九年级上册数学一元二次方程根的判别式及根与系数的关系巩固练习及答案详细解析
九级数学一元二次方程根的判别式及根与系数关系探究(一元二次方程)基础练习-4页精选文档
九年级数学一元二次方程根的判别式及根与系数关系探究(一元二次方程)基础练习试卷简介:全卷共4个选择题,9个填空题,1个证明题,6个解答题,分值120,测试时间60分钟。
本套试卷在课本的基础上,对题目稍做一定难度的拔高,主要考察了学生对元二次方程根的判别式及根与系数的关系的灵活运用。
各个题目难度类似,但考察方式不同。
学生在做题过程中要立足课本,对题目考虑全面,做到认真细心。
学习建议:本章主要内容是二元一次方程根的判别式及根与系数的关系,不仅是中考重点考察的内容之一,更是整个数学学科的重要内容之一。
本章题目要求同学们在做题时要考虑全面,千万不能粗心马虎,否则很容易遗漏某些条件或忘记舍去不合适的结果。
一、单选题(共4道,每道3分)1.方程x2-kx-1=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.根的情况与k的取值有关2.已知方程2x2+4x=3,则下列说中,正确的是()A.方程两根和是-4B.方程两根积是2C.方程两根和是-2D.方程两根积是两根和的2倍3.若一元二次方程ax2+bx+c =0(a≠0)的两根之比为2:3,那么a、b、c间的关系应当是()A.3b2=8acB.C.6b2=25acD.不能确定4.若c为实数,方程x2-3x+c=0的一个根的相反数是方程x2+3x-c=0的一个根,那么方程x2-3x+c=0的根是()A.1,2B.-1,-2C.0,3D.0,-3二、填空题(共9道,每道4分)1.分别以x2+3x-2=0的两根和与两根积为根的一元二次方程是______2.已知关于x的方程ax2+bx+c=0(a>0)有一个正根和一个负根,则这个方程的判别式b2-4ac______0,常数项c______03.已知关于x的方程x2+m2x+m=0的两个实数根是x1、x2,y1、y2是方程y2+5my+7=0的两个实数根,且x1- y1=2,x2- y2=2,则m= ______.4.关于x的方程2x2+(m2–9)x+m+1=0,当m=______时,两根互为倒数;当m=______时,两根互为相反数.5.如果把一元二次方程 x2-3x-1=0的两根各加上1作为一个新一元二次方程的两根,那么这个新一元二次方程是______6.已知a2=1-a,b2=1-b,且a≠b,则(a-1)(b-1)=______7.若p2–3p–5=0,q2-3q–5=0,且p≠q,则______8.设x1、x2是方程3x2+4x–5=0的两根,则______ ;______9.若方程kx2–6x+1=0有两个实数根,则k的取值范围是______三、解答题(共6道,每道11分)1.已知a、b、c为三角形三边长,且方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实数根.试判断此三角形形状,说明理由2.如果关于x的方程kx2-(2k+1)x+(k+2)=0有实数根,求k的取值范围3.已知关于x的方程 3 x2-10 x + k = 0有实数根,求满足下列条件的k 的值:(1)有两个实数根,(2)有两个正数根,(3)有一个正数根和一个负数根4.已知x1,x2是关于x的方程x2-2(m+2)x+2m2-1=0的两个实根,且满足,求m值.5.设x 1,x 2是方程2x 2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值.(1)(x 1+ 1)(x 2+ 1); (2)x 12x 2+ x 1x 22;(3); (4)(x 1-x 2)2.6.已知关于x 的方程x 2+2(m -2)x+m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 值并解此方程四、证明题(共1道,每道6分)1.求证:不论k 取什么实数,方程x 2-(k+6)x+4(k-3)=0一定有两个不相等的实数根九年级数学暑期预习领先班(九年级上、下册知识一网打尽+全面系统、夯实基础) 东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B 室 电话:65335902 西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B 座405室 电话:68856662希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。
九年级数学上册《解一元二次方程》练习题及答案解析
九年级数学上册《解一元二次方程》练习题及答案解析学校:___________姓名:___________班级:____________一、单选题1.方程x 2﹣x =﹣2的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠3.若关于x 的一元二次方程()21220m x x -+-=没有实数根,则实数m 的取值范围是( )A .12m <B .12m >C .12m >且1m ≠D .1m ≠4.关于x 的方程()()221x x p -+=(p 为常数)根的情况,下列结论中正确的是( )A .有两个相异正根B .有两个相异负根C .有一个正根和一个负根D .无实数根5.一元二次方程 210x x -+= 的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .有一个实数根6.在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,233y x cx =++,其中a =2,b 、c 都是正实数,且满足b 2=ac .设y 1,y 2,y 3的图象与x 轴的交点个数分别为M 1,M 2,M 3,则下列结论错误的是( )A .若M 1=1,M 2=1,则M 3=2B .若M 1=1,M 2=1,则M 3=1C .若M 1=1,M 2=0,则M 3=0或1或2D .若M 1=1,M 2=2,则M 3=27.若关于x 的方程(k ﹣2)x 2﹣2x +1=0有实数根,则k 的取值范围是( )A .3k ≥B .3k ≤C .3k ≥-且k ≠2D .3k ≤且k ≠28.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( ) A .11- B .26- C .28- D .30-9.如图,顶点为(3,6)--的抛物线2y ax bx c =++经过点(1,4)--,则下列结论中正确的是( )A .240b ac -≥B .若点(2,),(4,)--m n 都在抛物线上,则m n >C .当3x <-时,y 随x 的增大而减小D .关于x 的一元二次方程27ax bx c ++=-有两个不等的实数根10.在平面直角坐标系中,若反比例函数3a y x+=的图象在第一、三象限,则关于x 的一元二次方程()21310a x x +-+=有实数根,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .2-D .1-二、填空题11.已知关于x 的方程2245x x n --=,在04x ≤≤内有两个不相等的实数根,则n 的取值范围是___________________________.12.若等腰三角形的一边长为6,另两边的长是关于x 的一元二次方程280x x m -+=的两个根,则m 的值为_______.13.若关于x 的一元二次方程210kx x +-=有两个不相等的实数根,则实数k 的取值范围是______. 14.若双曲线k y x =与直线AB :443y x =-+只有一个公共点P ,则k =________.15.已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.三、解答题16.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若此方程的一个根是1,请求出方程的另一个根.17.已知关于x的一元二次方程22310++-=.x x aa=-,解这个方程;(1)若1(2)若该方程有实数根,求a的取值范围.18.如图,某中学课外兴题小组准备围建一个矩形花园ABCD,其中一边靠墙,另外三边用总长为60 m的篱笆围成,与墙平行的一边BC上要预留2 m宽的入口(如图中MN所示,不用篱笆),已知墙长为28 m.(1)当矩形的长BC为多少米时,矩形花园的面积为300平方米;(2)能否围成500平方米的矩形花园?若能求出BC长;若不能,说明理由.参考答案与解析:1.A【分析】判断方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.【详解】解:方程整理得,x2﹣x+2=0,△Δ=(﹣1)2﹣4×1×2=﹣7<0,△方程无实数根.故选:A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.2.D【分析】方程为一元二次方程,故a≠0,再结合根的判别式:当24b ac-≥0时,方程有实数根;即可求解.【详解】解:△原方程为一元二次方程,且有实数根,△a ≠0,24b ac -≥0时,方程有实数根;△2(2)40a --≥,解得:a ≤1,△1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根.3.A【分析】先根据一元二次方程的定义可得1m ≠,再利用一元二次方程根的判别式可得一个关于m 的一元一次不等式,解不等式即可得. 【详解】解:方程()21220m x x -+-=是关于x 的一元二次方程,10m ∴-≠,解得1m ≠, 又关于x 的一元二次方程()21220m x x -+-=没有实数根,∴此方程根的判别式48(1)0m ∆=+-<, 解得12m <, 综上,实数m 的取值范围是12m <, 故选:A .【点睛】本题考查了一元二次方程的定义、以及根的判别式,熟练掌握一元二次方程根的判别式是解题关键.4.C【分析】先对方程进行化简,然后再根据一元二次方程根的判别式可进行求解.【详解】解:由题意得:方程可化为2220x x p ---=,△()()2222142184490p p p ∆=----=++=+>, △该方程有两个不相等的实数根,设该方程的两个根为12,x x ,则根据根与系数的关系可知:21220x x p ⋅=--<,△该方程的两个根为一正一负,故选C .【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.5.A【分析】根据一元二次方程根的判别式进行计算即可求解.【详解】解:△一元二次方程 210x x -+=中,1,1,1a b c ==-=△241430b ac ∆=-=-=-<,∴该方程没有实数根,故选A .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.6.B【分析】利用一元二次方程根的判别式一一证明即可.【详解】解:△a =2,△y 1=x 2+2x +1=(x +1)2,△抛物线顶点坐标为(﹣1,0),△M 1=1,△y 2=x 2+bx +2,△2Δ8b =-,当M 2=1时,b 2﹣8=0,△b 2=ac =8,△c =4,△y 3=x 2+4x +3,△2Δ44340=-⨯=>,△M 3=2,故A 选项正确,B 错误;当M 2=0时,b 2﹣8<0,△b 2=ac <8,△c <4,△22Δ4312c c =-⨯=-,△M 3=0或1或2,故C 正确;当M 2=2时,28>0b ﹣,△2>8b ac =,△>4c ,△22Δ43120c c =-⨯=->,△M 3=2,故D 选项正确;故选:B .【点睛】本题考查了抛物线与x 轴的交点问题,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用一元二次方程的根的判别式解决问题.7.B【分析】分情况讨论:当k -2=0时,方程为一元一次方程,方程有一个实数解;当k -2≠0时,利用根的判别式的意义得到Δ=()()2242k ---≥0,解得k ≤3且k ≠2,然后综合两种情况得到k 的取值范围.【详解】解:当k -2=0时,方程化为-2x +1=0,解得x =12;当k -2≠0时,根据题意得Δ=()()2242k ---≥0,解得k ≤3且k ≠2,综上所述,k 的取值范围为k ≤3.故选:B .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.8.D【分析】先解方程可得x 7032a =+(a 32≠-),根据方程的解是负整数可得7032a +是负整数,进而可求解满足条件的所有非负整数a 的值,即可求解.【详解】解:解关于x 的方程38132ax x x --=- 得x 7032a=+(a 32≠-), △关于x 的方程38132ax x x --=-的解是负整数, △7032a +是负整数,△231a +=- 或235a +=-或237a +=-或2335a +=-即满足条件的所有整数a 为-2、-4、-5、-19,△满足条件的所有整数a 的值的和为-2+(-4)+(-5)+(-19)=-30,故答案为:D .【点睛】本题主要考查一元一次方程的解,正确求解一元一次方程是解题的关键.9.C【分析】由抛物线与x 轴有两个交点则可对A 进行判断;根据抛物线上的点离对称轴的远近,则可对B 进行判断;由抛物线的增减性可直接判断C 选项;根据二次函数的最值可对D 进行判断.【详解】解:A 、图像与x 轴有两个交点,方程ax 2+bx +c =0有两个不相等的实数根,b 2-4ac >0,故A 选项不符合题意;B 、抛物线的对称轴为直线x =-3,因为-2离对称轴的距离等于-4离对称轴的距离,所以m =n ,故B 选项不符合题意;C 、顶点为(-3,-6),则对称轴为直线x =-3,抛物线开口向上,则当x <-3时,y 随x 的增大而减小,故C 选项符合题意;D 、由抛物线开口向上及顶点为(-3,-6)可知,此函数的最小值为-6,则ax 2+bx +c =-7(a ≠0)没有实数根,故D 选项不符合题意.故选:C .【点睛】本题综合考查了二次函数的性质,属于基础题,且难度适中;考查了根的判别式、最值与顶点坐标的关系,及一元二次方程与二次函数的关系等方面的内容,掌握相关基础知识是解题关键.10.D 【分析】根据反比例函数3a y x +=的图象在第一、三象限,可得:3,a 根据关于x 的一元二次方程()21310a x x +-+=有实数根,可得:54a ≤且1,a 再结合a 为整数,从而可得答案. 【详解】解:△反比例函数3a y x+=的图象在第一、三象限, △30,a解得:3,a △关于x 的一元二次方程()21310a x x +-+=有实数根,23410a 且10,a +≠解得:54a ≤且1,a 综上:534a且1,a △a 为整数, △2a =-或0a =或1a =,△2011,故选:D .【点睛】本题考查的是反比例函数的图象与性质,一元二次方程的根的判别式,“理解反比例函数的图象与系数k 的关系,根据一元二次方程的解的情况列不等式求解参数的取值范围”都是解本题的关键.11.-7<n ≤-5【分析】根据“方程有两个不相等的实数根”求出n >-7,解出方程,根据在04x ≤≤内有两个不相等的实数根,求出n 的取值,问题得解.【详解】解:原方程整理得()22450x x n -+--=, △()2=416425856b ac n n ∆-=-⨯--=+,△方程有两个不相等的实数根,△8560n +>△n >-7,△x ==△方程在04x ≤≤内有两个不相等的实数根,4≥≤, 解得n ≤-5,n ≤11,△n≤-5,又△n >-7,△-7<n ≤-5.故答案为:-7<n ≤-5【点睛】本题考查了含字母系数的一元二次方程,根的判别式,综合性较强,解题的关键是用公式法求出一元二次方程的两个根,根根据题意列出不等式.12.12或16【分析】分6为等腰三角形的腰长和6为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.其中,每种情况下都要根据三角形三边关系定理(两边之和大于第三边,两边之差小于第三边)检验三边长是否满足三角形的三边关系.【详解】解:由题意,分以下两种情况:(1)当6为等腰三角形的腰长时,则关于x 的方程x2−8x+m=0的一个根x1=6代入方程得,36-48+m=0解得m=12则方程为x2−8x+12=0解方程,得另一个根为x2=2△等腰三角形的三边长分别为6,6,2,经检验满足三角形的三边关系定理;(2)当6为等腰三角形的底边长时,则关于x的方程x2−8x+m=0 有两个相等的实数根△根的判别式246440b ac m=-=-=解得,m=16则方程为x2−8x+16=0解方程,得x1=x2=4△等腰三角形的三边长分别为4,4,6,经检验满足三角形的三边关系定理.综上,m的值为12或16.故答案为:12或16.【点睛】本题考查一元二次方程根的定义,根的判别式,等腰三角形的定义,三角形的三边关系定理等知识点.正确分两种情况讨论是解题关键.13.14k>-且0k≠.【分析】由题意可得Δ>0且k≠0,然后解不等式即可.【详解】解:由题意得:Δ>0,△214(1)0k-⨯->整理得:14 k>-.又△k≠0,△实数k的取值范是14k>-且k≠0.故答案是:14k >-且k ≠0. 【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.14.3 【分析】联立443y x =-+,k y x=,可得241230x x k +=-,根据双曲线和直线AB 只有一个公共点P ,结合一元二次方程的根的判别式,列式并求解即可获得答案. 【详解】解:联立443y x =-+,k y x =,可得443k x x-+=, 整理得 241230x x k +=-,△双曲线y =k x与直线AB 只有一个公共点P , △241230x x k +=-有两个相等实数根,即2124430k ∆=-⨯⨯=,解得 k =3.故答案为:3.【点睛】本题主要考查了反比例函数与一次函数综合应用、一元二次方程的根的判别式等知识,熟练掌握相关性质,利用数形结合思想分析问题是解题关键.15.9【分析】根据根的判别式的意义得到△2640m =-=,然后解关于m 的方程即可.【详解】解:根据题意得△2640m =-=,解得9m =.故答案为:9.【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程20(a 0)++=≠ax bx c 的根与△=-24b ac 有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根.16.(1)见解析(2)2【分析】(1)先证明240,b ac =-≥ 即可得到结论;(2)先把1x =代入原方程求解m ,再利用根与系数的关系求解另一个根即可.(1)证明:a =1,b =﹣(m +2),c =2m .△Δ=b 2﹣4ac =[﹣(m +2)]2﹣4×1×2m =m 2+4m +4﹣8m =m 2﹣4m +4=(m ﹣2)2≥0,△不论m 为何值,该方程总有两个实数根.(2)解:将x =1代入原方程得:1﹣(m +2)+2m =0,△m =1,△原方程为x 2﹣3x +2=0.△2÷1=2,△方程的另一个根为2.【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,配方法的应用,熟练的运用一元二次方程根的判别式与根与系数的关系解题是关键.17.(1)11x =-21x =-(2)23a ≤【分析】(1)把1a =-代入22310x x a ++-=,得到2240x x +-=,再解这个方程即可;(2)根据该方程有实数根,由根的判别式可求a 的取值范围.(1)解:△关于x 的一元二次方程22310x x a ++-=,△当1a =-时,方程为2240x x +-=,△1x ==-△11x =-21x =- (2)△关于x 的一元二次方程22310x x a ++-=有实数根,△()441310a =-⨯⨯-≥△,解得:23a ≤.△a 的取值范围为23a ≤. 【点睛】本题考查了用公式法解一元二次方程和一元二次方程()200++=≠ax bx c a 的根的判别式.一元二次方程根的判别式用24b ac =-△表示,当0>时,方程有两个不相等的实数根;当0=时,方程有两个相等的实数根;当0<时,方程没有实数根.18.(1)当矩形的长BC 为12米时,矩形花园的面积为300平方米(2)不能围成500平方米的矩形花园,理由见解析【分析】(1)根据可以砌60m长的墙的材料,即总长度是60m,BC=xm,则AB=1(60-x+2)m,再根据2矩形的面积公式列方程,解一元二次方程即可.(2)利用根的判别式进行判断即可.(1)(60﹣x+2)米,依题意列方程得:设矩形花园BC的长为x米,则其宽为121(60﹣x+2)x=300,2x2﹣62x+600=0,解这个方程得:x1=12,x2=50,△28<50,△x2=50(不合题意,舍去),△x=12.答:当矩形的长BC为12米时,矩形花园的面积为300平方米;(2)(60﹣x+2)米,依题意列方程得:设矩形花园BC的长为x米,则其宽为121(60﹣x+2)x=500,2x2﹣62x+1000=0,△=622﹣4000=﹣156<0,则该方程无解,即不能围成500平方米的矩形花园.答:不能围成500平方米的矩形花园.【点睛】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙EF最长可利用28m,舍掉不符合题意的数据.。
苏科版九年级上1.3一元二次方程的根与系数的关系含答案解析
1.3 一元二次方程的根与系数的关系当堂检测1.一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1x 2的值是( )A .4B .-4C .3D .-32.一元二次方程x 2-2x -3=0的两根之和为________,两根之积为________.3.若一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则x 1+x 2-x 1x 2的值为________.4.如果x 1,x 2是一元二次方程x 2-6x -5=0的两个实数根,那么x 1+x 2=________,x 1x 2=________,x 12+x 22=________.5.已知α,β是方程x 2+2x -3=0的两个实数根,求下列各式的值.(1)α2+β2;(2)β2-2α.课后训练一、选择题1. 若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .-10B .10C .-16D .162.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m +n 的值是( )A .-10B .10C .-6D .23.设x 1,x 2是方程x 2+5x -3=0的两个根,则x 12+x 22的值是( )A .19B .25C .30D .314.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( ) A .5 B .-5 C .1 D .-15.若方程x 2+x -1=0的两实数根为α,β,则下列说法不正确...的是( ) A .α+β=-1 B .αβ=-1 C .α2+β2=3 D .1α+1β=-1 6.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( ) A .3 B .1 C .3或-1 D .-3或17.方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是A.-2或3 B.3 C.-2 D.-3或28.[2014·包头]若关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤12B.m≤12且m≠0 C.m<1 D.m<1且m≠0二、填空题9.已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.10.若关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,则ab=________.11.若m,n是方程x2+x-1=0的两个实数根,则m2+2m+n的值为________.12.若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.14.已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1,x2,且(x1-2)(x1-x2)=0,则k的值是________.15.若关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=________.16.如果m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,那么代数式2n2-mn+2m+2015=________.三、解答题17.已知关于x的方程x2+x+n=0的两个实数根分别为-2,m,求m,n的值.18.已知关于x的方程x2-2mx=-m2+2x的两个实数根x1,x2满足|x1|=x2,求实数m 的值.19.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足|x1|+|x2|=x1x2,求k的值.答案及解析当堂检测1.D [解析] x 1x 2=-3.故选D.2.2 -33.3 [解析] 根据题意,得x 1+x 2=2,x 1x 2=-1,所以x 1+x 2-x 1x 2=2-(-1)=3.4.6 -5 465.解:∵α,β是方程x 2+2x -3=0的两个实数根,∴α+β=-2,αβ=-3.(1)原式=(α+β)2-2αβ=4+6=10.(2)原式=3-2β-2α=3-2(α+β)=3-2×(-2)=7.课后训练1.[解析] A 在已知方程中,因为a =1,b =10,c =16,所以x 1+x 2=-b a =-101=-10.故选A .2.[解析] A ∵关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,∴-2+4=-m ,-2×4=n ,解得m =-2,n =-8,∴m +n =-10.故选A .3.[解析] D ∵x 1,x 2是方程x 2+5x -3=0的两个根,∴x 1+x 2=-5,x 1x 2=-3,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=25+6=31.故选D .4.[解析] B 先利用根与系数的关系求出两根之和与两根之积,将所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将两根之和与两根之积代入计算即可求出结果.∵x 1,x 2是方程x 2+3x -3=0的两个实数根,∴x 1+x 2=-3,x 1x 2=-3,∴原式=x 12+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=9+6-3=-5. 故选B .[点评] 此题考查了一元二次方程的根与系数的关系,熟练掌握根与系数的关系是解本题的关键.5.[解析] D 由一元二次方程根与系数的关系,知α+β=-1,αβ=-1,因此,α2+β2=(α+β)2-2αβ=(-1)2-2×(-1)=3,显然选项A ,B ,C 均正确.故选D .6.[解析] A 根据条件,知α+β=-(2m +3),αβ=m 2,∴1α+1β=β+ααβ=-(2m +3)m 2=-1, 即m 2-2m -3=0,∴⎩⎪⎨⎪⎧m 2-2m -3=0,(2m +3)2-4m 2>0, 解得m =3.故选A .[点评] 本题考查一元二次方程根与系数的关系与根的判别式及不等式组的综合应用能力.一元二次方程根的情况:(1)b 2-4ac >0⇔方程有两个不相等的实数根;(2)b 2-4ac =0⇔方程有两个相等的实数根;(3)b 2-4ac <0⇔方程没有实数根.7.[解析] C ∵方程x 2-(m +6)x +m 2=0有两个相等的实数根,∴b 2-4ac =[-(m +6)]2-4m 2=0,解得m =6或m =-2.又∵x 1+x 2=m +6,x 1x 2=m 2,x 1+x 2=x 1x 2,∴m +6=m 2,解得m =3或m =-2.∵b 2-4ac =0,∴m =3不符合题意,舍去,即m =-2.故选C .8.[解析] B 因为一元二次方程有实数根,所以b 2-4ac =4(m -1)2-4m 2=4-8m ≥0,所以m ≤12.因为x 1+x 2=-2(m -1)>0,所以m<1.因为x 1x 2=m 2>0,所以m ≠0.所以m ≤12且m ≠0.故选B .9.[答案] 25[解析] ∵m ,n 是一元二次方程x 2-4x -3=0的两个根,∴m +n =4,mn =-3,则m 2-mn +n 2=(m +n)2-3mn =16+9=25.10.