第2章_矩阵的相似及应用

合集下载

第二章 矩阵

第二章 矩阵

" a1n ⎞ ⎟ " a21 ⎟ % # ⎟ ⎟ " amn ⎟ ⎠
⎛ 1 2 3⎞ ⎛ 3 6 9 ⎞ ⎟ ⎟ ⎜ ⎜ 3 × ⎜ 4 5 6 ⎟ = ⎜12 15 18 ⎟ ⎜ 7 8 9 ⎟ ⎜ 21 24 27 ⎟ ⎠ ⎠ ⎝ ⎝
4.矩阵乘法的定义和性质: 当矩阵 A 的列数和 B 的行数相等时,A 和 B 才能相乘,乘积记作 AB. AB 的行数和 A 相等,列数和 B 相等. AB 的(i,j)位元素等于 A 的第 i 个行向量和 B 的第 j 个列向量(维数相同)对应分量乘积之和.
总结:对一个 n 阶方阵 A,我们引入了取行列式、转置、逆矩阵、伴随矩阵这四种运算,即 | A |, A , A , A . 这 四种运算,除了取行列式与求伴随不可互换外,相互之间都是可换的,即: (1) | A |=| A | ;
T T
T
−1
*
(2) | A |=| A | ; (5) ( A ) = ( A ) ;
令 Cm × p
⎛ c11 c12 ⎜ ⎜ c21 c22 = AB = ⎜ # # ⎜ ⎜c ⎝ m1 cm 2
" c1 p ⎞ ⎟ " c2 p ⎟ , 则 % # ⎟ ⎟ " cmp ⎟ ⎠
cij = ai1b1 j + ai 2b2 j + " + ainbnj
矩阵的乘法在规则上与数的乘法有不同: ① 矩阵乘法有条件. ② 矩阵乘法无交换律. 即 AB 一般不等于 BA 。 ③ 矩阵乘法无消去律,即一般地 由 AB=0 推不出 A=0 或 B=0. 由 AB=AC 和 A≠0 推不出 B=C.(无左消去律) 由 BA=CA 和 A≠0 推不出 B=C. (无右消去律) 常见错误:把数的乘法的性质简单地搬用到矩阵乘法中来. 例 1。举例说明,由 AB = 0 ⇒

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠

故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠

根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E

解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算

《线性代数》第二章矩阵

《线性代数》第二章矩阵
经济数学基础
《线性代数》
第二章 矩 阵
本章重点:
•矩阵的运算、矩阵的初等行变换、矩
阵的秩和逆矩阵
本章难点:
•求逆矩阵
一、矩阵的概念
(一)矩阵的概念
a11 a12 a1n
A


a21
a22

a2n



am1
am2

amn

矩阵表示一张数表;
称为:m×n矩阵
记作:Amn
2
5
4
1

2

【解答】
由(1)(2)两题又验证,
152
10 31
1 0
矩阵乘法的交换律不成立。 即有:AB≠BA。
2 0 11


50

31
(2)11 0
51 30


1 3
2
5

210

am1 am2
在它的每个元素前 添上一个负号,就
得到A的负矩阵
a1n

a2n



amn

类似实数 里的负数.
7、单位矩阵
主对角线上的元素都是1,其余元素
都是0的n阶方阵。 记为:In或I
1 0 0
In

0
1

0
0 0 1
nn
主对角线以外的元素
全为零的方阵
1 1 2 1 2 1
3 3
0
2

2


0
5
1


3 9
3 0
6 6

线性代数第2章矩阵PPT课件

线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。

第2章 矩阵及其运算

第2章 矩阵及其运算

第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵(一)矩阵及相关概念1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n n n ≠≠=得不到由,.............. (2122221)11211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵,记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵 、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵 1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nn n n n n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算1.矩阵的加法CB A B A b a cC n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设 ,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A k kA 111))(3(---=AB AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律 A A T T =))(1( T T kA kA =))(2( T T T A B AB =))(3(T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n A A n )2())(3(2≥=-**n A A A n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T T T T T D BC AD C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O BC O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A EBA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵(一)矩阵的初等变换及相关概念1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换(1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去(4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换)(5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位鞠振宁经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P )()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E k E k E E E ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A E A B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~r E PAQ Q n P m n m A BPAQ Q P B A B A六、常考题型及其解题方法与技巧题型一、有关矩阵的概念及运算题型二、求方阵的幂n A数学归纳法思路,可用相似对角化来求个线性无关的特征向量有,当思路可用二项式定理展开则且,能分解成两个矩阵的和,若思路律就可很方便地求出个矩阵的乘积,用结合能分解为一列与一行两则,若思路,43)(,2,1)(1nn n nA n A CB A CB BC C B A A A A A r +==+== 题型三、求与已知矩阵可交换的矩阵题型四、有关初等变换的问题题型五、关于伴随矩阵的命题题型六、矩阵可逆的计算与证明⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B A E E A A E E A A AA EBA E AB B 111-1-1-1-1114)()();()(3121,,分块矩阵法思路,初等变换法思路,伴随矩阵法思路或使,定义法,找出思路 题型七、求解矩阵方程为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A B A r A r A B B Ax 2,,1)()(.2.111--===。

矩阵相似例题

矩阵相似例题

矩阵相似例题摘要:一、矩阵相似的定义与性质1.矩阵相似的定义2.矩阵相似的性质二、矩阵相似的判定方法1.秩相似2.行列式相似3.迹相似4.标准型相似三、矩阵相似的应用1.矩阵对角化2.线性变换的性质3.矩阵函数的性质四、矩阵相似的例题解析1.矩阵相似的判定例题2.矩阵相似的应用例题正文:矩阵相似是线性代数中的一个重要概念,它涉及到矩阵的性质及其应用。

本文将详细介绍矩阵相似的定义、性质、判定方法及其应用。

一、矩阵相似的定义与性质矩阵相似是指存在一个可逆矩阵P,使得矩阵A 与矩阵B 满足关系式:B = P^(-1) * A * P。

其中,A 和B 称为相似矩阵。

矩阵相似具有以下性质:1.相似矩阵具有相同的特征多项式;2.相似矩阵具有相同的行列式值;3.相似矩阵具有相同的迹;4.相似矩阵具有相同的秩。

二、矩阵相似的判定方法矩阵相似的判定方法有多种,常见的有以下四种:1.秩相似:当两个矩阵的秩相等时,它们是相似矩阵;2.行列式相似:当两个矩阵的行列式值相等时,它们是相似矩阵;3.迹相似:当两个矩阵的迹相等时,它们是相似矩阵;4.标准型相似:当两个矩阵具有相同的标准型时,它们是相似矩阵。

三、矩阵相似的应用矩阵相似在许多领域都有广泛的应用,例如:1.矩阵对角化:通过矩阵相似可以将一个矩阵对角化,从而简化矩阵的运算和求解线性方程组;2.线性变换的性质:线性变换的性质可以通过矩阵相似进行研究;3.矩阵函数的性质:矩阵函数的性质也可以通过矩阵相似进行研究。

四、矩阵相似的例题解析以下是一些关于矩阵相似的例题:1.矩阵相似的判定例题:已知矩阵A 和B,如何判定它们是否相似?2.矩阵相似的应用例题:已知矩阵A,如何通过矩阵相似将其对角化?。

