复数范围内实系数一元二次方程(19题)答案
复数与方程

复数与方程重点难点:一元二次方程一、二项方程:形如(a0, a n∈C,a n≠0, n∈N)的方程基本解法:化为的形成,利用复数开方求出它的根。
例1.在复数集中解下列方程解1)法1、求方程的解,即求复数的4次方根,∵∴其4次方根为(k=0,1,2,3)∴原方程的解为下面4个复数:法2、求方程的解,即求复数的4次方根。
∵由知1-i为的一个4次方根,∴由复数的次方根的几何意义有的其余三个4次方根分别为:∴方程的解分别为1+i, -1+i, -1-i, 1-i。
解2) 令,∴,∴解之有,∴原方程的根为2-i或-2+i。
注:解二项方程实质就是求一复数的次方根,所以要注意一复数Z的次方根的几种基本求法:<一>,则可用公式(k=0,1,2,……,n-1)求其n个n次方根。
如例(1)解法1,此n个复数的几何意义是复平面上n个点,这n个点均匀分布在以原点为圆心,以为半径的圆上,组成一个正n边形。
<二> 若能由已知中找出个Z的n次方根Z0,则可由n次方根的几何意义求其余n-1个n个次根如下:, 。
如例(1)解法2。
<三>若Z的辐角非特殊值,不好转化为三角形式或也不好看出Z的n次方根时,则可以考虑用n次方根的定义利用代数形式及复数相等直接求。
如例(2)。
二、一元二次方程1. a,b,c∈R时基本解法时,两不等实根可由求根公式求出,时,两相等实根。
可由上面公式求出,时,两互为其轭虚根,可由求根公式求出。
另:韦达定理仍成立。
2. a,b,c∈C时基本解法判别式定理不成立,所以不能由此判别根的情况。
但可由求根公式, δ是b2-4ac的一个平方根另:韦达定理仍成立。
例2.在复数集中解方程。
解:∵,∴=,∴原方程的根为。
注:∵(x-1)(x2+x+1)=x3-1∴x2+x+1=0的根也是x3=1的根,即1的两个立方虚根。
记,则,其有如下特征:①;②;③;④;⑤要注意此特征,并能灵活运用其解决有关问题。
3实系数一元二次方程在复数范围内的解集同步练习

实系数一元二次方程在复数范围内的解集同步练习1.在复数集中解下列方程:(x+1)(x+3)+2=0.2.在复数集中解下列方程:4x²-5ax+a2=0(a∈R).3.已知实系数一元二次方程x²+x+p=0有两个虚根ɑ、β,且|ɑ−β|=√3.(1)求ɑ、β在复平面上对应的两个向量之间的夹角.(2)求实数p的值.4.已知2+i是实系数四次方程x4-2x3+2x²-10x+25=0的一个根,求此方程的其他根.5.设2-3i是实系数二次方程x²+ax+b=0的一个根,求系数a、b.6.已知关于x的方程x²-(2a+1)x+a+2=0(a∈R)有虚根,且虚根的立方是实数,求a的值,并解此方程.7.已知关于x的方程x2+(k+2i)x+2+ki=0有实根,求这个实根以及实数k的值.参考答案1.x=-2±i2..3.(1)120°【解析】: 设α=α+bi(a,b∈R),则β=a−bi,|α−β|=|2bi|=|2b|=,又因为α+β=−1,则α=,所以,因此;又因为,利用复数相减的三角形法则可得α、β之间的夹角为120°(2)p=14.方程的另三个根为2−i,【解析】: 原方程可化为(x²-4x+5)(x²+2x+5)=0,分别解方程x²-4x +5=0和x²+2x+5 =0即可5.方程另一根为2+3i,-a=(2-3i)+(2+3i),b=(2-3i)(2+3i),得α=-4,b=136.设方程的虚根为x=m+ni(m,n∈R且n≠0),由虚根的立方是实数可得,又解得或α=−1,检验△<0,当时,方程两根为;当α=−1时,方程两根为7.设方程的实根为x0,则x02+(k+2i)x0+2+ki=0.即(x02+kx0+2)+(2x0+k)i=0.∴∴x02=2,x0=±.∴或【解析】: 方程有实根,可先设出实根x0,再代入方程利用复数相等的定义求解.。
复数的乘法与除法第2课时复数的除法及实系数一元二次方程在复数范围内的解集课时作业课件

A.i
B.-i
C.±1
D.±i
解析:设 z=a+bi(a,b∈R),∵z+ z =4,∴a=2, 又∵z·z =8,∴b2+4=8,∴b2=4.
z ∴b=±2,即 z=2±2i,故 z =±i,故选 D.
6.若方程 x2+x+m=0 有两个虚根 α、β,且|α-β|=3,则实
数 m 的值为( A )
∴x-14=0,且 y≠0,∴x=14,y=± 415,
即所求复数为 z=14+
15 4i
或
z=14-
15 4 i.
解:(1)zz21=41+-6ii=41+-6ii11++ii=-2+2 10i =-1+5i. (2)∵z=1+bi(b∈R),∴z+z1=2+(b-1)i, ∵z+z1 为实数,∴b-1=0,∴b=1,∴z=1+i, ∴|z|= 2.
