23.2 中位数和众数 (1)
冀教版九年级数学 23.2 中位数和众数(学习、上课课件)
感悟新知
2. 求中位数-练
例1 近年来,随着环境治理的不断深入,成都已构建起 “青山绿道蓝网”生态格局.如今空气质量越来越好,
杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道
靓丽的风景.下面是成都市今年三月份某五天的空气质
量指数( AQI):33,27,34,40,26,则这组数据的
感悟新知
知3-练
3-1.某品牌汽车的销售公司有营销人员14 人,销售部 为制订营销人员的月销售汽车定额,统计了这
14 人某月的销售量如下(单位:辆):
销售量 20 17 13 8
进球个数 / 个 42 32 26 20 19 18 15 14 人数 / 名 1 1 1 1 2 1 2 1
感悟新知
知3-练
解题秘方:紧扣平均数、中位数和众数的定义及 特点进行解答 .
感悟新知
根据上面的信息,请解答下列问题:
知3-练
(1)求这 10 名队员进球个数的平均数、中位数和众数; 解:平均数为 110×(42+32+26+20+19× 2+18+15× 2+14) =22(个),中位数为 19 个,众数 为 15 个, 19 个 .
中位数是(
)
A.26
B.27
C.33
D.34
感悟新知
解题秘方:紧扣中位数的定义解答.
知1-练
解:将数据按从小到大的顺序排列为 26, 27, 33, 34, 40,处于中间位置的数据为 33,则中 位数是 33.
答案:C
感悟新知
知1-练
1-1. 4 月 23 日是世界读书日,学校举行“快乐阅读,
第二十三章 数据分析
23.2 中位数和众数
23.2.2用平均数、中位数和众数分析数据集中趋势
感悟新知
序号 笔试成绩 专业技能测试成绩 说课成绩
知1-练
12 3 4 5 6 66 90 86 64 65 84 95 92 93 80 88 92 85 78 86 88 94 85
(1)求出说课成绩的中位数、众数. (2)已知序号为1,2,3,4号候选人的总成绩分别为84.2分,84.6
分,88.1分,80.8分,请你判断这6名候选人中序号是多少的 候选人将被录用?为什么?
(1)月销售额在哪个值的人数最多?中间的月销售
额是多少?平均月销售额是多少?
感悟新知
知1-练
(2)如果想确定一个较高的销售目标,你认为月销售额 定为多少合适?说明理由.
(3) 如果想让一半左右的营业员都能达到销售目标,你认为 月销售额定为多少合适?说明理由.
导引:商场服装部统计的每位确营定业一员个在适某当的月月的销销售售目额标组是成一
感悟新知
知2-练
(4)因为教育局指定每所学校只要8人组成代表队,甲 校的前8名都是10分,而乙校的前8名中只有5人是 10分,所以应选择甲校参赛.
感悟新知
总结
知2-讲
中位数、众数、平均数是从不同角度反映数 据的集中趋势,在作决策时应从多角度比较,突 出方案决策的重点.
感悟新知
知2-练
1 某学校将为七年级学生开设A,B,C,D,E,F共6门选修课,
感悟新知
知识点 3 从扇形统计图中获取数据信息
知2-练
例 3 甲、乙两校参加区教育局举办的学生英语口语竞赛, 两校参赛人数相等.比赛结束后,发现学生成绩分
别为7分,8分,9分,10分(满分为10分).依据统 计数据绘制了如下尚不完整的统计图(如图)及表.
甲校成绩统计表
冀教版九年级上数学23.2.1.中位数与众数教学设计
(一)教学重难点
1.理解中位数和众数的概念,并能正确计算。
-对于中位数,难点在于理解其作为数据中心指标的含义,以及在一组数据中的位置判断。
-对于众数,难点在于识别数据集中出现频率最高的值,特别是在没有明显众数或多个众数的情况下。
2.能够在实际问题中运用中位数和众数进行数据分析,解释数据背后的意义。
2.创设情境:
-选取与学生生活密切相关的实际问题,如“如何描述一个班级同学的数学成绩分布?”
