比例的基本性质和解比例练习题
比例的意义的基本性质练习题
(一)比例的意义的基本性质练习题学生:一、填空。
1.()叫做比例。
2.()叫做比例的项。
()叫做比例的外项,()叫做比例的内项。
3.()这叫做比例的基本性质。
4.()叫做解比例。
5.两个比的()相等,这两个比就相等。
6、如果A:7=9:B,那么AB=()7、已知A÷=7÷B(A与B都不为0),则A与B的积是()。
8、如果5X=4Y=3Z,那么X:Y:Z=()9、如果4A=5B,那么 A:B=()。
10、甲数的4/5等于乙数的6/7(甲、乙两数都不为0),甲乙两数的比是()。
11、把、、2和四个数组成比例()12、已知三个数12、16、9,如果再添上一个数,使之能与已知三个数组成比例式,这个数应该是多少13、X:Y=3:4,Y:Z=6:5,X:Y:Z=()14、从24的约数中选出四个约数,组成两个比例式是()15、根据6a=7b,那么a:b=( )16、根据8×9=3×24,写出比例()17在一个比例中,两个外项分别是12和8,两个比的比值是3/4,写出这个比例()18、在12 、8 、16 这三个数中添上一个数组成比例,这个数可以是()、()或()。
19、用18的因数组成比值是的比例()20、在一个比例中,两个外项互为倒数,如果一个内项是,则另一个内项是( )。
21、运一堆货物,甲用7小时运完,乙用小时运完,甲和乙所用的时间的比是( ),工作效率的比是( )22、X的7/8与Y的3/4相等,X与Y的比是()23、如果x/8=Y/13 ,那么X:Y=()24、甲数除乙数的商是,那么甲数与乙数的比是( )。
25、在一个比例中,两个内向的积是9 ,两个外向的积是()26、如果A:7=9:B,那么AB=()27、已知A÷=7÷B(A与B都不为0),则A与B的积是()。
28、如果5X=4Y=3Z,那么X:Y:Z=()29、如果4A=5B,那么 A:B=()。
解比例解比例练习试题
5、如果 7x=8y,那么 x∶y=( )∶( )。
6、大圆的半径与小圆半径的比是 3∶1,则大圆的面积是小圆的面积的( )倍。
专业资料
值得拥有
WORD 格式整理
7、 甲数是乙数的 2.4 倍,乙数是甲数的( ( ),甲数占两数和的( )。
),甲数与乙数的比是( )∶
8、男生人数比女生多 20%,男生人数是女生人数的( 数的比是( )∶( )。
专业资料
值得拥有
WORD 格式整理
一、选择.
1 . 把 一 堆 化 肥 装 入 麻 袋 , 麻 袋 的 数 量 和 每 袋 化 肥 的 重 量 .( )
A.成正比例
B.成反比例
C.不成比例
2 . 和 一 定 , 加 数 和 另 一 个 加 数 .(
)
A.成正比例
B.成反比例
C.不成比例
3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是
(4)用 x,15,5 和 27 组成比例。
3∶1=x∶4 42 5
11 4 25 ∶ = ∶x
12 5 36
1
1
x∶ =0.7∶
14
2
9、根据题意,先写出比例式,然后解比例。
(1)8 与 x 的比等于 4 与 32 的比。
1 (2) 与 y 的比值就是 0.25∶4 的比值。
2 (3)用 a,30,6 和 27 组成比例。
10、若甲、乙两数相差 0.8,且甲∶乙=4∶3,你能知道甲是多少吗?
专业资料
值得拥有
WORD 格式整理
13、在一个比例中,两个外项的积是最大的两位数,其中一个内项是 33,另一个内 项是( )。
14、在比例 3:12=6:24 中,如果将第一个比的后项加 6,第二个比的前项应 ( ),比例才能成立。
六年级下册数学比例专项习题
六年级下册数学《比例》一、比例的意义和基本性质1.在一个比例中,两个外项互为倒数,其中一个内项是0.8,另一个内项是( )2.如果0.7x=-52y ,那么 x : y =( )3.在一个比例中,两个外项互为倒数,其中一个内项是43,另一个内项是( )4.在一个比例里,两个外项互为倒数,期中一个内项是,另一个内项是5.在一个比例中,两个内项的积是5.6,如果一个外项是2.8,另一个外项是( )6.如果5a=4b( b ≠0),那么 a : b =( : ),如果 a :0.5=8:0.2,那么 a =( )7.从24的因数中,选择4个因数组成比例是( )8.一个比例的两个内项分别是10和54,一个外项是4,另一个外项是( ) 9.43a =54b 则 a : b =( : )10.5A=4B( A 、 B 不等于0). A : B =( : )11.已知一个比例中两个内项的积是最小的质数,一个外项是43,另一个外项是( )12.在一个比例里,两外项互为倒数,一个内项是最大的一位数,另一个内项是( )13.如果3a=4b(b ≠0),那么 b : a =( : ) 14.214151和( )可以组成比例,组成的比例是( ) 15.把4x5=2x10改写成比例是( ),用30的4个因数组成一组比例是( )16.用41、51、2和58四个数组成两个比值相等的比,分别是( ), 和( ),组成的比例是( ) 17,如果 a 的32相当于 b 的65,那么 a : b =( : ) 18.250千克:0.35吨,化简后是( : ),比值是( ) ,化简后的比可以与 ( ) :52组成比例.19.一个比例,它的两个外项都是0.5,那么它的两个内项乘积是( )20.已知比例的两外项互为倒数,其中一个内项是1.4,另一个内项是( )二、解比例21.如果 a 与 b 互为倒数,且a 4 =xb ,那么 x=( )22.如果6: m = n :10,那么 mn =( )23.已知4,5,16,x 可以组成比例,那么 x 最大是( )最小是( )24.在比例6:A=10:B 中,如果 A 是9,那么 B 是( ),如果 B 是20,那么 A 是( )25.一个比例里的两个外项互为倒数,其中一个内项是2.5,另一个内项是( )三、图形的放大与缩小26.一个正方形边长5cm,按4:1扩大后的正方形的周长是()厘米,面积是()平方厘米。
第三单元 比例练习题
第三单元 比 例 练习题比例的意义和基本性质 练习(一)1、比表示两个数( );比例表示( )。
2、下面各个比能与2:9组成比例的是( ) A 、9:2 B 、1.5:13 C 、 1:4.53、把能组成比例的两个比用线连起来。
2.5:1 4.5:2.5 16 :27 9:49:5 4.5:2 15:6 7:124、按下面的条件组成比例。
(1)12和5 的比等于3.6和x 的比. (2)x 和13 的比等于4:3(3)x 除4.2的商等于35比例的意义和基本性质 练习(二)一、(1)写出两个比值是2.5的比,并组成比例.(2)写出比值相等的一个分数比与一个小数比,并组成比例. (3)用5、40、8、1组成两个比例式。
二、根据4×7=2×14,写出下面比例。
4:2=( ):( ) 2:7=( ):( ) 7:2=( ):( ) 2:4=( ):( ) 三、在括号里填上合适的数,使比例式成立。
8:6=4.6:( ) 6.3:( )=5:9 ( ):45 =3:32 45:7.5=( ):23四、黄河小学六(1)班有男生29人,女生26人,男生人数与女生人数的比是( ):( ),女生人数与男生人数的比是( ):( ),女生与全班人数的比是( ):( )解比例 练习 1、解比例。
2. 1∶14=13. 5∶x 161∶x =83∶61 45∶x =43x ∶3. 5=2∶14 1 2∶x =2. 4∶1. 6 x ∶21=15∶659x =5.48.0 151∶4015=10Xx 5.3=5.15成正比例的量 练习1一、填空题:1、两种相关联的量,一种量变化,另一种量也( ),如果这两种量中( )的两个数的( )一定,这两种量就叫做( ),它们的关系叫做( )。
2、如果用字母x 和y 表示两种相关联的量,用k 表示它们的比值(一定),正比例关系可以用式子表示成( )。
3、路程和时间是两种相关联的量,当它们的比值保持一定时,路程和时间是成( )比例的量,它们的关系是( )比例关系,用式子表示是( )。
六年级下册数学试题-第6周比例的意义和基本性质解比例(含答案)人教版
六年级 第6周 一级监测卷监测内容:比例的意义和基本性质 解比例时间:40分钟 满分100分一、填一填。
(每空2分,共16分)(1)表示( )的式子叫做比例。
(2)把4∶12=5∶15改写成分数形式是( )(3)在比例里,两个外项的积等于( ),这叫做比例的基本性质。
(4)在一个比例中,两个外项的积是最小的合数,一个内项是0.5,另一个内项是( )。
(5)如果3a =4b(a ,b 均不为0),那么a:b =( )。
(6)根据比例的基本性质,求出比例中未知项的过程叫做( )。
(7)65:43=94:( ) 8∶( )=34: 5 二、选择。
(将正确答案的序号填在括号里)(每题5分,共15分)1.在比例里,用两个外项的积除以两个内项的积,商是( )。
A. 0B. 1C. 2D.无法确定2.下面的各比中,与1.5∶1.8比值相等的是( )。
A. 51∶61 B. 5∶6 C.20∶30 D. 5∶60 3.下面数中,能与6、9、10组成比例的是( )。
A. 1.5B. 2C. 7D. 5.4三、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(共10分) 5∶7和8∶1321∶31和61∶91四、解下列比例。
(每题5分,共30分)3:18=5:x 34 :x =56 : 49x :0.25=3.6:0.1x ∶10=41∶31 1415 :34 =x :57 3.64.8 = 4x五、根据条件列出比例,并解比例。
(每题5分,共10分)(1)1514 与x 的比等于34 与75 的比。
(2)比例的两个外项分别是0.9和2.4,两个内项分别是x 和0.72。
六、解决问题。
(共19分)1.相同质量的水和冰的体积之比是9∶10。
15m 3的水结成冰后,冰的体积是多少立方米?(3分)2.某玩具厂按1:300的比例生产了一批运载火箭模型。
①运载火箭实际高53.1米,模型高多少厘米?(4分)②运载火箭模型高20.2cm,它的实际高度多少米?(4分)3.班主任张老师买了8个笔记本和12支钢笔,买这两种商品所花的钱数相等。
比的基本性质、解比例练习
1.6×( )=( )×
=2.4:1.6 4
5 3、8×0.1=1× 8 () () ()
()
=
1 () () ()
=
5×( )=( )×( ) 4 5 :( )=( ):
六、解决问题 1、一张图片放大后的长度是8.3米,放 大后的长度与原来的比是10:1,这张 图片原来的长度是多少米?
