方程的根和函数的零点

合集下载

方程的根与函数的零点说课课件ppt

方程的根与函数的零点说课课件ppt
设计意图:为 “用二分法求方程的近似解”的学习做准 备.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
3板书设计
§3.1 方程的根与函数的零点
1、零点概念:
练习:
…………………………
…………………………
2、方程的根与函数零点的关系 …………………………
函数的图象与x 两个交点 轴的交点 (-1,0),(3,0)
一个交点 (1,0)
没有交点
上述一元二次方程的实数根二次函数图象与x轴交点的横坐标
意图:引起认知冲突;了解本课主旨; 通过熟悉情境,形成初步结论.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
正反例证,熟悉定理
5、零点存在性定理的辨析与应用.
函数零点存在性定理:
y
ac O
y
y
ac
O
bx
bx
c Oa
y
c Oa
b x
b x
例1如判果断函正数误y=,f(若x)不在正区确间,[a,请b]上使的用图函象数是图连象续举不出断反的例一条曲线, 并 (且 1)有已f(知a)函·f(数b)<y=0f,(x那)在么区,间函[数a,by]=上f(连x)在续区,间且(fa(,ab)) ·内f(b有) <零0点,.则
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
—— 说课过程 ——
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

函数的零点与方程的根.ppt

函数的零点与方程的根.ppt

例 6 ( 上 海 02 高 考 )、 已 知 函 数
f
(x)

ax

x2 x 1
a
1。
(1)求 f(x)单调区间。
(2)若 a=3,求证方程 f(x)=0 有且仅有一个正根。
解:(1)定义证明.(2)因在 (1,) 为增函数,
故在 (0,) 为增,又 f(0)= -1<0,f(1)=2.5,所 以在(0,1)有且只有一个正根.下用二分法 约为 0.28(列表,区间,中点,中点函数值)
求函数F( x) f ( x) g( x)的零点可转化为 求函数y f ( x)与y g( x)图像交点的横坐标
一、一元二次函数与一元二次方程 内容复习
知识归纳:1、一元二次函数、不等式、方程的关系
0
0
0
二次函数
y ax2 bx c
( a 0 )的 图象
一元二次方程
ax2 bx c 0
a 0的根
有两相异实根 有两相等实根
x1, x2 (x1 x2 )
x1

x2


b 2a
ax2 bx c 0
(a 0)的解集
x x x1或x x2
x
x


b 2a

无实根 R
ax2 bx c 0
例7 已知函数 f(x)=-x2+2ex+m
-1,g(x)=x+ex2(x>0). (1)若g(x)=m有零点,求m的取值范
围; (2)确定m的取值范围,使得g(x)-f(x)
=0有两个相异实根.
y f (x) 有零点(即横坐标)。
若函数f(x)的图像在x=x0处与x轴相切,则零点 x0为不变号零点若函数f(x)的图像在x=x0处与x 轴相交,则零点x0为变号零点

方程的根与函数的零点(精选7篇)

方程的根与函数的零点(精选7篇)

方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根和函数的零点(说课稿)、教材分析:函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,得用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。

因此本节内容具有承前启后的作用,地位至关重要。

1. 知识与技能:理解方程的根和函数的零点的关系,函数零点的定义,学会判断零点存在的条件。

2. 过程与方法:通过学习,培养学生自主探究和独立思考的能力。

培养学生函数和方程结合思想的能力。

3. 思想方法:培养学生数形结合的意识与思想。

『重点。

难点。

关键点』:1. 重点:理解方程的根和函数零点之间的联系,判断函数零点的存在及其个数的方法。

2. 难点:理解探究发现函数零点的存在性。

理解函数的零点就是方程的根及利用函数的图像和性质判别零点的个数。

3. 关键点:帮助学生寻找方程和函数图象之间的联系。

『教学方法和手段』:教学方法:探究式教学(“启发—探究—讨论”的教学模式)教学手段:教学软件PPT 和几何画板辅助教学。

『教学进程构思及说明』:置前作业:1、求下列方程的根并画出对应的函数的图像。

2(1)230x x --= 2(2)210x x -+= 2(3)230x x -+=通过观察,你能得到上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?(表格见资料)课前完成,观察上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?激发学生探究问题的兴趣。

