BG,DE,AF,取AF的中点M,连接CM.求证:(1)BG=DE;(2)CM=AF.20.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)21.如图,四边形ABCD是菱形,DE∥AC,CE∥BD.(1)求证:四边形OCED是矩形.(2)若∠ABC=60°,AB=2,求矩形OCED周长.(3)当∠ABC=°时,四边形OCED是正方形.参考答案一.选择题1.解:A、对角线互相垂直的矩形是正方形,故选项A不符合题意;B、对角线相等的菱形是正方形,故选项B不符合题意;C、对角线互相垂直且相等的平行四边形是正方形,故选项C不符合题意;D、有一个角是直角的平行四边形是矩形,故选项D符合题意.故选:D.2.解:A、当平行四边形ABCD是矩形时,∠BAC=90°,不符合题意;B、当平行四边形ABCD是菱形时,AB=BC,不符合题意;C、当平行四边形ABCD是正方形时,AC=BD,符合题意;D、当平行四边形ABCD是菱形时,AB=BC,不符合题意;故选:C.3.解:过E作GH∥AD交AB于G,交DC于H,如图:,∵四边形ABCD是正方形,∴∠ABD=∠BDC=45°,AB=CD=BC=4,∴△BGE、△DHE是等腰直角三角形,BD=BC=4,∴EH=DE=×3=3,BE=BD﹣DE=4﹣3=,∴BG=GE=BE=1,∴AG=AB﹣BG=3=EH,∴AE===,∵AE⊥EF,∴∠AEG=90°﹣∠FEH=∠EFH,∴△AGE≌△EHF(AAS),∴AE=EF=,∴△AEF的面积为AE•EF=××=5,故选:B.4.解:∵四边形ABCD是正方形,∴∠ABC=90°,BC=BA,∠ABE=∠CBE=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE=20°,∵∠ABC=90°,∠BCF=20°,∴∠BFC=180°﹣∠ABC﹣∠BCF,=180°﹣90°﹣20°=70°,∵∠BFC=∠BAE+∠AEF,∴∠AEF=∠BFC﹣∠BAE=70°﹣20°=50°,故选:D.5.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=7,AE=BF=CG=DH=4,∴AH=BE=DG=CF=3,∴EH=FE=GF=GH==5,∴四边形EFGH的面积是:5×5=25,故选:B.6.解:如图,延长BG交CH于点E,∵AB=CD=10,BG=DH=6,AG=CH=8,∴AG2+BG2=AB2,∴△ABG和△DCH是直角三角形,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在Rt△GHE中,GH===2,故选:A.7.解:如图,在EF上截取EG=EC,连接DG,∵四边形ABCD是正方形,∴∠A=∠C=90°,AB=BC=4,在△DCE和△DGE中,,∴△DCE≌△DGE(SAS),∴∠DGE=∠C=90°,DG=DC,∵∠A=∠C=90°,AB=BC=4,∴∠DGF=∠A=90°,DG=DA,在Rt△DAF和Rt△DGF中,,∴Rt△DAF≌Rt△DGF(HL),∴AF=GF=1,∵EG=EC,∴BE=BC﹣EC=4﹣EG,EF=EG+FG=EG+1,BF=AB﹣AF=4﹣1=3,在Rt△BEF中,根据勾股定理,得BE2+BF2=EF2,∴(4﹣EG)2+32=(EG+1)2,解得EG=2.4,∴EF=EG+FG=2.4+1=3.4.∴EF的长为3.4.故选:B.8.解:延长EP交AD于Q,∵四边形ABCD为正方形,∴AD=CD,∠ADC=∠C=90°,AD∥BC,∠BDC=45°,∵PF⊥CD,∴∠DPF=45°,∴DF=PF,∵PE⊥BC,∴PQ⊥AD,四边形CEPF为矩形,∴∠AQP=90°,EC=PF=DF,∴∠AQP=∠C,AQ=FC,四边形PQDF为正方形,∴DF=QP,∴CE=QP,在△AQP和△FCE中,,∴△AQP≌△FCE(SAS),∴AP=EF,若AP=5,则EF=5,故①正确;若AP⊥BD,则∠P AQ=45°,∵△AQP≌△FCE,∴∠EFC=∠P AQ=45°,∵∠BDC=45°,∴∠EFC=∠BDC,∴EF∥BD,故②正确;当AP⊥BD时,AP有最小值,此时P为BD的中点,∵AB=AD=4,∴BD=,∴AP=BD=,∵EF=AP,∴EF的最小值为,故③错误,故选:A.9.解:如图,连接BB',连接BD,∵四边形ABCD是正方形,∴BD=AB=2,BD平分∠ABC,∵E为AB边的中点,∴AE=BE=1,∵四边形BEB'F是正方形,∴BB'=BE=,BB'平分∠ABC,∴点B,点B',点D三点共线,∴B'D=BD﹣BB'=,故选:A.10.解:将正方形EFGH的位置特殊化,使点H与点A重合,过点M作MO⊥ED与O,则MO是梯形FEDC的中位线,如图:∴EO=OD=4,MO=(EF+CD)=4,∵点N、M分别是AD、FC的中点,∴AN=ND=3,∴ON=OD﹣ND=4﹣3=1.在Rt△MON中,MN2=MO2+ON2,即MN===.故选:C.二.填空题11.解:延长AF交BC于点K,∵正方形ABCD,∴AB=BC,∠ABC=90°,∴∠CBE+∠ABF=90°,∴AF⊥BE,∴∠AFB=90°,∴∠BAF+∠ABF=90°,∴∠CBE=∠BAF,又∠ABC=∠BCE=90°,∴△ABF≌△BEC,∴BF=CG=3(全等三角形对应高相等),∴BF=FH=3,作射线QH,过B作BQ⊥HQ于点Q,∴∠BFH=∠QHF=∠Q=90°,且BF=FH,∴四边形QBFH为正方形,且面积为32=9,∴BQ=BF=CE=3,∵∠PBQ+∠PBE=90°,且∠PBE=∠BEC,且∠BEC+∠GCE=90°,∴∠BPQ=∠ECG,∴△BPQ≌△CEG,∴S△CGE+S四边形BPHF=S△BPQ+S四边形BPHF=S正方形BQHF=9.故答案为:912.解:延长GF交AB于P,过H作MN⊥CD于M,交AB于N,∵四边形ABCD是正方形,∴AB∥CD,BC⊥CD,∴MN⊥AB,∵四边形DEFG是正方形,∴FG⊥CD,∴FG∥HM∥BC,∵H是BF的中点,∴PN=BN=CM=GM=CG=×(3﹣2)=,∴HN是△BFP的中位线,∴HN=FP=,∴MH=3﹣=,Rt△GHM中,由勾股定理得:GH===,故答案为:.13.解:如图,连接AF,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∴AE+BF=AF+BF,作点A关于DC的对称点H,连接FH,BH,∴AF=FH=AE,∴AE+BF=FH+BF,∴点F,点B,点H三点共线时,AE+BF的最小值为BH,∴BH===5,故答案为:5.14.解:如图,作AD⊥y轴于点D,CE⊥x轴于点E,则∠ADO=∠CEO=90°,∵四边形OABC是正方形,∴∠AOC=∠DOE=90°,OA=OC,∴∠AOD=∠COE=90°﹣∠COD,在△AOD和△COE中,,△AOD≌△COE(AAS),∵C(3,2),∴OD=OE=3,AD=CE=2,∵点A在第二象限,∴A(﹣2,3),故答案为:(﹣2,3).15.解:连接AM,延长AM交CD于G,连接FG,∵四边形ABCD是正方形,∴AB=CD=BC=2,AB∥CD,∠C=90°,∴∠AEM=∠GDM,∠EAM=∠DGM,∵M为DE的中点,∴ME=MD,在△AEM和GDM中,,∴△AEM≌△GDM(AAS),∴AM=MG,AE=DG=AB=CD,∴CG=CD=,∵点N为AF的中点,∴MN=FG,∵F为BC的中点,∴CF=BC=,∴FG==2,∴MN=1,故答案为:1.三.解答题16.解:(1)如图,作EG⊥CD于G,EH⊥BC于H,∵四边形ABCD是正方形,∴∠ACB=∠ACD.∵EG⊥CD,EH⊥BC,∴EG=EH,∵∠EGC=∠EHC=∠BCD=90°,∴四边形EGCH是矩形,∴∠GEH=90°.∵四边形DEFM是矩形,∴∠DEF=90°.∴∠DEG=∠FEH.∵∠EGD=∠EHF=90°,∴△EGD≌△EHF(ASA),∴ED=EF.∴矩形DEFM是正方形;(2)∵四边形DEFM是正方形,四边形ABCD是正方形,∴DE=DM,AD=CD,∠ADC=∠EDM=90°.∴∠ADE=∠CDM.∴△ADE≌△CDM(SAS),∴AE=CM.∴CE+CM=CE+AE=AC===6.17.(1)证明:过O作OH⊥AB于H点,∵OF⊥AC于点F,OG⊥BC于点G,∴∠OGC=∠OFC=90°.∵∠C=90°,∴四边形OGCF是矩形.∵AD,BE分别是∠BAC,∠ABC的角平分线,OF⊥AC,OG⊥BC,∴OG=OH=OF,又四边形OGCF是矩形,∴四边形OGCF是正方形;(2)解:在Rt△ABC中,∵∠BAC=60°,∴∠ABC=90°﹣∠BAC=90°﹣60°=30°,∴AC=AB,∵AC=4,∴AB=2AC=2×4=8,∵AC2+BC2=AB2,∴BC==4,在Rt△AOH和Rt△AOF中,,∴Rt△AOH≌Rt△AOF(HL),∴AH=AF,设正方形OGCF的边长为x,则AH=AF=4﹣x,BH=BG=4﹣x,∴4﹣x+4﹣x=8,∴x=2﹣2,即正方形OGCF的边长为2﹣2.18.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∵EA⊥AF,∴∠EAF=90°,∴∠F AB+∠BAE=90°,∠DAE+∠BAE=90°,∴∠F AB=∠DAE,在△BAF和△DAE中,,∴△BAF≌△DAE(ASA),∴DE=BF;(2)解:DE+BH=HE,理由如下:由(1)知△BAF≌△DAE,∴AF=AE,∵AH平分∠F AE,∴∠F AH=∠EAH,在△F AH与△EAH中,,∴△F AH≌△EAH(SAS),∴FH=EH,∴DE+BH=HE.19.(1)证明∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CG=CE,在Rt△BGC和Rt△DEC中,∴Rt△BGC≌Rt△DEC(HL),∴BG=DE,(2)连接AC,FC,∴∠ACD=∠FCD=45°,∠ACF=90°,∴△ACF为直角三角形,又∵M是AF的中点,∴CM=AF.20.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.21.(1)证明:∵DE∥AC,CE∥BD,即DE∥OC,CE∥OD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形;(2)∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∠ABO=ABC,∵∠ABC=60°,∴∠ABO=30°,∵AB=2,∴AO=AB=1,OB=AB=,∵OD=OB=,OC=OA=1,∴矩形OCED周长=2(OD+OC)=2+2;(3)当∠ABC=90°时,四边形OCED是正方形,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,∴AC=BD,∴OD=OC,∵四边形OCED是矩形,∴四边形OCED是正方形,故答案为:90.。