——素养提升—— 14.复数 z1=3+2i(i 为虚数单位)是方程 z2-6z+b=0(b∈R) 的一个根,则 b 的值为 13 .
解析:(1+2i)·z =4+3i, z =41+ +32ii=4+3i51-2i=2-i,∴z=2+i.
10.方程(x-3)(x2+2x+2)=0 的根是 3 或-1±i .
解析:由(x-3)(x2+2x+2)=0 得 x-3=0 或 x2+2x+2=0. ∴x=3 或 x=-2±2 4 i=-1±i.
13、15 题各 12 分,14 题 6 分,共 42 分
12.计算:
(1)11+-ii7+11-+ii7-3-44i+23+i 2i3;
1 (2) i (
2+
2i)5+1+1 i4+(11+-ii)7.
解
:
(1)
原
式
=
复数范围内实系数一元二次方程(19题)答案知识讲解

复数范围内实系数一元二次方程(19题)(答案)1、若实系数一元二次方程的一个根是13+,则这个方程可以是 228039x x -+= . 2、复数集内分解221x x ++=2(x x3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下列等式成立的是( C )(A) 1x 与2x 共轭 (B) 240b ac ∆=-≥ (C)1212,b c x x x x a a+=-=, (D)12||x x -=212214)(x x x x -+ 4、判断下列命题的真假,并说明理由;(1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总有两个根.( √ )(2)若12i +是方程20x px q ++=的一个根,则这个方程的另一个根是12i -.( ⨯ )(3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( √)5、已知复数z ,解方程3i 13i z z -⋅=+.解:设i()z x y x y =+∈R ,,则方程可化为(3)(3)i 13i x y y x -+-=+.由复数相等,有3133x y y x -=⎧⎨-=⎩,,解得543.4x y ⎧=-⎪⎪⎨⎪=-⎪⎩,. ∴53i 44z =--. 6、适合方程20z z i --=的复数z12i7、适合方程2560z z -+=的复数z ;若z R ∈,则25602,32,3z z z z z z -+=⇒==⇒=±=±若z 为虚数, 设(,,0)z a bi a b R b =+∈≠,则2()60a bi +-=222226026020a b a b abi ab ⎧⎪--=-+-=⇒⎨=⎪⎩2222606056010a b b b b b a ⎧⎪--=⇒⇒--=⇒+-=⇒=±⎨=⎪⎩所以,方程的解为2,2,3,3,,i i ---。
复数范围内解一元二次方程

复数范围内解一元二次方程解一元二次方程是高中数学中的基本知识,我们首先回顾一下一元二次方程的一般形式:ax^2 + bx + c = 0其中a、b、c为已知常数,x为未知数。
现在我们要求解的是一元二次方程在复数范围内的解。
在实数范围内,一元二次方程的解可以通过判别式来确定:Δ = b^2 - 4ac根据判别式的值,可以得到三种情况:1.如果Δ>0,则方程有两个不相等的实数解。
2.如果Δ=0,则方程有两个相等的实数解。
3.如果Δ<0,则方程没有实数解。
然而,在复数范围内,一元二次方程的解是可以存在的。
我们来详细讨论一下复数范围内一元二次方程的解的情况。
首先,我们假设方程有解x = p + qi (p和q为实数,i是虚数单位,i^2 = -1)。
将x代入方程,可以得到:a(p + qi)^2 + b(p + qi) + c = 0ap^2 + 2apiq - aq^2 + bp + bqi + c = 0令实部和虚部分别相等,我们可以得到两个方程:ap^2 - aq^2 + bp + c = 0 (1)2apiq + bqi = 0 (2)根据(2)式可得。
如果aq = 0,则可以得到两种情况:1. 如果a = 0,则方程退化为一元一次方程bx + c = 0,解为x = -c/b。
2. 如果q = 0,则代入(1)式可以得到ap^2 + bp + c = 0,这是一个一元二次方程,可以像在实数范围内解一样求解。
如果bp + c = 0,则(1)式可以化简为ap^2 - aq^2 = 0,即p^2 = q^2、这也是一个一元二次方程,可以类似地求解。
现在我们考虑aq≠0,进一步讨论两种可能的情况:1. 如果ap^2 - aq^2 + bp + c = 0,则可以将这个方程视为一个关于p的一元二次方程,可以求得p的值。
然后,将p代入到(2)式,可以解得q的值。
2. 如果a = 0,则方程退化为一元一次方程bp + c = 0,解为p = -c/b。
高考数学复数典型例题附答案

1, 已知复数求k的值。
的值。
解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。
均为实数。
比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。
2, 若方程有实根,求实数m的值,并求出此实根。
的值,并求出此实根。
解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。
点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。
充要条件求解。
3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。
的取值范围。
解:设,。
由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。
此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。
4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。
(2)z的实部与虚部都是整数。