[答案] 4[解析] ∵关于x 的一元二次方程x 2-(a +5)x +8a =0的两个实数根分别为2和b , ∴由根与系数的关系,得2+b =a +5,2b =8a ,解得a =1,b =4,∴ab =1×4=4.11.[答案] 0[解析] ∵m ,n 是方程x 2+x -1=0的两个实数根,∴m +n =-1,m 2+m =1,则原式=(m 2+m)+(m +n)=1-1=0.12.[答案] 16[解析] 设矩形的长和宽分别为x ,y ,根据题意,得x +y =8,所以矩形的周长=2(x +y)=16.13.[答案] 2[解析] ∵方程x 2-6x +k =0的两个根分别为x 1,x 2,∴x 1+x 2=6,x 1x 2=k ,1x 1+1x 2=x 1+x 2x 1x 2=6k=3, 解得k =2.14.[答案] -2或-94[解析] ∵(x 1-2)(x 1-x 2)=0,∴x 1-2=0或x 1-x 2=0,解得x 1=2或x 1=x 2.当x =2时,原方程可变为22+(2k +1)×2+k 2-2=0,解得k =-2;当x 1=x 2时,此时一元二次方程有两个相等的实数根,∴b 2-4ac =0,即(2k +1)2-4(k 2-2)=0,解得k =-94.故答案为-2或-94. 15.[答案] 0[解析] ∵x 1+x 2=2m -1,x 1x 2=m 2-1,x 12+x 22=(x 1+x 2)2-2x 1x 2=3,∴(2m -1)2-2(m 2-1)=3,解得m 1=0,m 2=2.∵方程x 2-(2m -1)x +m 2-1=0有两个实数根,∴b 2-4ac =(2m -1)2-4(m 2-1)≥0,解得m ≤54. ∴m =0.故答案为0.16.[答案] 2026[解析] 由题意可知:m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3, 所以m ,n 是一元二次方程x 2-x -3=0的两个不相等的实数根,则根据根与系数的关系可知:m +n =1,mn =-3.又因为n 2=n +3,则2n 2-mn +2m +2015=2(n +3)-mn +2m +2015=2n +6-mn +2m +2015=2(m +n)-mn +2021=2×1-(-3)+2021=2+3+2021=2026.17.解:由题意,得m +(-2)=-1,∴m =1.又∵-2m =n ,∴n =-2.18.解:原方程可变形为x 2-2(m +1)x +m 2=0.∵x 1,x 2是原方程的两个实数根,∴4(m +1)2-4m 2≥0,∴8m +4≥0,解得m ≥-12. 又∵x 1,x 2满足|x 1|=x 2,∴x 1=x 2或x 1=-x 2,即b 2-4ac =0或x 1+x 2=0.由b 2-4ac =0,即8m +4=0,得m =-12; 由x 1+x 2=0,即2(m +1)=0,得m =-1(不合题意,舍去).故当|x 1|=x 2时,m 的值为-12. 19.[解析] (1)根据方程有两个不相等的实数根可得b 2-4ac =(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,求出k 的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2k +1=k 2+1,结合k 的取值范围解方程即可.解:(1)∵原方程有两个不相等的实数根,∴b 2-4ac =(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,解得k >34. (2)∵k >34, ∴x 1+x 2=-(2k +1)<0.又∵x 1x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k +1.∵|x 1|+|x 2|=x 1x 2,∴2k +1=k 2+1,∴k 1=0,k 2=2.又∵k >34, ∴k =2.20.解:(1)方程整理,得x 2-2(k +1)x +k 2+2k =0.∵b 2-4ac =4(k +1)2-4(k 2+2k)=4>0,∴实数k 的取值范围是任意实数.(2)根据题意,得x 1+x 2=2(k +1),x 1x 2=k 2+2k ,x 12+x 22-x 1·x 2+1=(x 1+x 2)2-3x 1x 2+1=4(k +1)2-3(k 2+2k)+1=k 2+2k +5=(k +1)2+4.∴当k =-1时,代数式x 12+x 22-x 1·x 2+1取得最小值,该最小值为4.21.解:(1)b 2-4ac =4+4k.∵方程有两个不相等的实数根,∴b 2-4ac >0,即4+4k >0,∴k >-1.(2)由根与系数的关系可知α+β=-2,αβ=-k ,∴α1+α+β1+β=α(1+β)+β(1+α)(1+α)(1+β)=α+β+2αβ1+α+β+αβ=-2-2k 1-2-k=2. 【数学活动】[解析] (1)根据判别式的意义得到b 2-4ac =(2m -1)2-4m 2≥0,然后解不等式即可;(2)把x =1代入原方程可得到关于m 的一元二次方程,然后解此一元二次方程即可;(3)根据根与系数的关系得到α+β=-(2m -1),αβ=m 2,利用α2+β2-αβ=6得到(α+β)2-3αβ=6,则(2m -1)2-3m 2=6,然后解方程后利用(1)中m 的取值范围确定m 的值.解:(1)根据题意,得b 2-4ac =(2m -1)2-4m 2≥0,解得m ≤14. (2)把x =1代入方程,得1+2m -1+m 2=0,解得m 1=0,m 2=-2.即m 的值为0或-2.(3)存在.根据题意,得α+β=-(2m-1),αβ=m2. ∵α2+β2-αβ=6,∴(α+β)2-3αβ=6,即(2m-1)2-3m2=6,整理,得m2-4m-5=0,解得m1=5,m2=-1.∵m≤1 4,∴m的值为-1. =-1.。
一元二次方程根及系数的关系习题精选含答案解析
. .. .一元二次方程根与系数的关系习题精选〔含答案〕一.选择题〔共22小题〕1.〔2021•〕假设关于x的一元二次方程的两个根为x1=1,x2=2,那么这个方程是〔〕A.x2+3x﹣2=0 B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=02.〔2021•〕x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,那么x1•x2等于〔〕A.﹣4 B.﹣1 C.1D.43.〔2021•〕x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?那么正确的结论是〔〕A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在4.〔2021•〕假设α,β是方程x2﹣2x﹣3=0的两个实数根,那么α2+β2的值为〔〕A.10 B.9C.7D.55.〔2021•贵港〕假设关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,那么b+c的值是〔〕A.﹣10 B.10 C.﹣6 D.﹣16.〔2021•〕关于x的方程x2﹣ax+2a=0的两根的平方和是5,那么a的值是〔〕A.﹣1或5 B.1C.5D.﹣17.〔2021•〕假设方程x2+x﹣1=0的两实根为α、β,那么以下说法不正确的选项是〔〕A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣18.〔2021•威海〕方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,那么m的值是〔〕A.﹣2或3 B.3C.﹣2 D.﹣3或29.〔2021•模拟〕假设关于x的一元二次方程x2+〔k+3〕x+2=0的一个根是﹣2,那么另一个根是〔〕A.2B.1C.﹣1 D.010.〔2021•黄冈样卷〕设a,b是方程x2+x﹣2021 =0的两个实数根,那么a2+2a+b的值为〔〕A.2021 B.2021 C.2021 D.202111.〔2021•模拟〕一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于〔〕A.﹣6 B.6C.3D.﹣312.〔2021•峨眉山市二模〕x1、x2是方程x2﹣〔k﹣2〕x+k2+3k+5=0的两个实数根,那么的最大值是〔〕A.19 B.18 C.15 D.1313.〔2021•陵县模拟〕:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,那么a、b的值分别是〔〕A.a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣1 D.a=﹣,b=114.〔2021•〕α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,那么α2+αβ+β2的值为〔〕A.﹣1 B.9C.23 D.2715.〔2021•〕关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,那么a的值是〔〕A.a=1 B.a=1或a=﹣2 C.a=2 D.a=1或a=216.〔2021•天河区二模〕一元二次方程x2﹣4x+3=0两根为x1、x2,那么x1+x2=〔〕A.4B.3C.﹣4 D.﹣317.〔2021•青神县一模〕m和n是方程2x2﹣5x﹣3=0的两根,那么的值等于〔〕A.B.C.D.18.〔2021•莱芜〕m、n是方程x2+2x+1=0的两根,那么代数式的值为〔〕A.9B.±3C.3D.519.〔2021•天门〕如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为〔〕A.3B.﹣3 C.13 D.﹣1320.〔2021•锦江区模拟〕假设方程x2﹣3x﹣2=0的两实根为x1、x2,那么〔x1+2〕〔x2+2〕的值为〔〕A.﹣4 B.6C.8D.1221.〔2021•模拟〕p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,那么的值为〔〕A.1B.2C.D.22.〔2021•滨湖区一模〕假设△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么△ABC 的周长为〔〕A.9B.10 C.9或10 D.8或9或10二.填空题〔共4小题〕23.〔2021•莱芜〕假设关于x的方程x2+〔k﹣2〕x+k2=0的两根互为倒数,那么k= _________ .24.〔2021•呼和浩特〕m,n是方程x2+2x﹣5=0的两个实数根,那么m2﹣mn+3m+n= _________ .25.〔2021•〕假设关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,那么x1〔x2+x1〕+x22的最小值为_________ .26.〔2021•〕关于x的一元二次方程x2+〔2k+1〕x+k2﹣2=0的两根为x1和x2,且〔x1﹣2〕〔x1﹣x2〕=0,那么k的值是_________ .三.解答题〔共4小题〕27.〔2021•〕x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根.〔1〕假设〔x1﹣1〕〔x2﹣1〕=28,求m的值;〔2〕等腰△ABC的一边长为7,假设x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.28.〔2021•日照二模〕x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,其满足〔3x1﹣x2〕〔x1﹣3x2〕=﹣80.数a的所有可能值.29.〔2021•〕关于x的一元二次方程x2﹣〔2k+1〕x+k2+2k=0有两个实数根x1,x2.〔1〕数k的取值围;〔2〕是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?假设存在,请求出k的值;假设不存在,请说明理由.30.〔2001•〕关于x的一元二次方程,〔1〕求证:不管k取何值,方程总有两个不相等的实数根;〔2〕设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.一元二次方程根与系数的关系习题精选〔含答案〕参考答案与试题解析一.选择题〔共22小题〕1.〔2021•〕假设关于x的一元二次方程的两个根为x1=1,x2=2,那么这个方程是〔〕A.x2+3x﹣2=0 B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x1=1,x2=2那么两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,应选:B.点评:验算时要注意方程中各项系数的正负.2.〔2021•〕x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,那么x1•x2等于〔〕A.﹣4 B.﹣1 C.1D.4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1•x2=1.应选:C.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.3.〔2021•〕x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?那么正确的结论是〔〕A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,那么=0,求出m=0,再用判别式进展检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,那么=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.应选:A.点评:此题主要考察了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.4.〔2021•〕假设α,β是方程x2﹣2x﹣3=0的两个实数根,那么α2+β2的值为〔〕A.10 B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,那么将所求的代数式变形为〔α+β〕2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=〔α+β〕2﹣2αβ=22﹣2×〔﹣3〕=10.应选:A.点评:此题主要考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.〔2021•贵港〕假设关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,那么b+c的值是〔〕A.﹣10 B.10 C.﹣6 D.﹣1考点:根与系数的关系.分析:根据根与系数的关系得到﹣2+4=﹣b,﹣2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.解答:解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,∴根据根与系数的关系,可得﹣2+4=﹣b,﹣2×4=c,解得b=﹣2,c=﹣8∴b+c=﹣10.应选:A.点评:此题考察根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.6.〔2021•〕关于x的方程x2﹣ax+2a=0的两根的平方和是5,那么a的值是〔〕A.﹣1或5 B.1C.5D.﹣1考点:根与系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到〔x1+x2〕2﹣2x1•x2=5,那么a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,那么x1+x2=a,x1•x2=2a,∵x12+x22=5,∴〔x1+x2〕2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.应选:D.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.也考察了一元二次方程的根的判别式.7.〔2021•〕假设方程x2+x﹣1=0的两实根为α、β,那么以下说法不正确的选项是〔〕A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到〔α+β〕2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进展判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=〔α+β〕2﹣2αβ=〔﹣1〕2﹣2×〔﹣1〕=3;+===1.应选:D.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.8.〔2021•威海〕方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,那么m的值是〔〕A.﹣2或3 B.3C.﹣2 D.﹣3或2考点:根与系数的关系;根的判别式.专题:判别式法.分析:根据根与系数的关系有:x1+x2=m+6,x1x2=m2,再根据x1+x2=x1x2得到m的方程,解方程即可,进一步由方程x2﹣〔m+6〕+m2=0有两个相等的实数根得出b2﹣4ac=0,求得m的值,由一样的解解决问题.解答:解:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,∴m+6=m2,解得m=3或m=﹣2,∵方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,∴△=b2﹣4ac=〔m+6〕2﹣4m2=﹣3m2+12m+36=0解得m=6或m=﹣2∴m=﹣2.应选:C.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.9.〔2021•模拟〕假设关于x的一元二次方程x2+〔k+3〕x+2=0的一个根是﹣2,那么另一个根是〔〕A.2B.1C.﹣1 D.0考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.解答:解:设x1、x2是关于x的一元二次方程x2+〔k+3〕x+2=0的两个根,由韦达定理,得x1•x2=2,即﹣2x2=2,解得,x2=﹣1.即方程的另一个根是﹣1.应选C.点评:此题主要考察了根与系数的关系.在利用根与系数的关系x1+x2=﹣、x1•x2=时,要注意等式中的a、b、c 所表示的含义.10.〔2021•黄冈样卷〕设a,b是方程x2+x﹣2021 =0的两个实数根,那么a2+2a+b的值为〔〕A.2021 B.2021 C.2021 D.2021考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:先根据一元二次方程的解的定义得到a2+a﹣2021 =0,即a2+a=2021 ,那么a2+2a+b变形为a+b+2021 ,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.解答:解:∵a是方程x2+x﹣2021 =0的根,∴a2+a﹣2021 =0,即a2+a=2021 ,∴a2+2a+b=a+b+2021 ,∵a,b是方程x2+x﹣2021 =0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2021 =﹣1+2021 =2021.应选C.点评:此题考察了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=,x1x2=.也考察了一元二次方程的解.11.〔2021•模拟〕一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于〔〕A.﹣6 B.6C.3D.﹣3考点:根与系数的关系.分析:由一元二次方程x2﹣2x﹣3=0和3x2﹣11x+6=0先用判别式判断方程是否有解,再根据根与系数的关系,即可直接得出答案.解答:解:由一元二次方程x2﹣2x﹣3=0,∵△=4+16=20>0,∴x1x2=﹣3,由一元二次方程3x2﹣11x+6=0,∵△=121﹣4×3×6=49>0,∴x1x2=2∴﹣3×2=﹣6应选A.点评:此题考察了一元二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式.12.〔2021•峨眉山市二模〕x1、x2是方程x2﹣〔k﹣2〕x+k2+3k+5=0的两个实数根,那么的最大值是〔〕A.19 B.18 C.15 D.13考点:根与系数的关系;二次函数的最值.分析:根据x1、x2是方程x2﹣〔k﹣2〕x+〔k2+3k+5〕=0的两个实根,由△≥0即可求出k的取值围,然后根据根与系数的关系求解即可.解答:解:由方程有实根,得△≥0,即〔k﹣2〕2﹣4〔k2+3k+5〕≥0所以3k2+16k+16≤0,所以〔3k+4〕〔k+4〕≤0解得﹣4≤k≤﹣.又由x1+x2=k﹣2,x1•x2=k2+3k+5,得x12+x22=〔x1+x2〕2﹣2x1x2=〔k﹣2〕2﹣2〔k2+3k+5〕=﹣k2﹣10k﹣6=19﹣〔k+5〕2,当k=﹣4时,x12+x22取最大值18.应选:B.点评:此题考察了根与系数的关系,属于根底题,关键是根据△≥0先求出k的取值围再根据根与系数的关系进展求解.13.〔2021•陵县模拟〕:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,那么a、b的值分别是〔〕A.a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣1 D.a=﹣,b=1考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到得x1+x2=﹣2a,x1x2=b,即﹣2a=3,b=1,然后解一次方程即可.解答:解:根据题意得x1+x2=﹣2a,x1x2=b,所以﹣2a=3,b=1,解得a=﹣,b=1.应选D.点评:此题考察了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=,x1x2=.14.〔2021•〕α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,那么α2+αβ+β2的值为〔〕A.﹣1 B.9C.23 D.27考点:根与系数的关系.分析:根据根与系数的关系α+β=﹣,αβ=,求出α+β和αβ的值,再把要求的式子进展整理,即可得出答案.解答:解:∵α,β是方程x2﹣5x﹣2=0的两个实数根,∴α+β=5,αβ=﹣2,又∵α2+αβ+β2=〔α+β〕2﹣βα,∴α2+αβ+β2=52+2=27;应选D.点评:此题考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,假设方程两个为x1,x2,那么x1+x2=﹣,x1x2=.15.〔2021•〕关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,那么a的值是〔〕A.a=1 B.a=1或a=﹣2 C.a=2 D.a=1或a=2考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:根据x12﹣x1x2=0可以求得x1=0或者x1=x2,所以①把x1=0代入原方程可以求得a=1;②利用根的判别式等于0来求a的值.解答:解:解x12﹣x1x2=0,得x1=0,或x1=x2,①把x1=0代入方程,得a﹣1=0,解得:a=1;②当x1=x2时,△=4﹣4〔a﹣1〕=0,即8﹣4a=0,解得:a=2.综上所述,a=1或a=2.应选:D.点评:此题考察了根与系数的关系、一元二次方程的解的定义.解答该题的技巧性在于巧妙地利用了根的判别式等于0来求a的另一值.16.〔2021•天河区二模〕一元二次方程x2﹣4x+3=0两根为x1、x2,那么x1+x2=〔〕A.4B.3C.﹣4 D.﹣3考点:根与系数的关系.分析:根据一元二次方程x2﹣4x+3=0两根为x1、x2,直接利用x1+x2=﹣求出即可.解答:解:∵一元二次方程x2﹣4x+3=0两根为x1、x2,∴x1+x2=﹣=4.应选A.点评:此题主要考察了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键.17.〔2021•青神县一模〕m和n是方程2x2﹣5x﹣3=0的两根,那么的值等于〔〕A.B.C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到m+n=,mn=﹣,再变形+得到,然后利用整体思想计算.解答:解:根据题意得m+n=,mn=﹣,所以+===﹣.应选D.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.18.〔2021•莱芜〕m、n是方程x2+2x+1=0的两根,那么代数式的值为〔〕A.9B.±3C.3D.5考点:根与系数的关系;二次根式的化简求值.专题:整体思想.分析:根据一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系得到m+n=﹣2,mn=1,再变形得,然后把m+n=﹣2,mn=1整体代入计算即可.解答:解:∵m、n是方程x2+2x+1=0的两根,∴m+n=﹣2,mn=1,∴====3.应选C.点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两根分别为x1,x2,那么x1+x2=﹣,x1•x2=.也考察了二次根式的化简求值.19.〔2021•天门〕如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为〔〕A.3B.﹣3 C.13 D.﹣13考点:根与系数的关系;根的判别式.分析:利用根与系数的关系求得x1x2=a,x1+x2=﹣4,然后将其代入x1x2﹣2x1﹣2x2﹣5=x1x2﹣2〔x1+x2〕﹣5=0列出关于a的方程,通过解方程即可求得a的值.解答:解:∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1x2=a,x1+x2=﹣4,∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2〔x1+x2〕﹣5=a﹣2×〔﹣4〕﹣5=0,即a+3=0,解得,a=﹣3;应选B.点评:此题考察了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.〔2021•锦江区模拟〕假设方程x2﹣3x﹣2=0的两实根为x1、x2,那么〔x1+2〕〔x2+2〕的值为〔〕A.﹣4 B.6C.8D.12考点:根与系数的关系.分析:根据〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4.将x1+x2=3、x1•x2=﹣2代入,得〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4=〔﹣2〕+2×3+4=8.应选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21.〔2021•模拟〕p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,那么的值为〔〕A.1B.2C.D.考点:根与系数的关系.专题:计算题.分析:首先把1﹣q﹣q2=0变形为,然后结合p2﹣p﹣1=0,根据一元二次方程根与系数的关系可以得到p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么利用根与系数的关系即可求出所求代数式的值.解答:解:由p2﹣p﹣1=0和1﹣q﹣q2=0,可知p≠0,q≠0,又∵pq≠1,∴,∴由方程1﹣q﹣q2=0的两边都除以q2得:,∴p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么由韦达定理,得p+=1,∴=p+=1.应选A.点评:此题考察了根与系数的关系.首先把1﹣q﹣q2=0变形为是解题的关键,然后利用根与系数的关系就可以求出所求代数式的值.22.〔2021•滨湖区一模〕假设△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么△ABC 的周长为〔〕A.9B.10 C.9或10 D.8或9或10考点:根与系数的关系;三角形三边关系.专题:压轴题.