1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)

1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)

北师大版九上1.1菱形的性质与判定同步练习一、选择题(共10题)1. 菱形不具备的性质是( )A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2. 菱形ABCD中,∠A:∠B=1:5,若其周长为8,则菱形ABCD的高为( )B.4C.1D.2 A.123. 菱形ABCD中,AB=2,∠D=120∘,则对角线AC的长为( )A.1B.3C.2D.234. 菱形ABCD中,AC=10,BD=24,则该菱形的周长等于( )A.13B.52C.120D.2405. 如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=3,则菱形ABCD的周长是( )A.12B.16C.20D.246. 已知O为平行四边形ABCD对角线的交点,下列条件能使平行四边形ABCD成为菱形的是( )A.AB=BC B.AC=BDC.OA=OC,OB=OD D.∠A=∠B=∠C=90∘7. 如图,B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,CD,则根据作图过程判定四边形ABDC 是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线平分一组对角的四边形是菱形8. 点E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点,AC,BD交于点O,当四边形ABCD的对角线满足( )条件时,四边形EFGH是菱形.A.AC⊥BD B.AC=BDC.OA=OC,OB=OD D.OA=OB9. 平面直角坐标系中,四边形ABCD的顶点坐标分别是A(―3,0),B(0,2),C(3,0),D(0,―2),则四边形ABCD是( )A.矩形B.菱形C.正方形D.平行四边形10. 如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BC B.AC,BD互相平分C.AC=BD D.AB∥CD二、填空题(共10题)11. 如图,菱形ABCD的周长是8 cm,AB的长是cm.12. 已知菱形两条对角线的长分别为4和6,则菱形的边长为.13. 已知菱形的周长为20 cm,一条对角线长为6 cm,则这个菱形的面积是cm2.14. 如图,若菱形的边长为4,∠BAD=120∘,则较短对角线AC长为.15. 如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为.16. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,反向延长交BC于点F,则EF的长为.17. 如图,菱形ABCD的对角线AC,BD相交于点O,已知OB=4,菱形ABCD的面积为24,则AC的长为.18. 如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②AB=AC;③BF∥CE.从中选择条件可使四边形BECF是菱形.19. 如图,在四边形ABCD中,AB≠CD,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.20. 如图,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC边的中点,请你在△ABC中添加一个条件:,使得四边形AEDF是菱形.三、解答题(共7题)21. 【测试4】如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M,N.(1) 求证:四边形BNDM是菱形;(2) 若BD=24,MN=10,求菱形BNDM的周长.22. 已知:如图,在平行四边形ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1) 求证:△ABE≌△CDF;(2) 连接DG,若DG=BG,则四边形BECF是什么特殊四边形?请说明理由.23. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1) ∠CEB=∠CBE;(2) 四边形BCED是菱形.24. 如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC.(1) 求证AB=BC;(2) 若AB=2,AC=23,求平行四边形ABCD的面积.25. 在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF,求证:(1) △ABF≌△DAE.(2) DE=BF+EF.26. 在正方形ABCD中,对角线BD所在的直线上有两点E,F满足BE=DF,连接AE,AF,CE,CF,如图所示.(1) 求证:△ABE≌△ADF;(2) 试判断四边形AECF的形状,并说明理由.27. 如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1) 求证:四边形ABCD是平行四边形;(2) 若AC⊥BD,求平行四边形ABCD的面积.答案一、选择题(共10题)1. 【答案】B2. 【答案】C3. 【答案】D4. 【答案】B5. 【答案】D6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】B二、填空题(共10题)11. 【答案】212. 【答案】1313. 【答案】2414. 【答案】415. 【答案】2416. 【答案】24517. 【答案】618. 【答案】②19. 【答案】AD=BC20. 【答案】如:AB=AC,答案不唯一三、解答题(共7题)21. 【答案】(1) ∵AD∥BC,∴∠DMO=∠BNO,∵MN 是对角线 BD 的垂直平分线,∴OB =OD ,MN ⊥BD ,在 △MOD 和 △NOB 中,∠DMO =∠BNO,∠MOD =∠NOB,OD =OB,∴△MOD ≌△NOB (AAS),∴OM =ON ,∵OB =OD ,∴ 四边形 BNDM 是平行四边形,∵MN ⊥BD ,∴ 四边形 BNDM 是菱形.(2) ∵ 四边形 BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12BD =12,OM =12MN =5,在 Rt △BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13, ∴ 菱形 BNDM 的周长 =4BM =4×13=52.22. 【答案】(1) ∵ 四边形 ABCD 是平行四边形,∴AB =CD ,∠BAE =∠DCF ,在 △ABE 和 △CDF 中,AB =CD,∠BAE =∠DCF,AE =CF,∴△ABE ≌△CDF (SAS);(2) 四边形 BEDF 是菱形;理由如下:如图所示:∵ 四边形 ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AE =CF ,∴DE =BF ,∴ 四边形 BEDF 是平行四边形,∴OB =OD ,∵DG =BG ,∴EF ⊥BD ,∴ 四边形 BEDF 是菱形.23. 【答案】(1) ∵ △ABC ≌△ABD ,∴ ∠ABC =∠ABD .∵ CE ∥BD ,∴ ∠CEB =∠DBE ,∴ ∠CEB =∠CBE .(2) ∵ △ABC ≌△ABD ,∴ BC =BD .∵ ∠CEB =∠CBE ,∴ CE =CB ,∴ CE =BD .∵ CE ∥BD ,∴ 四边形 CEDB 是平行四边形.∵ BC =BD ,∴ 四边形 CEDB 是菱形.24. 【答案】(1) 因为四边形 ABCD 是平行四边形,所以 AD ∥BC ,所以 ∠DAC =∠BCA ,因为 ∠BAC =∠DAC ,所以 ∠BAC =∠BCA ,所以 AB =BC .(2) 连接 BD 交 AC 于点 O ,因为四边形 ABCD 是平行四边形,AB =BC ,所以四边形 ABCD 是菱形,所以 AC ⊥BD ,OA =OC =12AC =3,OB =OD =12BD ,所以 OB =AB 2―OA 2=22―(3)2=1,所以 BD =2OB =2,所以 S 平行四边形ABCD =12AC ⋅BD =12×23×2=23.25. 【答案】(1) ∵ 四边形 ABCD 是菱形,∴AB =AD ,AD ∥BC ,∴∠BOA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE ,∵AB =DA ,∴△ABF ≌△DAE (ASA).(2) ∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26. 【答案】(1) ∵ 正方形 ABCD ,∴AB =AD ,∠ABE =∠ADF =135∘,在 △ABE 和 △ADF 中,AB =AD,∠ABE =∠ADF,BE =DF,∴△ABE ≌△ADF (SAS).(2) 四边形 AECF 为菱形.证明:连接 AC ,∵△ABE ≌△ADF ,∴AE =AF ,∵正方形ABCD,∴EF垂直平分AC,∴EA=EC,FA=FC,∴EA=EC=FA=FC,∴四边形AECF是菱形.27. 【答案】(1) ∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形.(2) ∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴平行四边形ABCD的面积=1AC⋅BD=24.2。