,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。
此时①式无解。
(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。
的值。
(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。
特征。
解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。
实系数一元二次方程

(1)实系数一元二次方程一、教学内容分析本节内容是在前面学习了复数的运算后,对初中已学过的一元二次方程的求根公式和韦达定理的推行和完善.为了实际应用和数学自身进展的需要,数的概念需要再一次扩充——由实数扩充到了复数,解决了负数开平方的问题。
那么实系数一元二次方程20b ac∆=-<时方ax bx c++=,当240程在复数集中解的情形一样需要进一步研究.因此,本节课主若是探讨实系数一元二次方程在复数集中解的情形和在复数范围内如何对二次三项式进行因式分解等问题.二、教学目标设计明白得实系数一元二次方程在复数集中解的情形;会在复数集中解实系数一元二次方程;会在复数范围内对二次三项式进行因式分解;明白得实系数一元二次方程有虚数根时根与系数的关系,并会进行简单应用.三、教学重点及难点在复数集中解实系数一元二次方程;在复数范围内对二次三项式进行因式分解.四、教学用具预备电脑、实物投影仪五、教学流程设计六、教学进程设计(一)温习引入20ax bx c ++=(a b c R ∈、、且0)a ≠的求根公式,咱们回忆一下:当240b ac ∆=-≥时,方程有两个实数根:22b x a a=-± “复数的平方根与立方根”,大伙儿明白-1的平方根是:i ±.设问①:一元二次方程210x +=在复数范围内有无解? 设问②:在复数范围内如何解一元二次方程210x x ++=?[说明] 设问①学生能够依照“复数的平方根”知,x 即为-1的平方根:i ±;设问②是为了引出本节课的课题:实系数一元二次方程.(二)教学新课一、实系数一元二次方程在复数集C 中解的情形:设一元二次方程20(0)ax bx c a b c R a ++=∈≠、、且.因为0a ≠,因此原方程可变形为2b c x x a a+=-, 配方得22()()22b b c x a a a+=-, 即2224()24b b ac x a a-+=. (1)当240b ac ∆=->时,原方程有两个不相等的实数根22b x a a=-±; (2)当240b ac ∆=-=时,原方程有两个相等的实数根2b x a=-;(3)当240b ac ∆=-<时,22404b ac a -<, 由上一堂课的教学内容知,2244b ac a-的平方根为2a±, 即i ab ac a b x 2422-±=+, 现在原方程有两个不相等的虚数根22b x a a=-±.(22b x a a=-±为一对共轭虚数根) [说明]实系数一元二次方程在复数范围内必有两个解:当0∆≥时,有两个实根;当0∆<时,有一对共轭虚根.设问③:若43i -是一个实系数一元二次方程的一个根,你能直接写出该方程的另一个根吗?什么缘故?回到引入部份设问②:在复数范围内解一元二次方程210x x ++=.(122x i =-±,即为上节课学习过的ω) 例1(1)在复数集中解方程:2320x x ++=;(2)在复数集中解关于x 的方程:240()x ax a R ++=∈.解:(1)因为△=1432230-⨯⨯=-<,因此方程2320x x ++=的解为1166x =-+,2166x =--. (2)因为△=16-a 2,因此当△>0,即44a a <->或时,原方程的解为12a x -+=,22a x --=. 当△=0,即4a =±时,假设4a =,那么原方程的解为122x x ==-;假设4a =-,那么原方程的解为122x x ==.当△<0,即44a -<<时,原方程的解为122a x =-+,222a x =--. 提示学生注意:在复数集中解方程时,应先考虑△的正负.[说明]例1(2)需分类讨论,要求较高,建议选用,也能够换成讲义上的例题1(P91)例 2 已知一元二次方程20()x mx n m n R ++=∈、,试确信一组m n 、的值,使该方程别离有两个不相等的实数根、两个相等的实数根、两个虚数根,并解方程.[说明]例2属于开放性问题,比较容易入手,能够让基础不睬想的同窗尝试回答,增强互动.既然实系数一元二次方程在复数范围内必有两个解,那么二次三项式2(0)ax bx c a b c R a ++∈≠、、且在复数范围内总能够分解成两个一次因式的乘积.假设方程20ax bx c ++=的两个解别离为1x x 2、,那么212()()ax bx c a x x x x ++=--.例3 在复数集中分解因式:(1)22x x -+; (2)2245x x -+.解:(1)22x x -+=11()()22x x ---. (2)(见讲义P91)提示学生注意:分解二次三项式2ax bx c ++时,应提取二次项的系数a .二、实系数一元二次方程中根与系数的关系关于实系数一元二次方程20ax bx c ++=,当其有实数根时,咱们在初中已经学习过了根与系数的关系:12b x x a+=-,12c x x a⋅=(即韦达定理). 设问④:实系数一元二次方程有虚数根时,是不是也知足根与系数关系?利用求根公式122a x =-+,222a x =--容易验证12b x x a +=-,12c x x a⋅=. 例4 已知32i -是关于x 的方程220x px q ++=的一个根,求实数p 、q 的值.解:(见讲义P91例2)(三)巩固练习见讲义P91练习(1);P92练习(2)说明]以上练习能够依照时刻选择一部份在课堂上完成,其余可作为课后练习.(四)课堂小结本节课要紧讨论了实系数一元二次方程解的情形,明白了在复数集中解实系数一元二次方程和在复数范围内对二次三项式进行因式分解,表现了分类讨论的数学思想.(五)课后作业1.书面作业:练习册P55 习题13.6 A 组 试探题:(补充题及备选题)(1)在复数集中分解因式:416x -.