分析:由于两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么b、c可以看作方程x2﹣5x+6=0的两根,根据根与系数的关系可以得到b+c=5,bc=6,而△ABC的一边a为4,由此即可求出△ABC的一边a为4周长.解答:解:∵两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,∴b、c可以看作方程x2﹣5x+6=0的两根,∴b+c=5,bc=6,而△ABC的一边a为4,①假设b=c,那么b=c=3或b=c=2,但2+2=4,所以三角形不成立,故b=c=3.∴△ABC的周长为4+3+3=10或4+2+2②假设b≠c,∴△ABC的周长为4+5=9.应选C.点评:此题把一元二次方程的根与系数的关系与三角形的周长结合起来,利用根与系数的关系来三角形的周长.此题要注意分类讨论.二.填空题〔共4小题〕23.〔2021•莱芜〕假设关于x的方程x2+〔k﹣2〕x+k2=0的两根互为倒数,那么k= ﹣1 .考点:根与系数的关系.专题:判别式法.分析:根据和根与系数的关系x1x2=得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.解答:解:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或﹣1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为﹣1.故答案为:﹣1.点评:此题考察了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕的两个实数根,那么x1+x2=﹣,x1x2=进展求解.24.〔2021•呼和浩特〕m,n是方程x2+2x﹣5=0的两个实数根,那么m2﹣mn+3m+n= 8 .考点:根与系数的关系;一元二次方程的解.专题:常规题型.分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=〔5﹣2m〕﹣〔﹣5〕+3m+n=10+m+n=10﹣2=8故答案为:8.点评:此题主要考察了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.25.〔2021•〕假设关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,那么x1〔x2+x1〕+x22的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,那么△=b2﹣4ac=4m2﹣4〔m2+3m﹣2〕=8﹣12m≥0,∴m≤,∵x1〔x2+x1〕+x22=〔x2+x1〕2﹣x1x2=〔﹣2m〕2﹣〔m2+3m﹣2〕=3m2﹣3m+2=3〔m2﹣m+﹣〕+2=3〔m﹣〕2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:此题考察了一元二次方程根与系数关系,考察了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.26.〔2021•〕关于x的一元二次方程x2+〔2k+1〕x+k2﹣2=0的两根为x1和x2,且〔x1﹣2〕〔x1﹣x2〕=0,那么k的值是﹣2或﹣.考点:根与系数的关系;根的判别式.分析:先由〔x1﹣2〕〔x1﹣x2〕=0,得出x1﹣2=0或x1﹣x2=0,再分两种情况进展讨论:①如果x1﹣2=0,将x=2代入x2+〔2k+1〕x+k2﹣2=0,得4+2〔2k+1〕+k2﹣2=0,解方程求出k=﹣2;②如果x1﹣x2=0,那么将x1+x2=﹣〔2k+1〕,x1x2=k2﹣2代入可求出k的值,再根据判别式进展检验.解答:解:∵〔x1﹣2〕〔x1﹣x2〕=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+〔2k+1〕x+k2﹣2=0,得4+2〔2k+1〕+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么〔x1﹣x2〕2=〔x1+x2〕2﹣4x1x2=[﹣〔2k+1〕]2﹣4〔k2﹣2〕=4k+9=0,解得k=﹣.又∵△=〔2k+1〕2﹣4〔k2﹣2〕≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:此题考察了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进展检验.三.解答题〔共4小题〕27.〔2021•〕x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根.〔1〕假设〔x1﹣1〕〔x2﹣1〕=28,求m的值;〔2〕等腰△ABC的一边长为7,假设x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:〔1〕利用〔x1﹣1〕〔x2﹣1〕=x1•x2﹣〔x1+x2〕+1=m2+5﹣2〔m+1〕+1=28,求得m的值即可;〔2〕分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:〔1〕∵x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根,∴x1+x2=2〔m+1〕,x1•x2=m2+5,∴〔x1﹣1〕〔x2﹣1〕=x1•x2﹣〔x1+x2〕+1=m2+5﹣2〔m+1〕+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;〔2〕①当7为底边时,此时方程x2﹣2〔m+1〕x+m2+5=0有两个相等的实数根,∴△=4〔m+1〕2﹣4〔m2+5〕=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14〔m+1〕+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:此题考察了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.28.〔2021•日照二模〕x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,其满足〔3x1﹣x2〕〔x1﹣3x2〕=﹣80.数a的所有可能值.考点:根与系数的关系;根的判别式.专题:计算题.分析:根据△的意义由一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根得到△≥0,即〔3a﹣1〕2﹣4〔2a2﹣1〕=a2﹣6a+5≥0,根据根与系数的关系得到x1+x2=﹣〔3a﹣1〕,x1•x2=2a2﹣1,由〔3x1﹣x2〕〔x1﹣3x2〕=﹣80变形得到3〔x1+x2〕2﹣16x1x2=﹣80,于是有3〔3a﹣1〕2﹣16〔2a2﹣1〕=﹣80,解方程得到a=3或a=﹣,然后代入△验算即可得到实数a的值.解答:解:∵x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,∴△≥0,即〔3a﹣1〕2﹣4〔2a2﹣1〕=a2﹣6a+5≥0所以a≥5或a≤1.…〔3分〕∴x1+x2=﹣〔3a﹣1〕,x1•x2=2a2﹣1,∵〔3x1﹣x2〕〔x1﹣3x2〕=﹣80,即3〔x12+x22〕﹣10x1x2=﹣80,∴3〔x1+x2〕2﹣16x1x2=﹣80,∴3〔3a﹣1〕2﹣16〔2a2﹣1〕=﹣80,整理得,5a2+18a﹣99=0,∴〔5a+33〕〔a﹣3〕=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去,当a=﹣时,△=〔﹣〕2﹣6×〔﹣〕+6=〔〕2+6×+6>0,∴实数a的值为﹣点评:此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:如果方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.也考察了一元二次方程根的判别式以及代数式的变形能力.29.〔2021•〕关于x的一元二次方程x2﹣〔2k+1〕x+k2+2k=0有两个实数根x1,x2.〔1〕数k的取值围;〔2〕是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?假设存在,请求出k的值;假设不存在,请说明理由.考点:根与系数的关系;根的判别式.专题:压轴题.分析:〔1〕根据一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[﹣〔2k+1〕]2﹣4〔k2+2k〕≥0,通过解该不等式即可求得k的取值围;〔2〕假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:〔1〕∵原方程有两个实数根,∴[﹣〔2k+1〕]2﹣4〔k2+2k〕≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.〔2〕假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3〔k2+2k〕﹣〔2k+1〕2≥0,整理得:﹣〔k﹣1〕2≥0,∴只有当k=1时,上式才能成立.又∵由〔1〕知k≤,∴不存在实数k使得≥0成立.点评:此题综合考察了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.30.〔2001•〕关于x的一元二次方程,〔1〕求证:不管k取何值,方程总有两个不相等的实数根;〔2〕设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:〔1〕要保证方程总有两个不相等的实数根,就必须使△>0恒成立;〔2〕欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:〔1〕关于x的一元二次方程,∴△=〔﹣2k〕2﹣4×〔k2﹣2〕=2k2+8,∵2k2+8>0恒成立,∴不管k取何值,方程总有两个不相等的实数根.〔2〕∵x1、x2是方程的两个根,∴x1+x2=2k,x1•x2=k2﹣2,∴x12﹣2kx1+2x1x2=x12﹣〔x1+x2〕x1+2x1x2=x1x2=k2﹣2=5,解得k=±.点评:此题主要考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
3.中考数学专题一元二次方程根的判别式、根与系数的关系母题题源系列(解析版)
专题01 一元二次方程根的判别式、根与系数的关系【母题来源一】【2019•河南】一元二次方程(x+1)(x-1)=2x+3的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【解析】原方程可化为:x2-2x-4=0,∴a=1,b=-2,c=-4,∴Δ=(-2)2-4×1×(-4)=20>0,∴方程有两个不相等的实数根.故选A.【名师点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.【母题来源二】【2019•河北】小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是A.不存在实数根B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根【答案】A【解析】∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,∴(-1)2-4+c=0,解得:c=3,故原方程中c=5,则b2-4ac=16-4×1×5=-4<0,则原方程的根的情况是不存在实数根.故选A.【名师点睛】此题主要考查了根的判别式,正确得出c的值是解题关键.【母题来源三】【2019•荆州】若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【答案】A【解析】∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.故选A.【名师点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一次函数的性质.【母题来源四】【2019•包头】已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是A.34 B.30C.30或34 D.30或36【答案】A【解析】当a=4时,b<8,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2-12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34,故选A.【名师点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.【母题来源五】【2019•上海】如果关于x的方程x2-x+m=0没有实数根,那么实数m的取值范围是________.【答案】m1 4 >【解析】由题意知Δ=1-4m<0,∴m14 >.故答案为:m14 >.【名师点睛】总结:一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【母题来源六】【2019•衡阳】关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.【解析】(1)根据题意得Δ=(-3)2-4k≥0,解得k94≤.(2)k的最大整数为2,方程x2-3x+k=0变形为x2-3x+2=0,解得x1=1,x2=2,∵一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,∴当x=1时,m-1+1+m-3=0,解得m32 =;当x=2时,4(m-1)+2+m-3=0,解得m=1,而m-1≠0,∴m的值为32.【母题来源七】【2019•黄石】已知关于x的一元二次方程x2-6x+(4m+1)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根为x1、x2,且|x1-x2|=4,求m的值.【解析】(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,∴Δ=(-6)2-4×1×(4m+1)≥0,解得:m≤2.(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.【母题来源八】【2019•黄冈】若x1,x2是一元二次方程x2-4x-5=0的两根,则x1·x2的值为A.-5 B.5C.-4 D.4【答案】A【解析】∵x1,x2是一元二次方程x2-4x-5=0的两根,∴x1·x2ca==-5.故选A.【名师点睛】本题考查了根与系数的关系,牢记两根之积等于ca是解题的关键.【母题来源九】【2019•广东】已知x1,x2是一元二次方程x2-2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12-2x1=0C.x1+x2=2 D.x1·x2=2【答案】D【解析】∵Δ=(-2)2-4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2-2x=0的实数根,∴x12-2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2-2x=0的两个实数根,∴x1+x2=2,x1·x2=0,选项C不符合题意,选项D符合题意.故选D.【名师点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项的正误是解题的关键.【母题来源十】【2019•淄博】若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是 A .x 2-3x +2=0 B .x 2+3x -2=0 C .x 2+3x +2=0 D .x 2-3x -2=0【答案】A【解析】∵x 12+x 22=5, ∴(x 1+x 2)2-2x 1x 2=5, 而x 1+x 2=3, ∴9-2x 1x 2=5, ∴x 1x 2=2,∴以x 1,x 2为根的一元二次方程为x 2-3x +2=0. 故选A .【名师点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a=. 【母题来源十一】【2019•江西】设x 1,x 2是一元二次方程x 2-x -1=0的两根,则x 1+x 2+x 1x 2=__________. 【答案】0【解析】∵x 1、x 2是方程x 2-x -1=0的两根, ∴x 1+x 2=1,x 1×x 2=-1, ∴x 1+x 2+x 1x 2=1-1=0. 故答案为:0.【名师点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2b a =-,x 1·x 2ca=.【母题来源十二】【2019•娄底】已知方程x 2+bx +3=0__________.【解析】设方程的另一个根为c ,c =3,∴c =-【名师点睛】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键. 【母题来源十三】【2019•十堰】已知于x 的元二次方程x 2-6x +2a +5=0有两个不相等的实数根x 1,x 2. (1)求a 的取值范围;(2)若x 12+x 22-x 1x 2≤30,且a 为整数,求a 的值.【解析】(1)∵关于x 的一元二次方程x 2-6x +2a +5=0有两个不相等的实数根x 1,x 2, ∴Δ>0,即(-6)2-4(2a +5)>0,解得a <2. (2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a +5, ∵x 1,x 2满足x 12+x 22-x 1x 2≤30, ∴(x 1+x 2)2-3x 1x 2≤30, ∴36-3(2a +5)≤30, ∴a 32≥-,∵a 为整数, ∴a 的值为-1,0,1.【名师点睛】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k 的取值范围是解题的关键,注意方程根的定义的运用.【母题来源十四】【2019•鄂州】已知关于x 的方程x 2-2x +2k -1=0有实数根. (1)求k 的取值范围;(2)设方程的两根分别是x 1、x 2,且2112x x x x +=x 1·x 2,试求k 的值. 【解析】(1)∵原方程有实数根, ∴b 2-4ac ≥0∴(-2)2-4(2k -1)≥0, ∴k ≤1.(2)∵x 1,x 2是方程的两根,根据一元二次方程根与系数的关系,得: x 1+x 2=2,x 1·x 2=2k -1, 又∵2112x x x x +=x 1·x 2, ∴22121212x x x x x x +=⋅⋅, ∴(x 1+x 2)2-2x 1x 2=(x 1·x 2)2, ∴22-2(2k -1)=(2k -1)2,解之,得:1222k k ==-.经检验,都符合原分式方程的根,∵k ≤1,∴k =. 【名师点睛】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.【命题意图】这类试题主要考查一元二次方程根的判别式,常与一次函数、等腰三角形等知识结合考查.一元二次方程根与系数的关系. 【方法总结】1.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根; (2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根; (3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.2.(1)应用根的判别式时必须先将一元二次方程化成一般形式,然后确定a ,b ,c 的值;(2)此判别式只适用于一元二次方程,当无法判断方程是不是一元二次方程时,应对方程进行分类讨论;(3)当240b ac -=时,方程有两个相等的实数根,不能说成方程有一个实数根. 3.一元二次方程根的判别式的应用主要有以下三种情况: (1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数中字母的取值范围; (3)应用判别式证明方程根的情况. 4.根与系数关系对于一元二次方程20ax bx c ++=(其中a b c ,,为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12cx x a=.5.一元二次方程根与系数的关系的应用(1)不解方程,求关于方程两根的代数式的值; (2)已知方程一根,求方程的另一根及方程中字母的值; (3)已知方程两根的关系,求方程中字母的值; (4)与根的判别式相结合,解决一些综合题. 6.与一元二次方程两根有关的几个代数式的变形(1)()()22222121122*********x x x x x x x x x x x x +=++-=+-;(2)12121211x x x x x x ++=; (3)12x x -==(4)()222121221211212122x x x x x x x x x x x x x x +-++==; (5)()()221212124x x x x x x -=+-;(6)()()()2121212x k x k x x k x x k ++=+++.1.【天津市滨海新区2019届中考一模数学试题】下列方程中,有两个不相等的实数根的方程是 A .28170x x +=- B .26100x x -=-C .290x +=-D .2440x x +=-【答案】B【解析】A .Δ=(-8)2-4×1×17=-4<0,故方程没有实数根,该选项不符合题意, B .Δ=(-6)2-4×1×(-10)=76>0,故方程有两个不相等的实数根,该选项符合题意, C .Δ=(-2-4×1×9=-4<0,故方程没有实数根,该选项不符合题意, D .Δ=(-4)2-4×1×4=0,故方程有两个相等的实数根,该选项不符合题意, 故选B .【名师点睛】本题考查一元二次方程根的情况与判别式Δ的关系:Δ>0时,方程有两个不相等的实数根;Δ=0时,方程有两个相等的实数根;Δ<0时,方程没有实数根.2.【2019年河南省第二届名校联盟中考数学模拟试卷(5月份)】若关于x 的一元二次方程mx 2-2x +1=0有两个实数根,则实数m的取值范围是A.m≤1B.m≤-1C.m≤1且m≠0D.m≥1且m≠0【答案】C【解析】根据题意得m≠0且Δ=(-2)2-4m≥0,解得m≤1且m≠0.故选C.【名师点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.3.【山东省诸城市部分学校2019届中考模拟(6月)数学试题】已知a、b、c为正数,若关于x的一元二次方程ax2+bx+c=0有两个实数根,则关于x的方程a2x2+b2x+c2=0解的情况为A.有两个不相等的正根B.有一个正根,一个负根C.有两个不相等的负根D.不一定有实数根【答案】C【解析】∵关于x的一元二次方程ax2+bx+c=0有两个实数根,∴Δ=b2-4ac≥0.又∵a、b、c为正数,∴b2-4ac+2ac=b2-2ac>0,b2+2ac>0.∵方程a2x2+b2x+c2=0的根的判别式Δ=b4-4a2c2=(b2+2ac)(b2-2ac)>0,∴该方程有两个不相等的实数根.设关于x的方程a2x2+b2x+c2=0的两个实数根为x1,x2,则x1+x2=22ba<0,x1x2=22ca>0,∴关于x的方程a2x2+b2x+c2=0有两个不相等的负根.故选C.【名师点睛】本题考查了根的判别式以及根与系数的关系,利用根的判别式及根与系数的关系,找出关于x的方程a2x2+b2x+c2=0有两个不相等的负根是解题的关键.4.【2019年四川省内江市中考数学模拟试卷(三)】关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,则a的值是A.1 B.-1C.1或-1 D.2【答案】B【解析】依题意Δ>0,即(3a+1)2-8a(a+1)>0,即a2-2a+1>0,(a-1)2>0,a≠1,∵关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1-x1x2+x2=1-a,∴x1-x1x2+x2=1-a,∴x1+x2-x1x2=1-a,∴3122a aa a++-=1-a,解得:a=±1,又a≠1,∴a=-1.故选B.【名师点睛】此题考查了根的判别式,根与系数的关系,以及一元二次方程的定义,一元二次方程中根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程没有实数根.5.【2019年山东省潍坊市中考数学一模试卷】已知关于x的方程x2+(k2-4)x+k-1=0的两实数根互为相反数,则k=__________.【答案】-2【解析】设方程的两根分别为x1,x2,∵x2+(k2-4)x+k-1=0的两实数根互为相反数,∴x1+x2,=-(k2-4)=0,解得k=±2,当k=2,方程变为:x2+1=0,Δ=-4<0,方程没有实数根,所以k=2舍去;当k=-2,方程变为:x2-3=0,Δ=12>0,方程有两个不相等的实数根;∴k=-2.故答案为:-2.【名师点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba;x1·x2=ca.也考查了一元二次方程的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.【2019年江西省南昌市十校联考中考数学模拟试卷(5月份)】已知α、β是一元二次方程x2-2019x+1=0的两实根,则代数式(α-2019)(β-2019)=__________.【答案】1【解析】∵α、β是一元二次方程x2-2019x+1=0的两实根,∴α+β=2019,αβ=1,∴(α-2019)(β-2019)=αβ-2019(α+β)+22019=1.故答案为:1.【名师点睛】本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.7.【河南省2019年中考数学模试题(一)】已知关于x的一元二次方程ax2-(a+2)x+2=0有两个不相等的正整数根时,整数a的值是__________.【答案】1【解析】∵方程ax2-(a+2)x+2=0是关于x的一元二次方程,∴a≠0.∵Δ=(a+2)2-4a×2=(a-2)2≥0,∴当a=2时,方程有两个相等的实数根,当a≠2且a≠0时,方程有两个不相等的实数根.∵方程有两个不相等的正整数根,∴a≠2且a≠0.设方程的两个根分别为x1、x2,∴x1·x2=2a,∵x1、x2均为正整数,∴2a为正整数,∵a为整数,a≠2且a≠0,∴a=1,故答案为:1.【名师点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是:①找出Δ=(a-2)2≥0;②找出x1·x2=2a为正整数.本题属于中档题,难度不大,解决该题型题目时,由方程的两根均为整数确定a的值是难点.8.【2019年江苏省盐城市建湖县中考数学二模试卷】已知关于x方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1=2x2,求m的值.【解析】(1)∵关于x方程x2-6x+m+4=0有两个实数根,∴Δ=(-6)2-4×1×(m+4)≥0,解得:m≤5.(2)∵关于x方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6,x1x2=m+4.又∵x1=2x2,∴x2=2,x1=4,∴4×2=m+4,∴m=4.【名师点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)根据根与系数的关系结合x1=2x2,求出x1,x2的值.9.【2019年江苏省泰州市兴化市中考数学二模试卷】已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【解析】(1)∵Δ=[-(m+2)]2-4×2m=(m-2)2≥0,∴不论m为何值,该方程总有两个实数根.(2)∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB·AC=2m,∵ΔABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2-2AB·AC=BC2,即(m+2)2-2×2m=32,解得:m∴m的值是又∵AB•AC=2m,m为正数,∴m【名师点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.10.【湖北省黄石市河口中学2019届九年级中考模拟考试三数学试题】已知x1、x2是一元二次方程(a-6)x 2+2ax +a =0的两个实数根.(1)求实数a 的取值范围;(2)若x 1、x 2满足x 1x 2-x 1=4+x 2,求实数a 的值.【解析】(1)∵一元二次方程(a -6)x 2+2ax +a =0有两个实数根,∴(2a )2-4(a -6)×a ≥0,a -6≠0, 解得,a ≥0且a ≠6.(2)∵x 1、x 2是一元二次方程(a -6)x 2+2ax +a =0的两个实数根,∴x 1+x 2=26a a -,x 1·x 2=x 1·x 2=6a a -, ∵x 1x 2-x 1=4+x 2, ∴x 1x 2=4+x 2+x 1,即6a a -=4+26a a -, 解得,a =24.【名师点睛】本题考查的是一元二次方程根的判别式、根与系数的关系,x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=b a ,x 1x 2=c a,反过来也成立. 11.【北京市石景山区2019届九年级统一练习暨毕业考试数学试题】关于x 的一元二次方程2(3)x m x-+20m ++=.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.【解析】(1)依题意,得()()224[3]42b ac m m ∆=-=-+-+ 26948m m m =++--()21m =+.∵2(1)0m +≥,∴0∆≥.∴方程总有两个实数根.(2)由2320x m x m -+++=().可化为:[](1)(2)0x x m --+=, 得1212x x m ==+,,∵方程的两个实数根都是正整数,m+≥.∴21m≥-.∴1-.∴m的最小值为1【名师点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.。