2、静静在一张照片上高5.5厘米,她在 照片上的高度与实际高度的比是1:24, 她的实际高度是多少厘米?
⑴ 3.5∶6
6∶1.5
4.下面的数中,能与6、9、10组成 比例的是( ⑴7 )。 ⑵ 5.4 ⑶ 1.5
5、一个长14厘米,宽10厘米的长方 形按一定的比例放大后,宽是120厘 米,长是( )厘米。
A 85
B 168
C 206
五、填一填 1 .6 10 1、 .4 = 15 2 () 2、5:
3 4
的比等于
1 5
和
2 5
的比
检测评价
③等号左端的比是1.5∶ X,等号右端 比的前项和后项分别是3.6和4.8. ④比例的两个内项2和5,两个外项分 别是X和2.5。 3、育新小区1号楼的实际高度为 35m,它的高度与模型高度的比是500: 1模型的高度是多少厘米?
4、某罪犯作案后逃离现场,只留下一 只长25厘米的脚印。已知脚的长度与人 体身高之比是1:7,你能推测罪犯身高大 约是多少吗?
一、填空
1、解比例的根据是(
)
3 2、在比例中,如果两个外项的积是 8
1,已知一个内项是
项是( )。
,另一个内
3、小青和小军的体重比是3:4,已
知小青重24千克,小军重( )千克。
比和比例练习题
比例的意义的基本性质练习题一、、按要求写比例。
1.写出一个你喜欢的比例。
2.写出一个比值是53的比例。
3.一个比例的两个外项互为倒数,一个内项是101,写出符合条件的一个比例 。
4.一个比例的两个内项的积是54 ,一个外项是83,写出符合条件的一个比例。
5.一个比例,组成比例的比的比值是41,两个外项分别是17和53,写出这个比例。
6.有两个比,比值都是32,第一个比的后项与 第二个比的前项都是6,把这两个比组成比例。
二、、按要求转化。
1.把6×8=24×2改写成四个比例。
2.把7m =8n 改写成四个比例。
3.如果7 a =6 b ,那么a :b = ( ):( )。
4.如果9 a =5b ,那么b :a = ( ):( )。
5.如果53a =94b ,那么 a :b =( );( ) 。
6.如果83a =0.45b ,那么 b :a =( ):( )。
7.如果甲数的54与乙数的97相等,那么甲数与乙数的比是( )。
8.男生人数的85与女生人数的95相等,那么女生人数与男生人数的比是( )。
三、选择题(选择正确答案的序号填在括号里)。
1.比例5∶3=15∶9的内项3增加6,要使比例成立,外项9应该增加( )。
⑴ 6 ⑵ 18 ⑶ 27 2.把2千克盐加入15千克水中,盐与盐水重量的比是( )。
⑴ 2∶15 ⑵ 15∶17 ⑶ 2∶17 3.下面的比中能与3∶8组成比例的是( )。
⑴ 3.5∶6 ⑵ 1.5∶4 ⑶ 6∶1.54.下面的数中,能与6、9、10组成比例的是( )。
⑴ 7 ⑵ 5.4 ⑶ 1.5 (1)如果A :7=9:B ,那么AB=( )(2) 已知A÷10.5=7÷B (A 与B 都不为0),则A 与B 的积是( )。
(3)如果5X=4Y=3Z ,那么X :Y :Z=( ) (4)如果4A=5B ,那么 A:B=( )。
(5)甲数的4/5等于乙数的6/7(甲、乙两数都不为0),甲乙两数的比是( )。
解比例典型例题及答案
解比例答案典题探究例1.按下面的条件列出比例并解比例.(1)5和8的比等于20和X的比.(2)4和12的比等于8和X的比.(3)等号左端的比是4.5:X,等号右端的比是0.3:4.(4)比的两个外项分别是X和1.5,两个内项分别是2.8和3.考点:解比例.专题:比和比例.分析:(1)根据题意先列出比例式5:8=20:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除5,即可得解;(2)根据题意先列出比例式4:12=8:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除4,即可得解;(3)根据题意先列出比例式4.5:x=0.3:4,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除0.3,即可得解;(4)根据题意先列出比例式x:2.8=3:1.5,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除1.5,即可得解;解答:解:(1)5:8=20:x;5x=20×85x÷5=160÷5x=32;(2)4:12=8:x4x=12×84x÷4=96÷4x=24;(3)4.5:x=0.3:40.3x=4×4.50.3x÷0.3=18÷0.3x=60;(4)x:2.8=3:1.51.5x=3×2.81.5x÷1.5=8.4÷1.5x=5.6.点评:此题考查解比例的方法:根据两内项之积等于两外项之积,把比例式转化为乘积式是解题的关键.例2.求未知数x的值.(1)7:x=0.8:2.4;(2)=;(3)x:=18:.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质可得:0.8x=7×2.4,再利用等式的性质,两边同时除以0.8求解;(2)根据比例的基本性质可得:15x=20×0.8,再利用等式的性质,两边同时除以15求解;(3)根据比例的基本性质可得:x=×18,再利用等式的性质,两边同时除以求解.解答:解:(1)7:x=0.8:2.40.8x=7×2.40.8x÷0.8=16.8÷0.8x=21;(2)=15x=20×0.815x÷15=16÷15x=;(3)x:=18:x=×18x=x=.点评:此题考查了比例的基本性质和等式的性质的计算应用.例3.若自然数A、B满足﹣=,且A:B=4:5.那么A=8,B=10.考点:解比例.专题:简易方程.分析:把﹣=的左边通分成,由A:B=4:5,根据比例的性质,可得5A=4B,推出A=B,把A=B代人=中,即可求得B的数值,进而求得A的数值.解答:解:因为A:B=4:5,所以5A=4B,A=B;﹣=,=,把A=B代人=中,得:=,=,×=,=,B=10;把B=10代入A=B中,A=B=×10=8;故答案为:8,10.点评:用含B的式子表示出A是解答此题的关键,进而代入方程即可得解.例4.只列算式(或方程),不计算.(1)比例的两个内项分别是5和2,两个外项分别是x和3.5.(2考点:解比例;分数除法应用题.专题:压轴题.分析:(1)根据比例的基本性质“两外项之积等于两内项之积”,据此列出方程即可;(2)根据图意,可知把这根绳子的总长看做单位“1”,用去了,还剩下300米;要求单位“1”的量,要先求出还剩下的300米对应的分率是多少列式为:1﹣,进而用具体的数量除以具体的数量对应的分率即可解答.解答:解:(1)x:2=5:3.5;(2)300÷(1﹣).点评:此题考查根据题意或图意,列比例式或算式,解决关键是要分析好题意或图意,灵活的解答即可.演练方阵A档(巩固专练)一.选择题(共7小题)1.在2、3、这三个数中插入第四个数X,使得这四个数能组成比例,那么X最小是()A.B.C.D.考点:解比例;比例的意义和基本性质.专题:比和比例.分析:根据比例的性质:两内项之积等于两外项之积.要使插入的第四个数X最小,即要使两内项之积或两外项之积最小,积最小为:2×,据此解答即可.解答:解:由分析可得:2×=3X,所以X=.故选:C.点评:解答本题的关键是,分析出要使插入的第四个数X最小,即要使两内项之积或两外项之积最小.2.(•静宁县)在比例中,两个外项互为倒数,两个内项()A.成正比例B.成反比例C.不成比例考点:解比例;正比例和反比例的意义.分析:根据倒数的定义结合比例的基本性质,即可得出两个内项的关系.解答:解:因为在比例中,两个外项互为倒数,所以两个内项的积=1,所以两个内项成反比例.故选:B.点评:本题考查了正比例和反比例的意义,得到两个内项的积=1是解题的关键.3.(•厦门)如果a÷=b×(a、b都不等于零),那么()A.a>b B.a=b C.a<b考点:解比例;比与分数、除法的关系.专题:压轴题.分析:可令a÷=b×的值为1,求得a,b,再比较a,b的关系.解答:解:令a÷=b×=1,则a=,b=,则a<b.故选C.点评:考查了比例中的大小比较问题,常用举特例的方法解决这类问题.4.2:x=:,x=()A.40B.4C.0.4D.1考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:x=2×,x=,解得x=1.故选D.点评:本题主要考查了解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.5.在=中,a的值是()A.2B.4C.6D.8考点:解比例.分析:利用比例的基本性质“两内项之积等于两外项之积”由此可求得a,进而选择正确答案.解答:解:根据比例的基本性质可解得:a=4,故选:B.