线性代数(复旦大学出版社)第二章 矩阵

线性代数(复旦大学出版社)第二章   矩阵

第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。

记做A=B。

3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。

简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。

纯量阵与任意同行方阵都是可交换的。

相似矩阵的性质

相似矩阵的性质

相似矩阵的性质相似矩阵在线性代数和矩阵论中有着重要的地位和广泛的应用。

它们具有独特的性质,为解决许多实际问题提供了强大的工具。

本文将介绍相似矩阵的定义、性质和应用,以深入了解这一重要的数学概念。

相似矩阵的定义给定两个n阶方阵A和B,如果存在一个可逆矩阵P,使得B = PAP^-1那么矩阵B就称为矩阵A的相似矩阵,而矩阵P则称为相似变换矩阵。

相似矩阵的定义表明它们有相同的特征值和特征向量,但不一定有相同的线性变换。

相似矩阵的性质相似矩阵具有以下性质:1.相似矩阵具有相同的特征值:如果A和B是相似矩阵,它们具有相同的特征值。

这可以通过相似变换的特征值的性质来证明。

由于相似变换不改变特征值,B的特征值与A的特征值相同。

2.相似矩阵具有相同的迹:矩阵的迹等于其特征值之和。

因此,如果A和B是相似矩阵,它们具有相同的迹。

迹的性质可以通过相似变换的迹的性质来证明。

由于迹等于特征值之和,B的迹与A的迹相同。

3.相似矩阵具有相同的秩:矩阵的秩是指其线性无关的行或列的最大数目。

如果A和B是相似矩阵,它们具有相同的秩。

这可以通过相似变换的秩的性质来证明。

由于秩也是特征值的性质,B的秩与A的秩相同。

4.相似矩阵具有相同的行列式:矩阵的行列式是其特征值之积。

因此,如果A和B是相似矩阵,它们具有相同的行列式。

行列式的性质可以通过相似变换的行列式的性质来证明。

由于行列式等于特征值之积,B的行列式与A 的行列式相同。

相似矩阵的应用相似矩阵在各个领域中都有着广泛的应用,例如:1.特征值计算:相似矩阵的性质使得计算矩阵的特征值变得更加简单。

通过将矩阵A化为其相似矩阵B,我们可以使用B的特征值来得到A的特征值。

2.矩阵对角化:相似矩阵的性质使得矩阵对角化成为可能。

对角化是一种特殊的相似变换,将矩阵化为对角矩阵,使得矩阵的计算更加简便。

3.线性变换:相似矩阵描述了不同线性变换之间的关系。

通过相似变换,我们可以将一个复杂的线性变换转化为一个简单的线性变换,从而简化问题的解决过程。

第2章_矩阵的相似及应用

第2章_矩阵的相似及应用

(2.1.2)
称 是 T 的特征值, 是线性变换 T
属于 的特征向量。
从几何角度看,当 0 且为实数时, 特征向量 的方向经线性变换 T 后保 持不变。当 0 时,T 与 保持同指 向,当 0 时,T 与 指向相反。
既然把一组线性无关 T 的特征向量 1,2 , ,n 作为基表示 T 的矩阵形式 这样简单,是否可以找到这样一组 特征向量和如何寻找这样一组特殊 的向量就是我们下面要做的工作.
1 ,2 ,3
1 ,2 ,3
的过渡矩阵,即线性变换 T 是可对角化的.
定理2.1.5 如果 n 阶矩阵有 n 个线性无关的特征向量, A 矩 阵与对角矩阵相似。
推论1 如果 n 阶矩阵有 n 个互 异的特征值,矩阵与对角矩阵 相似。
2.1.3 Schur 分解
引理 2.1.1 若 n 元复向量,u1 c1,c2,cn T
定理2.1.2 若 0 是线性变换 T 的r重 特征值,则
dimV0 r
2.1.2 矩阵对角化
2.1.2.1 矩阵的相似关系 定义2.1.6 令 A, B, P 是n n 的矩阵, P 是非 奇异矩阵, 如果他们之间存在关系 B P1AP 则称 A与 B 矩阵是相似矩阵, 记为 A ~ B ; 矩阵的相似关系,满足以下性质:
ann
就是一个 -矩阵
2.2.1 -矩阵的初等变换和 Smith 标准形
定义2.2.1 -矩阵 A( ) 中不恒等于零的
子式的最高阶数 r 称为-矩阵的秩,记
为 rankA( ),即 rankA( ) r.
例 2.2.1
定义2.2.2 关于 -矩阵的三种初 等变换:
⑴ 两行(列)互换位置; ⑵ 某行(列)乘不等于零的数; ⑶ 用 的多项式 h()乘某行(列) 并加到另一行(列)上。

第二章 矩阵及其运算 《工程数学线性代数》课件PPT

第二章  矩阵及其运算  《工程数学线性代数》课件PPT

0
x
§2 矩阵的运算
例 某工厂生产四种货物,它在上半年和下半年向三家商店 发送货物的数量可用数表表示:
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34
其中aij 表示上半年工厂向第 i 家 商店发送第 j 种货物的数量.
c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34
行数不等于列数 共有m×n个元素 本质上就是一个数表
det(aij )
(aij )mn
三、特殊的矩阵
1. 行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 An.
2. 只有一行的矩阵 A (a1, a2 ,L , an ) 称为行矩阵(或行向量) .
a1
只有一列的矩阵
B
a2
M
称为列矩阵(或列向量)
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
( )A A A (A B) A B
备 注
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
知识点比较
a11 a12 a13 a11 a12 a13 a11 a12 a13 a21 a22 a23 a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33 a31 a32 a33
a12 a22
a13 a23
a14 a24

线代学习指导 第二章 矩阵

线代学习指导 第二章 矩阵

(1)若矩阵 A 中有某个 s 阶子式不为 0,则 r A s ;
(2)若矩阵 A 中所有 t 阶子式全为 0,则 r A t ;
(3)若 A 为 m n 矩阵,则 0 r A minm, n ;
(4) r A r AT ;
(5) r A 1 A 可以写成一个列矩阵与一个行矩阵的乘积;
3.伴随矩阵法求逆: A1 1 A* . A
4.可逆矩阵的性质:
设 A, B 均为 n 阶可逆矩阵, k 为非零常数,则
A1 1 A ;
AB 1 B1A1 ;
AT
1
A1 T ; kA 1 1 A1 ; A1 A 1
k
A*
1
A.
A
五、矩阵的初等变换
1.初等变换 矩阵的以下三种变换,称为矩阵的初等变换: (1) 交换矩阵的两行(列); (2) 用数 k 0 乘矩阵的某一行(列); (3) 某一行(列)的 l 倍加到另一行(列).
A非奇异(或非退化),即 A 0 A 的等价标准形为 E A可以表示为有限个初等矩阵的乘积
r A n
注:在后面几章中还有一些关于 n 阶矩阵 A 可逆的充要条件,列举如下: n 阶矩阵 A 可逆 A 的列(行)向量组线性无关(第三章)
齐次线性方程组 AX 0 仅有零解(第四章)
A的特征值均不为零(第五章) AT A 为正定矩阵(第六章)
块矩阵 A 与 B 作乘法 AB 时,要求 A 的列的分块方式与 B 的行的分块方式相同,并且乘积矩 阵的行的分块方式与 A 相同,列的分块方式与 B 相同.另外,分块矩阵 A 的转置,不仅要将 A 的各行的子块依次转为各列的子块,而且其中的每一个子块也要转置.
3.几种特殊分块矩阵的逆:设 A, B 分别为 s 阶和 r 阶可逆矩阵,则

第2章方阵的相似化简

第2章方阵的相似化简

1 都是 i
2
0
为子 Jordan 矩阵, 1 0 是 Jordan 矩阵 1 2
3 1 , 3
2
如果n阶方阵A相似于Jordan矩阵,即存在n阶可逆阵P 使得 J (λ ) J (λ ) P AP = J = O J (λ ) λ 1 λ 1 ,则称J为A的Jordan标准形, 其中为J (λ ) = O 1 λ J (λ )称为因式(λ − λ ) 对应的Jordan块。
0 1 2 1 0 , 例如: 2 1 2 不同阶的 Jordan 块,而 2 2 1 , 2 0 0 0 0
1 0
i , 1 0
讨论: 讨论: 假设存在可逆阵 P , 使 P − 1 AP = Λ 为对角阵 , 把 P 用其列向量表示为 P = (P1 , P2 ,L, Pn )
也即 ( Ap 1 , Ap 2 , L , Ap n ) = (λ 1 p1 , λ 2 p 2 , L , λ n p n )
于是有 Api = λ i pi
第2章 方阵的相似化简
• 2.1 方阵的相似对角化 • 定义:
若 n阶方阵 A与对角阵相似,即存在 n阶可逆阵 P满足 λ λ ∆diag (λ , λ ,L , λ ) P AP =ห้องสมุดไป่ตู้ O λ 则称 A可对角化,可逆阵 P称为相似变换矩阵
1 −1 2 1 2 n n

求三阶Jordan块 例 求三阶 块
a 1 0 J = 0 a 1 0 0 a
的初等因子。 的初等因子。 解 因

线性代数第2章 矩阵PPT课件

线性代数第2章 矩阵PPT课件

行矩阵(Row Matrix):
只有一行的矩阵 A a 1 ,a 2 , ,a n ,
称为行矩阵(或行向量).
列矩阵(Column Matrix):
a 1
只有一列的矩阵
B
a2
,
称为列矩阵(或列向量).
a n
暨大珠院
方阵(Square Matrix):
n 行数与列数都等于 的矩阵,称为 n阶方阵.也可记作 An .
排成m的 行n列的数表,
称为 m行n列矩. 阵 简m 称 n矩.阵
a11
记作A
a21
a12 a22
a1n a2n
暨大珠院
am1 am2 amn
简记为
Aa ijm n
或 Amn
实矩阵: 元素是实数;复矩阵:元素是复数.
规定:
Aa a 11
例如: 1 0 3 5 是一个 24
9 6 4 3
1
En
1
1 nn
暨大珠院
数量矩阵(Scalar Matrix):
方阵,主对角元素全为非零常数k,
其余元素全为零的矩阵。
k
kEn
k
k nn
暨大珠院
二. 矩阵的基本运算 1. 矩阵相等.
同型矩阵: 两个矩阵的行数相等、列数也相等
矩阵相等: 设 矩 阵 A m n 与 B m n 是 同 型
33 62 81 6 8 9
暨大珠院
负矩阵:称- A 为矩阵 Aaij 的负矩阵。
a11
A
a 21
a12
a 22
a1n
a 2n
aij
am1
am1
am
n
减法: A B A ( B )

第二章 矩阵运算基础PPT课件

第二章 矩阵运算基础PPT课件
13
2.矩阵的四种创建方式
(1)直接输入法
最简单的建立矩阵的方法是在命令窗口从 键盘直接输入矩阵的元素。
具体方法如下: ①将矩阵的元素用方括号括起来; ②按矩阵行的顺序输入各元素; ③同一行的各元素之间用空格或逗号分隔; ④不同行的元素之间用分号分隔。
14
例2-3. 在命令窗口创建简单的数值函数。
a.冒号表达式可生成一个行向量,一般格式是: e1:e2:e3
其中e1为初始值,e2为步长,e3为终止值。 b.在MATLAB中,还可以用linspace函数产生行 向量。其调用格式为:
linspace(a,b,n) 其中,a和b分别是生成向量的第一个和最后一 个元素,n是元素总数。 显然,linspace(a,b,n)与a:(b-a)/(n-1):b等价。
②选中某些变量后,单击Open按钮,进入
变量编辑器,可以直接观察或修改变量中的具 8
体元素。
(2)命令窗口输入命令进行操作: ①clear命令用于删除MATLAB工作空间中
的变量。 ②who和whos这两个命令用于显示在
MATLAB工作空间中已经驻留的变量名清单 。
9
2.内存变量文件
MAT文件是MATLAB系统的二进制数据文件,用于保存系 统
③-ascii选项使文件以ASCII格式处理,省略该选项时文 件将以二进制格式处理。save命令中的-append选项控10 制将变量追加到MAT文件中。
2.1.4 MATLAB数学函数
MATLAB提供了许多数学函数,函数的变量规定为矩阵变
量,运算法则是将函数逐项作用于矩阵的元素上,因而运算
的结果是一个与自变量同维数的矩阵。
》z=(cos(abs(x+y))-

