空间向量与立体几何.板块八.折叠问题与多面体问题.学生版 普通高中数学复习讲义Word版

合集下载

普通高中数学学科课程标准-2023届高三数学复习备考

普通高中数学学科课程标准-2023届高三数学复习备考

1.统计(16课时)(数学3)1.增加:获取数据的基本途径及相关概念 2.概率(8课时)(数学3) 2.增加:变量相关性的统计图表
删除:系统抽样 删除:几何概型
整章删除:算法初步
3.增加“标准化数据向量夹角”;
4.增加:针对实际问题,会用一元线性回归模型 进行预测。
1.预备知识;:常用逻辑用语(按原文科要求,6课时)(1-1、2-1文理相同8课时) 2.数列(12课时)(数学5) 3.不等式(8课时)(数学5,16课时) 4.导数及其应用(按原文科要求,16课时)(1-1、2-2,理科24课时)
删除:命题的逆命题、否命题与逆否命题及四种命题的相互关系,简单的逻辑联结词。 删除:数学归纳法
删除:二元一次不等式组与简单线性规划问题 删除:理科中定积分与微积分基本定理。
新增:第1单元增加“极限思想”
1.圆锥曲线与方程(按原文科要求,12课时)(1-1、2-1理科16课时) 2.空间向量与立体几何(按原理科要求,12课时)(2-1);
3.求最值函数方程思想,建立关系式系考查了数学建模 4.求最值的过程,一系列运算,体现了数学运算
如图三棱锥的高为 OF (5 x)2 x2 25 10x ,
所以三棱锥的体积为V
1 3
S△ABC
OF
1 3
3
3x2
25 10x
15(5x2 2x5 ) ,
设 f (x) 5x4 2x5 ,则 f '(x) 20x3 10x4 ,
从 M 到 N 的路径中,最短路径的长度为( )
直 观 想 象
A. 2 17
B. 2 5
C.3

D.



(2019年全国2卷)

高考数学复习 第八章 立体几何与空间向量 确定球心位置的三种方法

高考数学复习  第八章 立体几何与空间向量   确定球心位置的三种方法

确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法.方法一由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.【答案】 C方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为()A.2B.6 2C.112D.52【解析】易知四面体A′EFD的三条侧棱A′E,A′F,A′D两两垂直,且A′E=1,A′F=1,A′D=2,把四面体A′EFD补成从顶点A′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A′EFD的外接球,球的半径为r=1212+12+22=62.故选B.【答案】 B方法三 由性质确定球心利用球心O 与截面圆圆心O ′的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.正三棱锥A -BCD 内接于球O ,且底面边长为3,侧棱长为2,则球O 的表面积为________.【解析】 如图,M 为底面△BCD 的中心,易知AM ⊥MD ,DM =1,AM = 3.在Rt △DOM 中,OD 2=OM 2+MD 2,即OD 2=(3-OD )2+1,解得OD =233,故球O 的表面积为4π×⎝⎛⎭⎫2332=163π.【答案】163π。

2023年高考数学二轮复习讲练测(新高考)专题08 立体几何解答题常考全归类(原卷版)

2023年高考数学二轮复习讲练测(新高考)专题08 立体几何解答题常考全归类(原卷版)