-通过讨论,让学生感受中位数和众数在实际问题中的应用价值,激发学生的学习兴趣。
(二)讲授新知
1.概念讲解:
-对中位数和众数的定义进行详细讲解,通过具体实例让学生理解它们的意义。
-强调中位数是将一组数据分为两部分的关键点,而众数则是数据中出现频率最高的值。
2.自主探究,合作交流。
-鼓励学生独立思考,通过小组合作交流,共同探讨中位数和众数的计算方法及其在数据分析中的作用。
3.分层指导,个性发展。
-根据学生的学习基础和能力水平,提供不同难度的问题和练习,使每个学生都能在原有基础上得到提高。
4.实践应用,巩固提高。
-设计多样化的实践活动,如数据分析项目、统计图表制作等,让学生在实践中巩固知识,提高应用能力。
-通过小组合作,让学生互相检查对方计算的中位数和众数,提高计算的准确性。
-引导学生使用计算器或计算机软件,进行大量数据的中位数和众数计算,提高数据处理效率。
3.通过比较、分析和综合,提升学生对数据统计量的理解和应用。
-组织课堂讨论,让学生比较不同数据集的中位数和众数,探讨它们在实际情境中的不同应用。
2.强化学生的数据意识,培养他们客观、理性的思考习惯。
-通过分析数据,引导学生形成基于事实的判断,避免主观臆断。
2017九年级数学上册23.2中位数和众数冀教版
23.2 中位数和众数学习目标:1.学习和理解中位数和众数的概念.2.会根据中位数和众数分析数据,并且解决实际问题.学习重点:认识中位数、众数这两种数据代表.学习难点:一、知识链接1.在一次数学测验中,小明所在小组9名同学的成绩分别为:16、40、83、87、91、 93 、94、98、100 .小明考了83分,他所在学习小组的平均分是______分.小明说自己的成绩在小组内是中上水平,小明的说法_______(填“正确”“不正确”).二、新知预习2.小琴的英语听力成绩一直很好,在六次测试中,前五次的的得分(满分:30分)分别为:28分,25分,27分,28分,30分.在第六次测试时,因耳机出现故障只得6分.如何评价小琴英语听力的实际水平呢?(1)用6个分数的平均数评价小琴英语听力的实际水平合理吗?答:_________.(2)如果不合理,那么应该用哪个数作为评价结果呢?像某些体育比赛评分规则一样,去掉一个最高分_____分和一个最低分_____分,取其余4个成绩的平均数作为评价结果.也可以将这6个数按照由小到大的的顺序排列:______________________________.取中间两个数的平均值__________,也比较合理.【自主归纳】一般地,将n个数据按大小顺序排列,如果n为奇数,那么把处于中间位置的的数据叫作这组数据的中位数.3.某班用无记名投票的方式选班长,5名候选人分别编为1号,2号,3号,4号,5号.投票结果如下表:最终成为班长的是______号,因为在投票过程中,他的名字出现的次数_______.在这个问题中,我们最关注是_________.【自主归纳】一般地,把一组数据中出现次数最多的那个数据叫做众数.三、自学自测1.数据9,10,10,8的中位数是______,众数是____________.2.一组数据按从小到大排列为:2,4,5,7,7,8,15.则组数据( )A.众数是5 B.众数是7 C.众数是5和7 D.没有众数3.已知一组数据-5,4,-3,2,-5,求此组数据的中位数和众数.四、我的疑惑_____________________________________________________________________________ _____________________________________________________________________________ ________________________________________________________________________一、要点探究 探究点1:中位数问题1:甲、乙两小组各10名学生某次数学测验成绩如下:(单位:分)甲组:76 81 82 83 84 85 86 86 87 90 乙组:75 78 79 80 82 84 85 89 89 91 (1)分别求出两组的平均数和中位数? 