第二章 矩阵及其运算总结

第二章 矩阵及其运算总结

§1 矩阵及其运算一、矩阵的基本概念(必考)矩阵,是由m*n个数组成的一个m行n列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩阵中的位置.比如,或表示一个m*n 矩阵,下标ij 表示元素位于该矩阵的第行、第列.元素全为零的矩阵称为零矩阵. 特别地,一个m*1矩阵,也称为一个 m维列向量;而一个 1*n矩阵B=(b1,b2,…,bn),也称为一个 n维行向量.当一个矩阵的行数m与烈数n 相等时,该矩阵称为一个 n阶方阵.若一个n阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即: .单位矩阵与实数中的‘1’的运算相近.如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵是一个阶下三角矩阵.例题:1.A既是上三角矩阵,又是下三角矩阵,则A必是对角矩阵2.两矩阵既可相加又可相乘的充要条件是两矩阵为同阶方阵.3.A=(l≠n),则A的主对角线上个元素的和为 (设矩阵为2行3列的矩阵,找规律)二、矩阵的运算1、矩阵的加法:如果是两个同型矩阵(即它们具有相同的行数和列数,比如说),则定义它们的和仍为与它们同型的矩阵(即),的元素为和对应元素的和,即:.给定矩阵,我们定义其负矩阵为: .这样我们可以定义同型矩阵的减法为: .由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律:(1)交换律:; (2)结合律:;(3)存在零元:;(4)存在负元:.2 、数与矩阵的乘法的运算律:(1);(2);(3);(4) .3 、矩阵的乘法(必考)设为距阵,为距阵,则矩阵可以左乘矩阵(注意:距阵的列数等与矩阵的行数),所得的积为一个距阵,即,其中,并且(即左行乘右列)矩阵的乘法满足下列运算律(假定下面的运算均有意义):(1)结合律:; (2)左分配律:;(3)右分配律:;(4)数与矩阵乘法的结合律:;(5)单位矩阵的存在性:.若为阶方阵,则对任意正整数,我们定义:,并规定:由于矩阵乘法满足结合律,我们有:, .注意:矩阵的乘法与通常数的乘法有很大区别,特别应该注意的是:(必考重要)(1)矩阵乘法不满足交换律:一般来讲即便有意义,也未必有意义;倘使都有意义,二者也未必相等.正是由于这个原因,一般来讲,在实数中的某些运算不再适应,如,,反过来,这些公式成立的条件又恰是A、B 可逆.例:A,B,C 是同阶矩阵,A ≠0,若AB=BC,必有B=C,则A满足可逆(2)两个非零矩阵的乘积可能是零矩阵,即未必能推出或者. 同理,A ≠0,B ≠0,而AB却肯能等于0.例题:(选择题5、6)(3)矩阵的乘法不满足消去律:如果并且,未必有 .4 、矩阵的转置:定义:设为矩阵,我们定义的转置为一个矩阵,并用表示的转置,即:.矩阵的转置运算满足下列运算律:(1);(2);(3);(4) (重要).5、对称矩阵:n 阶方阵若满足条件:,则称为对称矩阵;若满足条件:,则称为反对称矩阵.若设,则为对称矩阵,当且仅当对任意的成立;为反对称矩阵,当且仅当对任意的成立.从而反对称矩阵对角线上的元素必为零.对称矩阵具有如下性质:(1)对于任意矩阵,为阶对称矩阵;而为阶对称矩阵;(2)两个同阶(反)对称矩阵的和,仍为(反)对称矩阵;(3)如果两个同阶(反)对称矩阵可交换,即,则它们的乘积必为对称矩阵,即.运算性质:1) (2) (3)(4) (5)三、逆矩阵1.定义 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==.则A 称为可逆矩阵或非奇异矩阵.B 称为A 的逆矩阵,.由定义可得,A 与B 一定是同阶的,而且A 如果可逆,则A 的逆矩阵是唯一的.这是因为(反证法),如果1B 、2B 都是A 的逆矩阵,则有E A B AB ==11,E A B AB ==22,那么22212111)()(B EB B A B AB B E B B =====所以逆矩阵是唯一的.我们把矩阵A 的逆矩阵记作1-A .逆矩阵有下列性质: (1)如果A 可逆,则1-A 也可逆,且A A =--11)(.由可逆的定义,显然有A 与1-A 是互逆的. (2)如果A 、B 是两个同阶可逆矩阵,则)(AB 也可逆,且111)(---=A B AB .(必考重点) 这是因为 E A A AEA ABB A A B AB =⋅===------111111)())((E B B EB B B A A B AB A B ====------111111)())((,所以111)(---=A B AB .(必考重点)这个结论也可以推广到有限个可逆矩阵想乘的情形. (3)可逆矩阵A 的转置矩阵T A 也是可逆矩阵,且T T A A )()(11--=.这是因为E E A A A A T T TT===--)()(11,E E AA A A T T T T ===--)()(11所以 T TA A )()(11--=.(4)如果A 是可逆矩阵,则有11--=A A .这是因为E AA=-1,两边取行列式有 11=⋅-A A ,所以111--==A AA . 矩阵可逆的条件(1)n 阶方阵A 可逆的充分必要条件是| A | ≠ 0(也即r (A )= n );(2)n 阶方阵A 可逆的充分必要条件是A 可以通过初等变换(特别是只通过初等行(列)变换)化为n 阶单位矩阵;(3)n 阶方阵A 可逆的充分必要条件是A 可以写成一些初等矩阵的乘积;(4)n 阶方阵A 可逆的充分必要条件是A 的n 个特征值不为零;(5)对于n 阶方阵A ,若存在n 阶方阵B 使得AB = E (或BA = E ),则A 可逆,且A -1= B. 逆矩阵的有关结论及运算必考 ——求法方法1 定义法:设A 是数域P 上的一个n 阶方阵,如果存在P 上的n 阶方阵B ,使得AB = BA= E ,则称A 是可逆的,又称B 为A 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 惟一确定,记为A -1.例1:设A 为n 阶矩阵,且满足22A - 3A + 5E = 0,求A -1.【解】22 2 -12A - 3A + 5E = 02A - 3A = - 5E23-A - A =E 552323A (- A - E) = - A - E = E555523A A = - A - E55∴∴∴∴可逆且方法 2 伴随矩阵法:A -1= 1|A|A*.定理n 阶矩阵A = a ij 为可逆的充分必要条件是A 非奇异.且11211122221121n n nnnn A A A A A A A A A A A -⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭其中A ij 是|A|中元素a ij 的代数余子式.矩阵112111222212n n nnnn A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵,记作A*,于是有A -1=1|A|A*. 注 ①对于阶数较低(一般不超过3阶)或元素的代数余子式易于计算的矩阵可用此法求其逆矩阵.注意A* = (A ji )n ×n 元素的位置及符号.特别对于2阶方阵11122122a a A a a ⎛⎫= ⎪⎝⎭,其伴随矩阵22122111*a a A a a -⎛⎫=⎪-⎝⎭,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律.②对于分块矩阵A B C D ⎛⎫⎪⎝⎭不能按上述规律求伴随矩阵.例2:已知101A=210325⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求A -1.【解】 ∵| A | = 2 ≠ 0 ∴A 可逆.由已知得111213212223313233A = - 5, A = 10, A = 7A = 2, A = - 2, A = - 2A = - 1, A = 2, A = 1 , A -1= 1|A| A* = 5115212211022511272171122⎛⎫-- ⎪--⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭方法3 初等变换法:注 ①对于阶数较高(n ≥3)的矩阵,采用初等行变换法求逆矩阵一般比用伴随矩阵法简便.在用上述方法求逆矩阵时,只允许施行初等行变换.②也可以利用1E A E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换求得A 的逆矩阵. ③当矩阵A 可逆时,可利用求解求得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法,仅通过初等变换即求出了A -1B 或CA -1.例3::用初等行变换求矩阵231A 013125⎛⎫⎪= ⎪ ⎪⎝⎭的逆矩阵.【解】()231100125001125001A E 01301001301001301012500123110000611212500112500101301001301001910211100166311341006631310122111001663⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪---⎝⎭-- ⎪⎝⎭⎛--→---⎝⎫⎪⎪⎪⎪ ⎪⎪ ⎪⎭1113410066313A 010********1663-⎛⎫--⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭故 方法4 用分块矩阵求逆矩阵:设A 、B 分别为P 、Q 阶可逆矩阵,则:1111111111111111A A 000B 0C O A A A CB A O A O BD B O B B DA B B O A O B B O AO ----------------⎛⎫⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭例4:已知0052002112001100A ⎛⎫⎪ ⎪=⎪-⎪⎝⎭,求A -1.【解】 将A 分块如下:12005200211200110O A A A O ⎛⎫ ⎪ ⎪⎛⎫⎪== ⎪⎪⎝⎭- ⎪ ⎪⎝⎭其中 125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭可求得 1*1*1122121212111,2511||||3A A A A A A ---⎛⎫⎛⎫==== ⎪ ⎪--⎝⎭⎝⎭ 从而11211120033110331200250O A A A O ---⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪== ⎪⎪⎝⎭ ⎪ ⎪- ⎪-⎝⎭方法5 恒等变形法求逆矩阵:有些计算命题表面上与求逆矩阵无关,但实质上只有求出矩 阵的逆矩阵才能算出来,而求逆矩阵须对所给的矩阵等式恒等变 形,且常变形为两矩阵的乘积等于单位矩阵的等式.例8 已知,且,试求.解 由题设条件得3.伴随矩阵 如果n 阶矩阵A 的行列式0≠A ,则称A 是非奇异的(或非退化的).否则,称A 是奇异的(或退化的).(n 阶矩阵A 可逆的充要条件是:|A|≠0)设n n ij a A ⨯=)(,ij A 是A 中元素)21(n j i a ij ,,,, =的代数余子式.矩阵 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111*(顺序变化,重点)称为A 的伴随矩阵. 矩阵n n ij a A ⨯=)(为可逆矩阵的充分必要条件是A 为非奇异矩阵,并且当A 可逆时,有*11A AA =-,伴随矩阵 例1. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=313132121A 判断A 是否可逆,如果可逆,求1-A .解: 因为01313132121≠=---=A ,所以A 可逆.又.13221)1(11211)1(;11312)1(71321)1(;63311)1(53112)1(;11332)1(93312)1(;83113)1(333323321331322322221221311321121111=---==-==---=-=--=-=--=-=---==--==--==---=+++++++++A A A A A A A A A所以 ⎪⎪⎪⎭⎫⎝⎛---==-1711691581*1A A A 四、分块矩阵一、分块矩阵的概念对于行数和列数较高的矩阵, 为了简化运算,经常采用分块法,使大矩阵的运算化成若干小矩阵间的运算,同时也使原矩阵的结构显得简单而清晰. 具体做法是:将大矩阵用若干条纵线和横线分成多个小矩阵. 每个小矩阵称为A 的子块, 以子块为元素的形式上的矩阵称为分块矩阵.矩阵的分块有多种方式,可根据具体需要而定注:一个矩阵也可看作以n m ⨯个元素为1阶子块的分块矩阵. 二、分块矩阵的运算分块矩阵的运算与普通矩阵的运算规则相似. 分块时要注意,运算的两矩阵按块能运算,并且参与运算的子块也能运算,即,内外都能运算.1. 设矩阵A 与B 的行数相同、列数相同,采用相同的分块法, 若,,11111111⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=st s t st s t B B B B B A A A A A其中ij A 与ij B 的行数相同、列数相同, 则.11111111⎪⎪⎪⎭⎫ ⎝⎛++++=+st st s s t t B A B A B A B A B A2.设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A Ak 为数, 则.1111⎪⎪⎪⎭⎫ ⎝⎛=st s t kA kA kA kA kA 3.设A 为l m ⨯矩阵, B 为n l ⨯矩阵, 分块成,,11111111⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=tr t r st s t B B B B B A A A A A其中pt p p A A A ,,,21 的列数分别等于tq q q B B B ,,,21 的行数, 则,1111⎪⎪⎪⎭⎫ ⎝⎛=sr s r C C C C AB 其中).,,2,1;,,2,1(1r q s p B A C t k kqpk pq ===∑=4. 分块矩阵的转置设,1111⎪⎪⎪⎭⎫ ⎝⎛=st s t A A A A A则.1111⎪⎪⎪⎪⎭⎫ ⎝⎛=T st T tT s T TA A A A A 5. 设A 为n 阶矩阵, 若A 的分块矩阵只有在对角线上有非零子块, 其余子块都为零矩阵, 且在对角线上的子块都是方阵, 即⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A O A O A A21, 其中),,2,1(s i A i =都是方阵, 则称A 为分块对角矩阵.分块对角矩阵具有以下性质:(1) 若 ),,2,1(0||s i A i =≠,则0||≠A ,且|;|||||||21s A A A A =(2) .112111⎪⎪⎪⎪⎪⎭⎫⎝⎛=----s A O A O A A(3) 同结构的对角分块矩阵的和、差、积、商仍是对角分块矩阵. 且运算表现为对应子块的运算。