专题08 立体几何解答题常考全归类【命题规律】空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.【核心考点目录】核心考点一:非常规空间几何体为载体核心考点二:立体几何探索性问题核心考点三:立体几何折叠问题核心考点四:立体几何作图问题核心考点五:立体几何建系繁琐问题核心考点六:两角相等(构造全等)的立体几何问题核心考点七:利用传统方法找几何关系建系核心考点八:空间中的点不好求核心考点九:创新定义【真题回归】1.(2022·天津·统考高考真题)直三棱柱111ABC A B C 中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值;(3)求平面1ACD 与平面1CC D 所成二面角的余弦值.2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022·全国·统考高考真题)如图,PO 是三棱锥-P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.6.(2022·全国·统考高考真题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【方法技巧与总结】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的.(3)计算:在证明的基础上计算得出结果.简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin h l,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°.4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【核心考点】核心考点一:非常规空间几何体为载体【规律方法】关键找出三条两两互相垂直的直线建立空间直角坐标系.【典型例题】例1.(2022·陕西安康·统考一模)如图,已知AB 为圆锥SO 底面的直径,点C 在圆锥底面的圆周上,2BS AB ==,6BAC π∠=,BE 平分SBA ∠,D 是SC 上一点,且平面DBE ⊥平面SAB .(1)求证:SA BD ⊥;(2)求二面角E BD C --的正弦值.例2.(2022·安徽·校联考二模)如图,将长方形11OAAO (及其内部)绕1OO 旋转一周形成圆柱,其中11,2OA O O ==,劣弧11A B 的长为,6AB π为圆O 的直径.(1)在弧AB 上是否存在点C (1,C B 在平面11OAAO 的同侧),使1BC AB ⊥,若存在,确定其位置,若不存在,说明理由;(2)求平面11A O B 与平面11B O B 夹角的余弦值.例3.(2022·山东东营·胜利一中校考模拟预测)如图,,AB CD 分别是圆台上、下底面的直径,且AB CD ,点E 是下底面圆周上一点,AB =(1)证明:不存在点E 使平面AEC ⊥平面ADE ;(2)若4DE CE ==,求二面角D AE B --的余泫值.例4.(2022·河北·统考模拟预测)如图,在圆台1OO 中,上底面圆1O 的半径为2,下底面圆O 的半径为4,过1OO 的平面截圆台得截面为11ABB A ,M 是弧AB 的中点,MN 为母线,cos NMB ∠=(1)证明:1AB ⊥平面1AOM ; (2)求二面角M NB A --的正弦值.核心考点二:立体几何探索性问题【规律方法】与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题.处理原则:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断.【典型例题】例5.(2022·上海虹口·统考一模)如图,在三棱柱111ABC A B C 中,底面ABC 是以AC 为斜边的等腰直角三角形,侧面11AAC C 为菱形,点1A 在底面上的投影为AC 的中点D ,且2AB =.(1)求证:1BD CC ⊥;(2)求点C 到侧面11AA B B 的距离;(3)在线段11A B 上是否存在点E ,使得直线DE 与侧面11AA B B 请求出1A E 的长;若不存在,请说明理由.例6.(2022春·山东·高三山东省实验中学校考阶段练习)如图,在三棱柱111ABC A B C 中,1AB C 为等边三角形,四边形11AA B B 为菱形,AC BC ⊥,4AC =,3BC =.(1)求证:11AB AC ⊥;(2)线段1CC 上是否存在一点E ,使得平面1AB E 与平面ABC 的夹角的余弦值为14?若存在,求出点E 的位置;若不存在,请说明理由.例7.(2022春·黑龙江绥化·高三海伦市第一中学校考期中)如图1,在矩形ABCD 中,AB =2,BC =1,E 是DC 的中点,将DAE 沿AE 折起,使得点D 到达点P 的位置,且PB =PC ,如图2所示.F 是棱PB 上的一点.(1)若F 是棱PB 的中点,求证://CF 平面P AE ;(2)是否存在点F ,使得二面角F AE C --?若存在,则求出PF FB 的值;若不存在,请说明理由.例8.(2022·广东韶关·统考一模)已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<<是否存在λ,使得PF 与平面DEF 求出λ的值;若不存在,请说明理由.核心考点三:立体几何折叠问题【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.【典型例题】例9.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)当2x =时①求证:BD EG ⊥;②求二面角D BF C --的余弦值;(2)三棱锥D FBC -的体积是否可能等于几何体ABE FDC -体积的一半?并说明理由.例10.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值.例11.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD 沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC =(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面P AD 夹角的余弦值.例12.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C --的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由. (2)求直线PC 与平面PBE 所成角的正弦值.核心考点四:立体几何作图问题 【规律方法】(1)利用公理和定理作截面图(2)利用直线与平面平行的性质定理作平行线 (3)利用平面与平面垂直作平面的垂线 【典型例题】例13.(2022·贵州·校联考模拟预测)如图,已知平行六面体1111ABCD A B C D -的底面ABCD 是菱形,112CD CC AC ===,3DCB π∠=且113cos cos 4C CD C CB ∠=∠=.(1)试在平面ABCD 内过点C 作直线l ,使得直线//l 平面1C BD ,说明作图方法,并证明:直线11//l B D ; (2)求点C 到平面1A BD 的距离.例14.(2022秋·河北石家庄·高一石家庄市第十五中学校考期中)如图为一块直四棱柱木料,其底面ABCD 满足:AB AD ⊥,AD BC ∥.(1)要经过平面11CC D D 内的一点P 和棱1BB 将木料锯开,在木料表面应该怎样画线?(借助尺规作图,并写出作图说明,无需证明)(2)若2AD AB ==,11BC AA ==,当点P 是矩形11CDD C 的中心时,求点1D 到平面1APB 的距离.例15.(2022·全国·高三专题练习)如图多面体ABCDEF 中,面FAB ⊥面ABCD ,FAB 为等边三角形,四边形ABCD 为正方形,//EF BC ,且332EF BC ==,H ,G 分别为CE ,CD 的中点.(1)求二面角C FH G --的余弦值;(2)作平面FHG 与平面ABCD 的交线,记该交线与直线AB 交点为P ,写出APAB的值(不需要说明理由,保留作图痕迹).例16.(2022·全国·高三专题练习)四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,23DAB π∠=.ACBD O =,且PO ⊥平面ABCD ,PO =点,F G 分别是线段.PB PD 上的中点,E 在PA 上.且3PA PE =.(Ⅰ)求证://BD 平面EFG ;(Ⅰ)求直线AB 与平面EFG 的成角的正弦值;(Ⅰ)请画出平面EFG 与四棱锥的表面的交线,并写出作图的步骤.核心考点五:立体几何建系繁琐问题 【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例18.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C 中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ;(2)若2AB AC ==,直线1BB 与平面1ACB 所成角的正切值为2,求多面体1B EFGC -的体积V .核心考点六:两角相等(构造全等)的立体几何问题 【规律方法】 构造垂直的全等关系 【典型例题】例20.如图,已知三棱柱-111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.例21.如图,在锥体-P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB ,==PA PD ,=2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角--P AD B 的余弦值.核心考点七:利用传统方法找几何关系建系【规律方法】利用传统方法证明关系,然后通过几何关系建坐标系. 【典型例题】例22.如图:长为3的线段PQ 与边长为2的正方形ABCD 垂直相交于其中心()O PO OQ >. (1)若二面角P AB Q --的正切值为3-,试确定O 在线段PQ 的位置;(2)在(1)的前提下,以P ,A ,B ,C ,D ,Q 为顶点的几何体PABCDQ 是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例23.在四棱锥P ABCD -中,E 为棱AD 的中点,PE ⊥平面ABCD ,//AD BC ,90ADC ∠=︒,2ED BC ==,3EB =,F 为棱PC 的中点.(Ⅰ)求证://PA 平面BEF ;(Ⅰ)若二面角F BE C --为60︒,求直线PB 与平面ABCD 所成角的正切值.例24.三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,侧面11BCC B 为矩形,123A AB π∠=,二面角1A BC A --的正切值为12. (Ⅰ)求侧棱1AA 的长;(Ⅰ)侧棱1CC 上是否存在点D ,使得直线AD 与平面1A BC ,若存在,判断点的位置并证明;若不存在,说明理由.核心考点八:空间中的点不好求 【规律方法】 方程组思想 【典型例题】例25.(2022·江苏南京·模拟预测)已知三棱台111ABC A B C 的体积为143,且π2ABC ∠=,1A C ⊥平面11BB C C . (1)证明:平面11A B C ⊥平面111A B C ;(2)若11AC B C =,11112A B B C ==,求二面角1B AA C --的正弦值.例26.(2022春·浙江·高三浙江省新昌中学校联考期中)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA ,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.例27.(2022春·辽宁沈阳·高三沈阳市第一二〇中学校考期中)如图,在几何体ABCDE 中,底面ABC 为以AC为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,//BCE DE 平面,ABC AD DE ⊥.(1)证明;DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时,AM 与CD 所成角的余弦值.核心考点九:创新定义 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例28.(2022·安徽合肥·合肥一六八中学校考模拟预测)已知顶点为S 的圆锥面(以下简称圆锥S )与不经过顶点S 的平面α相交,记交线为C ,圆锥S 的轴线l 与平面α所成角θ是圆锥S 顶角(圆S 轴截面上两条母线所成角θ的一半,为探究曲线C 的形状,我们构建球T ,使球T 与圆锥S 和平面α都相切,记球T 与平面α的切点为F ,直线l 与平面α交点为A ,直线AF 与圆锥S 交点为O ,圆锥S 的母线OS 与球T 的切点为M ,OM a =,MS b =.(1)求证:平面SOA ⊥平面α,并指出a ,b ,θ关系式; (2)求证:曲线C 是抛物线.例29.(2022·全国·高三专题练习)类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA ,PB ,PC 构成的三面角-P ABC ,APC α∠=,BPC β∠=,APB γ∠=,二面角A PC B --的大小为θ,则cos cos cos sin sin cos γαβαβθ=+.(1)当α、π0,2β⎛⎫∈ ⎪⎝⎭时,证明以上三面角余弦定理;(2)如图2,四棱柱1111ABCD A B C D -中,平面11AA C C ⊥平面ABCD ,160A AC ∠=︒,45BAC ∠=︒, ①求1A AB ∠的余弦值;②在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置;若不存在,说明理由.例30.(2022·全国·校联考模拟预测)蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.【新题速递】1.(2022·重庆沙坪坝·重庆八中校考模拟预测)如图,在三棱柱111ABC A B C 中,1BC CC =,1AC AB =.(1)证明:平面1ABC ⊥平面11BCC B ;(2)若BC =,1AB B C =,160CBB ∠=︒,求直线1BA 与平面111A B C 所成角的正弦值.2.(2022·四川达州·统考一模)如图,三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,112AB AC BB ===,,160ABB ∠=.(1)证明: 1AB B C ⊥;(2)若12B C =,求1AC 与平面1BCB 所成角的正弦值.3.(2022·陕西宝鸡·统考一模)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.4.(2022·广东广州·统考一模)如图,已知四棱锥P ABCD -的底面ABCD 是菱形,平面PBC ⊥平面ABCD ,30,ACD E ∠=为AD 的中点,点F 在PA 上,3AP AF =.(1)证明:PC //平面BEF ;(2)若PDC PDB ∠∠=,且PD 与平面ABCD 所成的角为45,求平面AEF 与平面BEF 夹角的余弦值.5.(2022·上海奉贤·统考一模)如图,在四面体ABCD 中,已知BA BD CA CD ===.点E 是AD 中点.(1)求证:AD ⊥平面BEC ;(2)已知95,arccos,625AB BDC AD ∠===,作出二面角D BC E --的平面角,并求它的正弦值.6.(2022·上海浦东新·统考一模)如图,三棱锥-P ABC 中,侧面P AB 垂直于底面ABC ,PA PB =,底面ABC 是斜边为AB 的直角三角形,且30ABC ∠=︒,记O 为AB 的中点,E 为OC 的中点.(1)求证:PC AE ⊥;(2)若2AB =,直线PC 与底面ABC 所成角的大小为60°,求四面体P AOC 的体积.7.(2022·四川成都·石室中学校考模拟预测)如图,在四棱锥P ABCD -中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE 平面PCD(1)证明:CD ⊥平面PAD ;(2)若1CD =,求二面角A PB C --的正弦值.8.(2022春·江苏徐州·高三期末)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD ∥BC ,N 为PB 的中点.(1)若点M 在AD 上,2AM MD =,34AD BC =,证明:MN 平面PCD ; (2)若3PA AB AC AD ====,4BC =,求二面角D AC N --的余弦值.9.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD ED FA ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求二面角F AC E --的大小.10.(2022·陕西汉中·统考一模)如图,多面体ABCDEF 中,四边形ABCD 为菱形,60,ABC FA ∠=⊥平面,ABCD FA ED ∥,且22AB FA ED ===.(1)求证:BD FC ⊥;(2)求点A 到平面FBD 的距离.11.(2022·四川广安·广安二中校考模拟预测)APD △是等腰直角三角形,AP PD ⊥且AD =ABCD 是直角梯形,AB BC ⊥,DC BC ⊥,且222AB BC CD ===,平面APD ⊥平面ABCD .(1)求证:AP ⊥平面BPD ;(2)若点E 是线段PB 上的一个动点,问点E 在何位置时三棱锥D APE -.12.(2022·四川南充·统考一模)在平面五边形ABCDE 中(如图1),ABCD 是梯形,//AD BC ,2AD BC ==AB =90ABC ∠=︒,ADE 是等边三角形.现将ADE 沿AD 折起,连接EB ,EC 得四棱锥E ABCD -(如图2)且CE =(1)求证:平面EAD ⊥平面ABCD ;(2)在棱EB 上有点F ,满足13EF EB =,求二面角E AD F --的余弦值.13.(2022·贵州贵阳·贵阳六中校考一模)如图,在四棱锥P ABCD -中,DA AB ⊥,PD PC ⊥,PB PC ⊥,1AB AD PD PB ====,4cos 5DCB ∠=.(1)求证:BD ⊥平面PAC .(2)设E 为BC 的中点,求PE 与平面ABCD 所成角的正弦值.14.(2022春·广东广州·高三校考期中)如图所示,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AB AD ⊥,//,222AB CD PC AB AD CD ====,点E 在侧棱PB 上.(1)求证:平面EAC ⊥平面PBC ;(2)若平面PAC 与平面ACE PE BE 的值.。