3.1用树状图或表格求概率(第1课时)-北师大版九年级数学上册同步练习

3.1用树状图或表格求概率(第1课时)-北师大版九年级数学上册同步练习

北师大版数学九年级上册第三章第1节用树状图或表格求概率(第1课时)一.选择题(共10小题)1.在两个不透明的口袋中分别装有两把不同的钥匙和三把锁,其中两把钥匙分别能打开两把锁,且不能打开第三把锁,随机取出一把钥匙和一把锁,能打开的概率是( ) A .12B .13C .14D .162.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A ,B ,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是( ) A .13B .23C .19D .293.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为( )A .12B .14C .18D .1164.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A .13B .49C .35D .235.在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为( ) A .14B .23C .13D .3166.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( ) A .13B .14C .16D .187.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( ) A .第一次摸出的球是红球,第二次摸出的球一定是绿球B .第一次摸出的球是红球,第二次摸出的不一定是红球C .第一次摸出的球是红球的概率是13D .两次摸出的球都是红球的概率是198.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( ) A .49B .29C .23D .139.某校组织社团活动,小明和小刚从“数学社团”、“航模社团”、“文艺社团”三个社团中,随机选择一个社团参加活动,两人恰好选择同一个社团的概率是( ) A .13B .23C .19D .2910.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字5,6,7,8.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时重转),记录第一次转到的数当成一个两位数的个位,第二次转到的数字记为十位,则记录的数字是偶数的概率为( )A .18B .16C .14D .12二.填空题(共6小题)11.2020年某校将迎来70周年校庆,学校安排3位男老师和2位女老师一起筹办大型文艺晚会,并随机地从中抽取2位老师主持晚会,则最后确定的主持人是一男一女的概率为 .12.一个不透明的布袋里装有2个白球,1个黑球,它们除颜色外其余都相同.从中任意摸出1个球.不放回.再摸出1个球,则两次摸到的球都是白球的概率是 .13.不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是.14.经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是.15.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.则小明被抽中的概率是.16.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.三.解答题(共6小题)17.一个不透明的袋中装有白、黄、红三种颜色的球共20个,它们除颜色外完全相同,其中红球个数比黄球个数的3倍还多2个,且从袋中摸出一个球是白球的概率为1 10.(1)求袋中白、黄、红三种颜色的球的个数;(2)求摸出一个球是黄球的概率;(3)若再向袋中放入4个黄球,求摸出一个球是黄球的概率.18.某商场文具专柜为了吸引顾客,设立了一个可以自由转动的转盘(转盘被等分成16份),如图所示,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、蓝色、绿色区域,顾客获得的奖品分别为玩具熊、童话书、彩色笔、文具盒.若甲顾客购物消费125元,乙顾客购物消费89元,请解答以下问题:(1)甲顾客获得一次转动转盘机会的概率为,乙顾客获得一次转动转盘机会的概率为.(2)甲顾客获得哪种奖品的概率最大?请说明理由.19.某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.20.某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.22.建荣同学收集了我省三张著名旅游景点图片(大小、形状及背面完全相同):周祖陵森林公园、庆城县博物馆、潜夫山森林公园,把这三张图片洗匀后背面朝上放置在桌面上(三张图片分别用A,B,C 表示).(1)建荣同学随机抽取一张图片,则抽取到博物馆图片是事件;(2)随机抽取两张图片,求同时抽取到森林公园图片的概率有多大(请你用列表或画树状图的方法分析).答案一.选择题(共10小题)1.B2.A3.D 4.B 5.C 6.C 7.A 8.A 9.A 10.D二.填空题(共6小题) 11.3512.1313.1214.3415.1216.16三.解答题(共6小题)17.解:(1)∵从袋中摸出一个球是白球的概率为,∴不透明的袋中白球的个数是20×=2个,设袋中有黄球x 个,则红球有(3x +2)个,根据题意得: 2+x +3x +2=20, 解得:x =4,3x +2=3×4+2=14(个),答:白球2个,黄球4个,红球有14个;(2)∵黄球有4个,∴摸出一个球是黄球的概率是=;(3)再向袋中放入4个黄球,则黄球共有8个,袋中球的个数为20+4=24个,所以摸出一个球是黄球的概率为=.18.解:(1)∵顾客每购买100元的商品,就能获得一次转动转盘的机会,又∵甲顾客购物消费125元,乙顾客购物消费89元,∴甲顾客获得一次转动转盘机会的概率为1,乙顾客获得一次转动转盘机会的概率0;故答案为:1,0;(2)∵转盘被等分成16份,红色区域有1份,∴顾客获得的玩具熊的概率是;∵黄色区域有1份,∴顾客获得的童话书的概率是;∵蓝色区域有2份,∴顾客获得的彩色笔的概率是=;∵绿色区域有4份,∴顾客获得的文具盒的概率是=,∵>>,∴甲顾客获得文具盒的概率最大.19.解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P(两名同学选到相同项目)==.20.解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60﹣9﹣15﹣12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是=.21.解:(1)∵蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶,∴甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是:;故答案为:;(2)根据题意画树状图如下:共有6种等可能的情况数,其中两人选购到同一种类奶制品的有2种,则两人选购到同一种类奶制品的概率是=.22.解:(1)∵三张图片洗匀后背面朝上放置在桌面上,∴建荣同学随机抽取一张图片,则抽取到博物馆图片是随机事件;(2)列表如下:A B CA(B,A)(C,A)B(A,B)(C,B)C(A,C)(B,C)所有等可能的情况数为6种,其中同时抽取到森林公园图片的结果有2种,则P(抽到森林公园图片)==.。

北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为()A.60°B.75°C.72° D2.关于矩形的性质、下面说法错误的是()A.矩形的四个角都是直角B.矩形的两组对边分别相等C.矩形的两组对边分别平行D.矩形的对角线互相垂直平分且相等3.在矩形ABCD中,以A为圆心,AD长为半径画弧,交AB于F点,以C为圆心,CD长为半径画弧,交AB于E点,若AD=2,CD=√5则EF=()A.1B.4−√5C.√5−2 D4.顺次连接矩形各边中点得到的四边形是()A.梯形B.矩形C.菱形D.正方形5.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD交BC边于点E,点F是AE的中点,连接OF,若∠BDC=2∠ADB,AB=1则FO的长度为()A.√32B.12C.√3−1 D6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=2,则四边形CODE的周长是()A.2.5B.3C.4D.57.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,下列结论中,不正确...的是()A.当AB⊥AD时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当AB=AC时,四边形ABCD是菱形8.依据所标数据,下列四边形不一定为矩形的是()A.B.C.D.二、填空题9.如图,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可)10.如图,矩形ABCD中,点A坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是;11.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5且OE=2DE,则DE的长为.12.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm213.如图,在矩形ABCD中AD=4,AB=6作AE平分∠BAD,若连接BF,则BF的长度为。