2第二章矩阵应用例子

2第二章矩阵应用例子

第二章 矩阵应用例子矩阵的概念是从大量各种各样的实际问题中抽象出来的,是最基本的数学概念之一.矩阵概念贯穿线性代数的各方面,许多问题的数量关系都可以通过矩阵来描述,因而矩阵是科学研究的一个非常重要的工具.它在自然科学、工程技术、经济管理等领域有着广泛的应用. 本章主要列举了矩阵在经济、统计、信息技术等方面的应用.例1 生产成本某工厂生产三种产品. 它的成本分为三类. 每一类成本中,给出生产单个产品时估计需要的量. 同时给出每季度生产每种产品数量的估计. 这些估计在表2-1和表2-2中给出. 该公司希望在股东会议上用一个表格展示出每一季度三类成本中的每一类成本的数量:原料费、工资和管理费.表2-1 生产单位产品的成本(美元)成 本 产 品A B C 原料费 工资管理费和其他0.10 0.30 0.10 0.30 0.40 0.200.15 0.25 0.15表2-2 每季度产量产 品 季 度夏季 秋季 冬季 春季 A B C4 000 2 0005 8004 500 2 600 6 2004 500 2 400 6 0004 000 2 200 6 000解 我们用矩阵的方法考虑这个问题. 这两个表格中的每一个均可表示为一个矩阵.0.100.300.150.300.400.250.100.200.15M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦及400045004500400020002600240022005800620060006000P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦如果我们构造乘积MP ,则MP 的第一列表示夏季的成本.原料费: (0.10)(4000)(0.30)(2000)(0.15)(5800)1870++= 工资: (0.30)(4000)(0.40)(2000)(0.25)(5800)3450++= 管理费和其他:(0.10)(4000)(0.20)(2000)(0.15)(5800)1670++=MP 的第二列表示秋季的成本.原料费: (0.10)(4500)(0.30)(2600)(0.15)(6200)2160++=工资: (0.30)(4500)(0.40)(2600)(0.25)(6200)3940++=管理费和其他:(0.10)(4500)(0.20)(2600)(0.15)(6200)1900++=MP 的第三列和第四列表示冬季和春季的成本.187021602070196034503940381035801670190018301740MP ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦MP 第一行的元素表示四个季度中每一季度原料的总成本. 第二和第三行的元素分别表示四个季度中每一季度工资和管理的成本. 每一类成本的年度总成本可由矩阵的每一行元素相加得到. 每一列元素相加,即可得到每一季度的总成本. 表2-3汇总了总成本.表2-3季 度夏季 秋季 冬季 春季 全年 原料费工资管理费和其他 总计1 870 3 450 1 670 6 9902 1603 940 1 900 8 0002 0703 810 1 830 7 7101 960 3 580 1 740 7 2808 060 14 780 7 140 29 980例2 生态学:海龟的种群统计学管理和保护很多野生物种依赖于我们模型化动态种群的能力. 一个经典的模型化方法是将物种的生命周期划分为几个阶段. 该模型假设每一阶段种群的大小仅依赖于雌性的数量,并且每一个雌性个体从一年到下一年存活的概率仅依赖于它在生命周期中的阶段,而并不依赖于个体的实际年龄. 例如,我们考虑一个4个阶段的模型来分析海龟的动态种群. 在每一个阶段,我们估计出1年中存活的概率,并用每年期望的产卵量近似给出繁殖能力的估计. 这些结果在表2-4中给出. 在每一阶段名称后的圆括号中给出该阶段近似的年龄.表2-4 海龟种群统计学的4个阶段阶段编号描述(年龄以年为单位) 年存活率 年产卵量 12 3 4卵、孵化期(<1)幼年和未成年期(1~21) 初始繁殖期(22) 成熟繁殖期(23~54)0.67 0.74 0.81 0.810 0 127 79若i d 表示第i 个阶段持续的时间,i s 为该阶段每年的存活率,那么在第i 阶段中,下一年仍然存活的比例将为111i i d i i id i s p s s -⎛⎫-= ⎪-⎝⎭(1) 而下一年转移到第1i +个阶段时,可以存活的比例应为(1)1i id i i i d i s s q s -=- (2) 若令i e 表示阶段(2,3,4)i i =1年中平均的产卵量,并构造矩阵123412233400000p e e e q p L q p q p ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(3) 则L 可以用于预测以后每阶段海龟的数量. 形如(3)的矩阵称为莱斯列(Leslie )矩阵,相应的种群模型通常称为莱斯利种群模型. 利用表1给出的数字,模型的莱斯利矩阵为0127790.670.73940000.000600000.810.8077L ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦假设初始时种群在各个阶段的数量分别为200 000,300 000,500和1 500. 若将这个初始种群数量表示为向量0x ,1年后各个阶段的种群数量可如下计算:1000127792000001820000.670.73940030000035582000.000600500180000.810.807715001617L ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x x (上述结果已经四舍五入到最近的整数了.)为求得2年后种群数量向量,再次乘以矩阵L .2210L L ==x x x一般地,k 年后种群数量可通过计算向量0k k L =x x 求得. 为观察长时间的趋势,我们计算102550,,x x x . 结果归纳在表2-5中. 这个模型预测,繁殖期的海龟数量将在50年后减少80%.表2-5 海龟种群预测阶段编号初始种群数量10年 25年 50年 1 2 3 4200 000 300 000500 1 500114 264 329 212214 1 06174 039 213 669139 68735 966 103 79568 334例3 密码问题在密码学中,称原来的消息为明文,经过伪装了的明文则成了密文,由明文变成密文的过程称为加密. 由密文变成明文的过程称为译密. 明文和密文之间的转换是通过密码实现的.在英文中,有一种对消息进行保密的措施,就是把消息中的英文字母用一个整数来表示,然后传送这组整数. 如~A Z 的26个英文字母与1~26的数字一一 对应.例如,发送“SEND MONEY ”这九个字母就可用[19,5,14,4,13,15,14,5,25]这九个数来表示. 显然5代表E ,13代表M ,…这种方法很容易被破译. 在一个很长的消息中,根据数字出现的频率,往往可以大体估计出它所代表的字母. 例如,出现频率特别高的数字很可能对应出现频率特别高的字母.我们可以用矩阵乘法对这个消息进一步加密. 假如A 是一个对应行列式等于1±的整数矩阵,则1A -的元素也必定是整数. 可以用这样一个矩阵对消息进行变换,而经过这样变换的消息是较难破译的. 为了说明问题,设100315,201⎛⎫ ⎪= ⎪ ⎪-⎝⎭A则11001315.201-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭A把编了码的消息组成一个矩阵194145135,141525⎛⎫ ⎪= ⎪ ⎪⎝⎭B乘积10019414194143155135132100172.2011415252473⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭AB所以,发出去的消息为[19,132,24-,4,100,7,14,172,3-]. 这与原来的那组数字不大相同,例如,原来两个相同的数字5和14在变换后成为不同的数字,所以就难于按照其出现的频率来破译了. 而接收方只要将这个消息乘以1-A ,就可以恢复原来的消息.100194141941413151321001725135.2012473141525⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 要发送的信息可以按照两个或三个一组排序,如果是两个字母为一组,那么选二阶可逆矩阵,如果是三个字母为一组,则选三阶可逆矩阵. 在字母分组的过程中,如果最后一组字母缺码,则要用Z 或YZ 顶位.。