立体几何和空间向量综合知识点(高中数学)

立体几何和空间向量综合知识点(高中数学)

立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。

2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。

3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。

(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。

(3)长方体外接球的直径是长方体的体对角线长222c b a ++。

高考数学复习考点题型专题讲解16 立体几何中的折叠、探究问题

高考数学复习考点题型专题讲解16 立体几何中的折叠、探究问题

高考数学复习考点题型专题讲解专题16 立体几何中的折叠、探究问题高考定位 1.立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等;2.以空间向量为工具,探究空间几何体中线面关系或空间角存在的条件,计算量较大,一般以解答题的形式考查,难度中等偏上.1.(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的平面BCG与平面CGA夹角的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0), 设平面BCG 与平面CGA 夹角的大小为θ, 所以cos θ=|cos 〈n ,m 〉|=|n ·m ||n ||m |=32.因此平面BCG 与平面CGA 夹角的大小为30°.2.(2021·全国甲卷)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?(1)证明因为E,F分别是AC和CC1的中点,且AB=BC=2,侧面AA1B1B为正方形,所以CF=1,BF= 5.如图,连接AF,由BF⊥A1B1,AB∥A1B1,得BF⊥AB,于是AF=BF2+AB2=3,所以AC =AF2-CF2=2 2.由AB2+BC2=AC2,得BA⊥BC.∵三棱柱ABC-A1B1C1为直三棱柱,∴BB1⊥AB且BB1⊥BC,则BA,BC,BB1两两互相垂直,故以B为坐标原点,以BA,BC,BB1所在直线分别为x,y,z轴建立空间直角坐标系B -xyz,则B(0,0,0),E(1,1,0),F(0,2,1),BF→=(0,2,1).设B1D=m(0≤m≤2),则D(m,0,2),于是DE→=(1-m,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0). 设平面DFE 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0,又由(1)得DE →=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎨⎧(1-m )x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是,平面DFE 的一个法向量为n 2=(3,m +1,2-m ), 所以cos 〈n 1,n 2〉=32⎝⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ, 则sin θ=1-cos 2〈n 1,n 2〉=1-92⎝ ⎛⎭⎪⎫m -122+272,故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.热点一 折叠问题解答折叠问题的关键是分清翻折前后图形的位置和数量关系的变与不变,一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.考向1 折叠后的位置关系及空间角例1(2022·青岛模拟)在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2CD =4,E ,F 分别为AD ,BC 的中点,沿EF 将四边形EFCD 折起,使得DE ⊥BF (如图2).(1)求证:平面ABFE ⊥平面EFCD ;(2)若直线AC 与平面ABFE 所成角的正切值为63,求平面CEB 与平面EBF 夹角的余弦值.(1)证明 由题设条件,得EF ∥AB ∥CD ,AB ⊥AD , 则DE ⊥EF ,又DE ⊥BF 且BF ∩EF =F ,BF ,EF ⊂平面ABFE , 则DE ⊥平面ABFE , 又DE ⊂平面EFCD , 故平面ABFE ⊥平面EFCD .(2)解 如图过点C 作CG ⊥EF ,交EF 于点G ,连接AG ,因为平面ABFE ⊥平面 EFCD ,且平面ABFE ∩平面EFCD =EF , 所以CG ⊥平面ABFE ,故直线AC 与平面ABFE 所成的角为∠CAG , 设DE =h ,则在Rt△CAG 中 ,CG =DE =h ,AG =EG 2+EA 2=h 2+4,所以tan∠CAG =CG AG =h h 2+4=63,解得h =22,如图,建立空间直角坐标系E -xyz ,则E (0,0,0),B (22,4,0),C (0,2,22), 所以EC →=(0,2,22),EB →=(22,4,0), 则平面EBF 的法向量为m =(0,0,1), 设平面CEB 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·EC →=2y +22z =0,n ·EB →=22x +4y =0,令y =-2,则n =(2,-2,1),则平面CEB 与平面EBF 夹角的余弦值为 |cos 〈m·n 〉|=|m·n ||m |·|n |=77.所以平面CEB 与平面EBF 夹角的余弦值为77. 易错提醒 注意图形翻折前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系.考向2 展开后的数字特征例2 (1)(2022·青岛质检)如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,则CP+PA1的最小值是________.(2)如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________m.答案(1)5 2 (2)4 3解析(1)如图,以BC1为轴,把平面BCC1翻折到与平面A1BC1共面,则A1BCC1在同一个平面内,图中A1C就是所求最小值.通过计算可得∠A1C1B=90°,∠BC1C=45°,所以∠A1C1C=135°,由余弦定理可得A1C=5 2.(2)圆锥顶点记为O,把圆锥侧面沿母线OP展开成如图所示的扇形,由题意OP=4,PP′=43,则cos∠POP′=42+42-(43)22×4×4=-12,又∠POP′为△POP′一内角,所以∠POP′=2π3.设底面圆的半径为r,则2πr=2π3×4,所以r=4 3 .易错提醒几何体表面上的最短距离要注意棱柱的侧面展开图可能有多种,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.训练1 如图1,在直角梯形ABCD中,AB∥DC,∠D=90°,AB=2,DC=3,AD=3,CE=2ED.沿BE将△BCE折起,使点C到达点C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)求直线BC1与平面AC1D所成角的正弦值.(1)证明在图①中,连接AE,由已知得AE=2.图①∵CE∥AB,CE=AB=AE=2,∴四边形ABCE为菱形.连接AC交BE于点F,则CF⊥BE.在Rt△ACD中,AC=32+(3)2=23,所以AF=CF= 3.图②如图②中,由翻折,可知C1F=3,C1F⊥BE.∵AC1=6,AF=C1F=3,∴AF2+C1F2=AC21,∴C1F⊥AF,又BE∩AF=F,BE⊂平面ABED,AF⊂平面ABED,∴C1F⊥平面ABED.又C1F⊂平面BC1E,所以平面BC1E⊥平面ABED.(2)解如图②,建立空间直角坐标系,则D(0,0,0),A(3,0,0),B(3,2,0),C 1⎝⎛⎭⎪⎫32,32,3, 所以BC 1→=⎝ ⎛⎭⎪⎫-32,-12,3,DA →=(3,0,0),DC 1→=⎝ ⎛⎭⎪⎫32,32,3,设平面AC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DA →·n =0,DC 1→·n =0,即⎩⎨⎧3x =0,32x +32y +3z =0, 令z =3,则x =0,y =-2,所以n =(0,-2,3)为平面AC 1D 的一个法向量. 设直线BC 1与平面AC 1D 所成的角为θ,则sin θ=|cos 〈BC 1→,n 〉|=|BC 1→·n ||BC 1→||n |=42×7=277.所以直线BC 1与平面AC 1D 所成角的正弦值为277. 热点二 探究问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或平面与平面的夹角满足特定要求时的存在性问题.解题思路:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断. 考向1 探究线面位置关系例3(2022·济南质检)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,E ,F 分别为棱AA 1,CC 1的中点,G 为棱DD 1上的动点.(1)求证:B,E,D1,F四点共面;(2)是否存在点G,使得平面GEF⊥平面BEF?若存在,求出DG的长;若不存在,说明理由.(1)证明如图,连接D1E,D1F,取BB1的中点为M,连接MC1,ME,因为E为AA1的中点,所以EM∥A1B1∥C1D1,且EM=A1B1=C1D1,所以四边形EMC1D1为平行四边形,所以D1E∥MC1,又F为CC1的中点,所以BM∥C1F,且BM=C1F,所以四边形BMC1F为平行四边形,所以BF∥MC1.所以BF∥D1E,所以B,E,D1,F四点共面.(2)解以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,假设存在满足题意的点G (0,0,t ), 由已知B (1,1,0),E (1,0,1),F (0,1,1),则EF →=(-1,1,0),EB →=(0,1,-1),EG →=(-1,0,t -1), 设平面BEF 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·EF →=0,n 1·EB →=0,即⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取x 1=1,则y 1=1,z 1=1,n 1=(1,1,1).设平面GEF 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·EG →=0,即⎩⎨⎧-x 2+y 2=0,-x 2+(t -1)z 2=0, 取x 2=t -1,则y2=t-1,z2=1,n2=(t-1,t-1,1). 因为平面GEF⊥平面BEF,所以n1·n2=0所以t-1+t-1+1=0,所以t=1 2,所以存在满足题意的点G,使得平面GEF⊥平面BEF,且DG的长为1 2 .考向2 与空间角有关的探究性问题例4 如图,四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,BC=CD=1,AB=2.△PBC 是等边三角形,平面PBC⊥平面ABCD,点M在棱PC上.(1)当M为棱PC的中点时,求证:AP⊥BM;(2)是否存在点M,使得平面DMB与平面MBC夹角的余弦值为34?若存在,求CM的长;若不存在,请说明理由.(1)证明连接AC,由底面ABCD是等腰梯形且AB=2,BC=CD=1,得∠ABC=π3,在△ABC中,由余弦定理得AC=3,∴AC2+BC2=AB2,∴∠ACB=π2,∴AC⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AC⊂平面ABCD,∴AC ⊥平面PBC , ∵BM ⊂平面PBC ,∴AC ⊥BM ,又M 为棱PC 的中点,且△PBC 是等边三角形, ∴BM ⊥PC ,又∵PC ∩AC =C ,PC ⊂平面APC ,AC ⊂平面APC , ∴BM ⊥平面APC , ∵AP ⊂平面APC , ∴AP ⊥BM .(2)解 假设存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34.