初中数学一元二次方程根与系数关系专项练习题(附答案详解)
初中数学一元二次方程根与系数关系专项练习题(附答案详解)1.若一个关于x 的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A .x 2﹣7x+12=0B .x 2+7x+12=0C .x 2﹣9x+20=0D .x 2+9x+20=02.关于x 的方程kx 2+2x ﹣1=0有两个实数根,则k 的取值范围是( )A .k≥1B .k≥﹣1C .k≥1且k≠0D .k≥﹣1且k≠03.若m ,n 是方程2250x x --=两根,则()()22m m m n -+的值为( ) A .5 B .10 C .5- D .10-4.已知x 1,x 2是一元二次方程x 2-6x- 15=0的两个根,则x 1+x 2等于( )A .-6B .6C .-15D .155.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则( )A .2OB = B .2OB >C .2OB ≥D .2OB <6.若方程x 2 +x-1 = 0的两实根为α、β,那么下列说法不正确的是( ) .A .α+β=-1B .αβ=-1C .11+αβ=1D .α2+β2=1 7.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( )A .4B .﹣4C .3D .﹣38.下列关于x 的一元二次方程中,有两个不相等的实数的是( ).A .2x +2 =0B .2x +x-1=0C .2x +x+3=0D .42x -4x+1=0. 9.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m ,n 的值分别为()A .m =-2,n =8B .m =-2,n =-8C .m =2,n =-8D .m =2,n =8 10.已知α,β是方程2201610x x ++=的两个根,则()()221201812018ααββ++++的值为( ) A .1 B .2 C .3 D .411.已知1x ,2x 分别是一元二次方程260x x --=的两个实数根,则12x x +=________.12.已知,,a b c 是等腰ABC ∆的三条边,其中2b =,如果 ,a c 是关于y 的一元二次方程 260y y n -+=的两个根,则n 的值是__.13.已知a 、b 是一元二次方程2410x x --=的两根,则a +b =_____.14.有一个一元二次方程,它的一个根 x 1=1,另一个根-2<x 2<0. 请你写出一个符合这样条件的方程:_________.15.已知方程 x 2﹣4x+3=0 的两根分别为 x 1、x 2,则 x 1+x 2=______.16.已知x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两实数根,则1132x ++2132x +的值是_____.17.已知x 1,x 2是关于x 的方程x 2-(2m -2)x +(m 2-2m )=0的两根,且满足x 1•x 2+2(x 1+x 2)=-1,那么m 的值为( )A .1-或3B .3-或1C .3-D .118.设一元二次方程2230x x --=的两个实数根为x 1,x 2,则x 1+x 1x 2+x 2等于( ). A .1 B .-1 C .0 D .319.已知方程x 2+kx ﹣6=0有一个根是2,则k =_____,另一个根为_____.20.求作一个方程,使它的两个根分别是4-和3,这个方程的一般式是________. 21.关于x 的一元二次方程226250x x p p -+-+=的一个根为2。
一元二次方程的根与系数的关系-九年级数学人教版(上)(原卷版+解析版)
第二十一章一元二次方程*21.2.4一元二次方程的根与系数的关系一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<02.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是A.2 B.﹣1C.2或﹣1 D.不存在3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A.﹣2 B.1C.2 D.04.已知关于x的一元二次方程kx2−2x+1=0有实数根,则k的取值范围是A.k<1 B.k≤1C.k≤1且k≠0 D.k<1且k≠05.已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0的两个不相等的实数根,且满足= −1,则m 的值是A.3或−1 B.3C.−1 D.−3 或16.关于x的方程的两根互为相反数,则k的值是A.2 B.±2C.−2 D.−3二、填空题:请将答案填在题中横线上.7.一元二次方程的两根为,则的值为__________.8.设、是一元二次方程的两个根,且,则__________,__________.9.方程的两个根为、,则的值等于__________.10.若是一元二次方程x²−6x−2=0的两个实数根,则=__________.11.已知方程x2−mx−3m=0的两根是x1、x2,若x1+x2=1,则x1x2=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.13.已知关于x的一元二次方程x2+(m−1)x−2m2+m=0(m为实数)有两个实数根x1,x2.(1)当m为何值时,方程有两个不相等的实数根;(2)若x12+x22=2,求m的值.第二十一章一元二次方程*21.2.4一元二次方程的根与系数的关系一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<0【答案】AC、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1,x2异号,结论D错误.故选A.【名师点睛】本题考查了根的判别式以及根与系数的关系,牢记“当 >0时,方程有两个不相等的实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是A.2 B.﹣1C.2或﹣1 D.不存在【答案】A∴x1+x2=,x1x2=,∵=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2,故选A.【名师点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式 >0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A.﹣2 B.1C.2 D.0【答案】D【解析】∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选D.【名师点睛】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.4.已知关于x 的一元二次方程kx 2−2x +1=0有实数根,则k 的取值范围是 A .k <1B .k ≤1C .k ≤1且k ≠0D .k <1且k ≠0【答案】C【名师点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.已知α,β是关于x 的一元二次方程x 2+ (2m +3)x +m 2=0的两个不相等的实数根,且满足= −1,则m的值是A .3或 −1B .3C .−1D .−3 或 1【答案】B【解析】∵α、β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根; ∴α+β=−2m −3,α⋅β=m 2, ∴==223m m --=−1, ∴m 2−2m −3=0, 解得m =3或m =−1.∵一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根, ∴∆=(2m +3)2−4×1×m 2=12m +9>0, ∴m >−,∴m =−1不合题意舍去, ∴m =3.【名师点睛】此题考查了一元二次方程根与系数的关系、根的判别式等知识点,根据根与系数的关系结合=1,找出关于m的方程是解题的关键.6.关于x的方程的两根互为相反数,则k的值是A.2 B.±2C.−2 D.−3【答案】C【名师点睛】本题主要考查一元二次方程根与系数的关系,熟记公式是解决本题的关键.二、填空题:请将答案填在题中横线上.7.一元二次方程的两根为,则的值为__________.【答案】2【解析】由题意得:+2=0,=2,∴=−2,=4,∴=−2+4=2,故答案为:2.【名师点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.8.设、是一元二次方程的两个根,且,则__________,__________.【答案】,【名师点睛】本题考查了根与系数的关系:若、是一元二次方程ax2+bx+c=0(a≠0)的两根时,=−,=.9.方程的两个根为、,则的值等于__________.【答案】3【解析】根据题意得,,所以===3.故答案为3.【名师点睛】本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.10.若是一元二次方程x²−6x−2=0的两个实数根,则=__________.【答案】6【解析】∵x1+x2=﹣,∴x1+x2=6.故答案为:6.【名师点睛】本题考查了一元二次方程的根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=﹣,x1•x2=.11.已知方程x2−mx−3m=0的两根是x1、x2,若x1+x2=1,则x1x2=__________.【答案】−3【解析】∵,∴.【名师点睛】本题主要考查的是一元二次方程的根与系数的关系,属于基础题型.理解根与系数的关系的公式是解决这个问题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)−2.【名师点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当 ≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22−x1x2=3p2+1,求出p值.13.已知关于x的一元二次方程x2+(m−1)x−2m2+m=0(m为实数)有两个实数根x1,x2.(1)当m为何值时,方程有两个不相等的实数根;(2)若x12+x22=2,求m的值.【答案】(1);(2),.【名师点睛】本题是常见的根的判别式、根与系数关系的结合试题.把求未知系数m的问题转化为解方程问题是解决本题的关键.。
九年级上第03讲 一元二次方程根的判别式及根与系数的关系讲义+练习
第3讲一元二次方程根的判别式及根与系数的关系概述适用学科初中数学适用年级初三适用区域人教版区域课时时长(分钟)120知识点1、一元二次方程的根的判别式2、根与系数的关系教学目标1、使学生理解并掌握一元二次方程的根的判别式.2、使学生掌握不解方程,运用判别式判断一元二次方程根的情况.3、通过对含有字母系数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力.培养学生思考问题的灵活性和严密性.来解某些一元二次方程.并由此体会转化的思想.4、使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会其运用.教学重点1、一元二次方程根的判别式的内容及应用.2、韦达定理的推导和灵活运用.3、已知方程求关于根的代数式的值 .教学难点1、用两根之和与两根之积表示含有两根的各种代数式.2、一元二次方程根的判别式的推导.3、利用根的判别式进行有关证明【知识导图】用公式法求出下列方程的解:(1)3x 2+x -10=0;(2)x 2-8x +16=0;(3)2x 2-6x +5=0. 引入新课通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根.接下来向学生提出问题:是什么条件决定着一元二次方程的根的情况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题.先讨论上述三个小题中b 2-4ac 的情况与其根的联系.再做如下推导:对任意一元二次方程ax 2+bx+c=0(a ≠0),可将其变形为一元二次方程根的判别与及根于系数的关系根的判别有实数根无实数根韦达定理两根和两根积教学过程考点1 一元二次方程根的判别式 二、知识讲解一、导入(x+)2=∵a ≠0,∴4a 2>0.由此可知b 2-4ac 的值直接影响着方程的根的情况. (1)当b 2-4ac >0时,方程右边是一个正数.12x x ==因此b 2-4ac >0时,一元二次方程有两个不相等的实数根 (2)当b 2-4ac =0时,方程右边是122bx x a==-,所以,一元二次方程有两个相等的实数根 (3) 当b 2-4ac<0时,方程右边是一个负数,而方程左边的(x+)2不可能是一个负数,因此方程没有实根.通过以上讨论,总结出:一元二次方程ax 2+bx +c =0的根的情况可由b 2-4ac 来判定.故称b 2-4ac 是一元二次方程ax 2+bx +c =0的根的判别式,通常用“△”来表示. ● 综上所述,一元二次方程ax 2+bx +c =0(a ≠0)当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根; 当△<0时,没有实数根.反过来也成立.● 提问1.一元二次方程ax 2+bx +c =0的求根公式应如何表述? 2.上述方程两根之和等于什么?两根之积呢? ● 新知讲解一元二次方程ax 2+bx +c =0(a ≠0)的两根为:考点2 根于系数之间的关系12x x ==12b x x a +=- 12cx x a=由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”) 如果ax 2+bx +c =0(a ≠0)的两个根是x 1,x 2,那么12b x x a +=-12cx x a= 我们再来看二次项系数为1的一元二次方程x 2+px +q =0的根与系数的关系. 如果把方程ax 2+bx +c =0(a ≠0)变形为20b cx x a a++=,我们就可以将之写成20x px q ++=的形式,其中,b cp q a a== ● 得出结论:如果方程x 2+px +q =0的两根是x 1,x 2,那么x 1+x 2=-p ,x 1x 2=q . 由 x 1+x 2=-p ,x 1x 2=q 可知p =-(x 1+x 2),q =x 1·x 2, ∴方程x 2+px +q =0, 即 x 2-(x 1+x 2)x +x 1·x 2=0.这就是说,以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. ● 一元二次方程的根与系数的关系如果方程ax 2+bx +c =0(a≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1·x 2=c a .这个关系通常称为韦达定理.(1)在实数范围内运用根与系数的关系时,必须注意两个条件: ①方程必须是一元二次方程,即二次项系数a≠0;②方程有实数根,即Δ≥0.因此,解题时要注意分析题中隐含条件Δ≥0和a≠0.(2)如果方程x 2+px +q =0的两个根是x 1,x 2,这时韦达定理应是:x 1+x 2=-p ,x 1·x 2=q.如果实数x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx +c =0的两个根.考点3 利用根与系数的关系确定一元二次方程(1)利用这一性质比较容易检验一元二次方程的解是否正确.(2)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1x 2=0. 已知两根求一元二次方程,其一般步骤是: ①先根据两根分别求出两根之和与两根之积;②把两根之和、两根之积代入一元二次方程x 2-(x 1+x 2)x +x 1x 2=0,求出所要求的方程.已知一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1,x 2,则求含有x 1,x 2的代数式的值时,其方法是把含x 1,x 2的代数式通过转化,变为用x 1+x 2,x 1x 2的代数式进行表示,然后再整体代入求出代数式的值.解决此类问题时经常要运用到以下代数式及变形: ①+=(x 1+x 2)2-2x 1x 2;②1x 1+1x 2=x 1+x 2x 1x 2; ③(x 1+a)(x 2+a)=x 1x 2+a(x 1+x 2)+a 2; ④|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.类型一 一元二次方程根的判别式一元二次方程的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根 【答案】D若关于x 的一元二次方程x 2+2(k ﹣1)x+k 2﹣1=0有实数根,则k 的取值范围是( ) A .k≥1 B .k >1 C .k <1 D .k≤121x 22x 2x2x 20三 、例题精析例题2例题1考点4 一元二次方程根与系数的关系的应用【答案】D已知:关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根。
人教版数学九年级上学期课时练习- 《一元二次方程》全章复习与巩固(巩固篇)(人教版)
专题21.31 《一元二次方程》全章复习与巩固(巩固篇)(专项练习)一、单选题1.已知方程20x bx a -+=,有一个根是()0a a -≠,则下列代数式的值恒为常数的是( ).A .abB .a bC .a b +D .-a b2.已知方程264x x -+=,等号右侧的数字印刷不清楚,若可以将其配方成()27x p -=的形式,则印刷不清楚的数字是( )A .6B .9C .2D .2-3.若a ,b 10a -=,则2a b -=( ) A .3B .4C .5D .64.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法.类似地可以用折纸的方法求方程210x x +-=的一个正根.如图,裁一张边长为1的正方形纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段AE 上,标注点B 的新位置F ,则EF EB =. 类似地,再在AB 上折出点M 使AM AF =,则表示方程210x x +-=的一个正根的是( )A .线段BM 的长B .线段AM 的长C .线段BE 的长D .线段AE 的长5.若对于任意实数a ,b ,c ,d ,定义a b cd=ad -bc ,按照定义,若11x x +- 23x x -=0,则x 的值为( )AB .C .3D .6.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为( ) A .-4B .2C .-4或2D .4或-27.已知关于x 的一元二次方程2220x mx m m ++-=的两实数根为12,x x ,且满足122x x =,则12x x +的值为( )A .4B .-4C .4或-2D .-4或28.若a 、b 是关于x 的一元二次方程x 22-kx +4k =0的两个实数根,且a 2+b 2=12,则k 的值是( )A .1-B .3C .1-或3D .3-或19.在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为a 分钟,经过去年下半年和今年上半年两次整改后,现在平均每周作业时长比去年上半年减少了70%,设每半年平均每周作业时长的下降率为x ,则可列方程为( )A .()2170%a x a -= B .()2170%a x a += C .()2130%a x a -=D .()230%1x a a +=10.如图,在△ABC 中,△ABC =90°,AB =8cm ,BC =6cm .动点P ,Q 分别从点A ,B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15cm 2的是( )A .2秒钟B .3秒钟C .3秒钟或5秒钟D .5秒钟11.如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,如果输出M 的值为5,那么输入x 的值为( )A .-8B .-2C .1D .8二、填空题12.关于x 的方程ax 2-2bx -3=0(ab ≠0)两根为m ,n ,且(2am 2-4bm +2a )(3an 2-6bn -2a )=54,则a 的值为______.13.若1x ,2x 是方程210x x +-=的两根,则()()22112222x x x x +-+-的值为______.14.已知x ,那么2263x x +-的值是______. 15.已知矩形的长和宽分别为a 和b ,如果存在另外一个矩形,它的周长和面积分别是已知矩形的三分之一,则a ,b 应该满足的条件为 _____.16.已知一元二次方程214480x x -+=的两个根是菱形的两条对角线长,则这个菱形的周长______.17a =_____________. 18.设12,x x 是一元二次方程2530x x -+=的两个根,则1211x x +=__________. 19.已知26a -100a +7=0以及27b -100b +6=0,且ab ≠1,则ab的值为__________.20.电影《长津湖之水门桥》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,某地第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后票房收入累计达10亿元,若把增长率记作x ,则方程可以列为___________.21.如图,已知Rt△ABC 中,△ACB =90°,△B =30°,BC =3,D 是边AB 上的一点,将△BCD 沿直线CD 翻折,使点B 落在点B 1的位置,若B 1D △BC ,则BD 的长度为 _____.22.如图,在一块长为22m ,宽为14m 的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m 2,则小路的宽为________m .23.如图,在矩形ABCD 中,65AB AD ==,,点E 是AB 上一点,且5BE =,连接CE ,点F 是线段DC 上一点,将ADF 沿AF 折叠,使得点D 的对应点D 落在线段CE 上,则DF 的长度为___________.三、解答题 24.解方程(1)2699910x x --=; (2)()()22352360x x ---+=;(3)2223x a ax +=(配方法); (4)2210mx x -+=.25.阅读材料:若m2-2mn +2n 2-8n +16=0,求m 、n 的值. 解:△m 2-2mn +2n 2-8n +16=0,△(m 2-2mn +n 2)+(n 2-8n +16)=0△(m -n)2+(n -4)2=0,△(m -n)2=0,(n -4)2=0,△n =4,m =4. 根据你的观察,探究下面的问题:(1)已知a 2+6ab +10b 2+2b +1=0,求a -b 的值;(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2a 2+b 2-4a -6b +11=0,求△ABC 的周长;(3)已知x +y =2,xy -z 2-4z =5,求xyz 的值.26.关于x 的方程()()22210x m x m -++-=(1)求证:方程恒有两个不相等的实数根. (2)若此方程的一个根为1,求m 的值:(3)求出以此方程两根为直角边的直角三角形的周长27.苏科版九上数学p 31阅读《各类方程的解法》中提到:各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x =0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x =0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x =0的解.(1)问题:方程x 3+x 2﹣2x =0的解是x 1=0,x 2= ,x 3= ;(2)用“转化”x 的解; (3)拓展:若实数x 满足x 2+2133x x x --=2,求x +1x的值28.2022年北京冬奥会吉祥物“冰墩墩”和“雪容融”在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批“冰墩墩”和“雪容融”,已知一个冰墩墩的进价比一个“雪容融”的进价多40元,购买20个“冰墩墩”和30个“雪容融”的金额相同.(1)今年2月第一周每个“冰墩墩”和“雪容融”的进价分别是多少元?(2)今年2月第一周,供应商以以150元每个售出“冰墩墩”120个,以100元每个售出“雪容融”150个.第二周供应商决定调整价格,每个“冰墩墩”的价格不变,每个“雪容融”的售价在第一周的基础上下降了m 元,由于冬奥赛事的火热进行,第二周“冰墩墩”的销量比第一周增加了143m 个,“雪容融”的销量比第一周增加了m 个,最终商家获利6600元,求m .参考答案1.C 【分析】根据方程根的定义,代入化简计算即可.解:△方程20x bx a -+=,有一个根是()0a a -≠,△20a ab a ++=, △(1)0a a b ++=, △0a ≠, △10a b ++=, △1a b +=-, 故选:C .【点拨】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,熟练掌握定义是解题的关键.2.C 【分析】设印刷不清的数字是a ,根据完全平方公式展开得出x 2-2px +p 2=7,求出x 2-2px +4=11-p 2,再根据题意得出-2p =-6,a =11-p 2,最后求出答案即可.解:设印刷不清的数字是a ,(x -p )2=7, x 2-2px +p 2=7, △x 2-2px =7-p 2, △x 2-2px +4=11-p 2,△方程x 2-6x +4=□,等号右侧的数字印刷不清楚,可以将其配方成(x -p )2=7的形式,△-2p =-6,a =11-p 2, △p =3,a =11-32=2, 即印刷不清的数字是2, 故选:C .【点拨】本题考查了解一元二次方程和完全平方公式,能求出-2p =-6是解此题的关键. 3.C【分析】首先根据算术平方根及绝对值的非负性,即可求得a 、b 的值,再把a 、b 的值代入代数式,即可求得其值.解:24410a a +-=0≥,10a -≥2244010a ab b a ⎧++=∴⎨-=⎩由a -1=0解得a =1把a =1代入22440a ab b ++=,得 2440b b ++=,得()220b +=解得b =-2故()2122145a b -=-⨯-=+= 故选:C【点拨】本题考查了算术平方根及绝对值的非负性,代数式求值问题,熟练掌握和运用二次根式及绝对值的非负性质是解决本题的关键.4.B 【分析】设正方形的边长为1,AF AM x ==,根据勾股定理即可求出答案. 