矩阵相似的若干判别法及应用知识讲解

矩阵相似的若干判别法及应用知识讲解

矩阵相似的若干判别法及应用本科生毕业论文矩阵相似的若干判别法及应用学号: 2011562010姓名:邵坷年级: 2011级本科班系别:数学系专业:数学与应用数学指导教师:由金玲完成日期: 2015 年4月30日承诺书我承诺所呈交的毕业论文(设计)是本人在指导教师指导下进行研究工作所取得的研究成果.据我查证,除了文中特别加以标注的地方外,论文中不包含他人已经发表或撰写过的研究成果.若本论文(设计)及资料与以上承诺内容不符,本人愿意承担一切责任.毕业论文(设计)作者签名:日期:年月日目录摘要 (I)Abstract (II)前言 (1)第一章基本概念 (2)1.1 矩阵 (2)1.1.1 矩阵的概念 (2)1.1.2 矩阵的性质 (2)1.2 矩阵相似 (3)1.2.1矩阵相似的概念 (3)1.2.2 矩阵相似的性质 (4)第二章矩阵相似的判别 (5)2.1 特征值与特征向量法判定 (5)2.1.1 特征值和特征向量的定义及求法 ............................................. 错误!未定义书签。

2.1.2 特征值和特征向量的基本性质与矩阵相似的判定 (5)2.2用初等变法换判定 (8)2.3 应用分块矩阵相似判定 (11)第三章矩阵相似的应用 (14)3.1 利用相似变换把方阵对角化 (14)3.2 矩阵相似性质的简单应用 (15)3.3 矩阵相似在实际生活中的应用 (15)结论 (17)参考文献 (18)致谢 (19)摘要相似矩阵是高等代数课程范围内,一个很重要的基本问题,并且矩阵相似是矩阵中很重要的一种关系.本文从矩阵的基本理论出发,以定性分析法,以综述的形式总结了几个重要的判定矩阵相似的定理和结论.通过矩阵的特征值与特征向量、矩阵的对角化、可逆矩阵、矩阵的初等变换和分块矩阵对矩阵相似进行判别,并运用例证对每一种判别法加以说明;另外,还对相似矩阵的一些应用进行了介绍,以便对矩阵的相似有更进一步的了解.关键词:特征值;特征向量;相似矩阵;判别;分块矩阵AbstractThe similarity of matrix is one of the most important problem within the area of the advanced algebra. In addition, the similarity of matrix is an elementary relationship between the matrixes.This paper reviews several important criteria which are used to judge the similarity of matrix. These criteria are generally based on the calculation of the Eigen value and Eigen vector, the diagonalization of matrix, the invertible transformation of matrix, the elementary transformation of matrix, and the partition of the matrix. Further, the examples follow and elucidate the counterpart criteria. At the end, the application of the similarity of matrix is given to deepen the understanding.Keywords: Eigen value;Eigen vector;Similarity of matrix;Distinguish;Partitioned matrix前言在数学中,矩阵就是一个平面上的数阵,矩阵理论的起源可追溯到18世纪,在以后的发展中,又相应的产生了许多理论知识,例如初等矩阵,矩阵的秩,矩阵的特征值与特征向量等.其中,矩阵相似理论也是在矩阵的发展之后才进一步发展和应用的起来的.矩阵相似的好处很多,最大的好处是通过相似可以让任何一个矩阵变为若当标准型.相似矩阵间有很多相同的性质,比如秩,矩阵对应的行列式,迹(对角线元素之和),特征值,特征多项式,初等因子都相同.一个矩阵很重要的一点就是它的特征值,通过相似变换,可以转而研究一个结构简单得多的矩阵的特征值的性质.利用矩阵相似的一些性质,可以让我们在解决一些特殊和复杂的问题时更加的简便,而且矩阵相似在实际生活中同样有着巨大的作用.本文主要介绍了矩阵的各种性质和特点,什么是矩阵相似,以及矩阵相似的判断和矩阵相似的一些应用.在第一章中,我们主要介绍了矩阵以及由它延伸出来的相关理论知识,例如矩阵的相似及它的一些简单的性质;在第二章中,着重介绍和总结了矩阵相似的三种判别方法.借助矩阵的特征值与特征向量将矩阵对角化,进而来对矩阵进行相似的判别,是对相似矩阵性质的综合运用,理论及方法都较为简单便于理解和掌握;初等变换法逻辑性强、理论系统;利用分块矩阵判别矩阵的相似,是对特型矩阵相似的一种判别法,较为简洁,但有局限性.第一章 基本概念1.1 矩阵矩阵是现代数学中极其重要、应用非常广泛的一个重要内容.利用这一数学工具,可以把所研究的多数据、多数量关系的问题化成简明的易于理解和分析的形式.1.1.1 矩阵的概念定义1.1 由t ⨯s 个数),2,1,,,2,1(n j m i a ij ==排成的s 行t 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 我们把它称为s 行t 列矩阵,简t s ⨯阵矩,其中ij a 称为矩阵A 的第i 行第j 列元素;如果矩阵A 的行数和列数相等,则我们也把矩阵A 叫做方阵A .定义1.2 如果一个矩阵的元素全为零,我们就称之为零矩阵,记为mn O ,我们也可以简单的记为O .定义1.3 如果方阵A 中的元素能够满足条件)(0j i a ij ≠=,则我们就把方阵叫做对角阵.定义1.4 如果一个n n ⨯矩阵除了主对角线上的元素,别的元素都是0,且主对角线是1的元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001 我们把它称之为n 级单位矩阵,记作n I ,一般情况下简写为I .1.1.2 矩阵的性质定义1.5 设ms ik a A )(=,sn kj b B )(=,那么矩阵mn ij c C )(=,其中∑==++++=sk kj ik sj is j i j i j i ij b a b a b a b a b a c 1332211 (1-1)我们将其称之为A 与B 的乘积,记为AB C =.注意,在乘法预算中方阵,要求前面方阵的行与后面方阵的列数位相同 定义1.6 由方阵A 中的元素保持其原来相对的位置不变而构成的行列式称为方阵A 的行列式,记作A 或A det .定义1.7 对于数域P 上的n 阶方阵A ,如果满足0≠A ,则我们称其为非退化的;反之我们称它为退化的.定义1.8 对于n 级方阵A ,如果有一个n 级方阵B ,使得I BA AB == (1-2)成立,我们就称方阵A 是可逆的,这里的I 是n 级单位矩阵.我们就称方阵A 是可逆的,这里的I 是n 级单位矩阵.定义1.9 如果有n 级方阵B 适合(1-2),那么我们就把方阵B 叫做方阵A 的逆矩阵,记作1-A .引理1.1 0≠A 是n 阶方阵可逆的充要条件.定义1.10 设ij A 是矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 中元素ij a 的代数余子式,则矩阵 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n A A A A A A A A A A 212221212111* 就是矩阵A 的伴随矩阵.定理1.1 如果A 方阵是非退化的,那么它是可逆的;反之方阵A 可逆,则它也一定是非退化的有 *11A dA =- (0≠=A d ). (1-3)定义1.11 矩阵的行秩是指以矩阵每一行的元素作为行向量而构成的行向量组的秩;矩阵的列秩是指以矩阵每一列的元素作为列向量而构成的列向量组的秩.定理1.2 矩阵的行秩和列秩相等.因为矩阵的行秩和列秩相等,所以我们将行秩和列秩统称为矩阵的秩,矩阵A 的秩记为)(A R .1.2 矩阵相似相似的矩阵有很多共同的性质,所以只要从与A 相似的矩阵中找到一个特别简单的矩阵,只需通过对这个简单矩阵性质的研究就可以知道A 的性质.1.2.1 矩阵相似的概念定义1.12[1] 有A ,B 方阵在数域F 上,若是F 上有n 阶可逆方阵T 使等式:AT T B 1-=成立,那么就说B 与A 相似,并且写作.~B A定义1.13[1] 设)(λij a )...,2,1,,...,2,1(n j m i ==是数域F 上的多项式,以)(λij a 为元素的n m ⨯矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(...)()(............)(...)()()(...)()()(212222111211λλλλλλλλλλmn m m n n a a a a a a a a a A称为λ矩阵.记[]()(n m P A ⨯∈λλ[]nm P ⨯λ表示数域∈P 的λ矩阵的全体).定义1.14 方阵上的相似关系~与数域K 上的n 阶方阵之间的关系是互推的,对任何n n K A ⨯∈,存在集合[]{}B A K B B A n n ~,|~⨯∈=则我们可称矩阵A 形成的相似(~)等价类. 1.2.2 矩阵相似的性质性质1.1 反身性:由于AI I A 1-=所以每一个n 级方阵都是和自己相似的.即A A ~.性质1.2 对称性:如果B A ~,那么 A B ~ ;如果B A ~ ,那么 有X ,使TX X B 1-=令1-=X Y就有BY Y XBX A 11--==所以A B ~.性质1.3 传递性:如果B A ~,C B ~,那么C A ~.事实上,由AT T B 1-=和BU U C 1-=得)()(111TU A TU ATU T U C ---== (2-1) 由等式AT T B 1-=可知,对于n 维向量空间上的两个线性变换的基它们相似.矩阵相似还有具有如下一些性质.(1)相似矩阵的行列式相等;(2)相似矩阵有相同的秩;(3)相似矩阵有相同的可逆性,且它们可逆时,它们的逆矩阵也相似;(4)相似矩阵的幂仍相似;(5)相似矩阵有相同的特征值.第二章 矩阵相似的判别研究矩阵相似的好处很多,最大的好处是通过相似变换可以让任何一个矩阵变为若当标准型.若当标准型是尽可能最简单的一种矩阵,这种矩阵在运算上有许多方便之处.另一种好处是矩阵相似有许多相同的属性,这样可以将对形式复杂矩阵的研究转化为对简单形式矩阵的研究.本章给出三种判别矩阵相似的方法.2.1 特征值与特征向量法判定矩阵的特征值与特征向量作为一个极为重要的数学概念,它在数学中有着最为广泛的应用.应用特征值与特征向量将矩阵对角化,进而做矩阵相似的判断,是较为常用的、基本的判别矩阵相似的方法.2.1.1 特征值和特征向量定义及求法矩阵的特征值与特征向量是线性代数中的两个基本概念,是判定矩阵相似的工具之一.定义2.1[1] 我们假设A 为n 阶方阵,如果有复数λ及n 维非零列向量,x 得x Ax λ= (1-1) 或者0)(=-x A E λ(1-2)那么把λ看作是A 的特征向量,而x 则是λ的特征向量.求n 阶矩阵A 的特征值与特征向量有一般如下步骤:第一步:我们应先求出矩阵的特征多项式||E A λ-;第二步: 那么接下来我们应需要知道||A E -λ0=的所有根值n λλλ,,,21 并且n λλλ,,,21 便是矩阵的所有特征值;假如i λ是特征方程的单根,则称i λ为A 的单特征值;若是j λ是特征方程的k 重根,那么A 的k 重特征值是j λ,并且j λ的重数是k .第三步:对A 的相异特征值中的每个特征值i λ,再求得齐次线性方程组0)(=-A E i λ(1-3)的一个基础解系j ik i i ξξξ,,,21 ,则有j ik i i ξξξ,,,21 即为对应于特征值i λ的特征空间的一个基,则有A 的属于i λ的全部特征向量为j j ik k i i c c c x ξξξ+++= 2211其中j k c c c ,,,21 是不全部为零的任意常数.2.1.2 特征值和特征向量的基本性质与矩阵相似的判定性质2.1 设n n ij a A ⨯=)(的全部特征值为n λλλ,,,21 ,则存在着||,21121A a n ni ii n ==+++∑=λλλλλλ在这里咱们可以利用性质1.3.1去简化特征值的问题的一些相关的运算. 性质2.2 如果λ是方阵A 的特征值,x 是相应的特征向量矩阵,然后任意正整数k ,有x 是k A 的特征值的特征向量且特征值为k λ.性质2.3 假使λ是可逆矩阵A 的一个特征值,若λλ1,0≠为1-A 的一个特征值,且λ||A 为*A 的一个特征值.性质2.4 如果有i x ),,2,1(m i =是方阵A 的相互存在差别的特征值m λλλ,,,21 的特征向量,那么存在着线性无关的向量组m x x x ,,,21 .并且,如果i λ的线性无关特征向量为i ik i i x x x ,,,21 ),,2,1(m i =,那么向量组,,,,11211i k x x x m mk m m k x x x x x x ,,,,,,,,21222212为线性无关.性质2.5 假使0λ是方阵A 的k 重特征值,那么0λ有不多过k 的个数的性无关的特征向量.定理2.1[6] 设存在着两个n 阶的方阵A 与B ,它们有n 个互不相同的特征值,并且它们两个的特征值是完全一样的,那么则矩阵A 与矩阵B 相似.证明 假使n λλλ,,, 21是A 的n 个互不相同的特征值,那么存在着可逆的 方阵1P ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ=-n AP P λλλ 21111 又因为方阵B 的特征值也是n λλλ,,, 21,那么则会有2P 可逆矩阵,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ=-n BP P λλλ 21212 所以212111BP P AP P --=.而()()1211121121112-----=P P A P P P AP P P ,即存在可逆矩阵P P P =-121,使得B AP P =-1,而矩阵A 与矩阵B 相似.定理2.2 存在着n 阶方阵A ,且它的每一个i S 重特征值i λ,能使得秩()i i S n A E -=-λ那么A 相似于对角矩阵,否则不相似.例2.1 证明矩阵⎪⎪⎪⎭⎫ ⎝⎛---=122212221A 与⎪⎪⎪⎭⎫ ⎝⎛----=30241112065B 相似.解 A 的特征多项式为()()()311122212221--+=------=-λλλλλλλA E所以A 的全部特征值为3,1,1321==-=λλλA 的属于特征值3,1,1-的全部特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛-=0111α ⎪⎪⎪⎭⎫ ⎝⎛-=1112α ⎪⎪⎪⎭⎫ ⎝⎛-=1103α.若令(123,,)P ααα=⎪⎪⎪⎭⎫ ⎝⎛-=300011001,则有⎪⎪⎪⎭⎫ ⎝⎛-=-3000100011AP P ,而B 的特征值为 ()()()311--==-λλλλB E所以B 的全部特征值为3,1,1321==-=λλλB 的属于特征值3,1,1-的特征向量为⎪⎪⎪⎪⎭⎫ ⎝⎛-=13211β ⎪⎪⎪⎭⎫ ⎝⎛-=1222β ⎪⎪⎪⎭⎫ ⎝⎛-=1433β 令⎪⎪⎪⎪⎭⎫ ⎝⎛---=1114232321Q ,则有⎪⎪⎪⎭⎫ ⎝⎛-=-3000100011BQ Q .显然 BQ Q AP P 11--=,()()11111-----==QP B QP BQP PQ A 记⎪⎪⎪⎭⎫ ⎝⎛==-1011111231QP U ,有BU U A 1-=,所以A 与B 相似.例题2.2 证明下方矩阵是否相似于对角矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛=16-3-05-3-064A (2)⎪⎪⎪⎭⎫ ⎝⎛=300130013B解 (1)由于()()()212+-=λλλA f ,所以A 的特征值是11=λ(重数1S 2=),22-=λ(重数12=S ).又由()1231S n A E r -=-==-,()==--22A E r 113S n -=-可知矩阵A 相似于对角矩阵.(2)因为()()33-=λλB f ,所以B 的特征值是3=λ(重数3=S ),又由于()03323=-=-≠==-S n r A E r ,故B 不相似于对角阵.2.2 用初等变换法判定引理2.1 如果)(λA 是数域P 上的一个λ方阵,那么有数域P 上的可逆λ方阵)(λV ,使得)(λA )(λV 为上三角方阵.引理2.2 如果A ,B 是数域上的两个n 级方阵,那么A 与B 相似的充要条件是数域P 上会有两个可逆的λ方阵)(),(λλV U ,能让A E VB E U -=-λλλλ)())(( (1-1)并且A 与B 相似时有B AT T =-1,使得)(A U T i =是)(λU 在A =λ时的左值. 