北师大版九年级数学上册第一章 1.3正方形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.3正方形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.3正方形的性质与判定同步练习题第1课时正方形的性质1.正方形具有而菱形不一定具有的特征有(C)A.对角线互相垂直平分 B.内角和为360°C.对角线相等 D.对角线平分内角2.如图,在正方形ABCD的外侧作等边△ABE,则∠BED为(C)A.15° B.35° C.45° D.55°3.如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是(C)A.1 B.2 C.3 D.44.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF的中点,那么CH5.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为(-1,5).6.如图,正方形ABCD的边长为2,点E,F分别是CD,BC的中点,AE与DF交于点P,连接CP,则CP57.如图,正方形ABCD的边长为1,AC,BD是对角线,延长DA到H,使DH=DB,在DB 上截取DG=DC,连接GH交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正确结论的序号是①②③.8.如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE =DF,连接AE,AF,EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠ADC=∠ADF=90°.在△ABE和△ADF中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADF,BE =DF ,∴△ABE ≌△ADF(SAS). (2)∵△ABE≌△ADF, ∴AE =AF ,∠BAE =∠DAF. ∵∠BAE +∠EAD=90°,∴∠DAF +∠EAD=90°,即∠EAF=90°. ∴EF =2AE =5 2.9.如图,在正方形ABCD 中,点E ,F 在对角线BD 上,AE ∥CF ,连接AF ,CE. (1)求证:△ABE≌△CDF;(2)试判断四边形AECF 的形状,并说明理由.解:(1)证明:∵在正方形ABCD 中,AB =CD ,∠ABE =∠CDF=45°, 又∵AE∥CF,∴∠AEF =∠CFE. ∴∠AEB =∠CFD. ∴△ABE ≌△CDF(AAS).(2)四边形AECF 是菱形.理由如下: 连接AC 交BD 于点O ,则AC⊥BD. ∵△ABE ≌△CDF ,∴BE =DF.又∵OB=OD ,∴OB -BE =OD -DF ,即OE =OF.又∵AC⊥EF,OA =OC , ∴四边形AECF 是菱形.10.如图,O 为正方形ABCD 对角线的交点,E 为AB 边上一点,F 为BC 边上一点,△EBF 的周长等于BC 的长.(1)若AB =24,BE =6,求EF 的长; (2)求∠EOF 的度数.解:(1)设BF =x ,则FC =BC -BF =24-x. ∵BE =6,BE +BF +EF =BC , ∴EF =18-x.在Rt △BEF 中,BE 2+BF 2=EF 2, ∴62+x 2=(18-x)2,解得x =8. ∴EF =18-x =10.(2)在FC 上截取FM =FE ,连接OM , ∵C △EBF =BE +EF +BF =BC , ∴BE +EF +BF =BF +FM +MC. ∴BE =MC =6.∵四边形ABCD 为正方形, ∴OB =OC ,∠OBE =∠OCM=45°. 在△OBE 和△OCM 中,⎩⎪⎨⎪⎧OB =OC ,∠OBE =∠OCM,BE =CM ,∴△OBE ≌△OCM(SAS).∴∠EOB =∠MOC,OE =OM. ∴∠EOM =∠BOC=90°. 在△OFE 和△OFM 中, ⎩⎪⎨⎪⎧OE =OM ,OF =OF ,EF =MF ,∴△OFE ≌△OFM(SSS). ∴∠EOF =∠MOF=12∠EOM=45°.11.如图,E ,F 分别是正方形ABCD 的边CB ,DC 延长线上的点,且BE =CF ,过点E 作EG ∥BF ,交正方形外角的平分线CG 于点G ,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF 是平行四边形.证明:(1)∵四边形ABCD 是正方形, ∴AB =BC ,∠ABC =∠BCD=90°. ∴∠ABE =∠BCF=90°.在△ABE 和△BCF 中,⎩⎪⎨⎪⎧AB =BC ,∠ABE =∠BCF,BE =CF ,∴△ABE ≌△BCF(SAS). ∴AE =BF ,∠BAE =∠CBF.∵EG ∥BF ,∴∠CBF =∠CEG.∴∠CEG=∠BAE.∵∠BAE +∠BEA=90°,∴∠CEG +∠BEA=90°,即∠AEG=90°. ∴AE ⊥EG.又∵EG∥BF,∴AE ⊥BF. (2)延长AB 至点P ,使BP =BE ,连接EP , 则AP =CE ,∠EBP =90°. ∴∠P =45°.∵CG 为正方形ABCD 外角的平分线, ∴∠ECG =45°.∴∠P =∠ECG. 在△APE 和△ECG 中,⎩⎪⎨⎪⎧∠P=∠ECG,AP =EC ,∠PAE =∠CEG,∴△APE ≌△ECG(ASA).∴AE=EG. ∵AE =BF ,∴EG =BF. ∵EG ∥BF ,∴四边形BEGF 是平行四边形.12.如图,点M 是正方形ABCD 的边BC 上一点,连接AM ,点E 是线段AM 上一点,∠CDE 的平分线交AM 延长线于点F.(1)如图1,若点E 为线段AM 的中点,BM ∶CM =1∶2,BE =10,求AB 的长; (2)如图2,若DA =DE ,求证:BF +DF =2AF.解:(1)设BM =x ,则CM =2x ,BA =BC =3x. 在Rt △ABM 中,E 为斜边AM 的中点,∴AM=2BE=210.∵AM2=MB2+AB2,∴40=x2+9x2,解得x=2.∴AB=3x=6.(2)证明:如图,过点A作AH⊥AF,交FD的延长线点H,过点D作DP⊥AF于点P.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF,∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°-45°=45°.∴AH=AF.∴HF=2AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又∵AB=AD,∴△ABF≌△ADH(SAS).∴BF=DH.∵HF=DH+DF=BF+DF,∴BF+DF=2AF.第2课时正方形的判定1.下列说法中,不正确的是(D)A.对角线互相垂直的平行四边形是菱形B.一组对边平行且相等的四边形是平行四边形C.对角线垂直的矩形是正方形D.一组对边相等且有一个角是直角的四边形是矩形2.如图,将矩形纸片折叠,使A点落在BC上的F处,折痕为BE.若沿EF剪下,则折叠部分是一个正方形,其数学原理是(A)A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形D.轴对称图形是正方形3.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC;②∠ABC =90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是(B)A.①② B.②③ C.①③ D.②④4.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是(A)A.AB=CD,AB⊥CDB.AB=CD,AD=BCC.AB=CD,AC⊥BDD.AB=CD,AD∥BC5.如图,在▱ABCD中,AE⊥BC于点E,CF⊥AD于点F,∠B=60°,当边+1)∶2时,四边形AECF是正方形.6.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是7.如图,在矩形ABCD内有一点F,FB与FC分别平分∠ABC和∠BCD,点E为矩形ABCD 外一点,连接BE,CE.现添加下列条件:①EB∥CF,CE∥BF;②BE=CE,BE=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF,其中能判定四边形BECF是正方形的是①②③④.(填序号)8.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中:①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.