(2)方程25||60z z -+=在复数集中解的个数为( )(A )2 (B )4 (C )6 (D )8(3)在复数范围内解方程ii i z z z +-=++23)(2(i 为虚数单位). 参考答案:(1)(2)(2)(2)(2)x x x i x i +-+-(2)C(3)原方程化简为i i z z z -=++1)(2,设z=x+yi(x 、y∈R),代入上述方程得 x 2+y 2+2xi=1-i, ∴x 2+y 2=1且2x=-1,解得x=-21且y=±23, ∴原方程的解是z=-21±23i. [说明]补充的试探题,可作为学有余力的同窗的能力训练题,也可作为教师的备选题.七、教学设计说明本节课由温习引入,带着问题,利用负数的开平方,开展本节课的探讨.例题设计主若是为了表现以下三个问题:(1)在复数集中解实系数一元二次方程;(2)在复数范围内对二次三项式进行因式分解;(3)实系数一元二次方程有虚数根时,根与系数关系的初步应用.。
48、复数中的方程问题

三、复数中的方程问题【教学目标】1.掌握判别式小于零的实系数一元二次方程的复数根的求法.2.掌握一元二次方程根与系数的关系并能用于解决一些方程根的问题. 3.在解决问题的过程中体会转化与分类讨论的数学思想的应用.【教学重点】一元二次方程的根的讨论.【教学难点】含字母系数的方程根的情况的讨论,13=x 的根的应用.【教学过程】一.知识整理1.实系数一元二次方程的根的情况设方程02=++c bx ax (a ,b ,R c ∈且0≠a ),判别式△ac b 42-=. (1)当△0>时,方程有两个不相等的实数根:aac b b x 2421-+-=,aac b b x 2422---=.(2)当△0=时,方程有两个相等的实数根: ab x x 221-==.(3)当△0<时,方程有两个共轭虚根: ai b ac b x 2421-+-=,ai b ac b x 2422---=.2.代数式22b a +(a ,R b ∈)的因式分解利用z z z ⋅=2||,有))((22bi a bi a b a -+++3.复系数一元二次方程根与系数的关系设方程02=++c bx ax (a ,b ,C c ∈且0≠a )的两个根为1x ,2x ,则⎪⎪⎩⎪⎪⎨⎧=⋅-=+a c x x ab x x 2121.4.方程13=x 的根方程13=x 有三个根,11=x ,i x 23212+-=,i x 23213--=.若记i 2321+-=ω,则ω有性质:13=ω(13=n ω,Z n ∈),2ωω=,012=++ωω.二.例题解析【属性】高三,复数,复数集中的因式分解,解答题,易,运算【题目】在复数范围内分解因式. (1)44b a -; (2)3212-+-x x .【解答】解:(1)))()()(())((222244bi a bi a b a b a b a b a b a -+-+=+-=-. (2)3212-+-x x ])5()1[(21)62(21222+--=+--=x x x)51)(51(21i x i x --+--=.【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】(1)若i 23+是实系数方程022=++c bx x 的根,求实数b 与c ;(2)若i 23+是方程0422=-++i c bx x 的根,求实数b 与c .【解答】解;(1)由题意,i 23-是方程的另一根,则⎪⎪⎩⎪⎪⎨⎧=-+-=-++2)23)(23(2)23()23(c i i b i i ,所以12-=b ,26=c .(2)将i 23+代入方程得04)23()23(22=-++++i c i b i ,整理得,0)220()310(=++++i b c b ,所以⎩⎨⎧=+=++02200310b c b ,解得⎩⎨⎧=-=2010c b .【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】(1)已知012=++x x ,求504030x x x ++的值. (2)若012=+-a a ,求17171aa +的值.【解答】解:(1)由012=++x x ,得i x 2321±-=,所以13=x ,所以504030x x x ++012=++=x x .(2)由012=+-a a ,得i a 2321±=,当i a 2321-=时,则ω-=a (i 2321+-=ω),13=a ,2171717)(ωωω-=-=-=a ,ωω-=-=21711a,所以1)(121717=+-=+ωωaa .同理可得,当i a 2321+=时,也有111717=+aa.【属性】高三,复数,复数中的方程问题,证明题,中,逻辑思维【题目】证明:在复数范围内,方程ii z i z i z +-=+--+255)1()1(||2(i 为虚数单位)无解.【解答】证明:原方程化简为i z i z i z 31)1()1(||2-=+--+,设yi x z +=(x ,R y ∈),代入上述方程,得i yi xi y x 312222-=--+,所以⎩⎨⎧=+=+322122y x y x ,消去y ,整理得051282=+-x x ,此方程的判断式△016584)12(2<-=⨯⨯--=,故x 无实数解.所以,原方程在复数范围内无解.【属性】高三,复数,复数中的方程问题,解答题,难,分析问题解决问题【题目】已知关于x 的二次方程02)12(2=+++-a x a x 有虚根,且此根的三次方是实数,求实数a 的值.【解答】解法一:设方程的虚根为ni m +(m ,R n ∈且0≠n ),由3)(ni m +为实数,得m n 3±=,所以方程的虚根为)31(i m ±,由根与系数的关系,得⎩⎨⎧+=+-=24)12(22a m a m ,消去m ,得 21442+=++a a a ,01342=-+a a ,解得1-=a 或41=a .解法二:设方程的虚根为1z ,则另一虚根为12z z =, 因为R z ∈31,所以()32313131z z z z ===,03231=-z z ,0))((22212121=++-z z z z z z ,因为21z z ≠,所以0222121=++z z z z ,即21221)(z z z z =+,由根与系数的关系,2)12(2+=+a a ,01342=-+a a ,解得1-=a 或41=a .