解:设正方形的边长为1,AF AM x ==,则12BE EF ==,12AE x =+, 在Rt △ABE 中, △222AE AB BE =+, △22211()1()22x +=+,△210x x +-=,△AM 的长为210x x +-=的一个正根. 故选:B .【点拨】本题主要考查了一元二次方程的解,解题的关键是根据勾股定理列出方程. 5.D 【分析】根据新定义可得方程(x +1)(2x -3)=x (x -1),然后再整理可得x 2=3,再利用直接开平方法解方程即可.解:由题意得:(x +1)(2x -3)=x (x -1),整理得:x 2=3,两边直接开平方得:x故选:D .【点拨】此题主要考查了新定义,一元二次方程的解法--直接开平方法,关键是正确理解题意,列出方程.6.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值. 解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解, 当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点拨】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.7.B 【分析】根据一元二次方程根与系数的关系,根的判别式及解一元二次方程可求出m 的值,即可求解.解:关于x 的一元二次方程2220x mx m m ++-=的两实数根为12,x x ,212122,x x m x x m m ∴+=-⋅=-,22(2)4()40m m m m ∆=--=>0m ∴>,122x x =,即22m m -=,解得2m =或1-,2m ∴=,12224x x ∴+=-⨯=-,故选:B .【点拨】本题考查了一元二次方程根与系数的关系,根的判别式及解一元二次方程,如果方程20(a 0)++=≠ax bx c 的两个实数根是12,x x ,那么12b x x a +=-,12cx x a=;也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.8.A 【分析】先根据a 、b 是关于x 的一元二次方程x 22-kx +4k =0的两个实数根,求出∆2416k k =-≥0,由一元二次方程根与系数关系得到a +b =2k ,ab =4k ,利用a 2+b 2=12,求出k 的值,再代入∆2416k k =-验证即可.解:△a 、b 是关于x 的一元二次方程x 22-kx +4k =0的两个实数根,△2Δ(2)414k k =--⨯⨯ 24160k k =-≥a +b =2k ,ab =4k 22a b + 2()2a b ab =+- 2(2)24k k =-⨯248k k =-△248k k -=12 解得11k =-,23k = 当11k =-时,∆2416k k =- 24(1)16(1)=⨯--⨯-200=>△11k =-符合题意,当23k =时,∆2416k k =-243163=⨯-⨯120=-<△23k =不符合题意,应舍去,综上,k 的值是﹣1.故选:A【点拨】此题主要考查根与系数的关系、根的判别式,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 9.C【分析】每半年平均每周作业时长的下降率为x ,根据“经过去年下半年和今年上半年两次整改后,现在平均每周作业时长比去年上半年减少了70%”,即可得出关于的一元二次方程,此题得解.解:设每半年平均每周作业时长的下降率为x ,去年上半年平均每周作业时长为a 分钟,∴ 去年下半年平均每周作业时长为()1a x -分钟,今年上半年平均每周作业时长为()21a x -分钟,现在平均每周作业时长比去年上半年减少了70%,()()21170%a x a ∴-=-,()2130%a x a ∴-=. 故选:C .【点拨】本题主要考察了由实际问题抽象出一元二次方程,找准等量关系,正确地列出一元二次方程是解题的关键.10.B【分析】设运动时间为t 秒,则PB =(8-t )cm ,BQ =2t cm ,由三角形的面积公式结合△PBQ 的面积为15cm 2,即可得出关于t 的一元二次方程,解之取其较小值即可得出结论.解:设运动时间为t 秒,则PB =(8-t )cm ,BQ =2t cm , 依题意,得:12×2t •(8-t )=15,解得:t 1=3,t 2=5,△2t ≤6,△t ≤3,△t =3.故选:B .【点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11.A【分析】利用程序框图的算法列方程,求出x ,然后比较大小即可得出答案.解:如图所示:设x 3>;输出M 的值为5,△x x 235, 解得()()120x x +-=,解得x x 1212,, △x x 121323<,<不合题舍去,设3x ≤;输出M 的值为5, △x152, △8x =,△解得x x 1288,, △x 183>舍去x 283<,△当输入x =-8时,输出M 的值为5.故选择A .【点拨】本题主要考查了程序框图,一元一次特征方程,一元二次方程,比较大小,正确理解计算程序是解题关键.12.32##1.5##112【分析】根据方程根的定义得到223am bm -=,223an bn -=,然后把(2am 2-4bm +2a )(3an 2-6bn -2a )=54变形后,利用整体代入,得到关于a 的一元二次方程,解方程后去掉不合题意的解即可.解:△关于x 的方程ax 2-2bx -3=0(ab ≠0)两根为m ,n ,△2230am bm --=,2230an bn --=△223am bm -=,223an bn -=△(2am 2-4bm +2a )(3an 2-6bn -2a )=54,△[2(am 2-2bm +a )] [3(an 2-2bn )-2a ]=54△2(3)(92)54a a +-=解得0a =或32a =△ab ≠0△a ,b 均为非零实数, △32a = 故答案为:32【点拨】本题考查了一元二次方程根的定义和整体代入的方法,熟练掌握整体代入的方法是解题的关键.13.1【分析】根据题意,22112210,10x x x x +-=+-=,变形代入计算即可.解:△1x ,2x 是方程210x x +-=的两根,△22112210,10x x x x +-=+-=,△()()22112222x x x x +-+-=221122(11)(11)(1)(1)x x x x +--+--=-⨯-=1,故答案为:1.【点拨】本题考查了一元二次方程的根即使得一元二次方程左右两边相等的未知数的值,利用定义变形代入计算是解题的关键.14.-5【分析】先利用配方法把所求的代数式配方,然后代值计算即可.解:△x =, △2263x x +-()2233x x =+-29152342x x ⎛⎫=++- ⎪⎝⎭ 2315222x ⎛⎫=+- ⎪⎝⎭ 21522=-⎝⎭ 21522=⨯-⎝⎭ 51522=- 5=-,故答案为:-5.【点拨】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.15.22+10a b ab ≥【分析】因为矩形的长和宽分别为a 、b ,所以其周长和面积分别为2(a +b )和ab ,设所求矩形的长为x ,则宽为13(a +b )-x ,其面积为x [13(a +b )-x ],根据题意得:x [13(a +b )-x ]=13ab ,因为存在另外一个矩形,使它的周长和面积分别是已知矩形的三分之一,故该方程有解,即△≥0,得出不等式即可求解.解:设所求矩形的长为x ,则宽为13(a +b )-x ,其面积为x [13(a +b )-x ],根据题意得:x [13(a +b )-x ]=13ab , 即()211-++=033x a b x ab , △存在该矩形,使它的周长和面积分别是已知矩形的三分之一△方程有解, △△=21()1433ab a b ⎡⎤-⎥⨯+⎢⎣⎦=221214++-9993a ab b ab =221101-+999a ab b ≥0 △22-10+0a ab b ≥△22+10a b ab ≥故答案为:22+10a b ab ≥.【点拨】本题考查了一元二次方程解的判别式,解题的关键是根据题意,列出方程,把问题转化为求△的问题.16.20【分析】求出一元二次方程的两个根,根据菱形的对角线互相垂直平分,利用勾股定理可得答案.解:()()21448680x x x x -+=--=,则x 1=6,x 2=8,即菱形的两条对角线长分别为6和8,5=,故菱形的周长为5×4=20,故答案为20【点拨】本题考查解一元二次方程,菱形的性质,周长的求法,正确掌握一元二次方程的解法、菱形的性质,是解题的关键.17.-3【分析】根据同类二次根式的定义可得238103a a -=-,由此求解即可解:△△238103a a -=-,△260+-=a a△3a =-或2a =,△两个根式都是最简根式,△2a =当a =3时,二次根式有意义且符合题意,故答案为-3.【点拨】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式18.53##213【分析】根据根据根与系数的关系得125x x +=,123x x ⋅=,分式通分后相加,再把两根之和与两根之积的结果代入,计算即可.解:△12,x x 是一元二次方程2530x x -+=的两个根△125x x +=,123x x ⋅= △1211221153x x x x x x ++== 故答案为:53【点拨】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.当x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b c a ax x x x +=-=,. 19.76【分析】第2个方程两边同除以b ²,得到与第一个方程相似的方程,所以a ,1b可看成一元二次方程2610070x x -+=的两个根,利用根与系数的关系可求得a b的值. 解:△27b -100b +6=0,△211610070b b⨯-⨯+=, △26a -100a +7=0,△a 、1b是方程26x -100x +7=0的两个根, △由根与系数的关系可知:176a ab b ⨯==. 故答案为:76. 【点拨】本题考查的是一元二次方程根与系数的关系,关键是把两个数看成一个一元二次方程的两个根.20.233(1)3(1)10x x ++++=【分析】若把增长率记作x ,则第二天票房约为3(1+x )亿元,第三天票房约为3(1+x )2亿元,根据三天后票房收入累计达10亿元,即可得出关于x 的一元二次方程,此题得解.解:若把增长率记作x ,则第二天票房约为3(1+x )亿元,第三天票房约为3(1+x )2亿元,依题意得:3+3(1+x )+3(1+x )2=10.故答案为::3+3(1+x )+3(1+x )2=10.【点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.21延长B 1D 交BC 于E ,由B 1D △BC ,根据含30角直角三角形和勾股定理的性质,推导得DE =12BD ,BE ,设BD =x ,在Rt△B 1CE 中根据轴对称、勾股定理的性质,建立方程计算即可解得答案.解:延长B 1D 交BC 于E ,如图:△B1D△BC,△△BED=△B1EC=90°,△△B=30°,△DE=1BD,2△BE,设BD=x,△将△BCD沿直线CD翻折,使点B落在点B1的位置,△B1D=x,△BC=3,△CE=3,B1C=BC=3,在Rt△B1CE中,B1E2+CE2=B1C2,x)2+(3)2=32△(x+12x x=△(0△x=0(舍去)或x△BD【点拨】本题考查了勾股定理、一元二次方程、轴对称、含30角直角三角形的知识;解题的关键是熟练掌握勾股定理;轴对称、含30角直角三角形、一元二次方程的性质,从而完成求解.22.2【分析】设小路宽为x m ,则种植花草部分的面积等同于长(22-x )m ,宽(14-x )m 的矩形的面积,根据花草的种植面积为240m 2,即可得出关于x 的一元二次方程,解之取其符合题意的值即可得出结论.解:设小路宽为xm ,则种植花草部分的面积等同于长(22-x )m ,宽(14-x )m 的矩形的面积,依题意得:(22-x )(14-x )=240,整理得:x 2-36x +68=0,解得:x 1=2,x 2=34(不合题意,舍去).故答案为:2.【点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.52【分析】过D'作D 'G △AB 于G ,D 'H △AD 于H ,连结DD',则由题意和勾股定理可以得到HD'=AG =4,AH =3,DH =2,设DF =y ,则由''2AHD ADF DHD F S SS +=四边形可得关于y 的方程,解方程即可得到DF 的值.解:如图,过D'作D 'G △AB 于G ,D 'H △AD 于H ,连结DD',由题意可得EB =BC =5,△△CEG =45°,△EG =GD',设EG =GD '=x ,又由题意可得AD'=AD =5,AG=AE+EG=AB -BE+EG =1+x△在RT △AGD'中,()22215x x ++=,解之可得GD'=x =3,△HD'=AG =4,AH =3,DH =2,设DF =y ,则由''2AHD ADF DHD F S S S +=四边形可得:()423452222y y +⨯⨯+=⨯, 解之可得y =52,即DF =52, 故答案为:52. 【点拨】本题考查矩形的折叠问题,熟练掌握勾股定理的应用、矩形与轴对称的性质及方程思想方法的运用是解题关键.24.(1)1103x =,297x =-;(2)152x =,23x =;(3)12x a =,2x a =;(4)△当0m =时, 12x =;△当0m ≠时,若1m ,x =;若1m ,方程无解【分析】(1)根据配方法的步骤将方程常数项移动右边,两边都加上9,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;(2)利用因式分解法即可求得方程的解;(3)根据配方法的一般步骤,把常数项移到等号的右边,一次项移到等号的左边,再在等式的两边同时加上一次项系数一半的平方,化为完全平方式,再开方即可得出答案;(4)分m=0和0m ≠两种情况考虑,当0m ≠时,再分△≥0和△<0两种情况考虑,即可得到方程的解.(1)2699910x x --=解:26910000x x -+= ()2310000x -=3100x -=或3100x -=-1103x =,297x =-;(2)()()22352360x x ---+=解:()()2322330x x ----=2320x --=或2330x --=152x =,23x =; (3)2223x a ax += 解:2222993244x ax a a a -+=-+ 223124x a a ⎛⎫-= ⎪⎝⎭ 3122x a a -=± 1322x a a =±+ 12x a =,2x a =; (4)2210mx x -+=解:△当0m =时,210x -+=,解得:12x =;△当0m ≠时,44m ∆=-,若440m -≥,即1m ,x 若440m -<,即1m ,方程无解.【点拨】本题考查一元二次方程的解法,解题的关键是能够根据方程的结构特征选择适当的解法.25.(1)4;(2)7;(3)2试题分析:(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可; (3)利用配方法把原式变形,根据非负数的性质解答即可.解:(1)△a 2+6ab+10b 2+2b+1=0,△a 2+6ab+9b 2+b 2+2b+1=0,△(a+3b )2+(b+1)2=0,△a+3b=0,b+1=0,解得b=-1,a=3,则a -b=4;(2)△2a 2+b 2-4a -6b+11=0,△2a 2-4a++2+b 2-6b+9=0,△2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,△△ABC的周长为1+3+3=7;(3)△x+y=2,△y=2-x,则x(2-x)-z2-4z=5,△x2-2x+1+z2+4z+4=0,△(x-1)2+(z+2)2=0,则x-1=0,z+2=0,解得x=1,y=1,z=-2,△xyz=2.【点拨】本题主要考查的是配方法的应用和三角形三边的关系,灵活运用完全平方公式、掌握三角形三边的关系是解题的关键.26.(1)答案见解析【分析】(1)根据一元二次方程根的判别式证明即可;(2)将x=1代入方程可确定m的值;(3)由m的值可得一元二次方程,解方程得出方程的另一个解,可得直角三角形的两直角边,再由勾股定理求出得直角三角形的斜边,即可得答案.解:(1)证明:x2−(m+2)x+(2m−1)=0,△a=1,b=−(m+2),c=2m−1,△b2−4ac=[−(m+2)]2−4×1×(2m−1)=(m−2)2+4,△在实数范围内,m无论取何值,(m−2)2+4>0,即b2−4ac>0,△关于x的方程x2−(m+2)x+(2m−1)=0恒有两个不相等的实数根;(2)将x=1代入方程可得:12−(m+2)+(2m−1)=0,解得:m =2;(3)△m =2,△方程为x 2−4x +3=0,解得:x 1=1或x 2=3,△方程的另一个根为x =3;△直角三角形的两直角边是1、3,,△,△直角三角形的周长为1+3【点拨】本题考查了一元二次方程根的判别式,解一元一次方程,解一元二次方程,勾股定理,理解题意、熟练掌握一元二次方程的解法是解题关键.27.(1)-2,1;(2)x =3;(3)4【分析】(1)利用因式分解法解方程;(2)把无理方程化为整式方程x 2﹣2x ﹣3=0,然后利用因式分解法解方程后进行检验确定原方程的解;(3)先表示得到(x +1x )2﹣3(x +1x )﹣4=0,利用因式分解法得到x +1x =4或x +1x=﹣1,由于x +1x =﹣1化为x 2+x +1=0,此方程没有实数解,从而得到x +1x的值为4. 解:(1)x 3+x 2﹣2x =0,x (x 2+x ﹣2)=0,x (x +2)(x ﹣1)=0,x =0或x +2=0或x ﹣1=0,所以x 1=0,x 2=﹣2,x 3=1;故答案为0,﹣2,1;(2)两边平方得2x +3=x 2,整理得x 2﹣2x ﹣3=0,因式分解得()()310x x -+=解得x 1=3,x 2=﹣1,经检验,x =3为原方程的解;(3)22133x x x x+--=2, 211340x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭, 11410x x x x ⎛⎫⎛⎫+-++= ⎪⎪⎝⎭⎝⎭, 140x x +-=或110x x++=, △11x x +=-化为x 2+x +1=0,△=1-4=-40<,此方程没有实数解舍去, △x +1x的值为4. 【点拨】本题考查高次方程的解法、无理方程、分式方程的解,掌握高次方程的解法、无理方程、分式方程的解都转化为低次方程,有理方程,和整式方程来解是解题关键.28.(1)每个“冰墩墩”的进价为120元,每个“雪容融”的进价为80元(2)m 的值为10【分析】(1)设今年2月第一周每个“冰墩墩”的进价为x 元,每个“雪容融”的进价为y 元,再根据题意建立方程,解方程即可;(2)利用“总利润=(售价-进价)×数量”根据题意列方程,再解方程即可.(1)解:设今年2月第一周每个“冰墩墩”的进价为x 元,每个“雪容融”的进价为y 元,依题意得△203040x x y y ==-⎧⎨⎩. 解得:12080x y =⎧⎨=⎩. 答:今年2月第一周每个“冰墩墩”的进价为120元,每个“雪容融”的进价为80元.(2)解:依题意得:14(150120)(120)(10080)(150)66003m m m -++--+=, 整理得:2100m m -=,解得:110m =,20m =(不合题意,舍去).答:m 的值为10.【点拨】本题主要考查了二元一次方程以及一元二次方程的应用,解题的关键是根据题意列出方程进行求解.。
一元二次方程根与系数的关系应用例析及训练(含答案)
一元二次方程根与系数的关系应用例析及训练对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么则是的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程根的判别式存在的三种情况,以及应用求根公式求出方程的两个根,进而分解因式,即。
下面就对应用韦达定理可能出现的问题举例做些分析,希望能给同学们带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。
解:∵方程(1)有两个不相等的实数根,∴解得;∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。
解得:所以,使方程(1)有整数根的的整数值是。
说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例1:不解方程,判别方程两根的符号。
分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。
因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。
解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。
设方程的两个根为,∵<0∴原方程有两个异号的实数根。
考点04 一元二次方程根的判别式以及根与系数的关系(解析版)
考点四一元二次方程根的判别式以及根与系数的关系知识点整合一、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=.典例引领1.已知关于x 的一元二次方程()()22110x m x m m -+++=.(1)求证:无论m 取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m 的值及另一个根.【答案】(1)证明见解析(2)当0m =时,方程的另一个根为0x =;当1m =时,方程的另一个根为2x =【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的定义,熟练掌握一元二次方程的相关知识是解题的关键.(1)只需要证明()()221410m m m ∆=-+-+>⎡⎤⎣⎦恒成立即可;(2)把1x =代入原方程得到20m m -=,解方程求出m 的值,进而根据m 的值解方程求出方程的另一根即可.【详解】(1)证明:由题意得,()()22141m m m ∆=-+-+⎡⎤⎣⎦依题意有:215x -+=,21x k -⋅=,解得26x =,6k =-,故k 的值为6-,方程的另一个根为6x =.9.求证:对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.【答案】见解析【分析】本题主要考查了一元二次方程()200ax bx c a ++=≠的根情况,判断其根的情况,完全取决于24b ac ∆=-的符号,当0> 时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【详解】解:()24422m m =--△2488m m =-+()2414m =-+.()210m -≥,∴()241440m =-+≥>△.∴对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.10.已知关于x 的一元二次方程()2320x m x m ++++=.(1)求证:不论实数m 取何值,方程总有实数根;(2)当m 取何值时,方程有两个相等的实数根?【答案】(1)见详解(2)1m =-【分析】本题考查了一元二次方程根的判别式,熟记“24b ac ∆=-”是解题关键.(1)方程有实数根时240b ac ∆=-≥,由此即可求解.(2)方程有两个相等的实数根即240b ac ∆=-=,由此即可求解.【详解】(1)证明:()()2243412b ac m m ∆=-=+-⨯⨯+26948m m m =++--221m m =++()21m =+(2)由题意得,222229k k ⨯+-=,整理得,245k k -=,根据()223122023342023k k k k -+=-+,计算求解即可.【详解】(1)解:∵2229x kx k +-=,∴22290x kx k -+-=,∴()()222419360k k ∆=--⨯⨯-=>,∴此方程有两个不相等的实数根;(2)解:由题意得,222229k k ⨯+-=,整理得,245k k -=,∴()2231220233420231520232038k k k k -+=-+=+=,∴23122023k k -+的值为2038.13.已知关于x 的方程22220x mx m ++-=.(1)试说明:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求22122043m m ++的值.【答案】(1)证明见解析(2)2029【分析】本题主要考查了一元二次方程根的判别式,一元二次方程的解,代数式求值;(1)根据一元二次方程根的判别式,进行证明即可;(2)根据方程有一个根为3,得出267m m +=-,然后整体代入求值即可.解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.【详解】(1)证明:∵()()2222241244880m m m m ∆=-⨯⨯-=-+=>,∴无论m 取何值,方程总有两个不相等的实数根;(2)解:∵方程有一个根为3,∴223620m m ++-=,整理,得:267m m +=-,∴22122043m m ++()2262043m m =++()272043=⨯-+142043=-+2029=.14.已知关于x 的一元二次方程210x mx m -+-=.(1)若该方程有一个根是2,求该方程的另一个根;(2)求证:该方程总有两个实数根.【答案】(1)1(2)见解析【分析】本题主要考查了一元二次方程的解和根的判别式,(1)直接把2x =代入到原方程中得到关于m 的方程,再解方程即可得到答案;(2)根据一元二次方程根的判别式进行证明.掌握对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根;理解一元二次方程的解是使方程左右两边相等的未知数的值,是解决问题的关键.【详解】(1)解:当2x =时,4210m m -+-=3m ∴=,则原方程为:2320x x -+=,即:()()210x x --=,11x ∴=,22x =,∴另一个根1,(2)证明:()()2Δ411m m =--⨯⨯-244m m =-+()220m =-≥,∴该方程总有两个实数根;15.已知关于x 的一元二次方程()()25230x m x m +---=(1)求证:该方程总有两个实数根(2)如果该方程的两个实数根的差为4,求m 的值(2)“凤凰”方程必定有一个根是______;(3)已知方程20x mx n ++=是“凤凰”方程,且有两个相等的实数根,求mn 的值.【答案】(1)2230x x +-=(2)1(3)mn 2=-【分析】(1)本题主要考查一元二次方程根的情况,通过观察可以发现1x =是方程的根,直接写出一个根为1一元二次方程即可.(2)本题主要考查通过代数式观察,可以发现1x =是一元二次方程的一个根,直接求解即可.(3)本题主要考查由一元二次方程根的情况,推导出240b ac ∆=-=,可以得到一个方程,再由凤凰方程,又可以得到一个10m n ++=的方程,然后去求,m 和n 即可,最后求出mn 的值.【详解】(1)由题可知,要写出一个一元二次方程,并且满足一个根是1x =;即为:2230x x +-=.(2)关于x 的一元二次方程()200ax bx c a ++=≠,且满足0a b c ++=;∴1x =时,0a b c ++=;故凤凰”方程必定有一个根是1x =.(3)20x mx n ++= 是“凤凰”方程;10m n ∴++=,即1n m =--;方程20x mx n ++=有两个相等的实数根;240m n ∴∆=-=.将1n m =--代入,得()2410m m ---=;解得:2,1m n =-∴=;()212mn ∴=-⨯=-.19.已知关于x 的一元二次方程()23220x k x k ++++=.(1)求证:方程有两个实数根;(2)若方程的两个根分别为1x ,2x ,且1212217x x x x ++=,求k 的值.【答案】(1)见解析【分析】本题考查了一元二次方程根的判别式的意义,根与系数的关系,解一元二次方程;(1)求出0∆>即可证明;(2)根据根与系数的关系得出1221k x k x -=++,123x x +=,结合已知等式得出关于k 的一元二次方程,解方程可得答案.