(反馈课前作业,抽学生回答。

)分析:1. 方程0322=--x x 的 根为3,121=-=x x ,函数322--=x x y 与x 轴的交点坐标为(-1,0),(3,0),观察猜想方程0322=--x x 的两实根对应与函数与x 轴的交点坐标的横坐标。

必修一高中数学人教版A版必修一第三单元3.1.1方程的根与函数的零点

必修一高中数学人教版A版必修一第三单元3.1.1方程的根与函数的零点
课前预习
课堂互动
课堂反馈
§3.1 函数与方程
3.1.1 方程的根与函数的零点
学习目标 1.理解函数零点的定义,会求某些函数的零点(重 点).2.掌握函数零点的判定方法(重、难点).3.了解函数的零点与 方程的根的联系(重点).
课前预习
课堂互动
课堂反馈
预习教材 P86-P88,完成下面问题: 知识点 1 函数的零点
课前预习
课堂互动
课堂反馈
课堂小结
1.在函数零点存在性定理中,要注意三点:(1)函数是连续 的;(2)定理不可逆;(3)至少存在一个零点.
2.方程f(x)=g(x)的根是函数f(x)与g(x)的图象交点的横坐标, 也是函数y=f(x)-g(x)的图象与x轴交点的横坐标.
3.函数与方程有着密切的联系,有些方程问题可以转化为函 数问题求解,同样,函数问题有时可以转化为方程问题, 这正是函数与方程思想的基础.
答案 C
课前预习
课堂互动
课堂反馈
题型三 判断函数零点所在的区间
【例3】 (1)二次函数f(x)=ax2+bx+c的部分对应值如下表:
x -3 -2 -1 0 1 2 3 4 y 6 m -4 -6 -6 -4 n 6
不求a,b,c的值,判断方程ax2+bx+c=0的两根所在区间
是( )
A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)
是 0,-12. 答案 0,-12
课前预习
课堂互动
课堂反馈
题型二 确定函数零点的个数
【例 2】 判断下列函数零点的个数. (1)f(x)=x2-34x+58; (2)f(x)=ln x+x2-3. 解 (1)由 f(x)=0,即 x2-34x+58=0,得 Δ=-342-4×58= -3116<0, 所以方程 x2-34x+58=0 没有实数根,即 f(x)零点的个数为 0.

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点教案方程的根与函数的零点教案「篇一」知识与技能1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.过程与方法1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力.情感、态度与价值观1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;3.使学生感受学习、探索发现的乐趣与成功感.教学重点与难点教学重点:零点的概念及零点存在性的判定.教学难点:探究判断函数的零点个数和所在区间的方法.教学的方法与手段授课类型新授课教学方法启发式教学、探究式学习。

方程的根与函数的零点教案「篇二」教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

2、理解函数的零点与方程的联系。

3、渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

教学重点、难点:1、重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。

2、难点:函数零点存在的条件。

教学过程:1、问题引入探究一元二次方程与相应二次函数的关系。

出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

一元二次方程方程的根二次函数图像与X轴的交点x2-2x-3=0x1=-1,x2=3y=x2-2x-3(-1,0),(3,0)x2-2x+1=0x1=x2=1y=x2-2x+1(1,0)x2-2x+3=0无实数根y=x2-2x+3无交点(图1-1)函数y=x2-2x-3的图像(图1-2)函数y=x2-2x+1的图像(图1-3)函数y=x2-2x+3的图像归纳:(1)如果一元二次方程没有实数根,相应的二次函数图像与x轴没有交点;(2)如果一元二次方程有实数根,相应的二次函数图像与x轴有交点。