定理2.3[12] 假使A ,B 是数域上的两个n 级方阵,那么方阵A 与B 相似的充要条件是在数域P 上有可逆的λ矩阵)(),(),(21λλλV V U ,成立12()()()()()U E B V E A V λλλλλ-=- (1-2)有方阵A 与B 相似时有B AT T =-1,并且)(A U T i =是)(λU 在A =λ时的左值. 证明 充分性:当存在)(),(),(21λλλV V U ,可逆,我们把(1-2)式两端同时都在右边乘上12)(-λV 有,)()())((121A E V V B E U -=--λλλλλ令121)()()(-=λλλV V V ,那么)(λV 可逆,且A E VB E U -=-λλλλ)())((,由引理2.2可知,A 与B 相似.必要性:可在(1-1)式中让E V V V ==)(),()(21λλλ那么可得(1-2)式.在A 与B 相似时,我们可以通过引理2.2得出B AT T =-1,那么)(A U T i =是)(λU 在A =λ时的左值.定理2.4[6] 如果有两个n 阶矩阵A ,B 存在于数域P 上,则存在可逆的λ方阵)(),(),(),(2121λλλλV V U U 在数域P 上,他们是矩阵A 与B 相似的充分必要条件 可以使得:)())(()())((2211λλλλλλV A E U V B E U -=- (1-3)当方阵A 与B 相似时会有有B AT T =-1,同时有)(A U T i =是)()()(112λλλU U U -=在A =λ时的左值.证明 充分性:假使)(),(),()(2121λλλλV V U U 可逆,当我们把(1-3)式两端同时左乘上12)(-λU 得到)()()())(()(21112λλλλλλV A E V B E U U -=--令)()()(112λλλU U U -=则)(λU 可逆,并且有)()()())((21λλλλλV A E V B E U -=-由定理2.3得A 与B 相似.必要性: 可以在(1-2)式中让E U U U ==)(),()(21λλλ那么可得(1-3)式.在A 与B 相似时,通过引理2.2得B AT T =-1,那么)(A U T i =是)()()(112λλλU U U -=在A =λ时的左值.例题2.3 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=011121111,211111110B A .判断A 与B 两个方阵是否相似,并且当相似时求可逆矩阵P ,使得B AP P =-1.解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=--++-+++10011023133001101231330011123100*********112121111111223223)](23[2)]1(32[2)](31[)]2(31[)]1(21[λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλA E ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-+-+-+1000010112212001111000010101110011110011010121001111)|(22)]1(12[2)](31[)]1(21[λλλλλλλλλλλλλλλλλλE B E ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+--+--+-−−−−→−--++-++-+10010011111012243423133100001111011122434133231000010110111224341332310000101101012243413323222223222232)]1(2[222232)]1(32[222232)]12(31[)]24(21[22λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ所以,A 与B 相似.令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+-=000111122434)(222λλλλλλλU则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100111123000000244000000111)(2λλλU 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==011111101100111123000000244211111110000000111423212322100111123000000244000000111)(2A A A U P l 则 ⎢⎢⎢⎣⎡-011111101 ⎥⎥⎥⎦⎤100010001⎢⎢⎢⎣⎡-→110210101 ⎥⎥⎥⎦⎤--101011001⎢⎢⎢⎣⎡-→110210101 ⎥⎥⎥⎦⎤--110011001 ⎢⎢⎢⎣⎡→100010001⎥⎥⎥⎦⎤----110211111 故 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1102111111P 所以B AP P =-12.3 分块矩阵相似判定在上一节我们通过利用矩阵的特征值与特征向量定理研究了矩阵的相似,那么这一小节我们来了解矩阵中的分块矩阵是否相似,现有两个分块矩阵着⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00,在著名的Roth (罗斯)定理中表示⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00相似的一个充要条件是方阵方程C XB AX =- (1-1) 有解.定理2.5[10] 如果已知有A ,B 两个矩阵,并且有2A A =与B B =2,那么B AC +C C =则是分块矩阵⎪⎪⎭⎫ ⎝⎛B C A 0与⎪⎪⎭⎫ ⎝⎛B A 00相似的充分必要条件.证明 必要性 已知分块矩阵⎪⎪⎭⎫ ⎝⎛B A 00,要是它中的A 和B 两个方阵都幂等的,那么它也必然为幂等的方阵.所以如果⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00相似,那么⎪⎪⎭⎫ ⎝⎛B C A 0也是幂等方阵的,也就是20⎪⎪⎭⎫ ⎝⎛B C A =⎪⎪⎭⎫ ⎝⎛B C A 0 把两边矩阵分别展开得到C CB AC =+.充分性 已知A 和B 这两个幂等方阵,因此它们可以分解为11000,000--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=Q IQ Q B P IP P A (1-2) 把它们代入(1-1)式中,得知PCQ IQ PXQ PXQ IP =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡000000 (1-3)我们让⎥⎦⎤⎢⎣⎡=4321Y Y Y Y PXQ ⎥⎦⎤⎢⎣⎡=4321F F F F PCQ (1-4)通过(1-4)式可知⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡4321323121000000F F F F Y Y Y Y Y Y (1-5)那么01=F 和04=F 是方程有解的充要条件,我们通过(1-2),(1-4),则可明确的知道等价于0=ACB 和0)()(=--B I C A I n m所以这两个方程也等价于C CB AC =+.由此可知,在C CB AC =+条件下,方程(1-1)有解,所以两个分块方阵0A C B ⎛⎫ ⎪⎝⎭和⎪⎪⎭⎫ ⎝⎛B A 00相似,证明完毕. 例题2.4 设存在两矩阵C 和D ,并且D C ~其中B A ~,求证⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D B C A 00~00. 证 因为B A ~,且矩阵.~D C 所以⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--C A Y X Y E E X C O A E X Y E 00000000000001111 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-D B YCY AX X Y X 0000001又由于⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----Y E E X Y E E X E X Y E 0000000000001111111 故.00~00⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D B C A第三章 矩阵相似的应用3.1 利用相似变换把方阵对角化定义3.1 相对应n 阶方阵A ,假使存在可逆矩阵P ,让B AP P =-1变为对角矩阵,那么我们就称矩阵A 可对角化,且可对角化为B . 定理3.1 如果n 阶矩阵A 可对角化,那么它对角矩阵相似. ⇔A 中存在着n 个线性无关的特征向量.推论3.1 如果n 阶矩阵A 存在n 个不同的特征值,那么矩阵A 与对角矩阵相似.例题3.1 利用相似变换将矩阵A 对角化..2-4242-2-22-1⎪⎪⎪⎭⎫ ⎝⎛=A解λλλλ-------=-242422221E A()()0722=+--=λλ得.7,2321-===λλλ当221==λλ时,齐次线性方程组()20A E X -=的基础解系为121,0P -⎛⎫ ⎪= ⎪ ⎪⎝⎭2201P ⎛⎫ ⎪= ⎪ ⎪⎝⎭当37λ=-时,齐次线性方程组()70A E X +=的基础解系为3122P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭因为,02-10201122-≠所以321,,P P P 线性无关,即A 有3个线性无关的特征向量,所以,利用线性变换221102012P -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,可将矩阵A 对角化为200020007⎛⎫ ⎪Λ= ⎪ ⎪-⎝⎭,即矩阵A 与矩阵Λ相似.3.2 矩阵相似性质的简单应用应用矩阵相似的简单性质我们可以在方阵乘法的运算中可以简化运算的过程,大量的节省时间,极大的方便了我们.例3.2 设⎪⎪⎪⎭⎫ ⎝⎛=1-1-2-020021A ,求证100A .解(1)先算出A 方阵特征值与特征向量.由)2)(1)(1(112020021)(-+-=+---=-=λλλλλλλA E A f A所以,A 的3个互异特征值为,2,1,1321==-=λλλ故A 可以对角化,对每个(),3,2,1=i i λ求得分别属于211-321===λλλ,,的特征向量为.35121-01100321⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=ααα,,(2) 令=P 1(α,2α,,3511100210)3⎪⎪⎪⎪⎭⎫ ⎝⎛--=α 有.2000100011⎪⎪⎪⎭⎫ ⎝⎛-=-AP P (3) 因为11001100100100()010002P A P P AP --⎛⎫ ⎪== ⎪ ⎪⎝⎭所以100110010011110001210030100010101100025002010113A P P -⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-- ⎪ ⎪⎝⎭⎝⎭ 10110113100100100100012111220002120020.501051120(12)033-⎛⎫⎛⎫ ⎪ ⎪-+⎛⎫ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭--- ⎪ ⎪⎝⎭⎝⎭3.3 矩阵相似在实际生活中的应用矩阵相似有许多相同的属性,如秩矩阵,行列式,微量(对角),特征值,特征多项式,主要因素是相同的.一个矩阵很重要的一点就是它的特征值.通过相似变换的性质特点,可以使复杂运算变成更加简单的求值计算.例 3.3 一实验生产线每年二月为熟练和非熟练工人的数量统计,然后把61熟练工人支持其他生产部门,招募新的非熟练工人完成的空缺.旧的和新的非熟练工人通过培训和时间,年终考核将有52成为熟练的工人.假使过了n 年在二月份的一次统计中熟练工人与非熟练工人在总人数中为百分之n x 与百分之n y ,我们把它写为向量.⎥⎦⎤⎢⎣⎡n n y x(1)求⎥⎦⎤⎢⎣⎡++11n n y x 和⎥⎦⎤⎢⎣⎡n n y x 的关系式并写成方阵:⎥⎦⎤⎢⎣⎡++11n n y x .⎥⎦⎤⎢⎣⎡=n n y x A (2)求证A 有⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=11-1421ηη,这两个不相关的特征向量,然后在分别算出他们的特征值;解 (1)根据上述已知有⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++=++n n n n n n n y x y y x x x 615361526511 化简得⎪⎩⎪⎨⎧+=+=++n n n n n n y x y y x x 531015210911对其用矩阵表示即为,531015210911⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡++n n n n y x y x 于是 .5310152109⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A (2) 令,),(⎥⎦⎤⎢⎣⎡==111-421ηηP 则由05≠=P 知,21ηη,这两个特征向量线性无关.因.1411ηη=⎥⎦⎤⎢⎣⎡=A 所以这个特征向量1η属于矩阵A .并且相应的11=λ为特征值. 因22212121ηη=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--A 故2η为A 的特征向量,且相应的特征值.212=λ结论本文以矩阵及矩阵的性质和矩阵相似的一些相关的性质为主要理论依据,从矩阵和矩阵相似的相关性质与应用处着手,主要论述了矩阵相似的几个判别方法,并在第三章中将矩阵相似的一些应用展示给了大家,通过将矩阵和矩阵相似的一些相关理论进行整理分析,找出了它们之间的转化关系.同时,在研究过程中,培养了应用数学的意识和能力.运用矩阵相似的性质和判别法,解决了几类较为基本的矩阵相似的应用问题.参考文献[1] 张禾瑞,郝鈵新,张禾瑞郝鈵新编.高等代数[M].北京:高等代数出版社,2007:327-328.[2] 冯天祥,李世宏.矩阵的QR分解[J].西南民族学院学报,20:4(2001),418-421.[3] 雷雪萍.高等代数中一道习题的推广[J].大学数学,2006,22(4):161-163.[4] 屠伯埙,四元数矩阵的UL分解[J].复旦学报(自然科学版),1988,(2),121-128.[5] 杨奇;孟道骥编.线性代数教程[M].南开大学出版社,216-225.[6] 吴强. 基于矩阵初等变换的矩阵分解法[J].数学理论与应用,20:4(2000), 105-107.[7] 黄宝强主编.线性代数[M].同济大学出版社. 223-226.[8] 姚允龙编.数学分析[M].上海:复旦大学出版社,2002:75-89.[9] 贺爱玲,马玉明,刘慧,陈业红.关于矩阵相似的一个注记.山东轻工业学院学报[J].2005,19(3):57-60.[10] 程士珍.两个方块矩阵相似性的研究[J].数学的实践和认识2005,35(3):191-194.[11] 王新民.矩阵环F[A]中元素的可逆性[J].数学的实践与认识,2002,38(23);223-226.[12] 王新民.袁强.关于矩阵相似的条件及其相似变换矩阵.聊城大学学报[J].2009,22(2):14-16.[13] 张天德,韩振来.数学分析同步辅导[M].天津:天津科学技术出版社,2010:26—29.[14] Liujia.Similarity matrix and its application.China western science andtechnology [J].2010,9(26):46-48.[15] Jefferson. Linear Algebra[J].USA:Create Space.2008,(124-205).致谢四年的大学生活即将结束,回头望去,百感交集.四年里,陪伴我的是敬爱的老师、亲爱的同学,所以,我要感谢母校黑河学院,您是养育我的土壤;我要感谢我的老师,是你们让我有了实现自我的能力和勇气;我要感谢我的同学们,是你们给了我家一样的感觉.另外,我要感谢我的指导老师由金玲老师,由于她的悉心指导,使我能够圆满地完成论文的撰写.在这段时间里,我深深的体会到由金玲老师的耐心与细致,以及她严谨的治学态度,这一切都将成为我今后生活、工作的榜样.再次由衷的感谢我的指导老师,您辛苦了!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11 22 nn i 1 ii
n
( ) ( 1 )( 2 ) ( n )
显然
1 2 n tr ( A)
1 2 n det A
定义2.1.5 变换, , ,,
1 2 s
T
是线性空间 Vn中线性 ,1 i , j s
1 ,.2,, n