过点P 作PO ⊥BC 交BC 于点O ,∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,取AB 的中点E ,连接OE ,则OE ∥CA ,由(1)知OE ⊥平面PBC ,因此以O 为原点,以OC ,OE ,OP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O -xyz .∴O (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫12,0,0,B ⎝ ⎛⎭⎪⎫-12,0,0,D ⎝ ⎛⎭⎪⎫1,32,0,则DB →=⎝ ⎛⎭⎪⎫-32,-32,0,CP →=⎝ ⎛⎭⎪⎫-12,0,32.设CM →=tCP→(0<t ≤1),则M ⎝⎛⎭⎪⎫1-t 2,0,32t .则DM →=⎝ ⎛⎭⎪⎫-t -12,-32,32t ,设平面DMB 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·DM →=-1+t 2x -32y +32tz =0,a ·DB →=-32x -32y =0,令x =3,则y =-3,z =t -2t,∴a =⎝⎛⎭⎪⎫3,-3,t -2t 为平面DMB 的一个法向量, 易知平面MBC 的一个法向量为b =(0,1,0), 则|cos 〈a ,b 〉|=|a·b||a||b|=33+9+⎝⎛⎭⎪⎫t -2t 2=312+⎝⎛⎭⎪⎫t -2t 2=34, 则⎝ ⎛⎭⎪⎫t -2t 2=4,即t -2t =-2,解得t =23,故CM =|CM →|=23|CP →|=23.所以存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34,且CM 的长为23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明,否则假设不成立.(2)探索线段上是否存在满足条件的点时,一定注意三点共线的应用.训练2(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由,若存在, 求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D ,因为三棱柱ABC -A 1B 1C 1的所有棱长都为2, 所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt△B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6,所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设存在,以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3), 因此BB 1→=(0,1,3),AC →=(3,-1,0),AA 1→=BB 1→=(0,1,3), CB →=(-3,-1,0). 因为点P 在棱BB 1上, 设BP →=λBB 1→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1→=0,得⎩⎪⎨⎪⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1). 因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=⎪⎪⎪⎪⎪⎪-235×3+(λ-1)2+3λ2=45, 化简得16λ2-8λ+1=0,解得λ=14,所以|BP →|=14|BB 1→|=12, 故BP 的长为12.一、基本技能练1.(2022·丽水质检)如图1,矩形ABCD 中,点E ,F 分别是线段AB ,CD 的中点,AB =4,AD =2,将矩形ABCD 沿EF 翻折.(1)若所成二面角的大小为π2(如图2),求证:直线CE ⊥平面DBF ; (2)若所成二面角的大小为π3(如图3),点M 在线段AD 上,当直线BE 与平面EMC 所成角为π4时,求平面DEM 和平面EMC 夹角的余弦值. (1)证明 由题设易知:四边形BEFC 是边长为2的正方形,BF ,EC 是其对角线, 所以BF ⊥EC ,又平面BEFC ⊥平面AEFD ,平面BEFC ∩平面AEFD =EF ,DF ⊥EF ,DF ⊂平面AEFD , 所以DF ⊥平面BEFC , 又EC ⊂平面BEFC ,则DF ⊥EC ,又DF ∩BF =F ,BF ,DF ⊂平面BDF ,则EC ⊥平面BDF .(2)解 过E 作Ez ⊥平面AEFD ,而AE ,EF ⊂平面AEFD ,则Ez ⊥AE ,Ez ⊥EF ,而AE ⊥EF , 可建立如图所示的空间直角坐标系,由题设知:∠BEA =∠CFD =π3,所以E (0,0,0),B (1,0,3),C (1,2,3),M (2,m ,0)且0≤m ≤2, 则EB →=(1,0,3),EC →=(1,2,3),EM →=(2,m ,0),若n =(x ,y ,z )是平面EMC 的法向量,则⎩⎪⎨⎪⎧EC →·n =x +2y +3z =0,EM →·n =2x +my =0,令x =m ,则n =(m ,-2,4-m3), |cos 〈EB →,n 〉|=|EB →·n ||EB →||n |=1m 2-2m +73=12,可得m=1,则n =(1,-2,3),又l =(0,0,1)是平面EMD 的一个法向量, 所以|cos 〈l ,n 〉|=|l ·n ||l ||n |=322=64,所以平面DEM 和平面EMC 夹角的余弦值为64.2.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求平面PAC 与平面ACS 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,如图.设底面边长为a ,则高SO =62a , 则B ⎝ ⎛⎭⎪⎫22a ,0,0,S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0, 又SD ⊥平面PAC ,则平面PAC 的一个法向量为DS →=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD →=⎝ ⎛⎭⎪⎫-22a ,0,0, 设平面PAC 与平面ACS 夹角的大小为θ.则cos θ=|cos 〈DS →,OD →〉|=|DS →·OD →||DS →||OD →|=12, 所以平面PAC 与平面ACS 夹角的大小为π3. (3)解 在棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS→,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .因为BE ∥平面PAC ,所以BE →·DS →=0,所以-12a 2+32a 2t =0,解得t =13. 故侧棱SC 上存在一点E ,使得BE ∥平面PAC ,此时SC ∶SE =3∶2.3.(2022·全国名校大联考)如图1,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,E 为AD 边上的点,且AD =2AE =2AB =2BC =2.将△ABE 沿BE 向上折起,使得异面直线AB 与ED 所成的角为60°,F 为线段AD 上一点,如图2.(1)若DE ⊥CF ,求AF FD的值; (2)求平面ABC 与平面AED 所成锐二面角的余弦值.解 (1)如图①中,连接CE .图①由题意可知,△ABE ,△CED ,△BCE 均为等腰直角三角形,因为BC ∥ED ,所以∠ABC 即为异面直线AB 与ED 所成的角,所以∠ABC =60°,所以AC =1.取BE 的中点O ,连接OC ,OA ,OD ,则OA ⊥BE ,OC ⊥BE ,且OA =OC =22,因为OA 2+OC 2=AC 2,所以OA ⊥OC ,因为BE ∩OC =O ,BE ,OC ⊂平面BCDE .所以OA ⊥平面BCDE .连接EF ,因为DE ⊥EC ,DE ⊥CF ,CE ∩CF =C ,CE ,CF ⊂平面ECF ,所以DE ⊥平面ECF , 又DE ⊂平面BCDE ,所以平面ECF ⊥平面BCDE ,故OA ∥平面ECF .连接OD 交CE 于点G ,连接FG ,因为平面AOD ∩平面ECF =FG ,所以OA ∥GF ,故AF FD =OG GD =OE CD =12.图②(2)如图②,以O 为坐标原点,OB ,OC ,OA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系O -xyz .则A ⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,B ⎝ ⎛⎭⎪⎫22,0,0, E ⎝ ⎛⎭⎪⎫-22,0,0,D ⎝ ⎛⎭⎪⎫-2,22,0. 所以AB →=⎝ ⎛⎭⎪⎫22,0,-22, BC →=⎝ ⎛⎭⎪⎫-22,22,0,AE →=⎝ ⎛⎭⎪⎫-22,0,-22,ED →=⎝ ⎛⎭⎪⎫-22,22,0. 设平面ABC 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧22x 1-22z 1=0,-22x 1+22y 1=0, 令x 1=2,则y 1=2,z 1=2,所以平面ABC 的一个法向量为n 1=(2,2,2),设平面AED 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AE →=0,n 2·ED →=0,即⎩⎪⎨⎪⎧-22x 2-22z 2=0,-22x 2+22y 2=0, 令x 2=2,则y 2=2,z 2=-2,所以平面AED 的一个法向量为n 2=(2,2,-2),所以|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|2×2+2×2-2×2|22+22+22·22+22+(-2)2=13, 故平面ABC 与平面AED 所成锐二面角的余弦值为13. 二、创新拓展练4.如图1,四边形ABCD 为梯形,AD ∥BC ,BM ⊥AD 于点M ,CN ⊥AD 于点N ,∠A =45°,AD =4BC =4,AB =2,现沿CN 将△CDN 折起,使△ADN 为正三角形,且平面ADN ⊥平面ABCN ,过BM 的平面与线段DN ,DC 分别交于点E ,F ,如图2.(1)求证:EF⊥DA;(2)在棱DN上(不含端点)是否存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,若存在,请确定E点的位置;若不存在,说明理由.(1)证明因为BM⊥AD,CN⊥AD,所以BM∥CN.在四棱锥D-ABCN中,CN⊂平面CDN,BM⊄平面CDN,所以BM∥平面CDN.又平面BMEF∩平面CDN=EF,所以BM∥EF.因为平面ADN⊥平面ABCN且交于AN,BM⊥AN,所以BM⊥平面ADN,即EF⊥平面ADN.又DA⊂平面ADN,所以EF⊥DA.(2)解存在,E为棱DN上靠近N点的四等分点.因为∠A=45°,AD=4BC=4,AB=2,所以AM=MN=BM=CN=1,DN=2,因为DA=DN,连接DM ,所以DM ⊥AN .又平面ADN ⊥平面ABCN 且交于AN ,故DM ⊥平面ABCN .如图,以M 为坐标原点,分别以MA ,MB ,MD 所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,3),B (0,1,0),M (0,0,0),N (-1,0,0),DB →=(0,1,-3),BM →=(0,-1,0),ND →=(1,0,3). 设NE →=λND →(0<λ<1),则E (λ-1,0,3λ),ME →=(λ-1,0,3λ).设平面BMEF 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧BM →·n =0,ME →·n =0,即⎩⎨⎧-y =0,(λ-1)x +3λz =0,不妨令x =3λ,则z =1-λ,n =(3λ,0,1-λ).设直线DB与平面BMEF所成的角为α,则有sin α=|cos〈n,DB→〉|=|n·DB→||n||DB→|=|3(λ-1)|23λ2+(1-λ)2=34.解得λ=14或λ=-12(舍去),所以NE→=14ND→,即在棱DN上存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,此时E为棱DN上靠近N点的四等分点.。