三.课堂反馈【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】若i 23+是方程022=++c bx x (b ,R c ∈)的一个根,则=c _________.【解答】答案:26【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】已知ai +2,i b +是实系数一元二次方程02=++q px x 的两根,则=p _________,=q ____________.【解答】答案:4-,5【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】若ω是方程13=x 的一个虚根,则=-++-)1)(1(22ωωωω___________.【解答】答案:4【属性】高三,复数,复数中的方程问题,填空题,中,运算【题目】在复数范围内解方程:ii i z z z +-=++23)(||2(i 为虚数单位).【解答】解:原方程化简为i i z z z -=++1)(||2,设yi x z +=(x ,R y ∈),代入上述方程,得 i xi y x -=++1222,所以⎩⎨⎧-==+12122x y x ,解得⎪⎪⎩⎪⎪⎨⎧±=-=iy x 2321, 所以,原方程的解为i z 2321+-=或i z 2321--=.四.课堂小结1.实系数一元二次方程,在判别式小于零时,有一对共轭虚根(虚根成对).利用这一点,在已知一根的情况下,就可以知道另一根,再结合根与系数的关系,就使问题得到简化.2.由于实系数一元二次方程在复数范围必有两根,因此在复数范围内二次多项式的因式分解一定可以分到一次式的乘积.3.如果方程的系数含有虚数,则不能用△来判断方程有无实根,共轭虚根定理也不成立,但根与虚数的关系仍成立.这类题如果给出方程有实根的条件,可用复数相等的充要条件转化为实数方程组求解.所以说,复数问题实数化总是解决复数问题的基本策略.五.课后作业【属性】高三,复数,复数集中的因式分解,填空题,易,运算【题目】在复数范围内分解因式:(1)=++1622x x ____________________.(2)=+-1cos 22θx x _________________________.【解答】答案:(1))151)(151(i x i x -+++(2))sin cos )(sin cos (θθθθi x i x +---【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】设一元二次方程0122=++-b ax x (a ,R b ∈)的一个虚根是i -1,则实数=a __________,=b _________.【解答】答案:4,3【属性】高三,复数,复数开平方问题,填空题,易,运算【题目】复数i 43-的平方根为______________.【解答】答案:i -2,i +-2【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】已知方程04)4(2=-+++ai x i x (R a ∈)有实根b ,且bi a z +=,求z .【解答】解:i z 22--=.【属性】高三,复数,复数中的方程问题,选择题,中,运算【题目】方程i z z 31||+=+中z 的解是( )A .i 2321+B .i 2321+C .i 34+-D .i 34-【解答】答案:C【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-pz z 有无实数根,并给出证明.【解答】解;由已知212-<<-p ,所以4412<<p,所以方程05222=-+-pz z 的判别式△0)4(4)5(4422<-=--=p p ,所以原方程无褛根.【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】在复数范围内解方程x x x 23623-=+.【解答】解:把原方程化为523123--=+x x x ⇒)53)(1()1)(1(2-+=+-+x x x x x ,⇒0)64)(1(2=+-+x x x ,解得11-=x ,i x 222+=,i x 223-=.【属性】高三,复数,复数中的方程问题,解答题,难,分析问题解决问题【题目】已知关于x 的方程02=++m x x (R m ∈)的两根为α、β.(1)若3||=-βα,求m 的值; (2)若3||||=+βα,求m 的值.【解答】解:(1)因为3||=-βα,所以9||2=-βα,所以9|4)(|2=-+αββα,9|41|=-m ,解得25=m 或2-=m .(2)①当α、β为实数,即041≥-m ,41≤m 时,9|)||(|2=+βα⇒9||222=++αββα⇒9||22)(2=+-+αβαββα⇒9||221=+-m m ,当410≤≤m 时无解;当0<m 时,2-=m .②当α、β为一对共轭虚数时,即41>m 时,αβ=,由3||||=+βα,可知23||=α,则49||2==⋅=αααm .综上,2-=m 或49=m .【题目资源】【属性】高三,复数,复数集中的因式分解,解答题,易,运算【题目】1.在复数范围内分解因式 (1)164-x ; (2)522+-x x ; (3)83+x .【解答】解:(1))2)(2)(2)(2()4)(4(16224i x i x x x x x x -+-+=+-=-. (2))21)(21(2)1(52222i x i x x x x -+++=++=+-.(3))31)(31)(2()42)(2(282333i x i x x x x x x x --+-+=+-+=+=+.2.若实系数一元二次方程02=++b ax x 有一个虚根为i 2,则=a _______,=b ______.