【详解】(1)证明:∵()()()2222234194444452140k k k k k k k ∆=---++=+--=-+=-+>,∴无论k 取何值,方程总有两个不相等的实数根;(2)解:∵方程22310x x k k ++--=有两个实数根1x ,2x ,∴1221k x k x -=++,123x x +=,又∵()()12113++=x x ,∴121213x x x x +++=,∴23131k k -+++=+,解得:12k =,21k =-.5.已知关于x 的一元二次方程220x x k ++=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若m 是方程的根,且222m m +=,求k 的值.【答案】(1)1k <(2)2k =-【分析】本题主要考查了一元二次方程根的判别式与一元二次方程的解的含义,理解原理的应用是解本题的关键;(1)根据方程有两个不相等的实数根,可得240b ac ∆=->,求出k 的取值范围即可;(2)先由方程解的含义可得22m m k +=-,结合222m m +=即可求解.【详解】(1)解:∵关于x 的一元二次方程220x x k ++=有两个不相等的实数根,∴24440b ac k ∆=-=->,解得:1k <;(2)∵m 是方程220x x k ++=的根,∴220m m k ++=即22m m k +=-,∵222m m +=,∴2k -=,解得:2k =-.6.已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.(1)求n 的取值范围;(2)当n 取最大值时,求方程2210(0)nx x n -+=≠的根.【答案】(1)1n ≤且0n ≠(2)121x x ==【分析】本题主要考查了一元二次方程的根的判别式以及解一元二次方程.(1)根据题意,可得240b ac ∆=-≥,即440n -≥,解不等式,并根据一元二次方程的定义确定n 的取值范围即可;(2)结合n 的取值范围确定n 的最大值,然后利用配方法解该方程即可.【详解】(1)解:根据题意,一元二次方程2210(0)nx x n -+=≠有实数根,则224(2)41440b ac n n ∆=-=--⨯⨯=-≥,解得1n ≤,又∵0n ≠,∴n 的取值范围是1n ≤且0n ≠;(2)由1n ≤且0n ≠得,n 的最大值为1,把1n =代入原方程得2210x x -+=,∴2(1)0x -=,解得121x x ==.7.己知一元二次方程2410x x m -+-=.(1)若方程有两个不相等的实数根,求实数m 的取值范围;(2)若方程有两个相等的实数根,求实数m 以及此时方程的根.【答案】(1)5m <(2)5m =,122x x ==【分析】本题考查了根的判别式,牢记“①当0∆>时,方程有两个不相等的实数根;②当Δ0=时,方程有两个相等的实数根;③当Δ0<时,方程无实数根.”(1)由方程有两个不相等的实数根结合根的判别式,即可得出关于m 的一元一次不等式,解之即可得出结论;(2)由方程有两个相等的实数根结合根的判别式,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)解:2(4)4(1)m ∆=---,方程有两个不相等的实数根,∴0∆>,解得5m <.(2) 方程有两个相等的实数根,∴Δ0=,即164(1)0m --=解得5m =(1)若所捂的部分为【详解】(1)解:∵方程有实数解是1x 和2x ,∴()22410k ∆=--≥,解得2k ≤,故k 的取值范围是2k ≤;(2)∵一元二次方程2210x x k ++-=的实数解是1x 和2x ,∴122x x +=-,121x x k ⋅=-,则()121221x x x x k +-=---,∵12121x x x x +-<-∴()211k ---<-,解得0k >,又由(1)知2k ≤,∴02k <≤,∵k 为整数,∴k 的值为1或2.13.已知关于x 的一元二次方程250x ax a ++-=.(1)若该方程的一个根为3,求a 的值及该方程的另一个根;(2)求证:不论a 为何值,该方程总有两个不相等的实数根.【答案】(1)方程的另一根为2-;(2)见解析【分析】本题主要考查一元二次方程根的判别式及根与系数的关系,(1)将方程的根代入可求得a 的值,再根据根与系数的关系可求得另一个根;(2)用a 表示出其判别式,利用配方可化为平方的形式,可判断判别式的符号,可得出结论;掌握一元二次方程根的判别式与根的个数的关系及根与系数的关系是解题的关键.【详解】(1)解:将3x =代入方程250x ax a ++-=可得:9350a a ++-=,解得1a =-;∴方程为260x x --=,设另一根为x ,则36x =-,。
部编数学九年级上册专题21.3一元二次方程根的判别式【八大题型】(人教版)(解析版)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题21.3 一元二次方程根的判别式【八大题型】【人教版】【题型1 由根的判别式判断方程根的情况(不含字母类)】 (1)【题型2 由根的判别式判断方程根的情况(含字母类)】 (2)【题型3 由根的判别式判断方程根的情况(综合类)】 (4)【题型4 由方程根的情况确定字母的取值范围】 (7)【题型5 由方程有两个相等的实数根求值】 (8)【题型6 根的判别式与新定义的综合】 (10)【题型7 由根的判别式证明方程根的必然情况】 (12)【题型8 根的判别式与三角形的综合】 (14)【题型1 由根的判别式判断方程根的情况(不含字母类)】【例1】(2022•滨州)一元二次方程2x2﹣5x+6=0的根的情况为( )A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定【分析】求出判别式Δ=b2﹣4ac,判断其的符号就即可得出结论.【解答】解:∵Δ=(﹣5)2﹣4×2×6=25﹣48=﹣23<0,∴2x2﹣5x+6=0无实数根,故选:A.【变式1-1】(2022•梧州)一元二次方程x2﹣3x+1=0的根的情况( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】先计算根的判别式的值得到Δ>0,然后根据根的判别式的意义对各选项进行判断.【解答】解:∵Δ=(﹣3)2﹣4×1×1=5>0,∴方程有两个不相等的实数根.故选:B.【变式1-2】(2022春•长沙期末)关于x的一元二次方程x2+9=0的根的情况,下列说法正确的是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定【分析】求出方程根的判别式,判断其值的正负即可得到结果.【解答】解:方程x2﹣+9=0,∵Δ=(﹣2﹣4×1×9=32﹣36=﹣4<0,∴方程没有实数根.故选:C.【变式1-3】(2022•保定一模)方程(x+3)(x﹣1)=x﹣4的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再应用根的判别式进行计算即可得出答案.【解答】解:(x+3)(x﹣1)=x﹣4,x2+x+1=0,a=1,b=1,c=1,Δ=b2﹣4ac=12﹣4×1×1=﹣3<0,所以原方程无实数根.故选:D.【题型2 由根的判别式判断方程根的情况(含字母类)】【例2】(2022春•钱塘区期末)已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是( )A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根【分析】先计算Δ的值,利用k的值,可作判断.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.【变式2-1】(2022•南召县模拟)已知关于x的方程(x﹣1)(x+2)=p,则下列分析正确的是( )A.当p=0时,方程有两个相等的实数根B.当p>0时,方程有两个不相等的实数根C.当p<0时,方程没有实数根D.方程的根的情况与p的值无关【分析】先将该方程整理成一般式,再求得其根的判别式为4p+9,再判断各选项的正确与否即可.【解答】解:方程(x﹣1)(x+2)=p可整理为x2+x﹣2﹣p=0,∴Δ=12﹣4×1×(﹣2﹣p)=1+8+4p=4p+9.当p=0时,Δ=4p+9=9>0,∴方程有两个不相等的实数根,故选项A不符合题意;当p>0时,Δ=4p+9>0,∴方程有两个不相等的实数根,故选项B符合题意;当p<0时,Δ的正负无法确定,∴无法判断该方程实数根的情况,故选项C不符合题意;∵方程的根的情况和p的值有关,故选项D不符合题意.故选B.【变式2-2】(2022•环翠区一模)对于任意的实数k,关于x的方程14x2−(k+2)x+2k2+5k+5=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判定【分析】先计算根的判别式的值得到Δ=﹣(k+12)2−34<0,然后根据根的判别式的意义判断方程根的情况.【解答】解:∵Δ=[﹣(k+2)]2﹣4×14(2k2+5k+5)=﹣(k+12)2−34<0,∴方程无实数根.故选:C.【变式2-3】(2022春•平潭县期末)对于任意实数k,关于x的方程x2﹣2(k+5)x+2k2+4k+50=0的根的情况为( )A.有两个相等的实数根B.无实数根C.有两个不相等的实数根D.无法判定【分析】先计算根的判别式的值得到Δ=﹣4(k﹣3)2﹣64<0,然后根据根的判别式的意义判断方程根的情况.【解答】解:∵Δ=4(k+5)2﹣4(2k2+4k+50)=﹣4(k﹣3)2﹣64<0,∴方程无实数根.故选:B.【题型3 由根的判别式判断方程根的情况(综合类)】【例3】(2022•桥西区校级模拟)探讨关于x的一元二次方程ax2+bx﹣1=0总有实数根的条件,下面三名同学给出建议:甲:a,b同号;乙:a﹣b﹣1=0;丙:a+b﹣1=0.其中符合条件的是( )A.甲,乙,丙都正确B.只有甲不正确C.甲,乙,丙都不正确D.只有乙正确【分析】根据根的判别式的定义得到Δ=b2+4a,根据特例可根的判别式的意义可对甲的条件进行判断;若a=b+1,则Δ=(b+2)2≥0,则根据根的判别式的意义可对乙的条件进行判断;若a=﹣b+1,Δ=(b﹣2)2≥0,则根据根的判别式的意义可对丙的条件进行判断.【解答】解:Δ=b2+4a,若a、b同号,a=﹣1,b=﹣1,此时Δ=1﹣4=﹣3<0,方程没有实数解,所以甲的条件不满足方程总有实数根;若a﹣b﹣1=0,即a=b+1,Δ=b2+4(b+1)=(b+2)2≥0,方程总有实数根,所以乙的条件满足方程总有实数根;若a+b﹣1=0,即a=﹣b+1,Δ=b2+4(﹣b+1)=(b﹣2)2≥0,方程总有实数根,所以丙的条件满足方程总有实数根;故选:B.【变式3-1】(2022•肥西县模拟)已知三个实数a,b,c满足a+b﹣c=0,3a+b﹣c>0,则关于x的方程ax2﹣cx+b=0的根的情况是( )A.无实数根B.有且只有一个实数根C.两个实数根D.无数个实数根【分析】根据条件得到a+b=c,a>0,关于x的方程ax2﹣cx+b=0是一元二次方程,根据判别式求根的情况即可.【解答】解:∵a+b﹣c=0,3a+b﹣c>0,∴a+b=c,3a+b﹣(a+b)>0,∴3a+b﹣a﹣b>0,∴2a>0,∴a>0,∴关于x的方程ax2﹣cx+b=0是一元二次方程,∵Δ=(﹣c)2﹣4ab=c2﹣4ab=(a+b)2﹣4ab=(a﹣b)2≥0,∴方程有两个实数根,故选:C.【变式3-2】(2022春•德阳月考)函数y=kx﹣b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【分析】利用一次函数的性质得k<0,再计算判别式的值得到Δ=b2﹣4k+4,然后判断△的符合,从而得到方程根的情况.【解答】解:由图象可得k<0,∵Δ=b2﹣4(k﹣1)=b2﹣4k+4,∵b2≥0,∴b2+4>0,∵﹣4k>0,∴Δ>0,∴方程有两个不相等的实数根,故选:C.【变式3-3】(2022•>0x−3<1有3个整数解,则关于x的方程ax2+(2a﹣1)x+a=0根的情况为( )A.无法判断B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【分析】先解不等式组得到a<x<8,再利用不等式组有3个整数解得到4≤a<8,对于一元二次方程ax2+(2a﹣1)x+a=0,计算根的判别式的值得到Δ=﹣4a+1,利用a的范围可判断Δ<0,然后根据根的判别式的意义可判断方程根的情况.>0①x−3<1②,解①得x>a,解②得x<8,∵不等式组有解,∴a<x<8,∵不等式组有3个整数解,∴4≤a<8,∵a≠0,∴方程ax2+(2a﹣1)x+a=0为一元二次方程,∵Δ=(2a﹣1)2﹣4a2=﹣4a+1,而4≤<8,∴Δ<0,∴方程没有实数根.故选:D.【题型4 由方程根的情况确定字母的取值范围】【例4】(2022春•长丰县期末)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是( )A.m<﹣1B.m>0C.m<1且m≠0D.m>0且m≠1【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且Δ=22﹣4×(m﹣1)×2>0,然后求出两不等式解集的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=22﹣4(m﹣1)(﹣1)>0,解得m>0且m≠1.故选:D.【变式4-1】(2022•西平县模拟)若关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣2=0有实数根,则k的取值范围是( )A.k≤94B.k≥94C.k>94D.k<94【分析】根据根的判别式的意义得到Δ=(2k﹣1)2﹣4(k2﹣2)≥0,然后解不等式即可.【解答】解:根据题意得Δ=(2k﹣1)2﹣4(k2﹣2)≥0,解得k≤9 4.故选:A.【变式4-2】(2022•滑县模拟)若关于x的一元二次方程2kx2﹣+1=0有两个不相等的实数根,则k的取值范围是( )A.k>﹣9B.k>﹣9且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0【分析】利用一元二次方程的定义,二次根式有意义的条件和根的判别式的意义得到2k≠0k+1Δ=2−4×2k>0,然后解不等式组即可.【解答】解:根据题意得2k≠0k+1Δ=2−4×2k>0,解得k≥﹣1且k≠0,即k的取值范围为k≥﹣1且k≠0.故选:C.【变式4-3】(2022•定海区一模)直线y=x﹣a不经过第二象限,且关于x的方程ax2﹣2x+1=0有实数解,则a的取值范围是( )A.0≤a≤1B.o≤a<1C.0<a≤1D.0<a<1【分析】利用一次函数的性质得到a≥0,再判断Δ=(﹣2)2﹣4a≥0,从而得到a的取值范围.【解答】解:∵直线y=x﹣a不经过第二象限,∴﹣a≤0,∴a≥0,当a=0时,关于x的方程ax2﹣2x+1=0是一元一次方程,解为x=1 2,当a>0时,关于x的方程ax2﹣2x+1=0是一元二次方程,∵Δ=(﹣2)2﹣4a≥0,∴a≤1.∴0≤a≤1,故选:A.【题型5 由方程有两个相等的实数根求值】【例5】(2022•合肥模拟)若关于x的一元二次方程x(x﹣2)=2mx有两个相等的实数根,则实数m的值为( )A.﹣1B.0C.﹣1或0D.4或1【分析】先把方程化为一般式为x2﹣2(m+1)x=0,根据根的判别式的意义得到Δ=4(m+1)2﹣4×0=0,然后解关于m的方程即可.【解答】解:方程化为一般式为x2﹣2(m+1)x=0,根据题意得Δ=4(m+1)2﹣4×0=0,解得m=﹣1.故选:A.【变式5-1】(2022•高新区校级二模)已知一元二次方程ax2+1=0有两个相等的实数根,则a,b 的值可能是( )A.a=﹣1,b=﹣4B.a=0,b=0C.a=1,b=2D.a=1,b=4【分析】根据一元二次方程有两个相等的实数根,可得Δ=b﹣4a=0,一元二次方程二次项系数不为0,可得a≠0,二次根式有意义可得b≥0,即可进行判断.【解答】解:根据题意,得Δ=b﹣4a=0,a≠0,b≥0,∵b=﹣4<0,故A选项不符合题意;∵a=0,故B选项不符合题意;当a=1时,b﹣4a=0,解得b=4,故C选项不符合题意,D选项符合题意,故选:D.【变式5-2】(2022•江夏区模拟)已知关于x的一元二次方程(3a﹣1)x2﹣ax+14=0有两个相等的实数根,则代数式a2﹣2a+1+1a的值( )A..﹣3B..3C.2D.﹣2【分析】先根据一元二次方程的定义以及根的判别式得到3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,则a2﹣3a+1=0,再将a2=3a﹣1代入代数式得到a+1a,通分后得到a21a,再代入a2+1=3a计算即可.【解答】解:根据题意得3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,即a2﹣3a+1=0,∴a2=3a﹣1,所以原式=3a﹣1﹣2a+1+1a=a+1a=a21a=3aa=3.故选:B.【变式5-3】(2022春•余杭区月考)若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a﹣2b+c=0,则( )A.b=a B.c=2a C.a(x+2)2=0D.﹣a(x﹣2)2=0【分析】由一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0可得出x=﹣2是方程ax2+bx+c=0的解,进而可得出a(x+2)2=0(a≠0),此题得解.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的解,又∵有两个相等的实数根,∴a(x+2)2=0(a≠0).故选:C.【题型6 根的判别式与新定义的综合】【例6】(2022•烟台一模)定义新运算a⋆b,对于任意实数a,b满足a⋆b﹣(a+b)(a﹣b)﹣2.例如3⋆2=(3+2)(3﹣2)﹣2=5﹣2=1,若x⋆(2x﹣1)=﹣3是关于x的方程,则它的根的情况是( )A.有一个实根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】先根据新运算得到[x+(2x﹣1)][x﹣(2x﹣1)]﹣2=﹣3,再把方程化为一般式得到3x2﹣4x=0,接着计算根的判别式的值,然后根据根的判别式的意义判断方程根的情况.【解答】解:∵x⋆(2x﹣1)=﹣3,∴[x+(2x﹣1)][x﹣(2x﹣1)]﹣2=﹣3,整理得3x2﹣4x=0,∵Δ=(﹣4)2﹣4×3×0=16>0,∴方程有两个不相等的实数根.故选:D.【变式6-1】(2022•青县二模)定义运算:m※n=mn2﹣2mn﹣1,例如:4※2=4×22﹣2×4×2﹣1=﹣1.若关于x的方程a※x=0有实数根,则a的取值范围为( )A.﹣1≤a≤0B.﹣1≤a<0C.a≥0或a≤﹣1D.a>0或a≤﹣1【分析】根据新定义运算法则列出关于x的方程,根据根的判别式进行判断即可.【解答】解:由题意可知:a※x=ax2﹣2ax﹣1=0,当a=0时,原来方程变形为﹣1=0,方程无解;当a≠0时,∵关于x的方程a※x=0有实数根,∴Δ=4a2+4a=4a(a+1)≥0,解得a≤﹣1或a>0.故选:D.【变式6-2】(2022•宁远县模拟)定义新运算“※”:对于实数m,n,p,q有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22,若关于x的方程(x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k≤54且k≠0B.k≤54C.k<54且k≠0D.k≥54【分析】先根据新定义得到k(x2+1)+(5﹣2k)x=0,再整理为一般式,接着根据一元二次方程的定义和判别式的意义得到k≠0且Δ=(5﹣2k)2﹣4k2≥0,然后解不等式即可.【解答】解:根据题意得k(x2+1)+(5﹣2k)x=0,整理得kx2+(5﹣2k)x+k=0,因为方程有两个实数解,所以k≠0且Δ=(5﹣2k)2﹣4k2≥0,解得k≤54且k≠0.故选:A.【变式6-3】(2022•郑州模拟)定义新运算“a*b”:对于任意实数a,b,都有a*b=a2+b2﹣2ab﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x*k=xk(k为实数)是关于x的方程,则方程的根的情况为( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】利用新运算把方程x*k=xk(k为实数)化为x2+k2﹣2xk﹣2=xk,整理得到x2﹣3kx+k2﹣2=0,再计算判别式的值得到Δ>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵x*k=x2+k2﹣2xk﹣2,∴关于x的方程x*k=xk(k为实数)化为x2+k2﹣2xk﹣2=xk,整理为x2﹣3kx+k2﹣2=0,∵Δ=(﹣3k)2﹣4(k2﹣2)=5k2+8>0,∴方程有两个不相等的实数根.故选:C.【题型7 由根的判别式证明方程根的必然情况】【例7】(2021秋•瓦房店市期末)已知关于x的一元二次方程2x2+2mx+m﹣1=0,求证:不论m为什么实数,这个方程总有两个不相等实数根.【分析】根据方程的系数结合根的判别式,可得出Δ=4(m﹣1)2+4>0,即可证得结论.【解答】证明:Δ=b2﹣4ac=(2m)2﹣4×2×(m﹣1)=4m2﹣8m+8=4(m﹣1)2+4,∵4(m﹣1)2≥0,∴4(m﹣1)2+4>0,∴Δ>0,∴这个方程总有两个不相等的实数根.【变式7-1】(2021秋•惠来县月考)已知一元二次方程x2+px+q+1=0的一个根为2.(1)求q关于p的关系式;(2)求证:方程x2+px+q=0有两个不等的实数根.【分析】(1)把x=2代入方程x2+px+q+1=0可得到p、q的关系式;(2)先计算根的判别式得到Δ=p2﹣4q,再消去q得到Δ=p2+8p+20,然后利用配方法证明Δ>0,从而得到结论.【解答】(1)解:把x=2代入原式得4+2p+q+1=0,所以q=﹣2p﹣5;(2)证明:∵Δ=p2﹣4q=p2﹣4(﹣2p﹣5)=p2+8p+20=p2+8p+16+4=(p+4)2+4,而(p+4)2≥0,∴Δ>0,∴方程有两个不相等的实数根.【变式7-2】(2021秋•方城县期末)已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,其中p为实数.(1)求证:方程有两个不相等的实数根;(2)试写出三个p的值,使一元二次方程有整数解,并简要说明理由.【分析】(1)先把方程化为一般式,再计算根的判别式的值得到Δ=4p2+9,则可判断Δ>0,然后根据根的判别式的意义得到结论;(2)利用求根公式得到x由于一元二次方程有整数解,3或5或7等,然后分别计算出对应的p的值即可.【解答】(1)证明:原方程整理为:x2﹣5x+4﹣p2=0,∵Δ=(﹣5)2﹣4(4﹣p2)=4p2+9>0,∴方程有两个不相等的实数根;(2)解:x∵一元二次方程有整数解,3或5或7等,=3时,p=0;=5时,p=2;=7时,p=【变式7-3】(2022•东城区校级模拟)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.【分析】(1)根据根的判别式符号进行判断;(2)根据判别式以及一元二次方程的解法即可求出答案.【解答】(1)证明:Δ=(m﹣2)2﹣4m×(﹣2)=m2+4m+4=(m+2)2≥0,∴方程总有两个实数根;(2)由题意可知,m≠0Δ=n2﹣4m×(﹣2)=n2+8m=0,即:n2=﹣8m.以下答案不唯一,如:当n=4,m=﹣2时,方程为x2﹣2x+1=0.解得x1=x2=1.【题型8 根的判别式与三角形的综合】【例8】(2022•莲池区二模)若等腰三角形三边的长分别是a,b,3,且a,b是关于x的一元二次方程x2﹣4x+m=0的两个根,则满足上述条件的m的值有( )A.1个B.2个C.3个D.3个以上【分析】分a=b及a≠b两种情况考虑,当a=b时,由方程有两个相等的实数根,可得出Δ=0,解之即可得出m的值;当a≠b时,可得出x=3是关于x的一元二次方程x2﹣4x+m=0的一个实数根,代入x=3即可求出m的值,综上,即可得出结论.【解答】解:当a=b时,关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=(﹣4)2﹣4×1×m=0,∴m=4;当a≠b时,x=3是关于x的一元二次方程x2﹣4x+m=0的一个实数根,∴32﹣4×3+m=0,∴m=3.综上,m的值为4或3,即满足上述条件的m的值有2个.故选:B.【变式8-1】(2022春•温州期中)等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是 .【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【变式8-2】(2022春•宁波期中)已知:关于x的一元二次方程x2﹣2mx+m2﹣1=0.(1)判断方程的根的情况;(2)若△ABC为等腰三角形,AB=5cm,另外两条边长是该方程的根,求△ABC的周长.【分析】(1)先计算根的判别式的值得到△=4>0,然后根据根的判别式的意义判断方程根的情况;(2)先利用求根公式解方程得到x1=m+1,x2=m﹣1,根据等腰三角形的性质讨论:当m+1=5时,解得m=4,此时等腰三角形三边分别为5,5,3;当m﹣1=5时,解得m=6,此时等腰三角形三边分别为5,5,7,然后分别计算对应的三角形的周长.【解答】解:(1)∵Δ=(﹣2m)2﹣4(m2﹣1)=4>0,∴方程有两个不相等的实数根;(2)x=2m±22=m±1,∴x1=m+1,x2=m﹣1,当m+1=5时,解得m=4,此时等腰三角形三边分别为5,5,3,△ABC的周长为5+5+3=13;当m﹣1=5时,解得m=6,此时等腰三角形三边分别为5,5,7,△ABC的周长为5+5+7=17;综上所述,△ABC的周长为13或17.【变式8-3】(2021秋•揭西县期末)等腰三角形的三边长分别为a、b、c,若a=6,b与c是方程x2﹣(3m+1)x+2m2+2m=0的两根,求此三角形的周长.【分析】分a为腰及a为底两种情况考虑:①若a=6是三角形的腰,将x=6代入原方程可求出m的值,将m的值代入原方程,解之即可得出b,c的值,结合三角形的周长计算公式,即可求出此三角形的周长;②若a=6是三角形的底边,利用根的判别式Δ=0,即可得出关于m的一元二次方程,解之即可求出m的值,将m的值代入原方程,解之即可得出b,c的值,利用三角形的三边关系可得出此情况不符合题意,需舍去.综上即可得出此三角形的周长.【解答】解:①若a=6是三角形的腰,则b与c中至少有一边长为6.将x=6代入原方程得:62﹣(3m+1)×6+2m2+2m=0,解得:m1=3,m2=5.当m=3时,原方程可化为x2﹣10x+24=0,解得:x1=4,x2=6,∴此时三角形三边长分别为4,6,6,∴三角形的周长为4+6+6=16;当m=5时,原方程可化为x2﹣16x+60=0,解得:x1=6,x2=10,此时三角形三边长分别为6,6,10,∴三角形的周长为6+6+10=22.②若a=6是三角形的底边,则b、c为腰且b=c,即方程有两个相等的实数根,∴Δ=[﹣(3m+1)]2﹣4×1×(2m2+2m)=0,解得:m1=m2=1,∴原方程可化为x2﹣4x+4=0,解得:x1=x2=2,∵2+2=4<6,∴不能构成三角形,舍去.综上所述,此三角形的周长为16或22.。
专题08 一元二次方程根的判别式及根与系数的关系(解析版)