解: 甲组的平均数:110(_________________________)=_____. 将甲组数据从小到大排列:___________________________, 甲组的中位数:______. 乙组的平均数:110(_____________________)=_____. 将甲组数据从小到大排列:____________________________, 乙组的中位数:______.(2)分别就平均数和中位数指出哪组成绩较好?解:从平均数看:_____组较好;从中位数看:_____组较好.探究点2:众数问题2:某公司10名销售员,去年完成的销售额情况如下表:(1)求销售额的平均数、众数、中位数;(2)如果想让大部分销售员都能达到销售目标,你认为月销售额定为多少合适?说明理由.所出现的频数,其大小只与部分数据有关,当一组数据【针对训练】1.合作交流是学习数学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是( )A.7 B.7.5 C.8 D.92.某公司10名职工月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元探究点:3:平均数、中位数和众数的区别与联系问题:家家福超市在“六一”儿童节期间销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:(1)如果你是鞋厂经理,在平均数、中位数、众数中你最关心哪个数据?最不关心的是哪个数据?答:最关心的是________,最不关心的是________.(2)如果你是老板,你最关心的是什么?你能根据上面的数据为这家鞋店提供进货建议吗?平均数的计算要用到所有数据,【针对训练】1.已知一组数据:20 , 40 , 50 , 50 , 50 , 60 , 70 , 80,它们的平均数、中位数、众数的大小关系为( )A.平均数>中位数>众数B.平均数<中位数<众数C.中位数<众数<平均数D.平均数>中位数=众数2.某市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是________分,众数是________分.中位数1.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.求这组数据的众数是________和中位是_________2..若n 个数据x 1,x 2,x 3,…,x n 的平均数为a ,中位数为b ,众数为c ,则n 个新数据5x 1,5x 2,5x 3,…,5x n 的平均数为________,中位数为________,众数为________. 3.一组数据:2,3,4,x 中,若中位数与平均数相等,则数x 不可能是( )A .1B .2C .3D .54某电脑公司的王经理对2015年4月份电脑的销售情况做了调查,情况如下表:请你回答下列问题:(1)2015年4月份该电脑公司销售电脑价格的众数是________,本月平均每天销售电脑________台;(2)如果你是该公司的经理,根据以上信息,应该如何组织货源?5.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这150 (1)求这15名营销人员该月的销量的平均数、中位数、众数.(2)假设销售部负责人把每名营销员的月销售额定为320件,你认为是否合理?为什么?如果不合理,请你制定一个合理的销售定额,并说明理由.当堂检测参考答案:1.12 142.5a5b5c3.B4.(1)3800 5(2)根据各种价位的电脑销售量的比重,在组织货源时将6000元,4500元,3800元,3000元的电脑的比例分别设置为215,415,25,15.5.(1)平均数为1800×1+510×1+250×3+210×5+150×3+120×21+1+3+5+3+2=320,即平均数为320件.中位数为210件,众数为210件.(2)不合理,因为15人中有13人的月销售额达不到320件,这说明320虽然是所给一组数据的平均数,但受到极端数值的影响,不能反映营销人员的一般水平.销售额定为210件合适些,因为210既是中位数,又是众数,且是大部分销售员能达到的定额.。