【解答】答案:0,4【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】关于复数z 的方程i zi z 212||2+=-的解集是________________.【解答】答案:}21,1{i ---【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】方程022=-+kx x 有一个根是i +1,则它的另一个根是_________.【解答】答案:i +-1【属性】高三,复数,复数中的方程问题,填空题,易,运算【题目】a 为实数,方程01822=++-a x x 的一个虚根的模是5,则=a __________.【解答】答案:9【属性】高三,复数,复数中的方程问题,选择题,易,运算【题目】方程0||2=+z z 的复数解有( )A .1个B .2个C .3个D .无数个【解答】答案:C【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】已知方程03=++b ax x (a ,R b ∈)有一个根为1.(1)求a ,b 满足的关系式;(2)若此方程的另两个根为虚数,求实数a 的取值范围.【解答】解:(1)由题意,01=++b a ,即1-=+b a .(2)由(1),1--=a b ,故方程变为013=--+a ax x ,即0)1()1(3=-+-x a x ,0)1()1)(1(2=-+++-x a x x x ,0)1)(1(2=+++-a x x x ,所以方程的另两根就是方程012=+++a x x 的两根,故△0<, 即0)1(41<+-a ,43->a .所以,实数a 的取值范围是⎪⎭⎫⎝⎛∞+-,43.【属性】高三,复数,复数中的方程问题,解答题,易,运算【题目】已知方程042=+-k x x 有一个虚数根为i 21-,求k 的值.【解答】解:由042=+-k x x ,得x x k 42+-=,将i x 21-=代入,得i k 47-=.【属性】高三,复数,复数中的方程问题,填空题,中,运算【题目】设α、β是方程072=+-m x x 的两个虚根,且8||||=+βα,则实数=m ________.【解答】答案:16由题意,α、β是共轭虚数,所以8||2=α,4||=α,于是16||2==αβα,即16=m .【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】已知关于x 的方程0)1(2)21(2=--++i a x i ax 有实根,求实数a 的值.【解答】解:设方程实根为0x ,则0)1(2)21(020=--++i a x i ax ,即0)22()2(0020=++-+i a x a x ax,所以⎩⎨⎧=+=-+020020a x a x ax ,所以a x -=0,所以 033=-a a ,解得0=a 或3=a 或3-=a .【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】若虚数z 满足83=z ,求322++z z 的值.【解答】解:由已知,0)42)(2(282333=++-=-=-z z z z z ,因z 为虚数,故0422=++z z ,所以1322-=++z z .【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】在复数范围内解关于x 的方程06||52=+-x x .【解答】解:若x 为实数,则原方程可化为0)3|)(|2|(|=--x x ,解得2±=x ,3±=x . 若x 为虚数,设bi a x +=(a ,R b ∈且0≠b ),原方程化为065)(222=++-+b a bi a ,所以⎪⎩⎪⎨⎧==++--020652222ab b a b a ,因为0≠b .故0=a ,06||52=-+b b ,0)1|)(|6|(|=-+b b ,1±=b .所以,原方程的解为2,2-,3,3-,i ,i -.【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】解关于z 的方程iz z 2110||-=-.【解答】解:原方程可化为i z z 42||+=-,设bi a z +=(a ,R b ∈),则原方程可化为i bi a ba 42)(22+=--+⇒⎪⎩⎪⎨⎧==-+4222b a b a ,解得3=a ,4=b . 所以,原方程的解i z 43+=.【属性】高三,复数,复数中的方程问题,解答题,中,运算【题目】方程0)2()(tan 2=+-+-i x i x θ中,θ为锐角,若实数a 是方程的一个解,求θ与a 的值.【解答】解:由题意,0)2()(tan 2=+-+-i a i a θ,0)1(2tan 2=+--⋅-i a a a θ, 所以⎩⎨⎧=+=-⋅-0102tan 2a a a θ,解得1-=a ,1tan =θ.所以,4πθ=,1-=a .【属性】高三,复数,复数中的方程问题,解答题,中,逻辑思维【题目】已知复数w 满足i w w )23(4-=-,|2|5-+=w wz ,求一个以z 为根的实系数一元二次方程.【解答】解:由i w w )23(4-=-,所以i i w 34)21(+=+,i w -=2,所以i i iz +=-+-=3||25,故另一根为i -3,设所作方程为02=+-q px x ,则6)3()3(=-++=i i p ,10)3)(3(=-+=i i q ,所以所求方程为01062=+-x x .【属性】高三,复数,复数中的方程问题,解答题,难,逻辑思维【题目】关于x 的实系数方程03222=-++a a ax x 至少有一个模为1的根,求实数a 的值.【解答】解:①当根x 为实数时,0)(8922≥--a a a ,082≥+a a ,8-≤a 或0≥a .由1||=x ⇒1±=x .当1=x 时,0222=++a a ,a 无实数解;当1-=x 时,0242=+-a a ,解得22±=a .②当根x 为虚数时,08<<-a ,1||=x ⇒1=⋅x x ,即122=-a a ,022=--a a ,解得1-=a 或2=a (舍去). 综上,1-=a ,或22-=a 或22+=a .