对角线上的元素是
推论 1 如果 A 是 Hermite矩阵,则存
既然把一组线性无关 T 的特征向量
1 , 2 , , n
作为基表示
T
的矩阵形式
这样简单,是否可以找到这样一组
特征向量和如何寻找这样一组特殊
的向量就是我们下面要做的工作.
(1)特征向量的求法 在 V 中,设 S , ,, 是 V 的任意一 T 个基, 是 V 中的线性变换, T 在 S 下 的矩阵是 A 矩阵。如果 是 V 中 T 的 一个属于特征值 的特征向量,就有
T ( ) T T 0 ( )
T ( k ) kT 0 ( k )
说明 ,
k 均属于 V
0
定义2.1.3 设 T 是线性空间 V 的线性
n
变换, 0 是 T 的一个特征值,称 Vn 的
子空间 V 是
0
T 的属于 0 的特征子空间,
矩阵的相似关系
定义2.1.6 令 A, B, P 是n n 的矩阵, P 是非
奇异矩阵, 如果他们之间存在关系 B P
1
AP
则称 A 与 B 矩阵是相似矩阵, 记为 A ~ B ; 矩阵的相似关系,满足以下性质:
A ~ A ,这是因为 A I 1 AI. (1)
(2) 若
A~ B
A~ B
就有
1 A x (1) , x ( 2) , , x ( n ) x (1) , x ( 2) , , x ( n )
2
n
Ax (1) , Ax (2) , , Ax ( n ) 1 x (1) , 2 x (2) , , n x ( n )
根据行列式展开原理, ( ) 的系数有
性质:
a1 (a11 a22 ann )
an ( 1)n det A
定义2.1.4 称 tr ( A) a a a a 是 矩阵A的迹,在复数域内,(2.1.6)式 有n 个根(含重根) 1 , 2 ,, n ,即
对于线性空间 V 的线性变换 T 的任 一特征值 0 , T 的属于 0 的全体特征 向量,再添加上零向量构成的集合
n
V0 T 0 ,
Vn
( 2.1.5 )
是 Vn 的一个线性子空间.
事实上,设
, V
0
则有
T 0
T 0
于是
1 2 n
T
并且因为
x1 x2 x1 1 x2 2 xn n ( 1 , 2 , , n ) x n
那么
T T ( x11 x2 2 xn n ) T (1 , 2 ,, n ) x1 x2 (1, 2 ,, n ) A x n
第二章
矩阵的相似及应用
• 2.1 矩阵对角化
• 2.2 -矩阵和初等因子 • 2.3 Jordan标准形 • 2.4 广义特征向量
2. 1
矩阵对角化
2. 1. 1 特征值与特征向量
假如 T 是线性空间 V 中的一个线性变换,
S 1 , 2 , , n 是
V 的一个基,如果 T 在 S 下
的过渡矩阵,即线性变换 T 是可对角化的.
定理2.1.5 如果
n
阶矩阵有 n
个线性无关的特征向量, A 矩 阵与对角矩阵相似。
推论1 如果 n 阶矩阵有 n 个互 异的特征值,矩阵与对角矩阵 相似。
2.1.3
Schur 分解
引理 2.1.1 若 n 元复向量, 1 c1 , c2 ,cn T u
A
的特征多项式的一个根;反之,如
果 0 是矩阵 A 在数域 p 中的一个特征
根,即 (0 ) det(0 I A) 0 ,那么,
向 量 x11 x2 2 xn n 满 足 (2.1.2)
式, 0 ,表明 是 T 属于 0 的特征向 T
特征多项式,称 ( ) det( I A) 0 为A 的 特征方程,其根称为 A 的特征值(特
征根)。
下面,我们来分析 V 中线性变换 T 与 取定基 S 下的矩阵 A 的特征值与特征 向量的关系。
( ) 是一个关于 的 n 次多项式,如果 0
是线性变换 T 的特征值,那么 0 必是矩阵
是特征向量