立体几何中的折叠问题微专题ppt课件

立体几何中的折叠问题微专题ppt课件
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
把一个平面图形按某种要求折起,转化 为空间图形,进而研究图形在位置关系和数 量关系上的变化,这就是翻折问题。
图形的翻折问题在历年高考中时常出现, 浙江省近几年就出现了四次,因为它是一个由直 观到抽象的过程,所以每次的出现的题号都偏后, 同学们的答题情况也不太理想。
,沿直线 EF 将△AEF 翻
折成△A′ EF,使平面 A′ EF⊥平面 BEF。
(Ⅰ)求二面角
的余弦值;
(Ⅱ)点 M,N 分别在线段 FD,BC 上,若沿
直线 MN 将四边形 MNCD 向上翻折,使 C 与
重合,求线段 FM 的长。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
你能不用求解看出它的范围吗?
考向二:通过翻折得到一个不确定的几何体, 研究其点线面的位置关系
策略:明确不变量、紧抓关键量
C B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
课本中翻折:
如图:边长为2的正方形ABCD中, (1)点E、F分别是边BC和CD的中点,将△ABE, △AFD分别沿AE,AF折起,使两点重合于P点,
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
链接高考:
(09 浙江)17.如图,在长方形 ABCD 中,AB 2 ,BC 1,E 为 DC 的