点评:紧扣比例的基本性质即可解决此类问题.6.当:4=x:5时,x的值是()A.B.C.D.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.解答:解::4=x:5,4x=×5,4x=3,x=.故选:B.点评:此题考查比例性质的运用即解比例.7.已知,则x=()A.40B.4C.0.4D.1考点:解比例.分析:解比例的方法:根据比例的性质先把比例式转化成两外项积等于两内项积的形式,就是已学过的简易方程,再解简易方程即可.解答:解:,x=2×,x=,x=,x=1.故选:D.点评:此题考查根据比例的性质解比例:把比例式先转化成两外项积等于两内项积的形式,再解方程即可.二.填空题(共10小题)8.(1)如果:5=16%:7,那么=;(2)若(0.5+÷)=,则=.考点:解比例;整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;简易方程.分析:(1)把五角星未知数看作x,根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以7求解,(2)把正方形看作未知数x,依据等式的性质,方程两边同时除以,再同时减0.5,然后同时乘x,最后同时除以求解.解答:解:(1)把原题中五角星未知数看作x,原题化为:x:5=16%:7,7x=5×16%,7x=0.8,7x÷7=0.8÷7,x=,即=,故应填:;(2)把原题中的正方形看作未知数x,原题化为:(0.5+÷x)=,(0.5+÷x)=,0.5+÷x﹣0.5=﹣0.5,x×x=x,x,x=,即=,故应填:.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解方程时注意对齐等号.9.在X:1=3:4中,X=.考点:解比例.分析:本题按照比例的基本性质两内项之积等于两外项之积来求解.解答:解:X:1=3:4解:4X=×34X=X=;故答案为:.点评:解比例使用比例的基本性质来求解.10.0.8:4=8:x中,x=0.4,×.(判断对错)考点:解比例.专题:比和比例.分析:0.8:4=8:x,根据比例的基本性质得:0.8x=4×8,两边同时除以0.8解出x即可.解答:解:0.8:4=8:x0.8x=4×80.8x=32x=32÷0.8x=40x=40而不是0.4,故这句话是错误的.故答案为:×.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.11.9:6=15:10.考点:解比例.专题:比和比例.分析:根据比的基本性质“两内项之积等于两外项之积”,先求出两內项之积,进而用积除以已知的外项,即可得出未知的外项.解答:解:6×15÷9=90÷9=10;故答案为:10.点评:解决此题也可以根据比的意义,先求出前一个比的比值,进而用后一个比的内项除以比值求解.12.6:1.5=8:2.填上合适的数.4:3=36:2724:80=1.8:6考点:解比例.专题:比和比例.分析:每一道题都设要求的数为x,进而写出比例:(1)根据比例的基本性质,先把比例式转化成等式4x=3×36,再根据等式的性质,在方程两边同时除以4得解;(2)根据比例的基本性质,先把比例式转化成等式1.8x=24×6,再根据等式的性质,在方程两边同时除以1.8得解;(3)根据比例的基本性质,先把比例式转化成等式1.5x=6×2,再根据等式的性质,在方程两边同时除以1.5得解.解答:解:每一道题都设要求的数为x:(1)4:3=36:x,4x=3×36,4x÷4=108÷4,x=27;(2)24:x=1.8:6,1.8x=24×6,1.8x÷1.8=144÷1.8,x=80;(3)6:1.5=x:2,1.5x=6×2,1.5x÷1.5=12÷1.5,x=8.故答案为:27,80,8.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.13.解比例::=X:24X:=:0.6.考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:(1)x=24×,x=9,解得x=10;(2)0.6x=×,0.6x=,解得x=;(3)4x=5.2×6.5,4x=33.8,解得x=8.45;(4)0.6x=1.2×4,0.6x=4.8,解得x=8.点评:本题主要考查解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.14.(•金寨县模拟)甲数比乙数少,甲数和乙数的比是2:9.考点:解比例.分析:甲数=(1﹣)×乙数,依此可求甲数与乙数的比.解答:解:甲数和乙数的比=(1﹣):1=2:9.故答案为:2:9.点评:考查了求比的问题,解题的关键是将乙数看作单位1,依此得到甲数.15.如果x:=0.15:2.5,那么x=0.048.考点:解比例.专题:比和比例.分析:根据比例的基本性质变为:2.5x=×0.15,然后化简,再在方程的两边同时除以2.5求解.解答:解:x:=0.15:2.52.5x=×0.152.5x=0.122.5x÷2.5=0.12÷2.5x=0.048故答案为:0.048.点评:本题考查了利用比例的基本性质解比例.16.能与:组成比例的比是B、CA.2:3B.9:6C.:D.:.考点:解比例.分析:先化简:,再分别计算各选项,与:进行比较,比值相等的即为所求.解答:解::=3:2.A、因为2:3≠3:2,所以不能组成比例,故选项错误;B、因为9:6=3:2,所以能组成比例,故选项正确;C、因为:=3:2,所以能组成比例,故选项正确;D、因为:=2:3≠3:2,所以不能组成比例,故选项错误.故选:B和C.点评:本题考查了比例线段的定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.17.在横线里填上适当的数.5:4=30:241.5:0.18=150:188:15=24:4536:12=9:30.9:0.5=9:5.考点:解比例.专题:比和比例.分析:设未知数为x,列出比例,根据比例的基本性质,两外项之积等于两内项之积,求出未知数即可.解答:解:(1)5:4=x:244x=5×244x÷4=5×24÷4x=30;(2)1.5:0.18=x:180.18x=1.5×180.18x÷0.18=1.5×18÷0.18x=150;(3)8:15=24:x8x=15×248x÷8=15×24÷8x=45;(4)36:12=9:x36x=12×936x÷36=12×9÷36x=3;(5)x:0.5=9:55x=0.5×95x÷5=0.5×9÷5x=0.9.故答案为:30,150,45,3,0.9.点评:此题主要是考查解比例,解比例与解方程类似,要注意书写格式.解比例的依据是比例的基本性质及等式的性质.三.解答题(共11小题)18.计算:4:5=(χ+5):10.考点:解比例.专题:简易方程.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:4:5=(x+5):104×10=5×(x+5)40=5x+255x=40﹣25x=15÷5x=3.点评:掌握比例的基本性质是解题的关键.19.解比例.(1)6:15=x:20(2):x=3:8(3):=:x(4)=(5)x:15=1:2.4(6)8:x=3:1.考点:解比例.专题:比和比例.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:(1)6:15=x:2015x=6×2015x÷15=120÷15x=8(2):x=3:83x=3x÷3=6÷3x=2(3)x=(4)0.75x=0.5×60.75x÷0.75=3÷0.75x=4(5)x:15=1:2.42.4x=1×152.4x÷2.4=15÷2.4x=6.25(6)8:x=3=8×x=3点评:掌握比例的基本性质是解题的关键.20.求未知数x的值.:0.05=1:x x﹣1=x+x+x+x+x.考点:解比例;方程的解和解方程.专题:用字母表示数.分析:(1)根据比例的基本性质转化为x=×,再根据等式的基本性质,方程的两边同除以即可;(2)先计算x+x+x+x+x=x,再根据等式的基本性质,方程的两边同x,再加上1即可.解答:解::0.05=1:x,x=×,x÷=×÷,x=;(2)x﹣1=x+x+x+x+x,x﹣1=x,x﹣1﹣x=x﹣x,x﹣1=0,x﹣1+1=0+1,x=1,x=32.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.21.解方程.X:1.2=3:4=30%X﹣X=.