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

3.1.1 方程的根与函数的零点第二课一、教学目标:① 进一步巩固函数零点的概念,会求基本初等函数的零点;② 掌握方程的根与函数零点之间的等价关系,体会函数方程的转化思想; ③ 对函数零点,零点所在的区间及零点个数各题型有所思有所为。

二、课前预习:(务必课前总结)1、我们学习过的那些函数?它们的图像特点?①一次函数()0y kx b k =+≠:0k >时,是一条递增的直线;0k <时,是一条递减的直线。

b 是图像与y 轴交点的纵坐标,如0b =时,直线过原点。

②二次函数 ③指数函数 ④对数函数 ⑤幂函数2、默写函数零点定理与函数零点存在性定理三、教学过程探讨1:求函数()324f x x x =--+的零点。

探讨2:解决下列两个问题,并试图发现问题中的共性①确定正整数k 的值,使得函数()324f x x x =--+在区间(),1k k +上存在零点。

②试画出函数3y x =与24y x =-+的图像,并分析两个图像交点情况。

你所发现的共性:找出一个数0x 作为函数()324f x x x =--+零点的近似值。

(精度为0.1) 课堂练习:判断下列函数的零点个数①()22f x x x =-+②()lg 2f x x x =-+ ③()2log 2xf x x =+④()()2ln 23f x x x =-- ⑤()32221f x x x x =--+ 课后练习: 1.函数6)(2-+=x x x f 的零点为2.函数2)(+=ax x f 在区间)2,1(-上有零点,则a 的取值范围是3.函数11ln )(--=x x x f 的零点的个数是 ( )A .0个B .1个C .2个D .3个4.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是 ( )A .(01),B .(12),C .(23),D .(34),5.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为 ;6、函数()11f x x =-的图像与函数()31y x =-的图像所有交点的横坐标之和等于 ( ) A. 2 B.4 C.6 D8.7、已知函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,且实数0a b c <<<满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中不可能成立的是 ( ) A. 0x a < B. 0x c < C. 0x b > D. 0x c >8、确定正整数k 的值,使得函数()237xf x x =+-在区间(),1k k +上存在零点,并确定零点的一个近似值。

方程的根与函数的零点 课件

方程的根与函数的零点  课件

此判定方法经常考,要注意条件一定要完备,缺一不可. 反之,若函数 y=f(x)在(a,b)内有零点,则 f(a)·f(b)<0 不一定 成立. 因为 f(x)在(a,b)内的零点可能为不变号零点,也可能不止一个 零点.
(2)应用零点存在性定理应注意以下问题: ①并非函数所有的零点都能用该定理找到,当函数值在零点左 右不变号时就不能应用该定理,如函数 y=x2 在零点 x0=0 左右 的函数值都是正值,显然不能使用定理判断,只有函数值在零 点的左右两侧异号时才能用这种方法. ②利用零点存在性定理只能判别函数 y=f(x)在区间(a,b)上零 点的存在性,但不能确定零点的个数.
2.解决有关根的分布问题应注意以下几点: (1)首先画出符合题意的草图,转化为函数问题. (2)结合草图考虑四个方面:①Δ 与 0 的大小;②对称轴与所给 端点值的关系;③端点的函数值与零的关系;④开口方向. (3)写出由题意得到的不等式. (4)由得到的不等式去验证图象是否符合题意,这类问题充分体 现了函数与方程的思想,也体现了方程的根就是函数的零点.在 写不等式时要注意条件的完备性.
方程的根与函数的零点
自学导引 1.函数的零点 对于函数 y=f(x),把 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 想一想:函数的零点是函数 y=f(x)与 x 轴的交点吗? 提示 函数的零点不是函数 y=f(x)与 x 轴的交点,而是 y=f(x) 与 x 轴交点的横坐标,也就是说函数的零点不是一个点,而是 一个实数.
如 f(x)=ax2+bx+c(a>0)的两个零点为
x1,x2(x1≤x2)且 k1<x1≤x2<k2.
Δ≥0, 则k1<-2ba<k2,
ffkk12> >00, ,
题型一 求函数的零点 【例 1】 判断下列函数是否存在零点,如果存在,请求出. (1)f(x)=xx+;3 (2)f(x)=x2+2x+4; (3)f(x)=2x-3; (4)f(x)=1-log3x; [思路探索] 利用解方程的方法求相应方程的根即可.