【属性】高三,复数,复数中的方程问题,解答题,难,逻辑思维【题目】若C z ∈,关于x 的一元二次方程0342=++-i zx x 有实根,求复数z 的模的最小值.【解答】解:i x zx 342++=,当0=x 时,此等式不成立,故0≠x .所以,i xxx z 34++=,23825282534||222222=+⋅≥++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=xx xx x x x z所以,当2225xx =,5±=x 时,||z 取最小值23.【属性】高三,复数,复数中的方程问题,解答题,难,分析问题解决问题【题目】已知△ABC 顶点为直角坐标分别为)4,(a A ,),0(b B ,)0,(c C .若虚数aix +=2(0>a )是实系数一元二次方程052=+-cx x 的根,且A ∠是钝角,求b 的取值范围.【解答】解:由已知,虚数ai x -=2也是实系数一元二次方程052=+-cx x 的根,所以⎩⎨⎧=-+=-++5)2)(2()2()2(ai ai cai ai ,解得1=a ,4=c ,则A 、C 的坐标为)4,1(A ,())0,4C , 所以)4,1(--=b AB ,)4,3(-=AC ,因A ∠是钝角,故0413<-=⋅b AC AB ,又当AB ,AC 共线时,316=b .所以b 的取值范围是⎪⎭⎫⎝⎛∞+⎪⎭⎫⎝⎛,316316,413 .【属性】高三,复数,复数中的方程问题,解答题,难,逻辑思维【题目】已知关于x 的方程022=++a x x (R a ∈)有两个根α、β,求||||βα+的最小值.【解答】解:① 当△044≥-=a 即1≤a 时,α、β是实数,=+2|)||(|βα||222αββα++)|(|24||22)(2a a -+=+-+=αβαββα.当10≤≤a 时,2|)||(|βα+恒为4;当0<a 时,4|)||(|2>+βα. 即1≤a 时,||||βα+的最小值为2.② 当△044<-=a ,即1>a 时,α、β是一对共轭虚数,故αβαβα2||2||||==+22>=a .综上,||||βα+的最小值为2,取得最小值时a 的取值范围是]1,0[.【属性】高三,复数,复数中的方程问题,解答题,难,数学探究【题目】已知复数1z ,2z 满足条件2||1<z ,2||2<z ,是否存在非零实数m ,使得mz z 121=+和mz z 121=⋅同时成立?若存在,求出m 的取值范围;若不存在,说明理由.【解答】解:据题意,得⎪⎪⎩⎪⎪⎨⎧=⋅=+m z z m z z 112121,即⎪⎪⎩⎪⎪⎨⎧=⋅=+m z z m z z 112121,故1z ,2z 是方程0112=+-m x m x 的两个根.(1)当△0≥即41≤m 且0≠m 时,1z ,R z ∈2,记mx mx x f 11)(2+-=,则2||1<z ,2||2<z ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧≠≤<<->>-04122120)2(0)2(m m m f f 且,解得43-<m .(2)当△0<,即41>m 时,1z 、2z 为一对共轭虚数,则mz z z 1||2121==,由2||1<z ,得41<m,所以41>m .综上,当43-<m 或41>m 时,mz z 121=+和mz z 121=⋅同时成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数范围内实系数一元二次方程(19题)(答案)
1
、若实系数一元二次方程的一个根是13+,则这个方程可以是 228039
x x -+= . 2、复数集内分解221x x ++=
2(x x -
3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下列等式成立的是( C )
(A) 1x 与2x 共轭 (B) 240b ac ∆=-≥
(C)1212,b c x x x x a a
+=-=, (D)12||x x -=212214)(x x x x -+ 4、判断下列命题的真假,并说明理由;
(1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总 有两个根.( √ )
)
(2)若12i +是方程20x px q ++=的一个根,则这个方程的另 一个根是12i -.( ⨯ )
(3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( √)
5、已知复数z ,解方程3i 13i z z -⋅=+.
解:设i()z x y x y =+∈R ,,则方程可化为(3)(3)i 13i x y y x -+-=+.
由复数相等,有3133x y y x -=⎧⎨-=⎩,,解得543.4
x y ⎧=-⎪⎪⎨⎪=-⎪⎩,. ∴53i 44z =--. 6、适合方程20z z i --=的复数z
12
i
7、适合方程2560z z -+=的复数z ;
|
若z R ∈,则25602,32,3z z z z z z -+=⇒==⇒=±=±
若z 为虚数, 设(,,0)z a bi a b R b =+∈≠
,则2()60a bi +-=
222226026020a b a b abi ab ⎧⎪--=-+-=⇒⎨=⎪⎩
2222606056010a b b b b b a ⎧⎪--=⇒⇒--=⇒+-=⇒=±⎨=⎪⎩
所以,方程的解为2,2,3,3,,i i ---。
8、解方程210x ix i -+-=
(1)x R ∈ (2)x C ∈
解:(1)1x = (2)11x orx i ==-
9、已知复数Z 满足84Z Z i +=-,且Z 是关于x 的实系数一元二次方程2250x mx ++=的一个根,求m 的值。
34Z i =+ 6m =- :
10、如果虚数z 满足38z =,那么3222z z z +++的值是_____. 分析:若设i(0)z a b b =+≠,代入求值,过程复杂,不易求解,但运用整体代入的思维策略则显得简洁明快.