正确结论的序号是①②③.9.如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).10.如图,矩形ABCD的对角线相交于点O,PB∥AC,PC∥BD,PB,PC相交于点P.(1)猜想四边形PCOB是什么四边形?并说明理由;(2)当矩形ABCD满足什么条件时,四边形PCOB是正方形?解:(1)四边形PCOB是菱形.理由如下:∵PB∥AC,PC∥BD,∴四边形PCOB为平行四边形.∵四边形ABCD为矩形,∴OB=OC.∴四边形PCOB为菱形.(2)当AC⊥BD时,四边形PCOB是正方形.理由如下:∵四边形PCOB为菱形,AC⊥BD,∴四边形PCOB为正方形.11.如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.证明:(1)∵四边形ABCD 是平行四边形,∴AO =OC. ∵△ACE 是等边三角形, ∴EO ⊥AC ,即 BD⊥AC. ∴四边形ABCD 是菱形.(2)∵△ACE 是等边三角形,EO ⊥AC ,AO =OC , ∴∠AEO =∠CEO=30°.∵∠AED =2∠EAD,∴∠EAD =15°. ∴∠DAO =∠EAO-∠EAD=45°. ∵四边形ABCD 是菱形, ∴∠BAD =2∠DAO=90°. ∴四边形ABCD 是正方形.12.如图,在四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC. (1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△CDE 中, ⎩⎪⎨⎪⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE≌△CDE(SSS).∴∠ADE=∠CDE.∵AD∥BC,∴∠ADE=∠CBD.∴∠CDE=∠CBD.∴BC=CD.∵AD=CD,∴BC=AD.∴四边形ABCD为平行四边形.∵AD=CD,∴四边形ABCD是菱形.(2)∵BE=BC,∴∠BCE=∠BEC.∵∠C BE∶∠BCE=2∶3,∴∠CBE=180°×22+3+3=45°.∵四边形ABCD是菱形,∴∠ABE=45°.∴∠ABC=90°.∴四边形ABCD是正方形.13.如图,四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=22,CE=2,求CG的长;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.解:(1)证明:作EP⊥CD于点P,EQ⊥BC于点Q,∵∠DCA=∠BCA=45°,∴EQ=EP.∴∠CEQ=∠CEP=45°.∴∠QEF +∠FEC=45°,∠PED+∠FEC=45°. ∴∠QEF =∠PED.在△EQF 和△EPD 中,⎩⎪⎨⎪⎧∠QEF=∠PED,EQ =EP ,∠EQF =∠EPD,∴△EQF ≌△EPD(ASA).∴EF=ED. ∴矩形DEFG 是正方形.(2)在Rt △ABC 中,AC =2AB =4. ∵EC =2,∴AE =CE =2. ∴DE ⊥AC ,DE =EC.∴点F 与C 重合,此时△DCG 是等腰直角三角形. ∴CG =2.(3)∠EFC =130°或40°.第3课时 正方形的性质与判定的运用1.如图所示,在正方形ABCD 中,O 是对角线AC ,BD 的交点,过点O 作OE⊥OF,分别交AB ,BC 于E ,F.若AE =4,CF =3,则EF 的长为(C)A .3B .4C .5D .62.将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…,A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是(B)A.n B.n-1C.4(n-1) D.4n3.如图,边长为1的正方形ABCD的对角线交于点O,点E是边AB上一动点,点F在边BC上,且满足OE⊥OF,在点E由A运动到B的过程中,以下结论中正确的个数为(B)①线段OE的大小先变小后变大;②线段EF的大小先变大后变小;③四边形OEBF的面积先变大后变小.A.0 B.1 C.2 D.34.如图,在正方形ABCD中,E,F分别是边BC,CD上的点,∠EAF=45°,△ECF的周长为6,则正方形ABCD的边长为3.5.如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH26.如图,在正方形ABCD中,点P为AD延长线上一点,连接AC,CP,F为AB边上一点,满足CF⊥CP,AC=3,3DP=AB,则FP7.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上.若CE=35,且∠ECF=45°,则CF的长为8.如图,已知在正方形ABCD中,点E,F分别为边BC与CD上的点,且∠EAF=45°,AE与AF分别交对角线BD于点M,N,则下列结论正确的是①②④.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF.9.如图,E,F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为4,则线段DH长度的最小值是10.如图,已知正方形ABCD,M在CB延长线上,N在DC延长线上,∠MAN=45°.求证:MN=DN-BM.证明:在DN上截取DE=MB,连接AE,∵四边形ABCD是正方形,∴AD =AB ,∠D =∠ABM=90°. 在△ABM 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABM =∠D,BM =DE ,∴△ABM ≌△ADE(SAS). ∴AM =AE ,∠MAB =∠EAD. ∵∠MAN =∠MAB+∠BAN=45°, ∴∠DAE +∠BAN=45°. ∴∠EAN =∠MAN=45°.在△AMN 和△AEN 中,⎩⎪⎨⎪⎧AM =AE ,∠MAN =∠EAN,AN =AN ,∴△AMN ≌△AEN(SAS). ∴MN =EN. ∵EN =DN -DE , ∴MN =DN -BM.11.操作:将一把三角尺放在如图1的正方形ABCD 中,使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q.探究:(1)如图2,当点Q 在DC 上时,求证:PQ =PB ;(2)如图3,当点Q 在DC 延长线上时,(1)中的结论还成立吗?简要说明理由.解:(1)证明:过点P 作PN⊥AB 于点N ,NP 延长线交CD 于点M ,在正方形ABCD 中,AB ∥CD ,∠ACD =45°, ∴∠PMQ =∠PNB =∠CBN=90°. ∴四边形CBNM 是矩形.∴CM =BN ,△CMP 是等腰直角三角形. ∴PM =CM =BN.∵∠PBN +∠BPN=90°,∠BPN +∠MPQ=90°, ∴∠MPQ =∠PBN.在△PMQ 和△BNP 中,⎩⎪⎨⎪⎧∠MPQ=∠NBP,∠PMQ =∠BNP,PM =BN ,∴△PMQ ≌△BNP(AAS). ∴PQ =PB.(2)(1)中结论成立.理由:过点P 作PN⊥AB 于点N ,NP 延长线交CD 于点M , 在正方形ABCD 中,AB ∥CD ,∠ACD =45°, ∴∠PMQ =∠PNB=∠CBN=90°. ∴四边形CBNM 是矩形.∴CM =BN ,∴△CMP 是等腰直角三角形. ∴PM =CM =BN.∵∠PBN +∠BPN=90°,∠BPN +∠MPQ=90°, ∴∠MPQ =∠PBN.在△PMQ 和△BNP 中,⎩⎪⎨⎪⎧∠MPQ=∠NBP,∠PMQ =∠BNP,PM =BN ,∴△PMQ ≌△BNP(AAS). ∴PQ =PB.12.如图,在正方形ABCD中,P是BC上一动点(不与B,C重合):①CE平分∠DCF;②AP⊥PE;③AP=EP.以此三个条件中的两个为条件,另一个为结论,可构成三个命题,即:①②⇒③,①③⇒②,②③⇒①.(1)试判断上述三个命题是否正确(直接作答);(2)请选择一个你认为正确的命题给予证明.解:(1)上述三个命题均正确.(2)答案不唯一,选①③⇒②证明:在AB上截取AM=CP,则BM=BP.∴∠BMP=∠BPM=45°,∠AMP=135°.∵CE平分∠DCF,∴∠DCE=45°.∴∠ECP=135°.过点A作AG⊥MP交MP的延长线于点G,过点P作PH⊥EC交EC的延长线于点H,∴∠AMG=∠PCH=45°,∠G=∠H.∴△AGM≌△PHC(AAS).∴AG=PH.∵AP=PE,∴Rt△AGP≌Rt△PHE(HL).∴∠GPA=∠PEH.∵∠BPM=∠CPH=45°,B,P,C三点共线,∴M,P,H三点共线.∵∠PEH+∠EPH=90°,∴∠GPA+∠EPH=90°.∴∠APE=90°.∴AP⊥PE.。