高中数学第二章空间向量与立体几何章末复习课ppt课件

高中数学第二章空间向量与立体几何章末复习课ppt课件
2
|μ·v| |μ||v|
知识点二 用坐标法处理立体几何问题
步骤如下: (1)建立适当的空间直角坐标系; (2)写出相关点的坐标及向量的坐标; (3)进展相关坐标的运算; (4)写出几何意义下的结论.
关键点如下: (1)选择恰当的坐标系.坐标系的选取很重要,恰当的坐标系可以使得点 的坐标、向量的坐标易求且简单,简化运算过程. (2)点的坐标、向量的坐标确实定.将几何问题转化为向量的问题,必需 确定点的坐标、直线的方向向量、平面的法向量,这是最中心的问题. (3)几何问题与向量问题的转化.平行、垂直、夹角问题都可以经过向量 计算来处理,如何转化也是这类问题处理的关键.
题型探求
类型一 空间向量及其运算
例1 如图,在四棱锥S—ABCD中,底面ABCD是边长为1的正方形,S 到A、B、C、D的间隔都等于2.给出以下结论:
①S→A+S→B+S→C+S→D=0; ②S→A+S→B-S→C-S→D=0; ③S→A-S→B+S→C-S→D=0; ④S→A·S→B=S→C·S→D; ⑤S→A·S→C=0.
面直线的方向向量,借助方向向量所成角求解.
(2)直线与平面所成的角:要求直线a与平面α所成的角θ,先求这个平面α的
法向量n与直线a的方向向量a的夹角的余弦cos〈n,a〉,再利用公式sin θ=
|cos〈n,a〉|,求θ.
(3)二面角:
如图,有两个平面α与β,分别作这两个平面的法向量
n1与n2,那么平面α与β所成的角跟法向量n1与n2所成的角
表示M→N.
(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直. ②可以在平面内找到一个向量与知直线的方向向量共线. ③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量 是共面向量. (3)证明面面平行的方法 ①转化为线线平行、线面平行处置. ②证明这两个平面的法向量是共线向量.

高考热点,立体几何中的折叠问题,学生必须掌握

高考热点,立体几何中的折叠问题,学生必须掌握

高考热点,立体几何中的折叠问题,学生必须掌握
一、考情分析
立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.
二、立体几何问题分析
(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点.
(2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.
(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.
三、题型分析
(一) 平面图形的折叠
解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.。

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

第一章空间向量与立体几何(知识归纳+题型突破)1.能够理解空间向量的概念,运算、背景和作用;2.能够依托空间向量建立空间图形及图形关系的想象力;3.能够掌握空间向量基本定理,体会其作用,并能简单应用;4.能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的思路.一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠ ,a b 的充要条件是存在实数λ,使a b λ=.(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a都是共线的,即0a .两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩ 垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b 均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=;②cos |cos ,|u v θ=<> 2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a na n a n ⋅<>=;②sin |cos ,|a n θ=<> .3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,直线m 的距离.(3)求点面距,(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d题型一空间关系的证明BM平面ADEF;(1)求证://(2)求证:BC⊥平面BDE.【答案】(1)证明见解析(2)证明见解析【分析】(1)通过中位线得到线线平行,利用判定定理可证或利用法向量证明线面平行;(2)利用面面垂直的性质得到线面垂直,结合线面垂直的判定可证或利用直线的方向向量与平面的法向量平行可证.【详解】(1)解法一:证明:取DE 中点N ,连结AN ,MN ,由三角形中位线性质可得//MN CD 且12MN CD =,又因为//AB CD 且12AB CD =,所以//MN AB 且MN AB =,所以ABMN 是平行四边形,所以//BM AN ,又AN ⊂平面ADEF ,BM ⊄平面ADEF ,所以//BM 平面ADEF .解法二:证明:因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又DC ⊂平面ABCD ,所以DE DC ⊥.如图,以D 为原点,以DA,DC ,DE 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则()()()()()2,2,00,4,00,0,00,0,20,2,1B C D E M ,,,,.因为(2,0,1)BM =-,易知(0,1,0)n =' 为平面ADEF 的一个法向量.因此0BM n '⋅=,所以BM n '⊥ .又BM ⊄平面ADEF ,所以//BM 平面ADEF .(2)解法一:证明:因为BD =,BC =4CD =,所以222BD BC CD +=,所以BD BC ⊥.因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又BC ⊂平面ABCD ,所以DE BC ⊥.又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以BC ⊥平面BDE .解法二:由(1)可得(2,2,0)DB = ,(0,0,2)DE = ,(2,2,0)BC =-.设平面BDE 的一个法向量(,,)n x y z = ,则22020n DB x y n DE z ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,得10y z =-=,,所以(1,1,0)=-n 是平面BDE 的一个法向量.因此2BC n =-,所以BC ⊥平面BDE .反思总结证明平行、垂直关系的方法可以运用传统方法也可以运用空间向量。

空间几何中的折叠问题例题和知识点总结

空间几何中的折叠问题例题和知识点总结

空间几何中的折叠问题例题和知识点总结在空间几何的学习中,折叠问题是一个重要且具有一定难度的考点。

通过折叠,可以将平面图形转化为空间图形,从而增加了问题的复杂性和抽象性。

下面,我们将通过一些例题来深入探讨空间几何中的折叠问题,并对相关知识点进行总结。

一、折叠问题的基本概念折叠问题通常是指将一个平面图形沿着某条直线或折线进行折叠,使其成为一个空间几何体。

在这个过程中,图形的某些元素(如线段的长度、角度的大小等)保持不变,而有些元素则会发生变化。

例如,将一个矩形沿着其中一条边折叠,可以得到一个三棱柱;将一个直角三角形沿着斜边折叠,可以得到一个三棱锥。

二、折叠问题的关键知识点1、不变量在折叠过程中,有些量是不变的。

例如,折叠前后对应线段的长度不变,对应角度的大小不变。

2、垂直关系折叠前后,原来垂直的线段和平面在折叠后仍然垂直。

3、距离和角度的变化折叠后,某些线段之间的距离和角度会发生变化,需要根据折叠的方式和几何关系进行重新计算。

三、例题分析例 1:已知矩形 ABCD 中,AB = 3,BC = 4。

现将矩形沿着对角线 AC 折叠,求折叠后点 B 到平面 ACD 的距离。

解:首先,通过勾股定理求出 AC 的长度:AC =√(AB²+ BC²) = 5设点 B 折叠后对应的点为 B',由于折叠前后三角形 ABC 的面积不变。

三角形 ABC 的面积= 1/2 × AB × BC = 1/2 × AC × h (h 为点 B 到平面 ACD 的距离)所以 h =(AB × BC) / AC =(3 × 4) / 5 = 12 / 5例 2:如图,在直角三角形 ABC 中,∠ACB = 90°,AC = 2,BC = 1,将三角形 ABC 沿斜边 AB 折叠,得到三棱锥 C ABD。

求证:平面 CAD ⊥平面 BAD。

8.42021届高三数学专题复习练习空间向量与立体几何(学生版)

8.42021届高三数学专题复习练习空间向量与立体几何(学生版)