解:∵328(2)(24)0z z z z =∴-++=,
. ∵z 是虚数,∴z ≠2.
∴2240z z ++=,即2222z z ++=-.
故3222826z z z +++=-=.
说明:该题也可通过设z=x+yi(x 、y ∈R)求解,但过程繁复.
可见,从整体出发利用条件,解题思路流畅,运算量小,
11、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有实根,则p 的值
是 .p =1或3
%
12、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有纯虚根,则p 的
值是 .2±
13、关于x 的方程2(4)30x i x pi ++++=无实根,求实数p 的取值范围; (,1)(1,3)(3,)-∞+∞
14、实系数方程230x mx -+=的两虚根为,αβ,则αβ+=
15、已知关于x 的方程230()x kx k ++=∈R 有两个虚根α和β,且
||αβ-=k 的值是 2± .
16、已知关于x 的方程250x x a ++=的两根12,x x ,且12||3x x -=,则实
数a 的值是 1742
or . $
17、已知关于x 的方程2220()x kx k k k ++-=∈R 有一个模为1的虚根,
则k 的值是 .1
18、已知关于x 的方程:22230x ax a a ++-=至少有一个模为1的根α,
求实数a 的值.
【解】
如果α∈R ,则0∆≥,∴(,8][0,)a ∈-∞-+∞,又∵∈R ,∴α=1或-1 当α=1时,代入得:a 2+2a+2=0不可能.
当α= -1时,代入得:a 2-4a+2=0∴2a =
如果α是虚数,则0∆<,∴(8,0)a ∈-,并且|α|=1,
* 则α也是此方程的根,于是:αα=2
2a a -
但是αα=|α|2=1,∴
2a a -=1,解得:a=2(舍去)或者a=-1 所以,所求的2a =,或者-1
19、已知m C ∈,关于x 的方程2340x mx i +++=有实数根,求复数m 的模的最小值。
解法一:设m a bi(a,b R )=+∈,设方程的实根为t ,代入方程得: 222
3034034040
t at t (a bi )t i t at (bt )i bt ⎧++=++++=⇒++++=⇒⎨+=⎩ 22222125061644
a (t )t t m a
b t m t b t ⎧=-+⎪⎪≠∴⇒=+=
++≥∴≥⎨⎪=-⎪⎩
当且仅当t =时,取等号。
即4min m =
解法二:设方程的实根为t ,代入方程得:
2343400t tm i t ,m t i t t +++=≠∴=--- \
2222223425616164m (t )()t ,m m
t t
⇒=--+=++≥∴≥∴≥ 当且仅当t =时,取等号。
即4min m =
点评:本例将m 转化为关于t 的函数,利用函数的性质从而求出m 的模 的最小值。
?
$
复数范围内实系数一元二次方程(19题)
1、若实系数一元二次方程的一个根是
13+,则这个方程可以是 .
2、复数集内分解221x x ++= :
3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下列等式成立的是
(A) 1x 与2x 共轭 (B) 240b ac ∆=-≥
(C)1212,b c x x x x a a
+=-=, (D)12||x x -=212214)(x x x x -+
4、判断下列命题的真假,并说明理由;
(1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总 有两个根.( )
(2)若12i +是方程20x px q ++=的一个根,则这个方程的另 <
一个根是12i -.( )
(3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( )
5、已知复数z ,解方程3i 13i z z -⋅=+.
6、适合方程20z z i --=的复数z ;
|
7、适合方程2560z z -+=的复数z ;
8、解方程210x ix i -+-=
(1)x R ∈ (2)x C ∈
|
9、已知复数Z 满足84Z Z i +=-,且Z 是关于x 的实系数一元二次方程2250x mx ++=的一个根,求m 的值。
10、如果虚数z 满足38z =,那么3222z z z +++的值是_____.
11、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有实根,则p 的值
是 .
12、已知关于x 的方程2(4)30()x i x pi p ++++=∈R 有纯虚根,则p 的
值是 . *
13、关于x 的方程2(4)30x i x pi ++++=无实根,求实数p 的取值范围;
14、实系数方程230x mx -+=的两虚根为,αβ,则αβ+= ;
%
15、已知关于x 的方程230()x kx k ++=∈R 有两个虚根α和β,且
||αβ-=k 的值是 .
16、已知关于x 的方程250x x a ++=的两根12,x x ,且12||3x x -=,则实
数a 的值是 .
17、已知关于x 的方程2220()x kx k k k ++-=∈R 有一个模为1的虚根,则k 的值是 .
18、已知关于x 的方程:22230x ax a a ++-=至少有一个模为1的根α,
求实数a 的值.
19、已知m C ∈,关于x 的方程2340x mx i +++=有实数根,求复数m 的模的最小值。
.。