2023-2024学年北师大版九年级数学上册《第一章 菱形的性质与判定》同步练习题附含答案

2023-2024学年北师大版九年级数学上册《第一章 菱形的性质与判定》同步练习题附含答案

2023-2024学年北师大版九年级数学上册《第一章菱形的性质与判定》同步练习题附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.顺次连结矩形各边中点所得的四边形是()A.矩形B.菱形C.正方形D.等腰梯形2.如图,菱形ABCD的周长为8,∠ABC=120°,则AC的长为()A.2 √3B.2 C.√3D.13.如图,在菱形ABOC中,对角线OA在y轴的正半轴上,且OA=4,直线y=23x+43过点C,则菱形ABOC的面积是 ( )A.4 B.323C.8 D.1634.如图,两条宽度都为3cm的纸条,交叉重叠放在一起,它们的交角α为60°,则它们重叠部分(阴影部分)的面积为()A.2√3cm2 B.3√3cm2 C.4√3cm2 D.6√3cm25.如图,菱形ABCD的周长为8cm,高AE长为√3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:√2D.1:√36.如图有一张长为12,宽为8的长方形(矩形)纸片,先将其上下对折,再左右对折,最后沿着虚线剪下一个直角三角形①,若该直角三角形①的直角边长为整数,将①展开可得一个四边形,则下列哪个选项不能作为该四边形的面积()A.18 B.24 C.28 D.307.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°8.如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有()个。

北师大版九年级数学上学期第一章:特殊的平行四边形 同步练习题 (含答案)

北师大版九年级数学上学期第一章:特殊的平行四边形  同步练习题  (含答案)