中位数与众数的计算
中位数与众数的计算在统计学中,中位数和众数是两个重要的概念。
它们可以用来描述一组数据的集中趋势和分布情况。
本文将详细介绍中位数和众数的计算方法,并给出实际应用案例。
1. 中位数的计算方法中位数是将一组数据按照大小顺序排列后的中间值,即将数据分为两部分,左半部分的数据都小于等于中位数,右半部分的数据都大于等于中位数。
中位数的计算方法如下:(1)若数据个数为奇数,则中位数为排序后位于中间的数值。
例如,给定一组数据:3, 5, 2, 7, 1,首先按照大小顺序排列得到:1, 2, 3, 5, 7,中位数为3。
(2)若数据个数为偶数,则中位数为排序后中间两个数的平均值。
例如,给定一组数据:4, 6, 9, 1,排序后得到:1, 4, 6, 9,中位数为(4 + 6)/2 = 5。
2. 众数的计算方法众数是指在一组数据中出现次数最多的数值,即具有最高频次的数值。
众数的计算方法如下:(1)若数据中只有一个众数,则众数即为该数值。
例如,给定一组数据:2, 4, 2, 6, 3,出现最多的数值为2,故众数为2。
(2)若数据中存在多个众数,则将所有众数列出来。
例如,给定一组数据:1, 2, 3, 2, 4, 5, 4,出现最多的数值为2和4,故众数为2, 4。
3. 中位数与众数的实际应用中位数和众数在实际应用中具有广泛的应用价值。
以下为两个实际案例:(1)中位数的应用:收入水平分析在调查一组人的收入水平时,如果我们按照从小到大的顺序排列所有人的收入,那么处于中间位置的收入即为中位数。
中位数可以很好地反映出人们的平均收入水平,避免了个别极高或极低值的干扰。
(2)众数的应用:商品需求分析在分析商品的需求情况时,如果某一价格对应的销量最高,那么该价格即为众数。
众数可以帮助生产商确定最合适的商品定价,以满足消费者的需求,并达到利润最大化。
总结:中位数和众数是统计学中常用的描述数据集中趋势和分布情况的指标。
中位数是将一组数据按大小顺序排列后处于中间位置的数值,而众数是一组数据中出现次数最多的数值。
九年级数学上册 第23章 数据分析《23.2 中位数和众数》教案2 (新版)冀教版
《23.2中位数和众数》《中位数与众数》是冀教版初中数学教材九级上册第二十三单元第二课时的教学内容。
在此之前,我们已经学习了抽样调查的概念,平均数的计算;对数据的处理有了一定的了解和能力,这位这节课的学习起到了重要的过渡作用。
《中位数与众数》在统计与概率中占据非常重要的位置,通过学习本节课,了解平均数、中位数、众数的特点与不同,为今后数据分析打下结实的基础。
【知识与能力目标】掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判。
【过程与方法目标】通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。
【情感态度价值观目标】通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。
【教学重点】求出一组数据的中位数、众数。
【教学难点】利用平均数、中位数、众数解决问题。
课前准备教师准备课件、多媒体;学生准备练习本。
一、导入新课阿Q回忆十年前大学毕业后找工作经历,开始想找一份月薪在1700以上的工作,那天他看见三毛公司门口的招聘广告,上面写着:现因业务需要招员工一名,有意者欢迎前来应聘,当时阿Q走了进去……那时阿Q问了三毛公司的所有员工的月薪,列出如下统计表:问题1经理说平均工资有2000元对不对?问题2你觉得用平均数代表三毛公司的员工工资合适吗?问题3你认为阿Q如果在该公司应聘,工资能达到阿Q预想的要求吗?他的工资很可能是哪个数?试说明理由,与同伴交流。