九年级数学全册北师大版版链接教材精准变式练专题08 一元二次方程根的判别式及根与系数的关系【典例1】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:⎩⎨⎧-=•-=+212111a x x , 解得:⎩⎨⎧-=-=311x a ,则a 的值是﹣1,该方程的另一根为﹣3.【总结】熟练掌握一元二次方程根的判别式与根之间的对应关系.【典例2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k ≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0,典例解读解得:k <2且k ≠1. 故答案为:k <2且k ≠1.【总结】不能忽略二次项系数不为0这一条件.【典例3】已知关于x 的一元二次方程2(1)10m x x -++=有实数根,则m 的取值范围是________ 【答案】54m ≤且m ≠1 【解析】因为方程2(1)10m x x -++=有实数根,所以214(1)450m m =--=-+≥△,解得54m ≤, 同时要特别注意一元二次方程的二次项系数不为0,即(1)0m -≠, ∴ m 的取值范围是54m ≤且m ≠1. 【总结】注意一元二次方程的二次项系数不为0,即(1)0m -≠,m ≠1. 【典例4】已知方程2560x kx +-=的一个根是2,求另一个根及k 的值.【点拨】根据方程解的意义,将x =2代入原方程,可求k 的值,再由根与系数的关系求出方程的另外一个根. 【解析】方法一:设方程另外一个根为x 1,则由一元二次方程根与系数的关系,得125k x +=-,1625x =-,从而解得:135x =-,k =-7. 方法二:将x =2代入方程,得5×22+2k-6=0,从而k =-7.设另外一根为x 1,则由一元二次方程根与系数的关系,得1725x +=,从而135x =-, 故方程的另一根为35-,k 的值为-7.【总结】根据一元二次方程根与系数的关系12bx x a+=-,12cx x a=易得另一根及k 的值. 【典例5】关于x 的一元二次方程x 2+2x+2m=0有两个不相等的实数根. (1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x+2m=0的两个根,且x 12+x 22=8,求m 的值.【点拨】(1)根据方程根的个数结合根的判别式,可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x 1+x 2=﹣2,x 1•x 2=2m ,再结合完全平方公式可得出x 12+x 22=()221x x +﹣2x 1•x 2,代入数据即可得出关于关于m 的一元一次方程,解方程即可求出m 的值,经验值m=﹣1符合题意,此题得解. 【解析】解:(1)∵一元二次方程x 2+2x+2m=0有两个不相等的实数根, ∴△=22﹣4×1×2m=4﹣8m >0, 解得:m <21. ∴m 的取值范围为m <21. (2)∵x 1,x 2是一元二次方程x 2+2x+2m=0的两个根, ∴x 1+x 2=﹣2,x 1•x 2=2m ,∴x 12+x 22=()221x x +﹣2x 1•x 2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m 的值为﹣1.【总结】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m >0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.【典例6】求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-,从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数x 1、x 2为根的一元二次方程是()021212=++-x x x x x x .”可以用这种语言形式记忆“2x -和x +积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.【教材知识必背】一、一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0;(2)方程有两个相等的实数根⇒ac b 42-=0;教材知识链接(3)方程没有实数根⇒ac b 42-﹤0.诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件; (2)若一元二次方程有两个实数根则 ac b 42-≥0. 二、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k xx k =+++; ⑦12||x x -==;⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==;⑨2212121212()()4x x x x x x x x -=±-=±+-; ⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数2\1x x 为根的一元二次方程是()021212=++-x x x x x x .(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围; (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数; 当△≥0且120x x >,120x x +<时,两根同为负数. ②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b +,则必有一根a b -(a ,b 为有理数).【变式1】下列一元二次方程没有实数根的是( ) A .x 2+2x+1=0 B .x 2+x+2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0【点拨】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断. 【答案】B . 【解析】精准变式题解:A 、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误; B 、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C 、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误; 故选:B .【总结】本题主要考查一元二次方程根的情况,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【变式2】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( )A. 1B. 0,1C. 1,2D. 1,2,3 【答案】A.提示:根据题意得:△=16﹣12k ≥0,且k ≠0,解得:k ≤34,且k ≠0. 则k 的非负整数值为1.【变式3】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根【变式4】已知:关于x 的方程2(1)04kkxk x +++=有两个不相等的实数根,求k 的取值范围. 【答案】102k k ≠>-且.【变式5】已知方程220x x c -+=的一个根是3,求它的另一根及c 的值.【答案】另一根为-1;c 的值为-3.【变式6】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和.【答案】(1)134; (2)3.1. 关于x 的方程2210mx x ++=无实数根,则m 的取值范围为( ). A .m ≠0 B .m >1 C .m <1且m ≠0 D .m >-1综合提升变式练【答案】B ;【解析】当m =0时,原方程的解是12x =-;当m ≠0时,由题意知△=22-4·m ×1<0,所以m >1. 2.若1x 、2x 是一元二次方程2210x x +-=的两根,则1211x x +的值为( ). A .-1 B .0 C .1 D .2 【答案】C ;【解析】由一元二次方程根与系数的关系知:1212x x +=-,1212x x =-,从而121212111x x x x x x ++==. 3. 一元二次方程x 2﹣4x+4=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】B.【解析】在方程x 2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.4.一元二次方程20(0)ax bc c a ++=≠有两个不相等的实数根,则24b ac -满足的条件是( )A .240b ac -=B .240b ac ->C .240b ac -<D .240b ac -≥ 【答案】B ;【解析】20ax bx c ++=(a ≠0)有两个不相等实数根240b ac ⇔->.5.若关于x 的一元二次方程(a ﹣1)x 2﹣2x+2=0有实数根,则整数a 的最大值为( )A .﹣1B .0 C.1 D.2 【答案】B ;【解析】∵关于x 的一元二次方程(a ﹣1)x 2﹣2x+2=0有实数根,∴△=(﹣2)2﹣8(a ﹣1)=12﹣8a ≥0且a ﹣1≠0, ∴a ≤且a ≠1,∴整数a 的最大值为0.故选:B .6.关于方程2230x x ++=的两根12,x x 的说法正确的是( )A. 122x x +=B.123x x +=-C. 122x x +=-D.无实数根 【答案】D ;【解析】求得Δ=b 2-4ac=-8<0,此无实数根,故选D .7.关于x 的一元二次方程x 2+4x+k=0有实数解,则k 的取值范围是( )A.k ≥4B.k ≤4C.k >4D.k=4【答案】B ;【解析】∵关于x 的一元二次方程x 2+4x+k=0有实数解,∴b 2﹣4ac=42﹣4×1×k ≥0, 解得:k ≤4,故选B .8.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为( ). A .3 B .6 C .18 D .24 【答案】A ;【解析】由一元二次方程根与系数的关系得:3αβ+=,32αβ=, 因此22()()4963αβαβαβ-=+-=-=9.等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根,则n 的值为( ).A .9B .10C .9或10D .8或10 【答案】B ;【解析】∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b 两种情况, ①当a=2,或b=2时,∵a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根, ∴x=2,把x=2代入x 2﹣6x+n ﹣1=0得,22﹣6×2+n ﹣1=0, 解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形, 故n=9不合题意,②当a=b 时,方程x 2﹣6x+n ﹣1=0有两个相等的实数根, ∴△=(﹣6)2﹣4(n ﹣1)=0 解得:n=10, 故选B .10.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为( ). A .2010 B .2011 C .2012 D .2013 【答案】C ;【解析】依题意有22013a a +=,1a b +=-,∴222()()201312012a a b a a a b ++=+++=-=.11.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则ab的值是( ). A .95 B .59 C .20125- D .20129- 【答案】A ;【解析】因为25201290a a ++=及29201250b b ++=,于是有25201290a a ++=及2115()201290bb+•+=, 又因为1ab ≠,所以1a b ≠,故a 和1b可看成方程25201290x x ++=的两根, 再运用根与系数的关系得195a b •=,即95a b =.12.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,那么m 的最大整数值是________.【答案】1;【解析】由题意知△=221[(3)]404m m ---⨯⨯>,所以32m <,因此m 的最大整数值是1. 13.关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,则m 的取值范围是__ ___. 【答案】54m <-; 【解析】因为关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,所以22(21)4(1)(1)0m m +-⨯--<,解得54m <-. 14.关于x 的方程kx 2﹣4x ﹣=0有实数根,则k 的取值范围是 . 【答案】k ≥﹣6; 【解析】当k=0时,﹣4x ﹣=0,解得x=﹣,当k ≠0时,方程kx 2﹣4x ﹣=0是一元二次方程,根据题意可得:△=16﹣4k ×(﹣)≥0, 解得k ≥﹣6,k ≠0,综上k ≥﹣6.15.已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两根,则+= .【答案】-2.【解析】∵一元二次方程x 2﹣2x ﹣1=0的两根为x 1、x 2,x 1+x 2=2,x 1•x 2=﹣1,∴+= =﹣2.故答案是:﹣2. 16.若方程的两根是x 1、x 2,则代数式的值是 。
专题1-3 一元二次方程根的判别式(解析版)
(苏科版)九年级上册数学《第1章 一元二次方程》专题1-3 一元二次方程根的判别式◆1、一般地,式子b 2﹣4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用希腊字母“Δ”表示它,即Δ=b 2﹣4ac .◆2、利用一元二次方程根的判别式判断方程的根的情况.一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.◆3、利用根的判别式判断一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定a ,b ,c 的值;③计算b 2﹣4ac 的值;④根据b 2﹣4ac 的符合判定方程根的情况.◆4、运用根的判别式时的注意事项(1)将方程化成一般形式后才能确定a ,b ,c 的值.(2)确定a ,b ,c的值时不要漏掉符合.【例题1】(2023•淮南一模)下列一元二次方程中,没有实数根的是( )A .x 2+4=2xB .(x +1)2=0C .x 2﹣2023x =0D .x 2+2=3x【分析】求出一元二次方程根的判别式,根据符号即可得到结论.【解答】解:A 、方程x 2+4=2x 可化为x 2﹣2x +4=0,∵Δ=(﹣2)2﹣4×1×4=﹣12<0,∴方程无实数根,故本选项符合题意;B 、∵方程(x +1)2=0,∴x 1=x 2=﹣1,∴方程有两个相等的实数根,故本选项不符合题意;C、方程整理得x2﹣2023x=0,∵Δ=20232﹣4×1×0=20232>0,∴方程有两个不相等的实数根,故本选项不符合题意;D、方程整理得x2﹣3x+2=0,∵Δ=(﹣3)2﹣4×1×2=1>0,∴方程有两个不相等的实数根,故本选项不符合题意.故选:A.【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程解的情况之间的关系是解决问题的关键.【变式1-1】(2023春•淮北月考)方程2x2﹣5x+7=0根的情况是( )A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断【分析】先计算判别式的值,然后根据判别式的意义进行判断.【解答】解:∵2x2﹣5x+7=0,∴Δ=(﹣5)2﹣4×2×7=﹣31<0,∴方程没有实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式1-2】(2023•新会区二模)下列关于x的一元二次方程中有两个相等的实数根的是( )A.(x﹣3)2=4B.x2=x C.x2+2x+1=0D.x2﹣16=0【分析】通过解方程求得方程的解或根据根的判别式Δ=b2﹣4ac的值的符号判断即可.【解答】解:A、∵(x﹣3)2=4,∴x﹣3=±2,∴x1=1,x2=5,故本选项不符合题意;B、∵x2=x,∴x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1,故本选项不符合题意;C、Δ=22﹣4×1×1=0,该方程有两个相等实数根.故本选项符合题意;D、Δ=02﹣4×1×(﹣16)=64>0,该方程有两个不相等的实数根.故本选项不符合题意;故选:C.【点评】此题主要考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【变式1-3】(2023•郯城县二模)一元二次方程3x2﹣5x=﹣6的根的情况为( )A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定【分析】先计算出根的判别式的值得到Δ<0,根据根的判别式的意义对各选项进行判断.【解答】解:一元二次方程3x²﹣5x=﹣6可化为3x²﹣5x+6=0,∵Δ=(﹣5)2﹣4×3×6=﹣47<0,∴方程无实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式1-4】(2023•贵州模拟)已知关于x的一元二次方程x2+6+c+c=0的一个根是x=1,则方程x2+6x﹣c=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.有一个根是x=1【分析】先把x=1代入方程x2+6x+c=0可得到c=﹣7,则方程x2+6x﹣c=0化为x2+6x+7=0,再计算根的判别式的值得到Δ=8>0,然后根据根的判别式的意义判断方程根的情况即可.【解答】解:把x=1代入方程x2+6x+c=0得1+6+c=0,解得c=﹣7,所以方程x2+6x﹣c=0化为x2+6x+7=0,∵Δ=62﹣4×7=8>0,∴方程x2+6x﹣c=0有两个不相等的实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一元二次方程的解.【变式1-5】(2023•内乡县校级三模)已知a,c互为倒数,则关于x的方程ax2﹣x+c=0(a≠0)根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为1【分析】根据根的判别式得到Δ=1﹣4ac,根据a,c互为倒数,得到ac=1,解之即可.【解答】解:关于x的方程ax2﹣x+c=0(a≠0)根的判别式为Δ=1﹣4ac,∵a,c互为倒数,∴ac=1,∴1﹣4ac<0.∴原方程无实数根,故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程ax2+bx+c=0(a≠0)的定义.【变式1-6】(2023•扶沟县二模)若|a﹣3|+=0,则关于x的一元二次方程(a﹣1)x2+bx+2=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】先根据非负性求出a和b的值,再计算根的判别式的值得到Δ,然后根据根的判别式的意义进行判断.【解答】解:∵|a﹣3|+=0,∴a﹣3=0,b﹣2=0,∴a=3,b=2,∴关于x的一元二次方程为x2+x+1=0,∵Δ=12﹣4×1×1=1﹣4=﹣3<0,∴方程没有实数根.故选:C.【点评】本题考查了非负数的性质:绝对值,非负数的性质:算术平方根,根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【例题2】(2023•安徽模拟)关于x的一元二次方程x2﹣kx+k+3=0有两个相等的实数根,则k的值为( )A.﹣2B.﹣2或6C.6D.﹣6或2【分析】根据关于x的一元二次方程x2﹣kx+k+3=0有两个相等的实数根可知Δ=0,故可得出关于k的方程,求出k的值即可.【解答】解:∵关于x的一元二次方程x2﹣kx+k+3=0有两个相等的实数根,∴Δ=0,即Δ=(﹣k)2﹣4(k+3)=0,解得k=6或﹣2.故选:B.【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac的关系是解题的关键.【变式2-1】(2023•淮阳区校级三模)若关于x的一元二次方程mx2﹣6x+1=0 有两个相等实数根,则m 的值是( )A.﹣1B.1C.﹣9D.9【分析】由方程有两个相等的实数根可得其判别式等于0,可得到关于m的方程,可求得m的值.【解答】解:∵一元二次方程mx2﹣6x+1=0有两个相等实数根,∴Δ=0,即(﹣6)2﹣4m=0,解得m=9.故选:D.【点评】本题主要考查根的判别式,由方程根的情况得到m的方程是解题的关键.【变式2-2】(2023春•乐清市月考)若关于x的方程x2﹣4x+c=0有两个不相等的实数根,则c的值可以是( )A.﹣4B.4C.8D.16【分析】根据方程有两个相等的实数根,计算根的判别式得关于c的方程,求解方程即可.【解答】解:Δ=b2﹣4ac=(﹣4)2﹣4×1×c=16﹣4c,∵方程有两个不相等的实数根,∴Δ>0,∴16﹣4c>0,解得c<4.故选:A.【点评】本题考查了一元二次方程根的判别式,利用一元二次方程根的判别式(Δ=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.【变式2-3】(2023•永嘉县二模)若关于x的方程x2+6x+18a=0有两个相等的实数根,则a的值是( )A.―12B.12C.﹣2D.2【分析】利用根的判别式的意义得到Δ=62﹣4×18a=0,然后解方程即可.【解答】解:根据题意得Δ=62﹣4×18a=0,解得a=1 2.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式2-4】(2023•驻马店二模)若关于x的一元二次方程x2﹣3x+2﹣m=0有两个相等的实数根,则m 的值是.【分析】先计算根的判别式Δ=b2﹣4ac的值.有两个相等实数根的一元二次方程就是判别式的值是0,由此建立关于m的方程解答即可.【解答】解:∵关于x的方程x2﹣3x+2﹣m=0有两个相等的实数根,∴(﹣3)2﹣4×1×(2﹣m)=0,解得:m=―1 4.故答案为:―1 4.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)当Δ>0则方程有两个不相等的实数根;(2)当Δ=0则方程有两个相等的实数根;(3)当Δ<0则方程没有实数根.【变式2-5】(2023•永嘉县三模)若关于x的一元二次方程x2+bx+16=0,有两个相等的实数根,则正数b的值是.【分析】先根据一元二次方程根的判别式的意义得到Δ=b2﹣4×16=0,然后解关于b的方程即可.【解答】解:根据题意得Δ=b2﹣4×16=0,解得b1=8,b2=﹣8,所以正数b的值为8.故答案为:8.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【例题3】(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是( )A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0【分析】根据一元二次方程的定义及根的判别式列得不等式并计算即可.【解答】解:∵一元二次方程mx2+2x+1=0有实数解,∴Δ=22﹣4m≥0,且m≠0,解得:m≤1且m≠0,故选:D.【点评】本题考查一元二次方程的定义及根的判别式,特别注意二次项系数不能为0.【变式3-1】(2023•金水区校级三模)若关于x的一元二次方程x2﹣x+2k+1=0有两个不相等的实数根,则k的取值范围是 .【分析】根据判别式的意义得到Δ=(﹣1)2﹣4(2k+1)>0,然后解不等式即可.【解答】解:根据题意得Δ=(﹣1)2﹣4(2k+1)>0,解得k<―3 8.故答案为:k<―3 8.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式3-2】(2023•中牟县二模)若关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个实数根,则m的取值范围是( )A.m≥0B.m>0C.m≥0且m≠1D.m>0且m≠1【分析】先根据一元二次方程的定义和根的判别式的意义得到m﹣1≠0且Δ=22﹣4(m﹣1)×(﹣1)≥0,然后求出两不等式的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=22﹣4(m﹣1)×(﹣1)≥0,解得m≥0且m≠1,即m的取值范围为m≥0且m≠1.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了一元二次方程的定义.【变式3-3】(2023春•宁明县期中)关于x的一元二次方程(a+1)x2﹣2x+3=0有实数根,则整数a的最大值是( )A.﹣2B.﹣1C.0D.1【分析】根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.【解答】解:根据题意得:Δ=4﹣12(a+1)≥0,且a+1≠0,解得:a≤―23,a≠﹣1,则整数a的最大值为﹣2.故选:A.【点评】此题考查了一元二次方程根的判别式,弄清题意是解本题的关键.【变式3-4】(2023•市北区三模)关于x的一元二次方程(k﹣1)x2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是 .【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且Δ=(﹣2)2+4(k﹣1)>0,再求出两个不等式的公共部分即可得到答案.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x﹣1=0有两个不相等的实数根,∴k﹣1≠0且Δ=(﹣2)2+4(k﹣1)>0,解得:k>0且k≠1.故答案为:k>0且k≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根,解题时注意不能忽视二次项系数不为零的条件.【变式3-5】(2023•兰考县一模)如果关于x的一元二次方程kx2+1=0有两个不相等的实数根,那么k的取值范围是( )A.k<13B.k<13且k≠0C.―13≤k<13且k≠0D.―13≤k<1且k≠0【分析】首先根据一元二次方程的定义,确定字母k 的取值范围,然后结合根的判别式以及二次根式的定义继续求解k 的取值范围即可.【解答】解:∵原方程为一元二次方程,∴k ≠0,∵原方程有两个不相等的实数根,∴Δ=(―2―4k >0,解得:k <1,∴3k +1≥0,解得:k ≥―13,∴k 的取值范围是―13≤k <1且k ≠0,故选:D .【点评】本题考查根据一元二次方程根的情况判断参数,理解根的判别式,以及一元二次方程的基本定义和二次根式的定义是解题关键.【变式3-6】(2023•西宁二模)已知关于x 的一元二次方程x 2﹣3x +2a ﹣1=0有两个不相等的实数根.(1)求a 的取值范围;(2)若a 为正整数,求一元二次方程的解.【分析】(1)根据方程根的判别式Δ>0,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围;(2)由(1)可求得a 的正整数,代入原方程,解之即可求出方程的根.【解答】解:(1)∵关于x 的一元二次方程x 2﹣3x +2a ﹣1=0有两个不相等的实数根,∴Δ=(﹣3)2﹣4(2a ﹣1)>0,解得a <158,∴a 的取值范围为a <158;(2)∵a <158,且a 为正整数,∴a =1.此时,方程为x 2﹣3x +1=0,解得:x1x2∴方程的根为x1x2【点评】本题主要考查了根的判别式以及解一元二次方程,解题的关键是:(1)熟记“当Δ>0时,方程有两个不相等的实数根”;(2)熟练掌握一元二次的解法—公式法.【例题4】(2023•兰州)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=( )A.﹣2B.2C.﹣4D.4【分析】由一元二次方程有有两个相等的实数根得Δ=b2﹣4ac=0,得到b2﹣4c=0,再将其代入所求式子中计算即可求解.【解答】解:∵关于x的一元二次方程x2+bx+c=0有两个相等的实数根,∴Δ=b2﹣4c=0,∴b2=4c,∴b2﹣2(1+2c)=b2﹣4c﹣2=0﹣2=﹣2.故选:A.【点评】本题主要考查一元二次方程根与系数的关系,熟知一元二次方程的根与Δ=b2﹣4ac的关系是解题关键.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.【变式4-1】若关于x的方程x2﹣mx+m=0有两个相等实数根,则代数式2m2﹣8m+1的值为 .【分析】根据方程的系数结合根的判别式即可得出Δ=m2﹣4m=0,将其代入2m2﹣8m+1中即可得出结论.【解答】解:∵关于x的方程x2﹣mx+m=0有两个相等实数根,∴Δ=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案为:1.【点评】本题考查了根的判别式,熟练掌握“当Δ=0时,方程有两个相等的两个实数根”是解题的关键.【变式4-2】(2023•曹妃甸区模拟)关于x的一元二次方程x2﹣mx+(m+1)=0有两个相等的实数根,则代数式8m﹣2m2+10的值为( )A.18B.10C.4D.2【分析】先根据根的判别式得到:Δ=(﹣m)2﹣4×(m+1)=0,则m2﹣4m=4,再将代数式8m﹣2m2+10变形后把m2﹣4m=4代入计算即可.【解答】解:根据题意,得Δ=(﹣m)2﹣4×(m+1)=0,整理,得m2﹣4m=4,所以原式=﹣2(m2﹣4m)+10=﹣2×4+10=2,故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.【变式4-3】关于x的一元二次方程(a+1)x2+bx+1=0有两个相等的实数根,则代数式8a﹣2b2+6的值是 .