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例的基本性质:两内项之积等于两外项之积可得4x=1.2×3,再利用等式的性质两边同时除以4即可解答;(2)可以写成x:4=3:10,根据比例的基本性质:两内项之积等于两外项之积可,10x=4×3,再利用等式的性质两边同时除以10即可解答;(3)先把左边计算出来得:x=,再利用等式的性质,两边同时乘,即可解答.解答:解:(1)x:1.2=3:4,4x=1.2×3,4x÷4=3.6÷4,x=0.9,(2)=30%,x:4=3:10,10x=4×3,10x÷10=12÷10,x=1.2,(3)x﹣x=,x=,x×=×,x=2.点评:此题考查了利用比例的基本性质解比例和利用等式的性质解方程的方法.22.一个数和的比等于8和1.6的比,求这个数.考点:解比例.分析:根据题意可以设这个数为x,组成比例,解比例即可.解答:解:设这个数为x.x:=8:1.61.6x=×8x=×8÷1.6x=4答:这个数是4.点评:此题主要考查解比例的方法.23.(•河池)求未知数x的值.(1):x=:8(2)1.7x﹣0.4x=3.9.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例基本性质,两内项之积等于两外项之积化简方程,再依据等式的性质,方程两边同时除以求解,(2先化简方程,再依据等式的性质,方程两边同时除以1.3求解.解答:解:(1):x=:8,x=×8,x=,x=4;(2)1.7x﹣0.4x=3.9,1.3x=3.9,1.3x÷1.3=3.9÷1.3,x=3.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解答时注意对齐等号.24.(•东莞市模拟)求x的值.6x﹣0.5×5=9.5:x=:0.75考点:解比例;方程的解和解方程.专题:简易方程.分析:①根据比例的性质变成x=×,再根据等式的性质,方程的两边同时除以即可;②6x﹣0.5×5=9.5,先计算0.5×5=2.5,再根据等式的性质,方程的两边同时加上2.5,再除以6即可;解答:解:①:x=:0.75,x=×,x=,x÷=÷,x=;②6x﹣0.5×5=9.5,6x﹣2.5=9.5,6x﹣2.5+2.5=9.5+2.5,6x=12,6x÷6=12÷6,x=2.点评:此题考查根据等式的性质和比例的性质解比例和解方程的能力,注意等号对齐.25.解比例:8:20=7.6:x.考点:解比例.专题:比和比例.分析:根据比例的基本性质,先把比例式转化成等式8x=20×7.6,再根据等式的性质,在方程两边同时除以2.5得解.解答:解:8:20=7.6:x8x=20×7.68x=1528x÷8=152÷8x=19.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.26.解方程.(1)4.2:x=25(2)3.6x:=3.5(3)x:=(4)x:0.25=4.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质,两内项之积等于两外项之积,方程可化为25x=4.2,再依据等式的性质,两边同除以25即可求解;(2)根据比例的基本性质,两内项之积等于两外项之积,方程可化为3.6x= 3.5,再依据等式的性质,两边同除以3.6即可求解;(3)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=×,化简计算即可;(4)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=0.25×4,化简计算即可;解答:解:(1)4.2:x=2525x=4.225x÷25=4.2÷25x=0.168(2)3.6x:=3.53.6x= 3.53.6x÷3.6=1.75÷3.6x=0.486(3)x:=x=×x=(4)x:0.25=4x=0.25×4x=1点评:本题主要考查运用等式的性质以及比例的基本性质解方程的能力,注意等号对齐.27.解方程或解比例:8x÷(1.8÷3)=1.5.:=:(4﹣x)考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)先化简方程的左边,变成8x÷0.6=1.5,然后方程的两边同时乘上0.6,再同时除以8即可;(2)根据比例的基本性质,把方程变成×(4﹣x)=×,然后方程的两边同时除以,再同加上x,最后同时减去即可.解答:解:(1)8x÷(1.8÷3)=1.58x÷0.6=1.58x÷0.6×0.6=1.5×0.68x=0.98x÷8=0.9÷8x=0.1125;(2):=:(4﹣x)×(4﹣x)=××(4﹣x)÷=÷4﹣x=4﹣x+x=+xx+﹣=4﹣x=3.点评:本题考查了根据比例的基本性质以及等式的性质解方程的方法,计算时要细心,注意把等号对齐.28.求未知数x(1)6.5:x=314:4(2)8(x﹣2)=2(x+7)考点:解比例;方程的解和解方程.专题:简易方程;比和比例.分析:(1)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以314即可;(2)先化简方程,再根据等式的性质,在方程两边同时减2x,加16,再同时除以6求解.解答:解:(1)6.5:x=314:4314x=6.5×4314x÷314=26÷314x=;(2)8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16+16﹣2x=2x+14﹣2x+166x=306x÷6=30÷6x=5.点评:此题考查了根据等式的性质解方程,即等式两边同时加、减、乘同一个数或除以同一个不为0的数,等式的左右两边仍相等;注意等号上下要对齐.B档(提升精练)一.选择题(共14小题)1.当x=()时,的比值恰好是最小的质数.A.B.C.考点:解比例.专题:比和比例.分析:最小的质数是2,所以可得的一个等式:=2,根据比与除法的关系即比的前项相当于除法的被除数,比的后项相当于除法的除数,比值相当于除法的商,然后再进行计算得到答案.解答:解;=2x=÷2,x=,答:当x=时,的比值恰好是最小的质数.故选:C.点评:解答此题的关键是确定比与除法之间的关系,然后再进行计算即可.2.解比例是根据()A.比的基本性质B.比例的基本性质C.比例的意义.考点:解比例.专题:比和比例.分析:解比例是求比例的解的过程,即先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以根据的是比例的基本性质.据此即可判断.解答:解:解比例是先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以解比例是根据比例的基本性质.故选:B.点评:本题考查了解比例的依据,明确解比例的定义是关键.3.如果3:5=x:2,那么x应该是()A.B.C.D.考点:解比例.专题:比和比例.分析:根据比例的性质,可得5x=3×2,再利用等式的性质两边同时除以5,即可得出x=,据此即可选择.解答:解:3:5=x:2,5x=3×2,5x÷5=6÷5,x=.故选:A.点评:熟练运用比例的基本性质,掌握比例式和等式的转化.4.解比例:=2:1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:根据比例的基本性质:两内项之积等于两外项之积,得出关于x的方程,再利用等式的性质解方程即可解答问题.解答:解:=2:1x:3=2:1x=6.故选:A.点评:此题考查了比例的基本性质和等式的性质的应用.5.解比例的根据是()A.比的基本性质B.比例的基本性质C.分数的基本性质考点:解比例.分析:首先要知道什么是解比例,然后分析每个选项,看哪一个最适合用来作为解比例的根据.解答:解:因为求比例的解的过程,叫做解比例.所以选项A:比的基本性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变.”不能作为解比例的根据.选项B:比例的基本性质“两外项之积等于两内项之积”可以作为解比例的根据.选项C:分数的基本性质“分子和分母同时扩大或缩小相同的倍数,分数值不变.”也不能作为解比例的根据.故选B.点评:做这道题的关键是分清比、分数和比例的基本性质.6.(X﹣0.1):0.4=0.6:1.2 则X=()A.X=0.3B.X=0.9C.X=0.8考点:解比例.专题:比和比例.分析:根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质求解.解答:解:(X﹣0.1):0.4=0.6:1.2,(X﹣0.1)×1.2=0.6×0.4,(X﹣0.1)×1.2÷1.2=0.24÷1.2,X﹣0.1=0.2,X﹣0.1+0.1=0.2+0.1,X=0.3.故选:A.