8.42021届⾼三数学专题复习练习空间向量与⽴体⼏何(学⽣版)【课前测试】如图,已知正⽅形ABCD和矩形ACEF所在的平⾯互相垂直,AB=,AF=1,M是线段EF的中点.(2)求⼆⾯⾓A﹣DF﹣B的⼤⼩;(3)试在线段AC上⼀点P,使得PF与CD所成的⾓是60°.1空间向量与⽴体⼏何【知识梳理】⼀、平⾏、垂直的向量证法设直线l,m的⽅向向量分别为a,b,平⾯α,β的法向量分别为u,ν,则线线平⾏:l∥m?a∥b?a=k b,k∈R;线⾯平⾏:l∥α?a⊥u?a·u=0;⾯⾯平⾏:α∥β?u∥ν?u=kν,k∈R.线线垂直:l⊥m?a⊥b?a·b=0;线⾯垂直:l⊥α?a∥u?a=k u,k∈R;⾯⾯垂直:α⊥β?u⊥ν?u·ν=0.⼆、空间⾓的求法1、异⾯直线所成的⾓设a,b分别是两异⾯直线l1,l2的⽅向向量,则设直线l的⽅向向量为a,平⾯α的法向量为n,直线l与平⾯α所成的⾓为θ,则sin θ=|cos〈a,n〉|=|a·n| |a||n|.3、求⼆⾯⾓的⼤⼩23①如图①,AB ,CD 是⼆⾯⾓α-l -β的两个⾯内与棱l 垂直的直线,则⼆⾯⾓的⼤⼩θ=〈AB →,CD →〉.②如图②③,n 1,n 2分别是⼆⾯⾓α-l -β的两个半平⾯α,β的法向量,则⼆⾯⾓的⼤⼩θ满⾜|cos θ|=|cos 〈n 1,n 2〉|,⼆⾯⾓的平⾯⾓⼤⼩是向量n 1与n 2的夹⾓(或其补⾓).4【课堂讲解】考点⼀空间向量法证明平⾏或垂直问题例1、如图,在多⾯体ABC -A 1B 1C 1中,四边形A 1ABB 1是正⽅形,AB =AC ,BC =2AB ,B 1C 1平⾏且等于12BC ,⼆⾯⾓A 1-AB -C 是直⼆⾯⾓.求证:(1)A 1B 1⊥平⾯AA 1C ; (2)AB 1∥平⾯A 1C 1C .变式训练:1、已知正⽅体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平⾯ADE ; (2)平⾯ADE ∥平⾯B 1C 1F .52、如图,在四棱锥E-ABCD中,AB⊥平⾯BCE,CD⊥平⾯BCE,AB=BC=CE=2CD=2,∠BCE=120°.求证:平⾯ADE⊥平⾯ABE.3、如右图,在四棱锥P-ABCD中,底⾯ABCD是正⽅形,侧棱PD⊥底⾯ABCD,PD=DC,E是Pc的中点,作EF上PB交PB于F,证明:(1)直线PA∥平⾯EDB;(2)直线PB⊥平⾯EFD.67考点⼆利⽤空间向量求异⾯直线所成⾓例2、如图,在正⽅体ABCD -A 1B 1C 1D 1中,E 为AB 的中点. (1)求直线AD 和直线B 1C 所成⾓的⼤⼩; (2)求证:平⾯EB 1D ⊥平⾯B 1CD .变式训练:1.长⽅体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异⾯直线BC 1与AE 所成⾓的余弦值为( ) A.1010B.3010C.21510D.310102.如图,在四棱锥P -ABCD 中,P A ⊥平⾯ABCD ,底⾯ABCD 是菱形,AB =2,∠BAD =60°. (1)求证:BD ⊥平⾯P AC ;(2)若P A =AB ,求PB 与AC 所成⾓的余弦值.8考点三利⽤空间向量求直线与平⾯所成⾓例3、如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平⾯ACD 1所成⾓的正弦值.变式训练:1、如图所⽰,在四棱台ABCD -A 1B 1C 1D 1中,AA 1⊥底⾯ABCD ,四边形ABCD 为菱形,∠BAD =120°,AB =AA 1=2A 1B 1=2.(1)若M 为CD 的中点,求证:AM ⊥平⾯AA 1B 1B ; (2)求直线DD 1与平⾯A 1BD 所成⾓的正弦值.2、在三棱柱ABC-A1B1C1中,侧⾯ABB1A1为矩形,AB=2,AA1=22,D是AA1的中点,BD与AB1交于点O,且CO⊥平⾯ABB1A1.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平⾯ABC所成⾓的正弦值.考点四利⽤空间向量求⼆⾯⾓例4、已知正三棱柱ABC-A1B1C1中,AB=2,AA1= 6.点F,E分别是边A1C1和侧棱BB1的中点.(1)证明:FB⊥平⾯AEC;9(2)求⼆⾯⾓F-AE-C的余弦值.1011变式训练:1、如图,在四棱锥S -ABCD 中,底⾯ABCD 是直⾓梯形,侧棱SA ⊥底⾯ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =1,M 是棱SB 的中点. (1)求证:AM ∥平⾯SCD ;(2)求平⾯SCD 与平⾯SAB 所成的⼆⾯⾓的平⾯⾓的余弦值;2、在四棱锥P -ABCD 中,P A ⊥平⾯ABCD ,E 是PD 的中点,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,AC =AP =2. (1)求证:PC ⊥AE ;(2)求⼆⾯⾓A -CE -P 的余弦值.3、如图,四边形ABCD 为正⽅形,PD⊥平⾯ABCD ,PD∥QA ,QA = AB =1PD.2(I)证明:平⾯PQC ⊥平⾯DCQ ;考点五解决探索性问题例5、如图,四棱锥P-ABCD的底⾯为直⾓梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD =60°,平⾯P AD⊥底⾯ABCD,E为AD的中点,△P AD为正三⾓形,M是棱PC上的⼀点(异于端点).(1)若M为PC的中点,求证:P A∥平⾯BME.(2)是否存在点M,使⼆⾯⾓M-BE-D的⼤⼩为30°?若存在,求出点M的位置;若不存在,说明理由.12变式训练:1、直三棱柱ABC A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在⼀点D,使得平⾯DEF与平⾯ABC所成锐⼆⾯⾓的平⾯⾓的余弦值为1414?若存在,说明点D的位置,若不存在,说明理由.2、如图,在四棱锥P-ABCD中,P A⊥平⾯ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,P A=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在⼀点M,使得⼆⾯⾓M-AC-D的⼤⼩为45°,如果存在,求BM与平⾯MAC所成⾓的正弦值,如果不存在,请说明理由.1314考点六空间中的距离问题例6、如图,平⾯P AD ⊥平⾯ABCD ,四边形ABCD 为正⽅形,△P AD 是直⾓三⾓形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点. (1)求证:平⾯EFG ⊥平⾯P AB ; (2)求点A 到平⾯EFG 的距离.变式训练:如图,在四棱锥O ABCD -中,底⾯ABCD 四边长为1的菱形,4ABC π∠=OA ABCD ⊥底⾯ 2OA = M 为OA 的中点,N 为BC 的中点(1)证明:直线MN OCD平⾯‖;(2)求异⾯直线AB 与MD 所成⾓的⼤⼩; (3)求点B 到平⾯OCD 的距离。

高中数学复习提升-高中数学专题——立体几何专题(学生版)

高中数学复习提升-高中数学专题——立体几何专题(学生版)

立体几何专题【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】题型1 空间几何体的三视图以及面积和体积计算一、看图选择正确的三视图1、(2010广东理数)6.如图1,△ABC为三角形,AA'//BB'//CC' ,CC'⊥平面ABC且3AA'=32BB'=CC'=AB,则多面体△ABC -A B C'''的正视图(也称主视图)是2、(2010北京理数)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为二、根据三视图求几何体的面积、体积1、(2010安徽理数)8、一个几何体的三视图如图,该几何体的表面积为A、280B、292C、360D、372A B C D2、(江苏省苏州市2009届高三教学调研测试第12题)已知一个正三棱锥P ABC -的主视图如图所示,若32AC BC ==, 6PC =_________.3、(2010全国卷1文数)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 2343 (C) 2383题型2 空间点、线、面位置关系的判断例1 (江苏苏州市2009届高三教学调研测试7)已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题:①若βα⊥⊥n m ,,m n ⊥,则βα⊥;②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________. 分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断.例2 (浙江省2009年高考省教研室第一次抽样测试理科第5题)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是A .若,,//m n m n αβ⊥⊥,则//αβB .若//,//,//,m n αβαβ则//m nC .若,//,//m n αβαβ⊥,则m n ⊥D .若//,//,//,m n m n αβ则//αβ题型3 空间平行与垂直关系的证明、空间几何体的有关计算例1.(2009江苏泰州期末16)如图所示,在棱长为2的正方体 1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点. (1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥; (3)求三棱锥EFC B V -1的体积.例2.(江苏省苏州市2009届高三教学调研测试第17题) 在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥平面AEF ; (3)求证CE ∥平面PAB .题型4 求空间的角的大小一、异面直线所成的角例1(2007年广东理数)如图6所示,等腰三角形△ABC 的底边AB=66CD=3,点E 是线段BD 上异于B 、D 的动点,点F 在BC 边上,且E F ⊥AB ,现沿EF 将△BEF 折起到△PEF 的位置,使P E ⊥AE ,记BE=x ,V (x )表示四棱锥P-ACEF 的体积。