《方程的根与函数零点》教案

《方程的根与函数零点》教案

《方程的根与函数零点》教案高一数学组:熊习锋一、教材分析“方程的根与函数的零点”中主要教学内容是函数零点的定义和零点存在性定理。

函数零点的定义将数与形,函数与方程有机地联系在一起,它的发现及应用过程是培养学生化归与转化思想、数形结合思想、函数与方程思想的优质载体。

而零点存在性定理的得出也要通过对这三种数学思想的应用来加以实现,所以本节课的学习,对于提高学生的直观感知、观察发现、归纳类比、抽象概括等数学思维能力有着重要的意义。

方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了“数形结合思想”及“转化与化归思想”。

方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础.可见,函数零点概念在中学数学中具有核心地位。

二、学情分析学生之前已经学习了函数的图象和性质,理解了函数图象与性质之间的关系,已经能初步用数形结合思想解决简单问题,这为理解函数的零点提供了直观认识,并为判定零点是否存在和求出零点提供了支持;学生有一定的方程知识的基础,知道从特殊到一般的归纳方法,这为深入理解函数的零点及方程的根与函数零点的联系提供了依据。

但学生对于函数与方程之间的联系缺乏一定的认识,对于综合应用函数图象与性质尚不够熟练,这些都给学生在联系函数与方程、发现函数零点的存在性时造成了一定的难度,又加上这种函数零点存在性的判定方法表述较为抽象难以概括。

因此,教学中尽可能提供学生动手实践的机会,利用信息技术工具,让学生从亲身体验中掌握知识与方法,充分利用学生熟悉的二次函数图象和一元二次方程,通过直观感受发现并归纳出函数的零点概念;在函数零点存在性判定方法的教学时,应该为学生创设适当的问题情境,激发学生的思维,引导学生通过观察、计算、作图,思考,理解问题的本质。

高一数学必修1第三章知识点

高一数学必修1第三章知识点

高一数学必修1第三章知识点第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。

即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:1(代数法)求方程f(x)0的实数根;○2(几何法)对于不能用求根公式的方程,能够将它与函数yf(x)的图象联系起来,○并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数ykx(k0)仅有一个零点。

k(k0)没有零点。

x③一次函数ykxb(k0)仅有一个零点。

②反比例函数y④二次函数yax2bxc(a0).(1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.(2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数ya(a0,且a1)没有零点。

⑥对数函数ylogax(a0,且a1)仅有一个零点1.⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

6、选择题判断区间a,b上是否含有零点,只需满足fafb0。

7、确定零点在某区间a,b个数是的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。

8、函数零点的性质:从“数”的角度看:即是使f(x)0的实数;从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;x若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.9、二分法的定义对于在区间[a,b]上连续持续,且满足f(a)f(b)0的函数yf(x),通过持续地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):①若f(x1)=0,则x1就是函数的零点;②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);指数函数模型:l(x)abxc(a0,b>0,b1)利用待定系数法求出各解析式,并对各模型实行分析评价,选出合适的函数模型12扩展阅读:高一数学必修1各章知识点总结金太阳新课标资源网高一数学必修1各章知识点总结第一章集合与函数概念一、集合相关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