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解方程时注意对齐等号.7.x=是比例()的解.A.2.6:x=1:8B.3:6=x:8C.:x=考点:解比例.专题:比和比例.分析:根据比例的基本性质,把x=代入各选项即可判断.解答:解:A、把x=代入2.6:x=2.6:=52:25,52:25≠1:8,所以把x=不是2.6:x=1:8的解;B、把x=代入x:8=:8=5:32,3:6≠5:32,所以把x=不是3:6=x:8的解;C、把x=代入:x=:=2:1,:=2:1,所以把x=是:x=:的解.故选:C.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力.8.(•荔波县模拟)如果比例的两个外项互为倒数,那么比例的两个内项()A.成反比例B.成正比例C.不成比例考点:解比例.专题:压轴题.分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解答:解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.9.已知:x=0.2:0.3,则x的值为()A.B.C.3考点:解比例.专题:比和比例.分析:先根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.2求解.解答:解::x=0.2:0.3,0.2x=0.3×,0.2x=0.15,0.2x÷0.2=0.15÷0.2,x=,故选:A.点评:解答本题的关键是依据比例基本性质求解.解答时注意对齐等号.10.用4,0.8,5和x组成比例,并解比例,x有()种不同的解.A.1B.2C.3D.4考点:解比例.专题:比和比例.分析:根据比例的基本性质,4,0.8,5和x,组成比例的情况有12种,两内项之积等于两外项之积,这四个数可写成三个等式.据此解答.解答:解:根据分析知,4,0.8,5和x组成比例的情况有12种:(1)5:0.8=x:4,0.8:5=4:x,0.8:5=4:x,4:0.8=x:5,它们变形后都能写成0.8x=5×4,解相同.同理也有四个比例式变形后写成5x=4×0.8,和4x=5×0.8.故选:C.点评:本题考查了学生根据比例的基本性质解答问题的能力.11.解比例30:x=2:0.1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以2求解.解答:解:30:x=2:0.1,2x=30×0.1,2x÷2=3÷2,x=1.5,故应选:B.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.12.x=1.25是哪个比例的解?()A.2.6:x=6:3B.3:6=x:8C.:x=:考点:解比例.专题:简易方程.分析:把三个选项中的比例式,依据等式的性质,以及比例的基本性质,求出方程的解,再与x=1.25比较即可解答.解答:解:在选项A中:2.6:x=6:36x=2.6×36x÷6=7.8÷6x=1.3;在选项B中:3:6=x:86x=3×86x÷6=24÷6x=4;在选项C中::x=:x=x=x=1.25故选:C.点评:依据等式的性质,以及比例的基本性质,求出选项中各方程的解,是解答本题的关键.13.若已知2:3=(5﹣x):x,那么x等于()A.2B.3C.4D.6考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时加3x,最后同时除以5求解.解答:解:2:3=(5﹣x):x,15﹣3x=2x,15﹣3x+3x=2x+3x,15÷5=5x÷5,x=3.故选:B.点评:本题考查知识点:依据等式的性质,以及比例基本性质解方程.14.如果和相等,则m等于()A.B.C.D.考点:解比例.专题:比和比例.分析:依据题意可列比例式:=,先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以18即可求解.解答:解:=,18m=11×12,18m÷18=132÷18,m=,m=7.故答案为:A.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.二.填空题(共14小题)15.(•新干县)若a与b互为倒数,且=,那么x=.√.(判断对错)考点:解比例.专题:比和比例.分析:若a与b互为倒数,且=,根据比例的基本性质可得:5x=ab=1,那么x=.解答:解:=,根据比例的基本性质可得:5x=ab=1,那么x=;故答案为:√.点评:此题考查了比例的基本性质的运用.16.(•东莞模拟)如果ҳ:=:,那么ҳ=.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项.解答:解:ҳ:=:,X=×,X=,X=.故答案为:.点评:此题考查比例性质的运用即解比例.17.(•铁山港区模拟)下面表格中,如果x与y成正比例,“?”是32:如果x和y成反比例,“?”是8X16?y4896考点:解比例.专题:比和比例.分析:(1)如果x与y成正比例,由正比例的意义可得16:48=?:96,把?看作未知数,根据比例的基本性质进行解比例即可;(2)如果x和y成反比例,由反比例的意义可得96?=16×48,把?看作未知数,根据等式的性质进行解方程即可.解答:解:根据题意可得:(1)16:48=?:96,48?=16×96,48?=1536,48?÷48=1536÷48,?=32;所以,如果x与y成正比例,“?”是32;(2)96?=16×48,96?=768,96?÷96=768÷96,?=8;所以,如果x和y成反比例,“?”是8.故答案为:32,8.点评:本题主要考查正反比例的意义,然后根据题意列出比例或方程再进一步解答即可.18.(•沿河县模拟)根据比例关系填表:x43918152y601024考点:解比例.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为24×15=360(一定)所以xy成反比例关系.360÷4=90,360÷3=120,360÷60=6,360÷9=40,360÷10=36,360÷18=20,360÷2=180.x43693618152y901206040102024180点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.(•靖江市)如果x与y成正比例,那么表中的△是 4.5;如果x与y成反比例,那么△是2.x3△y120180考点:解比例.专题:比和比例.分析:(1)如果表中x和y成正比例,说明x和y对应的比值一定,根据两个比的比值相等列比例,并解比例即可;(2)如果表中x和y成反比例,说明x和y对应的乘积一定,根据两个比的乘积相等列方程,并解方程即可.解答:解:(1)3:120=x:180,120x=3×180,120x÷120=540÷120,x=4.5;(2)180x=3×120,180x=360,180x÷180=360÷180,x=2;故答案为:4.5,2.点评:此题考查根据正、反比例的意义,解答时要根据已知两种相关联的量,看比值一定还是积一定.20.(•广州模拟)0.4:x=1:10.考点:解比例.分析:根据比例的基本性质,把原式转化为x=0.4×10,再根据等式的性质,在方程两边同时乘上求解,解答:解:0.4:x=1:10,x=0.4×10,x×=4×,x=.点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力.21.(•广州模拟)6:2.8=2.4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为6x=2.8×2.4,再根据等式的性质,在方程两边同时除以6求解.解答:解:6:2.8=2.4:x,6x=2.8×2.4,6x÷6=6.72÷6,x=1.12.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.22.(•江宁区模拟)如果A与B成正比例,那么“?”是 3.2;如果A与B成反比例,那么“?”是5.A4?B200160考点:解比例.分析:这一题可由正比例的意义和反比例的意义解答即可.解答:解:(1)A与B成正比例,△,x=3.2;(2)A与B成反比例,160x=4×200,x=5;故答案为:3.2,5.点评:此题考查了对正比例与反比例意义的理解以及应用的能力,要灵活掌握正反比例的公式.23.(•广州模拟):=4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时乘上求解.解答:解::=4:x,,,x=.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.。