第一章特殊的平行四边形一.选择题(共10小题)1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20 B.24 C.40 D.482.如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.5B.2C.D.3.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.284.如图,在四边形ABCD中,AC与BD相交于点O,∠OAB=∠OAD,BO=DO,那么下列条件中不能判定四边形ABCD是菱形的为()A.OA=OC B.BC=DC C.AD=BC D.AD=DC5.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④6.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN,CN⊥AN,MN为垂足若AB=a,则DM+CN的值为()A.a B.a C.D.7.如图,矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BD交AD于点E.已知AB=2,△DOE的面积为,则AE的长为()A.B.2 C.1.5 D.8.在平行四边形ABCD中添加下列条件,不能判定四边形ABCD是矩形的是()A.∠ABC=90°B.AC⊥BD C.AC=BD D.∠ACD=∠CDB 9.正方形ABCD的一条对角线长为8,则这个正方形的面积是()A.4B.32 C.64 D.12810.在正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF二.填空题(共10小题)11.已知,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,∠BAE=23°.则∠FEC=度.12.在菱形ABCD中,AD=10,AC=12,则菱形ABCD的面积是.13.如图在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=时,平行四边形CDEB为菱形.14.如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD是菱形,所添条件为(写出一个即可)15.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为.16.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=.17.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).18.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.19.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.20.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.三.解答题(共7小题)21.如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.22.如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE ∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形;(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是.23.已知:AC,BD为菱形ABCD的对角线,∠BAD=60°,点EF分别在AD,CD边上,且∠EBF=60°.(1)求证:△BEF是等边三角形;(2)当∠ABE=15°时,AB=1+,求BE.24.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.25.(1)如图1,已知正方形ABCD,点E在BC上,点F在DC上,且∠EAF=45°,则有BE+DF =.若AB=4,则△CEF的周长为.(2)如图2,四边形ABCD中,∠BAD=∠C=90°,AB=AD,点E,F分别在BC,CD上,且∠EAF=45°,试判断BE,EF,DF之间的数量关系,并说明理由.26.在正方形ABCD的外侧作等腰△ABE,已知∠EAB=a,连接ED交等腰△ABE底边上的高AF所在的直线于点G.(1)如图1,若a=30°,求∠AGD的度数;(2)如图2,若90°<a<180°,BE=8,DE=14,则此时AE的长为.27.如图,在矩形ABCD中,AB=4cm,AD=12cm;P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,两点同时出发,待P点到达D点为止,求经过多长时间四边形ABQP为矩形?参考答案与试题解析一.选择题(共10小题)1.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.【解答】解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AO=CO=3cm,BO=DO=4cm,∠BOC=90°,∴BC==5(cm),∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.3.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA,∵菱形ABCD的周长为24,∴AD=AB=6,∵AC+BD=16,∴AO+BO=8,∴AO2+BO2+2AO•BO=64,∵AO2+BO2=AB2,∴AO•BO=14,∴菱形的面积=4×三角形AOD的面积=4××14=28,故选:D.4.【解答】解:A、若AO=OC,且BO=DO,∴四边形ABCD是平行四边形,∴AB∥CD∴∠BAO=∠OCD,且∠OAB=∠OAD∴∠OAD=∠OCD∴AD=CD,∴四边形ABCD是菱形故A选项不符合题意B、若BC=DC,BO=DO∴AC是BD的垂直平分线∴AB=AD则不能判断四边形ABCD是菱形故B选项符合题意,C、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=BC∴AB=AD=BC=CD∴四边形ABCD是菱形故C选项不符合题意D、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=CD∴AB=AD=BC=CD∴四边形ABCD是菱形故D选项不符合题意故选:B.5.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.6.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,CD=AB=a,∴AN平分∠DAB,∴∠DAM=45°,∴∠CEN=∠DEM=45°,∵DM⊥AN,CN⊥AN,∴△DME和△CNE是等腰直角三角形,∴DM=DE,CN=CE,∴DM+CN=(DE+CE)=CD=a;故选:C.7.【解答】解:连接BE,如图所示:由题意可得,OE为对角线BD的垂直平分线,∴BE=DE,S△BOE=S△DOE=,∴S△BDE=2S△BOE=.∴DE•AB=,又∵AB=2,∴DE=,∴BE=在Rt△ABE中,由勾股定理得:AE===1.5.故选:C.8.【解答】解:A、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵∠ACD=∠CDB,∴OD=OC,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.9.【解答】解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为8,∵正方形又是菱形,菱形的面积计算公式是S=ab(a、b是正方形对角线长度)∴S=×8×8=32,故选:B.10.【解答】解:由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF(SAS),∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选:B.二.填空题(共10小题)11.