高一数学必修1第二章方程的根与函数零点

高一数学必修1第二章方程的根与函数零点

(2)log am b n=nm log a b;(3)log a b·log b a=1;(4)log a b·log b c·log c d=log a d.7.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).8.对数函数的图象与性质a>10<a<1图象性质定义域(0,+∞)值域R过定点过定点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0当x>1时,y>0当0<x<1时,y>0当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数9.反函数对数函数y=log a x(a>0,且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.例1如图所示,曲线是对数函数y=log a x的图象,已知a取3,43,35,110,则相应于c1,c2,c3,c4的a值依次为()A.3,43,35,110 B.3,43,110,35C.43,3,35,110 D.43,3,110,35解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错.要点二 判断函数零点所在区间例2 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A.⎝⎛⎭⎫-14,0 B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫14,12 D.⎝⎛⎭⎫12,34 答案 C解析 ∵f ⎝⎛⎭⎫14=4e -2<0, f (12)=e -1>0,∴f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12<0, ∴零点在⎝⎛⎭⎫14,12上.规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象.2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点. 跟踪演练2 函数f (x )=e x +x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0, ∴f (x )在(0,1)内有零点.要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0, f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点, 又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x |log 0.5x |-1=0, 可得|log 0.5x |=⎝⎛⎭⎫12x.设g (x )=|log 0.5x |,h (x )=⎝⎛⎭⎫12x ,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点. 1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝⎛⎭⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),若f (-1)·f (3)<0,则( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x 的零点所在的大致区间是( )A .(6,7)B .(7,8)C.(8,9) D.(9,10)答案 D解析因为f(9)=lg 9-1<0,f(10)=lg 10-910=1-910>0,所以f(9)·f(10)<0,所以y=lg x-9x在区间(9,10)上有零点,故选D.4.方程2x-x2=0的解的个数是()A.1 B.2 C.3 D.4答案 C解析在同一坐标系画出函数y=2x,及y=x2的图象,可看出两图象有三个交点,故2x-x2=0的解的个数为3. 5.函数f(x)=x2-2x+a有两个不同零点,则实数a的范围是________.答案(-∞,1)解析由题意可知,方程x2-2x+a=0有两个不同解,故Δ=4-4a>0,即a<1.【新方法、新技巧练习与巩固】一、基础达标1.下列图象表示的函数中没有零点的是()答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是()A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是()x -1012 3e x0.371 2.727.3920.09x+21234 5A.(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案 C解析 由上表可知f (1)=2.72-3<0, f (2)=7.39-4>0,∴f (1)·f (2)<0,∴f (x )在区间(1,2)上存在零点. 4.函数f (x )=ln x +2x -6的零点所在的区间为( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 答案 B解析 f (1)=ln 1+2-6=-4<0, f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3+6-6=ln 3>0,所以f (2)·f (3)<0,则函数f (x )的零点所在的区间为(2,3). 5.方程log 3x +x =3的解所在的区间为( ) A .(0,2) B .(1,2) C .(2,3) D .(3,4) 答案 C解析 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.若函数f (x )=ax 2-x -1仅有一个零点,则a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1, a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0, f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.已知函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点. 由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点,故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.已知二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),若函数g (x )有4个零点,求实数m 的范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3, ∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1, ∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如图所示,由于函数g (x )有4个零点,则函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的范围是⎝⎛⎭⎫-3,-114. 13.已知二次函数f (x )=x 2-2ax +4 ,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1; (3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧(-2a )2-16≥0,f (1)=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,。

方程的根与函数的零点

方程的根与函数的零点

《方程的根与函数的零点》说课稿一、教材分析1.地位与作用本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时主要内容是函数零点概念、函数零点与相对应方程根的关系,函数零点存有性定理,是一节概念课。

新教材新增了二分法,也因而设置了本节课,所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存有性定理是二分法的必备知识。

从研究方法来说,零点概念的形成和零点存有定理的发现,符合从特殊到一般的理解规律,有利于培养学生的概括归纳水平,也为数形结合思想提供了广阔的平台,2.教学重点基于上述分析,确定本节的教学重点是:了解函数零点的概念掌握函数零点存有性定理。