六年级解比例重点及练习题
六年级下册解比例练习题全课总结一、 (1)什么叫解比例?二、 (2)用比例的基本性质解比例的一般方法。
①根据比例的基本性质把比例改写成方程。
②根据以前学过的解方程的方法求解。
三、 (3)这节课你运用了哪些学习的方法?还有哪些问题?练习题:解比例25 :7=X :35 514 :35= 57 :x 23 :X= 12: 14 X :15=13 :56 34 :X= 54 :2 X :0.75 = 81 :255.12.3=4X35436=xx :4151:21= x:10=41:31 0.4:x=1.2:2 4.212=x321:51=41:x 0.8:4=x:8 43:x=3:12 2.8:4.2=x:9.6 101:x=81:41 1.25:0.25=x:1.62008×20062007 1113 -1113 ×1333 257×101-257 64.2×87+0.642×1300 25÷100262543×52+43×0.62.42÷43+4.58×311-4÷3 4.25-365-(261-143) 3.8÷3.9+3.9÷0.1+0.1÷3.9 46×4544二、根据下面的条件列出比例,并且解比例1.96和X 的比等于16和5的比。
2.45 和X 的比等于25和8的比。
3.两个外项是24和18,两个内项是X 和36。
四、 解比例752.125=χ44125:=:χ 6.5:χ=3.25:4 χ:=:4110181 6328.0:=:χ 951527:=:χx:10=41:31 0.4:x=1.2:2 4.212=x3 21:51=41:x 0.8:4=x:8 43:x=3:121.25:0.25=x:1.6 92=x 8 x 36=354 x: 32=6: 2524x 5.4=2.26 45:x=18:262.8:4.2=x:9.6 101:x=81:41 x:24= 43:31 8:x=54:43 85:61=x: 1210.6∶4=2.4∶x6∶x =15∶13 0.612=1.5x 34∶12=x ∶45 1112∶45=2536∶x x ∶114=0.7∶12 10∶50=x ∶401.3∶x =5.2∶20 x ∶3.6=6∶18 13∶120=169∶x 4.60.2=8x 38=x64解方程X - 27 X=43 2X + 25 = 35 70%X + 20%X = 3.6 X ×53=20×41 25% + 10X = 54X - 15%X = 68解方程X +83X =121 5X -3×215=75 32X ÷41=12 6X +5 =13.4 834143=+X 3X=83X ÷72=167 X +87X=43 4X -6×32=2 53 X = 7225 98 X = 61×5116 X ÷ 356=4526×25134x -3 ×9 = 2921x + 61x = 4 103X -21×32=4 2041=+x x 8)6.2(2=-x 6X +5 =13.425 X-13 X=310 4χ-6=38 5X=1915 218X=154 X ÷54=2815 32X ÷41=1253X=7225 98X=61×5116 X ÷356=4526÷2513 X-0.25=41 4X =30% 4+0.7X=102 32X+21X=42 X+41X=105 X-83X=400 X-0.125X=8 X36 = 43 X+37 X=18 X ×( 16 + 38 )=1312 x -0.375x=65 、x ×32+21=4×83 X -73X =12 5 X -2.4×5=8 0.36×5- 34 x = 35 23 (x- 4.5) = 7 12 x- 25%x = 10x- 0.8x = 16+6 20 x – 8.5= 1.5 x- 45 x -4= 21 X +25%X=90 X -37 X= 89 X - 27 X=432X + 25 = 35 70%X + 20%X = 3.6 X ×53=20×41 25% + 10X = 54 X - 15%X = 68 X +83X =1215X -3×215=75 32X ÷41=12 6X +5 =13.4 834143=+X 3X=83 X ÷72=167 X +87X=43 4X -6×32=2 125 ÷X=310 53 X = 7225 98 X = 61×5116 X ÷ 356=4526×2513 4x -3 ×9 = 2921x + 61x = 4 103X -21×32=4 2041=+x x 8)6.2(2=-x 6X +5 =13.4 25 X-13 X=3104χ-6=38 5X=1915 218X=154 X ÷54=2815 32X ÷41=12 53X=7225 98X=61×5116 X ÷356=4526÷2513X-0.25=41 4X =30% 4+0.7X=102 32X+21X=42 X+41X=105 X-83X=400 X-0.125X=8 X36 = 43X+37 X=18 X ×( 16 + 38 )=1312 x -0.375x=65 x ×32+21=4×83 X -73X =12 5 X -2.4×5=80.36×5- 34 x = 35 23 (x- 4.5) = 7 12x- 25%x = 10 x- 0.8x = 16+6 20 x – 8.5= 1.5x- 45 x -4= 21 X -37 X= 89 X - 27 X=43 2X + 25 = 35 70%X + 20%X = 3.6 X ×53=20×4125% + 10X = 54 X - 15%X = 68 X +83X =121 5X -3×215=75 834143=+X X ÷72=167X +87X=43 4X -6×32=2 125 ÷X=310 53 X = 7225 98 X = 61×5116 X ÷ 356=4526×25134x -3 ×9 = 2921x + 61x = 4 103X -21×32=4 2041=+x x 8)6.2(2=-x 6X +5 =13.425 X-13 X=310 4χ-6=38 218X=154 X ÷54=2815 32X ÷41=12 53X=7225 98X=61×5116X ÷356=4526÷2513X-0.25=41 4X =30% 4+0.7X=102 32X+21X=42 X+41X=105 X-83X=400X-0.125X=8 X36 = 43 X+37 X=18 X ×( 16 + 38 )=1312 x -0.375x=65 x ×32+21=4×83X -73X =12 5 X -2.4×5=8 0.36×5- 34 x = 35 23 (x- 4.5) = 7 12 x- 25%x = 10x- 0.8x = 16+6 3X=8320 x – 8.5= 1.5 x- 45 x -4= 21 5X=1915 X +25%X=90判断下面每题中的两种量是否成比例?成什么比例?说明理由。
比例的基本性质和解比例
3.猜一猜:
6
:
9 : 12 9 = X
20 : 25 = 4 : χ
解: 20χ= 25 × 4 20χ= 100 χ= 5
4 5
=
9 x
解:4
x = 5×9 4 x = 45 x =45÷4 x =11.25
智慧城堡
加油啊!
1、判断
(1)在比例中,两个外项的积减去两 个内项的积,差是0. (2)18:30和3:5可以组成比例。 (3)因为3×10=5×6,所以3:5=10:6 ( ×) (4)如果4Ⅹ=3Y,(X和Y均不为0), 那么4:X=3:Y. (× )
解:设罪犯的身高为 身高: 脚长 = 7: 1
x
厘米。x:25 Nhomakorabea=7:1
X =25×7 X = 175
答:罪犯的身高约是175cm.
3、根据5×6=3×10写出比例。 5: 3 = 10:6 5:10 = 3:6 6: 3 = 10:5 6:10 = 3:5 6: 5 = 10:3 6:10 = 5:3 3: 5 = 10:6 3:10 = 5:6
一、温故知新
1、什么是比例?
表示两个比相等的式子叫做比例。
2、怎样判断两个比能否组成比例呢?
(16:2 和 = 32:4)
3.想一想:
12 :1
=
24 : 2 12 : 2
12 : 2 =
12 : 3 = 8 : 2 12 : 4 = 6 : 2
…
4和 6
…
2和12
3 和8
观察 ——猜想 ——验证 ——总结
(√)
(√)
侦探柯南之神秘脚印:
一个月黑风高的夜晚,一家珠宝店失 窃了。第二天早上,小侦探柯南经过仔 细勘察,在案发现场发现了一枚犯罪嫌 疑人留下的脚印,根据这枚脚印,柯南 很快判断出了犯罪嫌疑人的身高,你们 知道,他是怎样判断的吗?