二、新课学习中位数的概念问题1 将9人的工资按由低到高的顺序排列,处在什么位置的数是中位数?问题2 如三毛公司只有8个员工,用上面那种方法你能求出它们工资的中位数是多少22吗?归纳:1.中位数是一个位置代表值,利用中位数分析数据可以获得一些信息。
如果已知一组数据的中位数,那么可以知道,在这组数据中,有一半数比中位数大,有一半数比中位数小。
冀教版九年级数学上册23.2中位数与众数公开课优质教案(1)
23.2《中位数与众数》教学设计一、教学内容分析1.本节内容是继《平均数》的后续内容,主要是让学生在具体问题情境中感受一组数据的平均水平可以有不同的量度,体会平均数、中位数和众数三者的差别,选择恰当的数据代表对数据作出自己的评判。
因此本节课既是对前面所学知识的深化与拓展,又是联系现实生活,培养学生应用意识和创新能力的良好素材。
2.地位和作用在信息社会里,常常需要在不确定的情况下,根据大量纷繁复杂的数据做出一个合理的决策,而统计正是通过对数据的收集、整理和分析,为人们更好地决策提供依据及建议。
平均数,众数,中位数是描述一组数据的集中趋势的3个统计特征量,是帮助学生学会用数据说话的基本概念。
二、教学目标(1)知识与技能目标: a.掌握中位数、众数等数据代表的概念。
b.能根据所给信息求出相应的数据代表。
结合具体情境体会平均数、中位数和众数三者的差别c.能初步选择恰当的数据代表对一组数据做出自己的判断。
(2)数学思考目标:学会利用数据的代表分析问题。
(3)解决问题目标:培养学生统计数据应从多角度进行全面分析的能力,从而避免机械地、片面的解释。
(4)情感态度与价值观:通过实例引入,体验数学来源于生活,又服务于生活,唤起学生学数学的兴趣。
三、教学重点、难点教学重点:掌握中位数与众数的概念,及这两个概念的简单运用。
教学难点:a. 区分平均数、中位数和众数三者的差别。
b. 能在具体情境中选择恰当的数据代表,对数据做出评判。
四、教学手段根据教材内容和8年级学生的认知特点,我准备采用“以问题为中心”的讨论发现法:即课堂上,教师或学生提出适当的数学问题,通过学生与学生(或教师)之间相互讨论,相互学习,在问题解决过程中发现规律,建立概念,逐步完善学生对数据处理的认知结构。
五、教学设计本节课由五个基本环节组成:创设情境,提出问题——合作交流,探索问题——理性概括,寻找差异——实践应用,鼓励创新——归纳小结,反思提高。
1. 创设情境,提出问题一上课,我先指导学生复习有关平均数的知识,为引入主题做好准备。
23.2中位数与众第1课时认识中位数和众数-冀教版九年级数学上册课件(共23张PPT)
例3.某商店销售5种领口大小分别为 38,39,40,41,42的衬衫(单位Cm)
为了调查各种领口衬衫的销售情况,商店统计了某天的销售情况,并绘 制了下面的扇形统计图,你认为该商店应多进哪种领口大小的衬衫?
分析:显然,在这个问题中商店关注的 是这组数据的众数,从扇形图中可以看 出领口为40cm的衬衫所占的比例最大, 即频数最大,出现次数最多,所以40cm 是这组数据的众数.
我5次数学考试成绩分 别是90、97、95、94、 94,5次平均分是94.
我第1次考试生病了没有参 加考试,得0分,后4次的考 试成绩都是100分,5次成绩 的平均分是80分。
如果以这5次成绩的平均数作为依据, 推荐小明去,你认为合理吗?为什么?
不合理,小红的成绩中有一个异常值0分, 对平均分的影响很大,此时平均分不能反 映小红的平时成绩.
C.14岁
D.15岁
5.根据下表中的信息解决问题:
若该组数据的中位数不大于38,则符合条件的正整数a
的取值共有( C )
A.3个Biblioteka 3.在某时段有50辆车通过一个雷达测速点,工作人员将测得的
车速绘制成如图所示的条形统计图,则这50辆车的车速的
众数(单位:km/h)为( C )
A.60
B.50
C.40
D.15
4.某校共有40名初中生参加足球兴趣小组,他们的年龄统计
情况如图所示,则这40名学生年龄的中位数是( C )
A.12岁
B.13岁
情景一.崔老师欲从小明和小红中推荐一人参加数学竞赛.
我5次数学考试成绩分 别是90、97、95、94、 94,5次平均分是94.