二、学情分析1.学生具备必要的知识与心理基础通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图的水平,这为本节课利用函数图象,判断方程根的存有性提供了一定的知识基础。

2.学生缺乏函数与方程联系的观点高一学生在函数的学习中,将函数孤立起来,理解不到函数在高中中的核心地们,例如:一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数图象,函数与方程相联系的观点的建立,函数应用意识的初步树立就成了本节课必须承载的任务3.零点定理的矛盾零点存有性定理的获得与应用,必须让学生从一定量的具体实例中操作感知,通过更多的举例来验证。

定理只为零点的存有提供充分非必要条件,所以定理的逆命题,否命题都不成立,在函数连续性,简单逻辑用语来学习的情况下,学生对定理的理解不够深入,这就要求教师引导学生体验各种成立与不成立情况,从正面、反面、侧面等不同的角度审视定理的条件与适用范围。

4.数学难点基于上述分析,确定本节教学难点:对零点存有的定理的准确理解。

三、目标分析依据新课标中心的内容与要求,以及学生实践情况。

指定数学目标如下:1 . 知识与技能目标①. 了解函数零点的概念:能够结合具体方程(如:二次方程)说明方程的根,函数的零点,函数图象与X轴的交点三者关系。

人教A版数学必修1第三章3.1.1 方程的根与函数的零点

人教A版数学必修1第三章3.1.1 方程的根与函数的零点
A. ( – 1 ,0) B. (0,1) C. (1,2) D. (2,3)
小结
函数的零点定义
三个等价关系
函数零点存在性原理
数学思想方法



















函数零点方程根, 形数本是同根生。 函数零点端点判, 图像连续方可行 。
注意:零点指的是一个实数,而不是一个点!
方程f(x)=0的实数根
函数y=f(x)的零点

函数y=f(x) 的图 象与x轴交点的 横坐标

例1、求下列函数的零点:(注意格式)
(1) y x2 x; (2) y log2 x; (3) y 3x 1;
解: (1)令y=0,即x2-x=0; 解得x1=0,x2=1
∴所求函数的零点是0和1 (2) 1 (3) 0
例2:已知函数 f (x) 是定义域为R的奇函数,且 f (x)
在(0, )上有一个零点,则f (x) 的零点个数为(A)
A.3 B.2 C.1 D.不确定
提升:这三个零点的和是多少?
思考
方程 ln x 2x 6 0 是否有实根?有几个实根
合作探究二
某地0--12时气温变化如图,中间一部分看不清 楚,假设气温是连续变化的,请将图形补充成完 整的函数图像,这段时间内,是否一定有某时刻 的气温为0°C?为什么?
气温
8
0
12 时间
-4
判断二次函数 f (x) x2 2x 2 在区间 (2,3) 上是否存在零点.
数的角度— 求根法 形的角度— 你会从数来刻画这一图形特征吗? y

4.4.1方程的根与函数的零点课件高一上学期数学

4.4.1方程的根与函数的零点课件高一上学期数学

2≤m<16,

f(x)= ,
2

y=0,y= 共有
2
6个
规律方法
已知函数有零点(方程有根)求参数的方法
(1)直接法:根据题设条件构建关于参数的不等式(组),通过解不等式(组)确
定参数的取值范围.
(2)数形结合法:先对f(x)的解析式变形,将f(x)=0转化为h(x)=g(x)[h(x),g(x)的
y2=h(x)的图象,则两个图象公共点的个数就是函数y=f(x)零点的个数.
(4)若证明一个函数的零点唯一,也可先由零点存在定理判断出函数有零点,
再证明该函数在定义域内单调.
变式训练2
(1)若函数f(x)=x2+2x+a没有零点,则实数a的取值范围是( B )
A.(-∞,1)
B.(1,+∞)
C.(-∞,1]
2 -2, ≤ 0,
3.已知函数 f(x)=
则函数 y=f(x)+3x 的零点个数是( C )
1
1 + , > 0,
A.0
B.1
C.2
D.3
解析 根据题意,令x2-2x+3x=0,
解得x1=0,x2=-1,当x≤0时,符合题意;
1
令1+ +3x=0,无解,故函数y只有两个零点,故选C.
所以函数y=log2(-2x+1)的零点为0.
探究点二
函数零点个数的判断
【例2】 判断下列函数零点的个数:
(1)f(x)=(x2-4)log2x;
解 令f(x)=0,得(x2-4)log2x=0,因此x2-4=0或log2x=0,解得x=±2或x=1.
又因为函数定义域为(0,+∞),所以x=-2不是函数的零点,