小学数学冀教版第十一册比和比例比例的基本性质及解比例-章节测试习题(1)
章节测试题1.【答题】从18的因数中选出4个数,组成比例,下面正确的是().A.3:4=6:8B.1:6=2:8C.2:3=6:9D.2:6=9:3【答案】C【分析】先找出18的因数,看选项中的比例中是否含有18的因数,再根据比例的意义进行判断即可.【解答】18的因数有1、2、3、6、9、18;选项A中4和8都不是18的因数,所以不符合题意;B选项中8不是18的因数,所以不符合题意;C选项中,4个数都是18的因数,且2:3=,6:9=,所以2:3=6:9,符合题意;D选项4个数都是18的因数,但是2:6=,9:3=3,因为≠3,所以不符合题意.选C.2.【答题】如果有5x=3y,那么5:3=().A.x:yB.y:xC.无法确定【答案】B【分析】根据比例的性质,把所给的等式5x=3y,改写成一个外项是5,一个内项是3的比例,则和5相乘的数x就作为比例的另一个外项,和3相乘的数y就作为比例的另一个内项,由此写出比例即可.【解答】解:因为5x=3y,所以5:3=y:x.故选B.3.【答题】下面第()组的两个比不能组成比例.A.7:8和14:16B.0.3:0.2和1.5:1C.19:11和29:22【答案】C【分析】可以用求比值的方法:两个比的比值相等,就能组成比例,比值不相等,就不能组成比例;也可以根据比例的性质: 比例中两个内项的积等于两个外项的积.据此逐项分析再选择.【解答】A、因为7×16=8×14,所以7:8和14:16能组成比例;B、因为0.3×1=0.2×1.5,0.3:0.2和1.5:1能组成比例;C、因为19×22≠11×29,所以19:11和29:22不能组成比例;选C.4.【答题】某电器商店有180台黑白电视机,彩电与黑白电视的台数比是5:4,彩电有()台.A.50B.225C.80【答案】B【分析】此题考查的知识点是比例的应用.根据数量关系写出比例,再解比例即可.【解答】解:设彩电有x台.答:彩电有225台.选B.5.【答题】王强在电脑上把一幅长6厘米,宽4厘米的照片放大,放大后照片的长是13.5厘米,宽是多少厘米?解:设放大后照片的宽是x厘米,以下解答所列方程正确的是().A.13.5:6=4:xB.C.13.5:x=4:6D.13.5:4=6:x【答案】B【分析】此题考查的是用比例解决问题.【解答】由题意知,解:设放大后照片的宽是厘米.选B.6.【答题】已知100g猪肉中含有9.5g脂肪,则400g猪肉中含有()克脂肪.A.36B.38C.40D.42【答案】B【分析】此题考查的知识点是比例的应用.【解答】解:设400g猪肉中含有克脂肪.答:400g猪肉中含有38克脂肪.选B.7.【答题】王强在电脑上把长6厘米,宽4厘米的照片按比例放大,放大后照片的长是13.5厘米,宽是()厘米.A.10B.9C.8D.7【答案】B【分析】此题考查的知识点是比例的应用.【解答】解:设宽是厘米.答: 宽是9厘米.选B.8.【答题】王强在电脑上把长35厘米,宽7厘米的照片按比例缩小,缩小后照片的长是15厘米,宽是()厘米.A.3B.4C.5【答案】A【分析】此题考查的知识点是比例的应用.【解答】解:设宽是厘米.答:宽是3厘米.选A.9.【答题】学校图书馆的科技书与故事书各有360本,还要添置()本故事书,才能使科技书和故事书的本数比达到2:3.(用比例解答)A.90B.180C.270【答案】B【分析】此题考查的知识点是比例的应用.设还要添置故事书x本,才能使科技书和故事书的本数比达到2:3;那么后来的故事书就是(360+x)本,用科技书的本数:故事书的本数=2:3,由此列出比例方程求解.【解答】解:设还要添置故事书x本.答:还要添置180本故事书才能使科技书和故事书的本数比达到2:3.选B.10.【答题】某布料加工厂5天缝制衬衣1600件.照这样计算,缝制2400件衬衣需要()天.(用比例知识解)A.3B.5.5C.7.5【答案】C【分析】此题考查的知识点是比例的应用.“照这样”说明工作效率不变,由比例关系列出方程解答.【解答】解:设缝制2400件衬衣需要天.答:缝制2400件衬衣需要7.5天.选C.11.【答题】亮亮和小东的身高比是5:4,亮亮的身高是150cm,小东的身高是______cm.【答案】120【分析】此题考查的知识点是解比例方程.【解答】解:设小东的身高是cm.故此题的答案是120.12.【答题】解比例.【答案】【分析】此题考查的知识点是解比例方程.【解答】故此题的答案是.13.【答题】8块巧克力可以换6瓶饮料,强强有20块巧克力,可以换______瓶饮料.【答案】15【分析】此题考查的知识点是比例的应用.【解答】解:设可以换瓶饮料.答:可以换15瓶饮料.故此题的答案是15.14.【答题】解比例.【答案】30【分析】此题考查的知识点是解比例方程.【解答】故此题的答案是30.15.【答题】2014年3月28日中国银行人民币外汇牌价显示100美元可以兑换614.9元人民币.爸爸有1000美元,可以兑换是______元人民币.【答案】6149【分析】此题考查的知识点是比例的应用.【解答】解:设可以兑换元人民币.答:可以兑换6149元人民币.故此题的答案是6149.16.【答题】8支铅笔换3本故事书,15本故事书可以换______支铅笔.【答案】40【分析】此题考查的知识点是比例的应用.【解答】解:设15本故事书可以换支铅笔.答:15本故事书可以换40支铅笔.故此题的答案是40.17.【答题】解比例.(答案用小数表示)【答案】1.75【分析】此题考查的知识点是解比例方程.【解答】故此题的答案是1.75.18.【答题】解比例.【答案】15,10【分析】此题考查的知识点是解比例方程.【解答】19.【答题】调配糖水时,糖的质量与水的质量的比是1:5,80克水可以溶解克糖.:80=______:______,=______.【答案】1,5,16【分析】此题考查的知识点是解比例方程.【解答】故此题的答案是1,5,16.20.【答题】解比例.【答案】80,24【分析】此题考查的知识点是解比例方程.【解答】。
比的基本性质练习题
一、填空1、在4 :7 =48 :84中,4和84是比例的(),7和48是比例的()。
2、4 :5 = 24 ÷()= ():153、12的约数有(),选择其中的四个约数,把它们组成一个比例是()4、在一个比例中,两个外项互为倒数,其中一个内项是 16 ,则另一个内项是()二、请你来当小裁判。
1、由两个比组成的式子叫做比例。
()2、把一个比的前项扩大2倍,后项缩小2倍,这个比的比值不变。
()3、如果8A = 9B,那么B :A = 8 :9 。
()4、由2、3、4、5四个数,可以组成比例。
()5、在比例里,两个外项积除以两个内项积商是1。
()三、选择正确答案的序号填在括号内。
1.下面第 ( ) 组的两个比不能组成比例。
A、 8:7 和 14:16B、 0.6:0.2 和 3:1C、 19: 110 和 10:92、在钟面上,分针和时针旋转速度的比是()。
①60:1 ②360:1 ③12:13、因为3a=4b,所以()。
①a∶b=3∶4 ②a∶4=3∶b ③b∶3=a∶4④3∶a=4∶b4、小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是( )(1)2:7 (2)6:21 (3)4:14五、解比例X:14=6:28 0.25 ∶ x=7.5∶ 15 x∶8=3:0.51、合唱组男女生人数的比是5∶7,其中有女生25人,这个合唱组男生多少人?1、一辆客车和一辆小汽车的速度比是1:2,如果小汽车的速度是120千米,那么客车的速度是多少千米?2、花园小区1号楼的实际高度是45米,它的高度与模型高度的比是500:1。
模型的高度是多少厘米?3.修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)(5分)4.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?(用比例方法解答)(5分)5.配制一种农药,药粉和水的比是1:500(1) 现有水6000千克,配制这种农药需要药粉多少千克?(3分)(2) 现有药粉3.6千克,配制这种农药需要水多少千克?(3分) 6.两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米?(5分)7.园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5。
六年级下册数学解比例题
六年级下册数学解比例题一、解比例基础题型。
1. 解比例:3:8 = x:16- 解析:根据比例的基本性质“两内项之积等于两外项之积”,可得8x = 3×16,即8x=48,然后x = 48÷8 = 6。
2. 解比例:x:5 = 9:15- 解析:由比例的基本性质得15x = 5×9,15x = 45,解得x = 45÷15 = 3。
3. 解比例:2.4:1.6 = 6:x- 解析:根据比例性质2.4x = 1.6×6,2.4x = 9.6,x = 9.6÷2.4 = 4。
4. 解比例:(1)/(2):(1)/(3)=x:6- 解析:(1)/(3)x=(1)/(2)×6,(1)/(3)x = 3,x = 3÷(1)/(3)=9。
5. 解比例:(x)/(4)=(3.5)/(7)- 解析:7x = 4×3.5,7x = 14,x = 14÷7 = 2。