【分析】先根据一元二次方程的定义以及根的判别式得到a+1≠0且Δ=b2﹣4×(a+1)=0,则b2﹣4a=4,再将代数式8a﹣2b2+6变形后把b2﹣4a=4代入计算即可.【解答】解:根据题意得a+1≠0且Δ=b2﹣4×(a+1)=0,即b2﹣4a﹣4=0,∴b2﹣4a=4,所以原式=﹣2(b2﹣4a)+6=﹣2×4+6=﹣2,故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.【变式4-4】若关于x的一元二次方程12x2﹣2kx+1﹣4k=0有两个相等的实数根,则代数式(k﹣2)2+2k (1﹣k)的值为( )A.3B.﹣3C.―72D.72【分析】利用判别式的意义得到Δ=(2k)2﹣4×12×(1﹣4k)=0,则k2+2k=12,然后利用代入的方法计算代数式的值.【解答】解:根据题意得Δ=(2k)2﹣4×12×(1﹣4k)=0,∴k2+2k=1 2,∴(k﹣2)2+2k(1﹣k)=k2﹣4k+4+2k﹣2k2=﹣k2﹣2k+4=﹣(k2+2k)+4=―12+4=7 2.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.【变式4-5】(2022•江夏区模拟)已知关于x的一元二次方程(3a﹣1)x2﹣ax+14=0有两个相等的实数根,则代数式a2﹣2a+1+1a的值( )A.﹣3B.3C.2D.﹣2【分析】先根据一元二次方程的定义以及根的判别式得到3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,则a2﹣3a+1=0,再将a2=3a﹣1代入代数式得到a+1a,通分后得到a21a,再代入a2+1=3a计算即可.【解答】解:根据题意得3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,即a2﹣3a+1=0,∴a2=3a﹣1,所以原式=3a﹣1﹣2a+1+1a=a+1a=a21a=3aa=3.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.【变式4-6】若关于x的一元二次方程12x2﹣2bx﹣4b+1=0有两个相等的实数根,则代数式(3b﹣1)2﹣5b(2b―45)的值为 .【分析】化简代数式得﹣(b2+2b)+1,根据一元二次方程根的判别式,求得b2+2b=12,代入即可.【解答】解:∵一元二次方程12x2﹣2bx﹣4b+1=0有两个相等的实数根,∴(﹣2b)2﹣4×12×(﹣4b+1)=4b2+8b﹣2=0,∴b2+2b=1 2,∴(3b﹣1)2﹣5b(2b―45)=﹣b2﹣2b+1=﹣(b2+2b)+1=―12+1=12,故答案为:1 2.【点评】本题主要考查了一元二次方程根的判别式,多项式乘法,熟练掌握整体代入方法是解决问题的关键.【例题5】(2023•丰台区二模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:该方程总有两个不相等的实数根;(2)选择一个m的值,使得方程至少有一个正整数根,并求出此时方程的根.【分析】(1)先计算根的判别式的值得到Δ>0,从而利用根的判别式的意义得到结论;(2)m可以取0,然后利用直接开平方法解方程.【解答】(1)证明:∵Δ=(﹣2m)2﹣4(m2﹣4)=16>0,∴该方程总有两个不相等的实数根;(2)解:当m=0时,方程化为x2﹣4=0,解得x1=2,x2=﹣2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式5-1】(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.【分析】(1)通过计算根的判别式进行推理证明;(2)将x=1代入该方程,通过求解关于k的一元二次方程进行求解.【解答】(1)证明:∵a=1,b=﹣2k,c=k2﹣1,∴b2﹣4ac=(﹣2k)2﹣4×1×(k2﹣1)=4k2﹣4k2+4=4>0,∴方程有两个不相等的实数根;(2)由题意得12﹣2k×1+k2﹣1=0,整理,得k2﹣2k=0,解得k1=0,k2=2,∴k的值为0或2.【点评】此题考查了一元二次方程的求解和根的判别式的应用能力,关键是能准确理解并运用以上知识进行正确地求解.【变式5-2】(2023•工业园区一模)已知关于x的一元二次方程x2﹣2mx+2m﹣1=0.(1)若该方程有一个根是x=2,求m的值;(2)求证:无论m取什么值,该方程总有两个实数根.【分析】(1)直接把x=2代入到原方程中得到关于m的方程,解方程即可得到答案;(2)根据一元二次方程根的判别式进行求解即可.【解答】解:(1)∵关于x的一元二次方程x2﹣2mx+2m﹣1=0的一个根为x=2,∴22﹣4m+2m﹣1=0,∴m=3 2;(2)证明:由题意得,Δ=b2﹣4ac=(﹣2m)2﹣4(2m﹣1)=4m2﹣8m+4=4(m﹣1)2≥0,∴无论m取什么值,该方程总有两个实数根.【点评】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程ax2+bx+c=0(a≠0),若Δ=b2﹣4ac>0,则方程有两个不相等的实数根,若Δ=b2﹣4ac=0,则方程有两个相等的实数根,若Δ=b2﹣4ac<0,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.【变式5-3】(2023•大兴区二模)已知关于x的方程x2﹣(m+4)x+4m=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于1,求m的取值范围.【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可.【解答】(1)证明:∵Δ=b2﹣4ac=[﹣(m+4)]2﹣4×4m=m2﹣8m+16=(m﹣4)2≥0,∴此方程总有两个实数根.(2)解:用因式分解法解此方程x2﹣(m+4)x+4m=0,可得(x﹣4)(x﹣m)=0,解得x1=4,x2=m,若该方程有一个根小于1,则m<1.【点评】本题考查了一元二次方程ax2+bx+c=0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【变式5-4】(2023•顺义区二模)已知关于x的方程x2﹣bx+2b﹣4=0.(1)求证:方程总有两个实数根;(2)若b为正整数,且方程有一个根为负数,求b的值.【分析】(1)证明Δ≥0即可;(2)先求出方程的解,再根据题意得出答案即可.【解答】(1)证明:∵Δ=(﹣b)2﹣4×(2b﹣4)=b2﹣8b+16=(b﹣4)2.∵(b﹣4)2≥0,∴方程总有两个实数根.(2)解:用因式分解法解此方程x2﹣bx+2b﹣4=0,可得(x﹣2)(x﹣b+2)=0,解得x1=2,x2=b﹣2,若方程有一个根为负数,则b﹣2<0,故b<2,∵b为正整数,∴b=1.【点评】本题考查了一元二次方程ax2+bx+c=0根的判别式,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.【变式5-5】(2022春•通州区期末)已知关于x的一元二次方程(a﹣1)x2+(2a+1)x+2=0.(1)求证:此方程一定有两个不相等的实数根;(2)如果这个方程根的判别式的值等于9,求a的值.【分析】(1)表示出根的判别式,判断其值大于0即可得证;(2)表示出根的判别式,让其值为9求出a的值即可.【解答】(1)证明:∵Δ=(2a+1)2﹣8(a﹣1)=4a2+4a+1﹣8a+8=4a2﹣4a+1+8=(2a﹣1)2+8,∵(2a﹣1)2≥0,∴Δ=(2a﹣1)2+8>0,∴此方程一定有两个不相等的实数根;(2)解:∵Δ=(2a﹣1)2+8=9,∴(2a﹣1)2=1,解得:a1=0,a2=1,∵a≠1,∴a=0.【点评】此题考查了根的判别式,以及一元二次方程的定义,熟练掌握根的判别式与根的情况之间的关系是解本题的关键.【例题6】(2023•新乡三模)对于实数a,b定义运算“※”为a※b=b2﹣ab,例如3※2=22﹣3×2=﹣2.若关于x的方程3※x=﹣m没有实数根,则m的值可以是( )A.3B.2C.1D.0【分析】直接利用已知运算公式得出一元二次方程,再利用根的判别式得出m的取值范围,进而得出答案.【解答】解:3※x=﹣m,则x2﹣3x=﹣m,故x2﹣3x+m=0,∵关于x的方程3※x=﹣m没有实数根,∴Δ=b2﹣4ac=9﹣4m<0,解得:m>9 4,∴m的值可以是3.故选:A.【点评】此题主要考查了根的判别式,正确得出m的取值范围是解题关键.【变式6-1】(2023•内乡县三模)定义运算:a※b=a2+ab,例如,2※2=22+2×2=8,若方程x※3=﹣m 有两个不相等的实数根,则m的值可以为( )A.2B.3C.4D.5【分析】先根据新定义得到x2+3x=﹣m,再把方程化为一般式得到x2+3x+m=0,接着根据根的判别式的意义得到Δ=32﹣4m>0,然后解不等式得到m的取值范围,从而可对各选项进行判断.【解答】解:∵x※3=﹣m,∴x2+3x=﹣m,即x2+3x+m=0,∵方程有两个不相等的实数根,∴Δ=32﹣4m>0,解得m<9 4,∴m的值可以为2.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了实数的运算.【变式6-2】(2023•枣庄二模)定义新运算a*b,对于任意实数a,b满足a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如4*3=(4+3)(4﹣3)﹣1=7﹣1=6,若x*k=x(k为实数)是关于x的方程,则它的根的情况是( )A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【分析】先根据新定义得到(x+k)(x﹣k)﹣1=x,再把方程化为一般式,接着计算根的判别式的值得到Δ=4k2+5>0,然后根据根的判别式的意义对各选项进行判断.【解答】解:根据题意得(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵Δ=(﹣1)2﹣4×1×(﹣k2﹣1)=4k2+5>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式6-3】(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【分析】利用新定义得到x2+x﹣1=0,然后利用Δ>0可判断方程根的情况.【解答】解:由新定义得:x2+x﹣1=0,∵Δ=12﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.【变式6-4】(2023•息县一模)定义新运算:a◎b=ab﹣b2,例如1◎2=1×2﹣22=2﹣4=﹣2,则方程2◎x=5的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根【分析】先根据定义得到关于x的一元二次方程,然后计算一元二次方程的判别式即可得解.【解答】解:方程2◎x=5化为2x﹣x2=5,一元二次方程化为一般式为x2﹣2x+5=0,∵Δ=(﹣2)2﹣4×1×5=﹣16<0,∴方程没有实数根.故选:C.【点评】本题考查新定义下的方程应用,熟练掌握所给定义的应用、一元二次方程根的判别式的计算及应用是解题关键.【变式6-5】定义新运算:对于任意实数,a、b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求x⊕(﹣4)=6,求x的值;(2)若3⊕a的值小于10,请判断方程:2x2﹣bx﹣a=0的根的情况.【分析】(1)根据新定义运算以及一元二次方程的解法即可求出答案.(2)先求出a的范围,然后根据判别式即可求出答案.【解答】解:(1)∵x⊕(﹣4)=6,∴x[x﹣(﹣4)]+1=6,∴x2+4x﹣5=0,解得:x=1或x=﹣5.(2)∵3⊕a<10,∴3(3﹣a)+1<10∴10﹣3a<10∴a>0,∴Δ=(﹣b)2+8a=b2+8a>0,所以该方程有两个不相等的实数根.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.【变式6-6】(2022•石家庄模拟)定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:(1)x☆4=20,求x;(2)若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.【分析】(1)根据已知公式得出4x2+4=20,解之可得答案;(2)由2☆a的值小于0知22a+a=5a<0,解之求得a<0.再在方程2x2﹣bx+a=0中由Δ=(﹣b)2﹣8a≥﹣8a>0可得答案.【解答】解:(1)∵x☆4=20,∴4x2+4=20,即4x2=16,解得:x1=2,x2=﹣2;(2)∵2☆a的值小于0,∴22a+a=5a<0,解得:a<0.在方程2x2﹣bx+a=0中,Δ=(﹣b)2﹣8a≥﹣8a>0,∴方程2x2﹣bx+a=0有两个不相等的实数根.【点评】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.【例题7】(2023•宁南县模拟)已知等腰三角形ABC的一边长a=6,另外两边的长b,c恰好是关于x的一元二次方程x2﹣(3k+3)x+9k=0的两个根,则△ABC的周长为 .【分析】分a=6为腰和a=6为底边两种情况分类讨论即可确定三角形的周长,注意运用三边关系进行验证.【解答】解:若a=6为腰,则b、c中还有一腰,即6是方程x2﹣(3k+3)x+9k=0的一个根,∴36﹣6(3k+3)+9k=0,∴k =2,这时方程为x 2﹣9x +18=0,其根为3、6,∴△ABC 的周长为6+6+3=15;若a =6为底,则b =c ,即方程x 2﹣(3k +3)x +9k =0有两个相等的实根,∴Δ=[﹣(3k +3)]2﹣4×9k =0,解得:k =1,这时方程为x 2﹣6x +9=0,∴x 1=x 2=3,但3+3=6不能围成三角形,综上可得:△ABC 的周长为15.故答案为:15.【点评】本题考查的是一元二次方程根的判别式及三角形的三边关系,在解答(2)时要注意分类讨论,不要漏解.【变式7-1】(2022春•双流区期末)已知等腰△ABC 的底边长为3,两腰长恰好是关于x 的一元二次方程14kx 2―(k 3)x 2+3=0的两根,则△ABC 的周长为 .【分析】由题意知方程14kx 2―(k 3)x 2+3=0有两个相等的实数根,据此得出k 的值,再利用三角形的周长公式可得答案.【解答】解:由题意知方程14kx 2―(k 3)x 2+3=0有两个相等的实数根,∴Δ=(―k 32)2﹣4×14k ×3=0,。
人教版初中九年级数学上册第二十一章《一元二次方程》习题(含答案解析)
一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.4.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).5.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=A 解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.7.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <0C解析:C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.9.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,8D解析:D【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 10.一元二次方程(x ﹣3)2﹣4=0的解是( ) A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5D 解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题11.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.12.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程-+=(5)(2)0x x 的解是______________.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方 解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 15.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 16.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1,∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.17.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.-1【分析】根据新定义可得出mn 为方程x2+2x−1=0的两个根利用根与系数的关系可得出m +n =−2mn =−1变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算【详解】 解析:-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?解析:(1)505x -;(2)19元.【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.22.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a 为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.23.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.解析:(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.24.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a %,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a %,选择清汤火锅的人均消费增长了1%5a ,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a 的值.解析:(1)至少有1000人选择清汤火锅;(2)a 的值为10【分析】(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据选择红汤火锅的人数不超过清汤火锅人数的1.5倍列出一元一次不等式,然后解不等式取其最小值即可; (2)根据第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等列出关于a 的一元二次方程,然后解方程取其正值即可解答.【详解】解:(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据题意, 得:2500﹣x≤1.5x ,解得:x≥1000,答:至少有1000人选择清汤火锅;(2)根据题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+15a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12x 2﹣120a=0,解得:a 1=10,a 2=0(不合题意,舍去),答:a 的值为10.【点睛】本题考查一元一次不等式的应用、一元二次方程的应用,解答的关键是理解题意,找准数量间的关系,正确列出不等式和方程.25.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.26.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.解析:(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由. 解析:(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=,∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩,∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.28.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.解析:(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.。
九年级数学上册 第二章 一元二次方程《一元二次方程根的判别式及根与系数的关系》巩固练习(含解析)(新
一元二次方程根的判别式及根与系数的关系—巩固练习【巩固练习】一、选择题1. 关于x 的方程2210mx x ++=无实数根,则m 的取值范围为( ).A .m≠0 B.m >1 C .m <1且m≠0 D.m >-12.等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根,则n 的值为( ).A .9B .10C .9或10D .8或103.若1x 、2x 是一元二次方程2210x x +-=的两根,则1211x x +的值为( ). A .-1 B .0 C .1 D .24.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为( ).A .2010B .2011C .2012D .20135.若ab≠1,且有25201290a a ++=,及29201250b b ++=,则a b 的值是( ). A .95 B .59 C .20125- D .20129- 6.超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x ,则由题意列方程应为( )A .200(1+x)2=1000B .200+200×2x=1000C .200+200×3x=1000D .200[1+(1+x)+(1+x)2]=1000二、填空题7.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,那么m 的最大整数值是________. 8.关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,则m 的取值范围是__ ___.9.一元二次方程x 2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c 是整数,则c= .(只需填一个).10.在Rt△ABC 中,∠C=900,a 、b 、c 分别是∠A、∠B、∠C 的对边,a 、b 是关于x 的方程的两根,那么AB 边上的中线长是 .11.设x 1、x 2是方程x 2﹣4x+m=0的两个根,且x 1+x 2﹣x 1x 2=1,则x 1+x 2= ,m= . 12.已知:关于x 的方程①的两个实数根的倒数和等于3,关于x的方程②有实数根且k 为正整数,则代数式的值为 .三、解答题13.已知关于x 的方程22210x mx m --+=的两根的平方和等于294,求m 的值.14.已知关于x 的一元二次方程x 2﹣6x+(2m+1)=0有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.15.已知关于x 的一元二次方程x 2﹣2kx+k 2+2=2(1﹣x )有两个实数根x 1、x 2.(1)求实数k 的取值范围;(2)若方程的两实数根x 1、x 2满足|x 1+x 2|=x 1x 2﹣1,求k 的值.【答案与解析】一、选择题1.【答案】B ;【解析】当m =0时,原方程的解是12x =-;当m≠0时,由题意知△=22-4·m×1<0,所以m >1. 2.【答案】B ;【解析】∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b 两种情况,①当a=2,或b=2时,∵a,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根,∴x=2,把x=2代入x 2﹣6x+n ﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b 时,方程x 2﹣6x+n ﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n ﹣1)=0解得:n=10,故选B .3.【答案】C ;【解析】由一元二次方程根与系数的关系知:1212x x +=-,1212x x =-,从而121212111x x x x x x ++==. 4.【答案】C ;【解析】依题意有22013a a +=,1a b +=-,∴222()()201312012a a b a a a b ++=+++=-=. 5.【答案】A ;【解析】因为25201290a a ++=及29201250b b ++=,于是有25201290a a ++=及2115()201290b b +∙+=,又因为1ab ≠,所以1a b ≠,故a 和1b 可看成方程25201290x x ++=的两根, 再运用根与系数的关系得195a b ∙=,即95ab =.6.【答案】D ;【解析】一月份的营业额为200万元;二月份的营业额为200(1+x )万元;三月份的营业额为200(1+x )2万元;一季度的总营业额共1000万元,所以200[1+(1+x)+(1+x)2]=1000,故选D.二、填空题7.【答案】1;【解析】由题意知△=221[(3)]404m m ---⨯⨯>,所以32m <,因此m 的最大整数值是1.8.【答案】54m <-;【解析】因为关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,所以22(21)4(1)(1)0m m +-⨯--<,解得54m <-.9.【答案】4;【解析】∵一元二次方程x 2﹣5x+c=0有两个不相等的实数根,∴△=(﹣5)2﹣4c >0,解得c <,∵x 1+x 2=5,x 1x 2=c >0,c 是整数,∴c=4.故答案为:4.10.【答案】;【解析】因直角三角形两直角边a 、b 是方程的二根,∴有a+b=7①a·b=c+7②,由勾股定理知c 2=a 2+b 2③,联立①②③组成方程组求得c=5, ∴斜边上的中线为斜边的一半,故答案为.11【答案】4;3.【解析】∵x 1、x 2是方程x 2﹣4x+m=0的两个根,∴x 1+x 2=﹣=4,x 1x 2==m .∵x 1+x 2﹣x 1x 2=4﹣m=1,∴m=3.12.【答案】0.【解析】先根据根与系数的关系求得a 值,a=-1,再将a=-1代入到第二个方程.因第二个方程一定有实根,由△≥0得178k ≤,因为k 为正整数,=12k 或,当=2k 时,分母为0,故舍去,所以k=1,当k=1时. 0=k-1k-2.三、解答题13. 【答案与解析】解:设方程的两根为x 1、x 2,则由根与系数关系, 得122mx x +=,12122mx x -=.由题意,得 2212294x x +=, 即2121229()24x x x x +-=, ∴ 212292224m m -⎛⎫-= ⎪⎝⎭,整理,得28330m m +-=.解得13m =,211m =-. 当m =3时,△=28(21)490m m +-=>;当m =-11时,△=28(21)630m m +-=-<,方程无实数根. ∴ m=-11不合题意,应舍去.∴ m 的值为3.14. 【答案与解析】解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,解得m≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m+1,而2x 1x 2+x 1+x 2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m 的范围为3≤m≤4.15. 【答案与解析】解:(1)方程整理为x 2﹣2(k ﹣1)x+k 2=0,根据题意得△=4(k ﹣1)2﹣4k 2≥0,解得k≤;(2)根据题意得x 1+x 2=2(k ﹣1),x 1•x 2=k 2,∵|x 1+x 2|=x 1x 2﹣1,∴|2(k ﹣1)|=k 2﹣1,∵k≤,∴﹣2(k ﹣1)=k 2﹣1,整理得k 2+2k ﹣3=0,解得k 1=﹣3,k 2=1(舍去),∴k=﹣3.。