我第1次考试生病了没有参 加考试,得0分,后4次的考 试成绩都是100分,5次成绩 的平均分是80分。
九年级数学上册23.2中位数和众数(第1课时)课件(新版)冀教版
新课标 [冀教]
第二十三章 数据分析
学习新知
检测反馈
学习新知 王小龙毕业后去一家肯德基应聘工作,经 理和他说我们这里工作人员收入很高,平均工 资有2500元,王小龙参加工作后,过了一个月 他拿到了900元的工资,觉得十分不满,他的工 资水平远远低于2500元,于是找到了经理,王 小龙认为自己受了欺骗,经理拿出工作人员的 工资表如下.你认为经理是否骗人了?
个
+1个数的平均数.众数是一组数据中
出现次数最多的数)
例1 统计全班45名学生每天上学路上所 用的时间.如果时间取最接近5的倍数的整数, 那么整理后的数据如下表:
求所用时间的平均 数、中位数和众数.
所用时间Байду номын сангаас/min 人数/名
x 1 45
5 10 15 20 25 30 合计
2 6 14 12 8 3
解析:由题意得(8+x)÷2=9,解得x=10,则这组 数据中出现次数最多的是10,故众数为10.故 填10.
进球数/个 42
人数 1
32
1
26
1
20
1
19
2
18
1
15
2
14
1
针对这次训练,请解答下列问题: (1)求这10名队员进球数的平均数、中位数和众数; (2)求这支球队整体投篮命中率; (3)若队员小华的投篮命中率为40%,请你分析一下小 华在这支球队中的投篮水平.
问题2 某班用无记名投票的方式选班长,5名候选 人分别编为1号,2号,3号,4号,5号.投票结果如 下表:
在这个问题中,我们最关注的是什么?
(1) 一般地,将n个数据按大小顺序排列,如果 n为奇数,那么把处于中间位置的数据叫做这组 数据的中位数;如果n为偶数,那么把处于中间位 置的两个数据的平均数叫做这组数据的中位数. 如图所示,图(1)中5个数据的中位数为x3,图(2) 中6个数据的中位数为 1 (x3+x4). 2
推荐K12学习九年级数学上册第23章数据分析23.2中位数和众数教案2新版冀教版
《23.2中位数和众数》《中位数与众数》是冀教版初中数学教材九级上册第二十三单元第二课时的教学内容。
在此之前,我们已经学习了抽样调查的概念,平均数的计算;对数据的处理有了一定的了解和能力,这位这节课的学习起到了重要的过渡作用。
《中位数与众数》在统计与概率中占据非常重要的位置,通过学习本节课,了解平均数、中位数、众数的特点与不同,为今后数据分析打下结实的基础。
【知识与能力目标】掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判。
【过程与方法目标】通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。
【情感态度价值观目标】通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。
【教学重点】求出一组数据的中位数、众数。
【教学难点】利用平均数、中位数、众数解决问题。
课前准备教师准备课件、多媒体;学生准备练习本。
一、导入新课阿Q回忆十年前大学毕业后找工作经历,开始想找一份月薪在1700以上的工作,那天他看见三毛公司门口的招聘广告,上面写着:现因业务需要招员工一名,有意者欢迎前来应聘,当时阿Q走了进去……那时阿Q问了三毛公司的所有员工的月薪,列出如下统计表:问题1经理说平均工资有2000元对不对?问题2你觉得用平均数代表三毛公司的员工工资合适吗?问题3你认为阿Q如果在该公司应聘,工资能达到阿Q预想的要求吗?他的工资很可能是哪个数?试说明理由,与同伴交流。
二、新课学习中位数的概念问题1 将9人的工资按由低到高的顺序排列,处在什么位置的数是中位数?问题2 如三毛公司只有8个员工,用上面那种方法你能求出它们工资的中位数是多少吗?归纳:1.中位数是一个位置代表值,利用中位数分析数据可以获得一些信息。
如果已知一组数据的中位数,那么可以知道,在这组数据中,有一半数比中位数大,有一半数比中位数小。
冀教版-数学-九年级上册- 23.2中位数与众数 同步课件
试一试,相信你能行!