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=∠EAF=60°,∴△ABC是等边三角形,∠BCD=120°,∴AB=AC,∠B=∠ACF=60°,∵∠BAE+∠EAC=∠FAC+∠EAC,∴∠BAE=∠FAC,且AB=AC,∠B=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,又∵∠EAF=∠D=60°,∴△AEF是等边三角形,∴∠AEF=60°,又∠AEC=∠B+∠BAE=83°,∴∠CEF=83°﹣60°=23°.故答案为:2312.【解答】解:如图,连接AC,BD交于点O.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=6,∴∠AOD=90°,∴OD==8,∴BD=2OD=16,∴S菱形ABCD=×AC×BD=×12×16=96,故答案为96.13.【解答】解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==10若平行四边形CDEB为菱形时,CE⊥BD,OD=OB,CD=CB.∵AB•OC=AC•BC,∴OC=.∴OB==∴AD=AB﹣2OB=故答案为:14.【解答】解:根据一组邻边相等的平行四边形是菱形,则可添加条件为:AB=AD(AD=CD,BC=CD,AB=BC)也可添加∠1=∠2,根据平行四边形的性质,可求AD=CD.根据对角线互相垂直的平行四边形是菱形,则可添加条件为:AC⊥BD.故答案为:AB=AD(答案不唯一)15.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.16.【解答】解:如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:a•a=a2,∴菱形形变前的面积与形变后的面积之比:a2:a2=2:,∵这个菱形的“形变度”为2:.∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,S△AEF=×2×2+×2×2=4,∵若这个菱形的“形变度”k=,∴=,即=,∴S△A′E′F′=.故答案为:.17.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.18.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2019.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.20.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵BF⊥a,DE⊥a,∴∠AED=∠AFB=90°∴∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:8三.解答题(共7小题)21.【解答】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=9,∴a+b=3,∴=.22.【解答】(1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:连接EF交BC于O,如图所示:∵AD=7,AB=DC=2.5,∴BC=AD﹣AB﹣DC=2,∵四边形BFCE是菱形,∠EBD=60°,EF⊥BC,OB=BC=1,OE=OF,∴△CBE是等边三角形,∠BEO=30°,∴BC=EC=2,∴OE=OB=,∴EF=2,∴菱形BFCE的面积=BC×EF=×2×2=2;故答案为:2.23.【解答】证明:(1)∵四边形ABCD是菱形∴AB=AD=BC=CD,且∠BAD=60°∴△ABD是等边三角形,∠ADC=120°∴AB=AD=BD,∠ABD=∠ADB=60°∴∠ABD=∠EBF=60°=∠BDC,∴∠ABE=∠DBF,∠BAD=∠BDF=60°,且AB=BD∴△ABE≌△DBF(ASA)∴BE=BF,且∠EBF=60°.∴△BEF是等边三角形(2)如图,过点E作EH⊥AB于H,作∠GEB=∠ABE=15°,∴∠EGH=30°,GE=GB,设HE=x,在Rt△GHE中,∠EGH=30°∴GE=2x=BG,HG=x,在Rt△AHE中,∠BAD=60°∴AH=x,∵AB=AH+HG+BG=1+∴x+x+2x=1+∴x=∴HE=∴BH=∵BE2=HE2+BH2,∴BE2=()2+()2,∴BE=24.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=156cm2.25.【解答】解:(1)延长EB至H,使BH=DF,连接AH,如图1,∵在正方形ABCD中,∴∠ADF=∠ABH,AD=AB,在△ADF和△ABH中,,∴△ADF≌△ABH(SAS),∴∠BAH=∠DAF,AF=AH,∴∠FAH=90°,∴∠EAF=∠EAH=45°,在△FAE和△HAE中,,∴△FAE≌△HAE(SAS),∴EF=HE=BE+HB,∴EF=BE+DF,∴△CEF的周长=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=8.故答案为:EF;8.(2)EF=BE+DF,理由如下:延长CB至M,使BM=DF,连接AM,如图2,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=∠C=90°,∠EAF=45°,即∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.26.【解答】解:(1)∵AE=AB,AF⊥BE,∠EAB=30°∴∠FAE=15°∵∠EAB=30°,∠BAD=90°∴∠EAD=120°,且AE=AD∴∠AED=∠ADE=30°∴∠AGD=∠AED+∠EAF=45°(2)如图,连接AC,BD交于点O,连接FO,∵四边形ABCD是正方形∴BO=DO,BD=AB,∠ABD=∠ADB=45°∵AE=AB,AF⊥BE∴∠AEB=∠ABE,EF=BF=4,且BO=DO∴FO=DE=7,FO∥DE∵AE=AD∴∠AED=∠ADE∵∠ABD+∠ADB+∠AED+∠ADE+∠AEB+∠ABE=180°∴2(∠AEB+∠AED)=90°∴∠DEB=45°∵FO∥DE∴∠BFO=45°,且BM⊥FO∴FM=BM,∴BF=BM=4∴BM=FM=4∴MO=3∴BO==5∴BD=2BO=10∴AB=5=AE故答案为:527.【解答】解:∵在矩形ABCD中,AD=12cm,∴AD=BC=12cm.当四边形ABQP为矩形时,AP=BQ.①当0<t<3时,t=12﹣4t,解得,t=;②当3≤t<6时,t=4t﹣12,解得t=4;③当6≤t<9时,t=36﹣4t,解得t=;④当9≤t≤12时,t=4t﹣36,解得,t=12.综上所述,当t为或4或或12时,四边形ABQP为矩形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《用因式分解法解一元二次方程》习题
一、选择题
1. 某印刷厂一月印50万册,二,三月共印132万册,问二、三月平均每月增长的百分数是
A. 20%
B.
C. 10%
D. 15%
2. 某工厂计划在长24米,宽20米的空地中间划出一块32平方米的长方形建一住房,并且四周剩余地一样宽,那么这宽度应是
A. 14米
B. 8米
C. 14米或8米
D. 以上都不对 二、填空题
3. 有两个数不等,和17,积比小点数的平方大30,用方程求这两数,设_________,根据题意,列方程得_________。

4. 一矩形面积132cm 2,周长46cm ,则矩形长是_________,宽是_________。

5. 连续两个正奇数的平方和等于202,这两个奇数中较小的是_________。

三、解答题:
6. 一批上衣原来每件500元,第一次降价,销售甚慢,第二次大幅降价的百分率是第一次的2倍,结果以每件240元价格迅速售出,求每次降价的百分率。

7. 在长为a 的线段AB 上有一点C ,且AC 是AB 、BC 的比例中项,求线段AC 的长。

165
【试题答案】
一、选择题
1. A
2. B
二、填空题
3. 小数为x ,
4. 12cm ,11cm
5. 9
三、解答题:
6. 设第一次降价的百分率为x ,则第二次降价的百分率为2x , 依题意

∴(不合题意,舍去)
()17302-=+x x x 500112240()()--=x x 50751302x x -+=x x 121520%1310===,

答:第一次降价20%,第二次降价40%。

7. 解:由题意,
(舍负)

答:线段AC 长为a 。

2220%40%x ==×AC AB BC AC x BC a x 2===-·,设,则x a a x a 20=->·()()x ax a 220+-=x a a a a a a =-+=-=-±±±224252152x a =-51251
2-。

相关文档
最新文档