6. 解比例:1.2:3.6 = x:18- 解析:3.6x = 1.2×18,3.6x = 21.6,x = 21.6÷3.6 = 6。
7. 解比例:0.4:0.8 = x:7- 解析:0.8x = 0.4×7,0.8x = 2.8,x = 2.8÷0.8=(7)/(2)=3.5。
8. 解比例:(3)/(4):(9)/(10)=x:(3)/(5)- 解析:(9)/(10)x=(3)/(4)×(3)/(5),(9)/(10)x=(9)/(20),x=(9)/(20)÷(9)/(10)=(1)/(2)。
9. 解比例:5:x = 10:16- 解析:10x = 5×16,10x = 80,x = 80÷10 = 8。
10. 解比例:(2)/(3):x=(4)/(5):6- 解析:(4)/(5)x=(2)/(3)×6,(4)/(5)x = 4,x = 4÷(4)/(5)=5。
六下数学 比例的意义和基本性质+解比例 完整版考点总结+题型训练
考点一、比例的基本意义和性质【基础知识回顾】1、比的意义:( 两个数相除又叫两个数的比 )比例的意义:( 表示两个比相等的式子 )如2.4:1.6=60:40是一个比例,2:3=4:6是一个比例2、 比和比例之间的练习与区别:表示两个比相等的式子叫做“比例”。
如2:3=4:6关系:“比”是研究两个量之间的关系,所以它有(两项);“比例”是研究相关联的两种量中两组相对应数的关系,所以比例是由(四项)组成。
比例是由比组成的,如果两个比相等,那么这两个比就可以组成比例。
成比例的两个比的比值一定相等。
区别: “比”是表示两个数相除的关系 比由两项组成(前项、后项) 任意两个数都能组成比 。
“比例”是表示两个比相等 的关系 比例由四项组成(两个内 项、两个外项) 任意四个数不一定都能组成比例3、 比例的基本性质:(1)组成比例的四个数,叫做比例的项,两端的两项叫做外项,中间的两项叫做比例的内项,例如:如果把上面的比例写成分数的形式40606.14.2 ,2.4和40仍然是外项,1.6和60仍然是内项。
(2)比例的基本性质:在比例里,两个外项的积等于两个内项的积。
用字母表示比例的基本性质:4、常用结论:如果4个不同的数可以组成比例,一共可以组成8个不同的比例。
例如用2,4,8,16组成比例可以组成如下的8个2:4=8:162:8=4:1616:4=8:216:8=4:28:16=2:48:2=16:44:16=2:84:2=16:8【练习一】一、判断题1、8:2=4是比例 ( )2、5x=6y ,则x:y=5:6。
( )3、比例是表示两个比相等的式子。
( )4、 比是表示两个数相除的一种关系。
( )5、 比例有4项,各项的名称分别是前项和后项。
( )6、 比只有两项,各项的名称分别是外项和内项。
( )7、 在比例里,如果两个外项互为倒数,那么两个内项也互为倒数。
( )8、如果3a=4b ,那么a :b=3:4。
6年级数学比例题
6年级数学比例题一、填空题。
1. 在比例3:5 = 6:10中,外项是()和(),内项是()和()。
- 解析:在比例a:b = c:d中,a和d是外项,b和c是内项。
所以在3:5 = 6:10中,外项是3和10,内项是5和6。
2. 一个比例的两个外项互为倒数,其中一个内项是(3)/(5),另一个内项是()。
- 解析:两个外项互为倒数,则外项之积为1。
根据比例的基本性质:两外项之积等于两内项之积。
设另一个内项为x,则(3)/(5)x = 1,x=(5)/(3)。
3. 如果4a = 5b(a、b均不为0),那么a:b=():()。
- 解析:根据比例的基本性质,4a = 5b可以写成a:b = 5:4。
4. 把1.6、6.4、2和0.5四个数组成比例()。
- 解析:因为1.6×2 = 6.4×0.5 = 3.2,所以比例可以是1.6:6.4 = 0.5:2(答案不唯一)。
5. 从12的因数中选出四个数组成一个比例是()。
- 解析:12的因数有1、2、3、4、6、12。
因为2×6 = 3×4,所以比例可以是2:3 = 4:6(答案不唯一)。
二、判断题。
6. 比例的两个外项的积减去两个内项的积,差是0。
()- 解析:根据比例的基本性质,两外项之积等于两内项之积,所以它们的差是0,这一说法正确。
7. 如果A:B = 2:5,那么A是B的(2)/(5)。
()- 解析:A:B = 2:5,可以写成A=(2)/(5)B,也就是A是B的(2)/(5),该说法正确。
8. 在一个比例中,如果两个内项互为倒数,那么两个外项也互为倒数。
()- 解析:因为两内项之积等于两外项之积,内项互为倒数积为1,所以外项积也为1,外项也互为倒数,该说法正确。
9. 因为3×10 = 5×6,所以3:5 = 10:6。
()- 解析:由3×10 = 5×6,根据比例的基本性质,应该是3:5 = 6:10,而不是3:5 = 10:6,该说法错误。
【练习题】比和比例练习题
【关键字】练习题比例的意义的基本性质练习题一、填空。
1.()叫做比率。
2.()叫做比率的项。
()叫做比率的外项,()叫做比率的内项。
3.()这叫做比率的基本性质。
4.()叫做解比率。
5.两个比的()相等,这两个比就相等。
二、按要求写比率。
1.写出一个你喜欢的比率。
2.写出一个比值是3/5 的比率。
3.一个比率的两个外项互为倒数,一个内项是1/10 ,写出符合条件的一个比率。
4.一个比率的两个内项的积是4/5 ,一个外项是3/8 ,写出符合条件的一个比率。
5.一个比率,组成比率的比的比值是1/4 ,两个外项分别是17和3/5 ,写出这个比率。
6.有两个比,比值都是2/3 ,第一个比的后项与第二个比的前项都是6,把这两个比组成比率。
三、按要求转化。
1.把6×8=24×2改写成四个比率。
2.把=8n 改写成四个比率。
3.如果=6 b,那么a:b =()/()。
4.如果=5b ,那么b:a =()/()。
5.如果3/=4/9b ,那么a:b=()/()。
6.如果3/=0.45b ,那么b:a=()/()。
7.如果甲数的4/5与乙数的7/9相等,那么甲数与乙数的比是()。
8.男生人数的5/8与女生人数的5/9相等,那么女生人数与男生人数的比是()。
四、选择题(选择正确答案的序号填在括号里)。
1.比率5∶3=15∶9的内项3增加6,要使比率成立,外项9应该增加()。
⑴ 6 ⑵ 18 ⑶ 272.把盐加入15千克水中,盐与盐水重量的比是()。
⑴ 2∶15 ⑵ 15∶17 ⑶ 2∶173.下面的比中能与3∶8组成比率的是()。
⑴ 3.5∶6 ⑵ 1.5∶4 ⑶ 6∶1.54.下面的数中,能与6、9、10组成比率的是()。
⑴ 7 ⑵ 5.4 ⑶ 1.5(1)如果A:7=9:B,那么AB=()(2) 已知A÷10.5=7÷B(A与B都不为0),则A与B的积是()。
(3)如果5X=4Y=3Z,那么X:Y:Z=()(4)如果=5B,那么A:B=()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例的基本性质练习题
(1)如果A:7=9:B,那么AB=()
(2) 已知A÷10.5=7÷B(A与B都不为0),则A与B的积是()。
(3)如果5X=4Y=3Z,那么X:Y:Z=()
(4)如果4A=5B,那么A:B=()。
(5)甲数的4/5等于乙数的6/7(甲、乙两数都不为0),甲乙两数的比是()。
(6)把1.6、6.4、2和0.5四个数组成比例()。
(7)已知三个数12、16、9,如果再添上一个数,使之能与已知三个数组成比例式,这个数应该是多少?
(8)X:Y=3:4,Y:Z=6:5,X:Y:Z=()
(9)从24的约数中选出四个约数,组成两个比例式是()。
(10)根据6a=7b,那么a:b=( )
(11)根据8×9=3×24,写出比例()。
(12)在一个比例中,两个外项分别是12和8,两个比的比值是3/4,写出这个比例()
(13)在12 、8 、16 这三个数中添上一个数组成比例,这个数可以是( )、( )或( )。
(14)用18的因数组成比值是的比例( )。
(15)在一个比例中,两个外项互为倒数,如果一个内项是2.25,则另一个内项是(
)。
(16)运一堆货物,甲用7小时运完,乙用5.5小时运完,甲和乙所用的时间的比是(
),工作效率的比是( )
(17)X 的7/8与Y 的3/4相等,X 与Y 的比是( )
(18)如果x/8=Y/13 ,那么X :Y=( )
(19)甲数除乙数的商是1.8,那么甲数与乙数的比是( )。
(20)在一个比例中,两个比的比值等于2,比例的外项是0.08和0.6,写出这个比例 (
)。
解比例 x:10=41:31 0.4:x=1.2:2 4.212=x 3
21:51=41:x 0.8:4=x:8 43
:x=3:12
1.25:0.25=x:1.6 92=x 8 x 36=354
x: 32=6: 2524 x 5.4=2.26
45:x=18:26
2.8:4.2=x:9.6 101:x=81:41 2.8:4.2=x:9.6 x:24= 43:31
8:x=54:43 85:61=x: 121 0.6∶4=2.4∶x
6∶x =15∶13 0.612=1.5x 34∶12=x ∶45
1112∶45=2536∶x x ∶114=0.7∶12 10∶50=x ∶40
1.3∶x =5.2∶20 x ∶3.6=6∶18 13∶120=169∶x
4.60.2=8x 38=x 64。