1、数据1、2、1、2、3、2的众数是( 2 )。 2、数据1、3、2、3、2、0的众数是(3、2)。 3、数据1、2、3、4的众数是(没有 )。
1.一组数据3、3、2、5、3的中位数是 (3),众数是( 3)。
2.一组数据15、24、15、16、24、52 的中位数是2(0 ),众数是(15、24)。
6,7,7,8,8,8,8,9, 10, 10,11,13,15,15,16 那么应确定每人标准日产量为多少台最好?
5.某射击小组有20人,教练根据某次射击 的数据绘制成如图所示的统计图,则这组
数据的众数是(7 ),中位数是(7.5)。
人 数
7
6
3
2 1 0
5 6 7 8 9 10
环数
议一议:
1、一组数据的中位数、众数都是唯一的吗? 它是原数据中的数吗?
2、如何快速找出一组数据最中间的数或 最中间的两个数?
3、一组数据中有一个数改变,其平均数、 中位数、众数一定会随之改变吗? 举例说明。
自学指导
认真阅读课本,并完成以下问题。 1、什么叫一组数据的中位数?找一组数据 中位数时应注意什么? 2、什么叫一组数据的众数? 3、平均数、中位数和众数作为数据的代表
值各有何优缺点?
试一试,相信你能行!
1.数据3、4、6、8、9的中位数是( 6 )。 2、数据1、2、1、3、2的中位数是(2)。 3、数据1、2、1、3的中位数是( 1.5)。
3.班长统计我班18名男生的鞋号,结果 如下: 鞋号(cm) 25 25.5 26 26.5
人数 (名) 2
68
2
这组数据的中位数(26),众数是(26 )。
4、如图是某城市三月份1日至10日的最低气
冀教版九年级上册数学第23章 数据分析 中位数和众数
3.(2019·四川广元)如果一组数据 6,7,x,9,5 的平均数是 2x, 那么这组数据的中位数为( B ) A.5 B.6 C.7 D.9
【点拨】∵一组数据 6,7,x,9,5 的平均数是 2x, ∴6+7+x+9+5=2x×5,解得 x=3,∴这组数据从小到大排列 为 3,5,6,7,9,∴这组数据的中位数为 6.故选 B.
2.(2018·山西)近年来快递业发展迅速,下表是 2018 年 1~3 月 份我省部分地市邮政快递业务量的统计结果(单位:万件): 太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市
3 303.78 332.68 302.34 319.79 725.86 416.01 338.87 1~3 月份我省这七个地市邮政快递业务量的中位数是( C ) A.319.79 万件 B.332.68 万件 C.338.87 万件 D.416.01 万件
12.(2018·河北改编)老师随机抽查了本学期学生读课外书册数的 情况,绘制成下面的条形图和不完整的扇形图,其中条形图 被墨迹遮盖了一部分.
(1)求条形图中被遮 盖的数,并写出 册数的中位数;
解:抽查的学生总数为 6÷25%=24(人), 读书为 5 册的学生有 24-5-6-4=9(人), 所以条形图中被遮盖的数为 9,册数的中位数为 5.