第6章立体几何(学生版)--培优辅导讲义

第6章立体几何(学生版)--培优辅导讲义

第6章立体几何第一节多面体与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1、球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A.2B.1C.12+【强化训练】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A.π2B.π4C.π6D.π162、球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A.10π3 B.4π C.8π3 D.7π3【强化训练】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为.3、球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+.例3正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为_______.【强化训练】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为()A.4πB.8πC.16πD.24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE a ==则有2222233a R r a R r CE +=-=,=解得:66,.412R a r ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为() A.3263+ B.2+263 C.4+263 D.43263+2.2球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R a =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长).例5在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱3SA =,则正三棱锥S ABC -外接球的表面积是________.【强化训练】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A.12πB.43πC.3πD.123π2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6在三棱锥P-ABC 中,PA=PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A.π B.3πC.π4D.34π【强化训练】已知正三棱锥ABC P -,点P,A,B,C 都在半径为3的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.2.4球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利,OA OS OB OC ===用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:所以O 点为三棱锥S ABC -的外接球的球心,则2SC R =.例7矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125 C.π6125 D.π3125例8三棱锥A BCD -中,2,AB CD ====5AC AD BD BC ==则三棱锥A BCD -的外接球的半径是_______.三、球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例9在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为()A.(2-1)R B .(6-2)R C.14R D.13R 四、球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=.例10把一个皮球放入如图10所示的由8根长均为20cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()3B.10cm 2cm D.30cm 五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还原几何体,根据几何体的特征选择以上介绍的方法进行求解.例11某几何体的三视图如图所示,则该几何体的外接球的球面面积为()A.5πB.12πC.20πD.8π【强化训练】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.163π B.193π C.1912π D.43π第二节立体几何中折叠问题立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开。

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结

2024年高考数学立体几何知识点总结高考数学中的立体几何,是考查考生对空间图形的认识和理解,以及解决问题的能力。

以下是2024年高考数学立体几何的主要知识点总结:一、立体几何的基本概念1. 空间直角坐标系:了解三维空间的坐标系,掌握在空间直角坐标系下求两点之间距离和判定点与多面体关系的方法。

2. 几何体的分类与特征:了解各种几何体的定义、特征和性质,包括点、直线、平面、多面体等,熟悉各种几何体的命名和常见几何体的特征。

二、多面体与球的性质1. 正多面体:熟悉正多面体的定义、性质和相关定理,如正四面体、正六面体、正八面体等的性质,掌握计算正多面体的体积和表面积的方法。

2. 欧拉定理:了解欧拉定理的内容和证明思路,应用欧拉定理求解相应问题。

3. 球的性质:了解球的定义、性质和相关定理,如球面上的点和圆应用球的性质进行计算。

三、立体空间的位置关系1. 空间几何体的位置关系:了解空间几何体之间的位置关系,包括平行与垂直关系、相交与平面关系、点在立体内部与外部的关系等。

2. 空间向量的应用:熟悉空间向量的概念、性质和运算,掌握使用空间向量判断几何体的位置关系的方法。

四、立体几何中的投影1. 投影的概念与性质:了解投影的基本概念和性质,包括平行投影和斜投影的性质,熟悉使用投影解决几何问题的方法。

2. 截痕法与截面应用:掌握截痕法求解几何问题的基本思路和方法,熟练运用截痕法和截面方法解决立体几何问题。

五、向量运算在立体几何中的应用1. 向量投影的应用:了解向量投影的概念和性质,应用向量投影解决立体几何中的相关问题。

2. 向量混合积和向量积的应用:掌握向量混合积和向量积的定义和性质,应用向量混合积和向量积求解相关问题。

六、空间坐标系中的方向余弦与方向角1. 方向余弦的概念与性质:了解方向余弦的概念和性质,掌握方向余弦在立体几何中的应用方法。

2. 方向角的概念与计算:了解方向角的定义和计算方法,熟练求解立体几何中与方向角相关的问题。

2024届高考数学一轮复习第八章立体几何与空间向量指点迷津八课件

2024届高考数学一轮复习第八章立体几何与空间向量指点迷津八课件
则由外接球的性质知,点O即为该四棱锥的外接球的球心,
取线段AB的中点E,连接O1E,O2E,O2D,OD,则四边形O1EO2O为矩形,
在等边三角形 PAB 中,可得 PE=2 3,则
2 3
O1E= 3 ,即
2 3
OO2= 3 ,
在正方形 ABCD 中,因为 AB=4,可得 O2D=2 2,
在直角三角形 OO2D 中,可得 OD2=O22 +O2D2,
+
2
=
6 2
1 2
( 6 ) + (2) =
突破技巧对一般棱锥来讲,外接球球心到各顶点的距离相等,当问题难以考
虑时,可减少点的个数进行考虑,如先考虑到三个顶点的距离相等的点是三
角形的外心,球心一定在过此点与此平面垂直的直线上.
对点训练5(2022广东佛山三模)已知四棱锥P-ABCD中,底面ABCD是边长为
121π
C. 8
121π
D. 2
)
答案 A
解析如图,设底面圆的圆心为 O1,半径为 r,球 O 的半径为 R.
圆锥的顶点和底面圆周都在球
为 3π,设母线长为
1
l,则
2
×
由扇形的弧长公式可得
2
O 面上,圆锥的侧面展开图的圆心角为3π,面积
2
π×l2=3π,可得
3
2
2πr= πl,所以
3
l=3.
r=1.圆锥的高 BO1= 32 -12 =2 2.
作平面ABC与平面DBC的垂线,相交于点O,则点
O为四面体ABCD的球心.
3
6
由 AB=AC=BC=DB=DC=1,得正方形 OEGF 的边长为 6 ,则 OG= 6 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】已知矩形 中, , .将 沿 折起,使点 在平面 内的射影落在 上.
⑴求证:平面 平面 ;
⑵求点 到平面 的距离;
⑶若 为 中点,求二面角 的大小.
【例2】如图,在多面体 中,四边形 是正方形, , , , , , 为 的中点.
⑴求证: 平面 ;
⑵求3】如图, 是半径为 的半圆, 为直径,点 为 的中点,点 和点 为线段 的三等分点,平面 外一点 满足, , .
⑴求二面角 的余弦值;
⑵点 , 分别在线段 , 上,若沿直线 将四边形 向上翻折,使 与 重合,求线段 的长.
【例6】如图所示,在边长为 的正方形 中,点 在线段 上,且 , ,作 ,分别交 , 于点 , ,作 ,分别交 , 于点 , ,将该正方形沿 , 折叠,使得 与 重合,构成如图所示的三棱柱 .
⑴证明: ;
⑵已知点 , 为线段 , 上的点, , ,求平面 与平面 所成的两面角的正弦值.
【例4】如图, 与 都是边长为2的正三角形,平面 平面 , 平面 , .
⑴求点 到平面 的距离;
⑵求平面 与平面 所成二面角的正弦值.
【例5】如图,在矩形 中,点 , 分别在线段 , 上, 沿直线 将 翻折成 使平面 平面 .
⑴求证: 平面 ;
⑵求四棱锥 的体积;
⑶求平面 与平面 所成锐二面角的余弦值.
相关文档
最新文档