在基 s 下的坐
标,因为 0 ,所以 x
是非零向量,x R
n
方程组(2.1.4)有非零解 x 的充分必 要条件
( ) det(I A) 0
定义2.1.2
I A 称为矩阵 A 的特征
矩阵,其行列式 ( ) det( I A) 称为 A的
(1)(2) (3)
1 2 3
1 0 0 T (1 , 2 , 3 ) (1 , 2 , 3 ) 0 1 0 0 0 4
P ( x (1) , x (2) , x (3) ) 就是由基 1 , 2 , 3 到基 1 , 2 , 3
.令 R PQ ,就有
C R1 AR
定理2.1.3
线性空间中的线
性变换在不同基下的矩阵相 似.
定理2.1.4 若 A 与 B 矩阵是 相似矩阵,那么它们有相同的 特征多项式,从而有相同的特
征值.
2.1.2.2
矩阵对角化

如果 A, D, P 是 n n 矩阵,其中 D 是对角形矩阵, 即 D diag(1 , 2 ,, n ) 其中 1 , 2 , , n 可能有重根; P 是非奇异矩阵,并且
的矩阵是对角形,那么 S 应具备什么样的 性质呢?
即使T满足
1 T (1 , 2 , , n ) (1 , 2 , , n ) n
2
j p
1 j n
(2.1.1)
将式(2.1.1)写成向量的形式,其 中,基S中每一个向量 j 在变换 T 下满足:
量,所以只要求出 T 在基 S 下矩阵 A 的 特征值和特征向量就行了.
换言之, T 的特征值与 A 的特征值一
致,而 T 的特征向量在 V 的基下的坐
标与 A 的特征向量一致。因此,线性 变换 T 的特征值与特征向量计算步骤
如下:
(1) 取定
P
上线性空间 V 中的一个
基,写出线性变换 T 在 S 下的矩阵 A ;
T j j j
定义2.1.1 0 是线性空间 V
中的向量,如果对于线性变换 T 满足
T
P
(2.1.2)
称 是 T 的特征值, 是线性变换 T
属于 的特征向量。
从几何角度看,当 0 且为实数时, 特征向量 的方向经线性变换 T 后保 持不变。当 0 时,T 与 保持同指 向,当 0 时, 与 指向相反。 T
V0
的维数是属于 0 的线性无关特征
向量的个数。
下面来分析矩阵 A 的特征多项式.
是线性空间 V 中的线性变换, T 在 Vn 中的一个基 S , , , 下 的矩阵是 A
T
n
1
2
n
a11 a21 A a n1
a12 a22 an 2
a1n a2 n ann
(2.1.3)
因为 S 是 V 的一个基, 1 , 2 ,, n 是线性 无关向量组,(2.1.3)成立可以等 价于
x1 x2 (I A) 0 x n
(2.1.4)
其中
x1 x2 x x n
a11 a12 a21 a22 det I A det a an 2 n1
a1n a2 n ann (2.1.6)
n a1 n1 an1 an
,则
B ~ A ; 如果
,那么存在
P ,使得 B P 1 AP

Q P 1 ,可以得到 A Q 1 BQ
,所以
B~ A.
⑶ 若 A ~ B, B ~ C ,则 A ~ C, C 是 n×n 矩阵
这是因为存在 P , Q ,使得 B P 1 AP,
C Q 1 BQ ( PQ )1 A( PQ )
x1 x2 ( 1 , 2 ,, n ) x n
由特征向量定义,以上二式可以写成
x1 x1 x2 ( , , , ) x2 ( 1 , 2 , , n ) A 1 2 n x x n n
1 s n
i j
;称
为 T 的谱; 径。
( A) max i
1 i s
称为 A 的谱半
定理2.1.1
线性变换 T 的不
同特征值所对应的特征向量线 性无关。
定理2.1.2 特征值,则
若 0 是线性变换
T
的r重
dimV0 r
2.1.2
相关文档
最新文档