主题阅读活动以来,受到各校的广泛关注和同学们的积极响
应,某校为了解全校学生主题阅读的情况,随机抽查了部分
学生在某一周主题阅读文章的篇数,并制成如下统计图表:
某校抽查的学生文章阅读的篇数统计表
文章阅读 的篇数
3
4 5 6 7 及以上
人数 20 28 m 16 12
请根据统计图表中的信息,解答下列问题:
第二十三章数据分析
近年九年级数学上册 23.2 中位数和众数导学案 冀教版(2021年整理)
2017九年级数学上册23.2 中位数和众数导学案(新版)冀教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017九年级数学上册23.2 中位数和众数导学案(新版)冀教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017九年级数学上册23.2 中位数和众数导学案(新版)冀教版的全部内容。
23.2 中位数和众数学习目标:1.学习和理解中位数和众数的概念.2.会根据中位数和众数分析数据,并且解决实际问题.学习重点:认识中位数、众数这两种数据代表.学习难点:利用中位数、众数分析数据信息。
自主学习一、知识链接1.在一次数学测验中,小明所在小组9名同学的成绩分别为:16、40、83、87、91、 93 、94、98、100 .小明考了83分,他所在学习小组的平均分是______分。
小明说自己的成绩在小组内是中上水平,小明的说法_______(填“正确”“不正确”)。
二、新知预习2。
小琴的英语听力成绩一直很好,在六次测试中,前五次的的得分(满分:30分)分别为:28分,25分,27分,28分,30分。
在第六次测试时,因耳机出现故障只得6分。
如何评价小琴英语听力的实际水平呢?(1)用6个分数的平均数评价小琴英语听力的实际水平合理吗?答:_________.(2)如果不合理,那么应该用哪个数作为评价结果呢?像某些体育比赛评分规则一样,去掉一个最高分_____分和一个最低分_____分,取其余4个成绩的平均数作为评价结果.也可以将这6个数按照由小到大的的顺序排列:______________________________.取中间两个数的平均值__________,也比较合理.【自主归纳】一般地,将n个数据按大小顺序排列,如果n为奇数,那么把处于中间位置的的数据叫作这组数据的中位数。
九年级数学上册第23章数据分析23.2中位数和众数教案1新版冀教版
《中位数和众数》本节课是本单元的第二节课,这部分内容着重了统计与学生现实生活的亲密联系,从“如何表示商场工作人员的月薪资水平”的问题,到“衬衫销售”、“跳绳竞赛”、“配件生产”这些和学生生活联系密切的情形,目的是指引学生在详细的生活中研究数学。
【知识与能力目标】在活动中让学生理解中位数与众数的特色及其实质意义,可以在详细的情境中选择适合的统计量表示数据。
【过程与方法目标】本节课设计了“如何表示商场工作人员的薪资水平”的活动,在活动中经过算一算、比一比、论一论领会到学习中数与众数的必需性。
【感情态度价值观目标】在活动中让学生感觉到统计在生活应用,在数学活动中体验到成功的体验,成立自信心。
【教课要点】可以体验到学习中位数与众数的必需性,理解并掌握其意义。
【教课难点】会计算一组数据中的中位数教课过程一、问题引入──感觉认知矛盾。
1、河畔上的牌子写着“均匀深度为 1.1m” , 问一匹身高才 1.4 m的小马 , 能渡水过河而不出危险吗 ?2、大哥哥阿林快毕业了,想找一份适合的工作,他对这样两个招聘信息产生了兴趣,出示两个企业的招聘广告:创新企业职工的月薪(均匀薪资3000 元),阳光企业职工的月薪(平均薪资 2500 元)。
出一个选择,假如仅从薪资方面考虑,他应师:大哥哥阿林拿不定想法,请同学们帮他做该去哪家企业呢?请说明原因。
3、为了进一步认识企业状况,他深入两家企业,获得了这样两份薪资表,课件出示两家公司一资表。
创新企业职工的月薪(均匀薪资3000 元)阳光企业职工的月薪(均匀薪资2500 元)师:哥哥该去哪个企业上班?为何?3、为了让去创新企业应聘的人,能更为正确地认识到该企业职员的职工一般薪资,我们一起来想一想该用哪个数表示这个企业的一般职工薪资比较适合?4、小组研究:你们以为用哪个数据反应一般职员的实质收入比较适合?为何?5、小组代表报告,全班沟通。
二、初步感觉中位数、众数的含义1、师:你知道方才被你们采用的这两个数是这组数据里的什么数吗?在我们的数学中,它们有一个特定的名称,叫中位数和众数。