方程的的零点根与函数

方程的的零点根与函数
+ 1$ 表示一个二次函数。
表格法是用表格的形式来表示 函数,通过输入值和对应的输 出值来展示函数的对应关系。
图象法是用图象来表示函数, 通过绘制函数的图像来直观地
展示函数的对应关系。
函数的性质
函数的性质包括奇偶性、单调性、周期性和对称性等。
奇偶性是指函数图像关于原点对称还是关于y轴对称;单调性是指函数在某个区 间内是递增还是递减;周期性是指函数图像是否具有周期性;对称性是指函数图 像是否具有对称性。
03
函数与零点、根的关系
函数零点的求法
定义法
根据函数零点的定义,如果 $f(x)=0$的解为$x=a$,则称$a$
为函数$f(x)$的零点。
图像法
通过观察函数的图像,找到与$x$ 轴交点的横坐标即为函数的零点。
迭代法
通过不断迭代函数,找到满足 $f(x)=0$的解。
函数根的求法
01
02
03
代数法
解决实际问题
在解决一些实际问题时, 可以通过寻找函数的零点 或根来找到问题的解。
数学建模
在数学建模中,函数的零 点或根可以作为模型中的 参数或变量,用于描述和 解决实际问题。
04
方程的零点、根与函数的实例 分析
一元二次方程的零点与根
01
一元二次方程的零点
一元二次方程 $ax^2 + bx + c = 0$ 的零点是 $x_1, x_2$,其中 $x_1,
未来研究方向
深入理论研究
01
随着数学和其他学科的发展,需要进一步深入研究和探索零点、
根与函数的理论基础和应用范围。
跨学科研究
02
加强与其他学科的交叉研究,探索这些概念在不同领域的应用

函数的零点和方程的根数学史

函数的零点和方程的根数学史

函数的零点和方程的根数学史函数的零点和方程的根数学史函数的零点和方程的根是数学中非常重要的概念,它们在代数学和微积分学中具有广泛的应用。

在数学史中,人们对这些概念的发展和研究做出了巨大的贡献。

最早对于方程的根和函数的零点的研究可以追溯到古希腊时期。

毕达哥拉斯学派在公元前6世纪提出了一个重要的概念,即“相等的与相等的相加,其结果还是相等的”。

这个思想对于研究方程和函数的根奠定了基础。

然而,古希腊时期的数学家并没有一个统一的符号表示方程和根,所以他们通常使用几何图形来表示方程和根的关系。

在公元16世纪,意大利数学家费拉里奥在他的《代数》一书中,引入了代数记号来表示方程和根。

他使用字母来表示未知数,并使用一般的代数形式表示方程。

费拉里奥的工作开启了代数学在方程和根研究中的新篇章。

随后,法国数学家笛卡尔进一步发展了代数学,并引入了坐标系和轴表示方程和根的关系。

这一发明标志着代数学在方程和根的研究中的重大进步,也为后来的微积分学的发展铺平了道路。

在17世纪,英国数学家牛顿和德国数学家莱布尼茨独立地发现了微积分学。

微积分学是研究函数和方程的根本工具,它将方程的根和函数的零点引入到了新的层面。

牛顿和莱布尼茨提出了微积分学的基本概念,如导数和积分,并开创了微积分学的研究领域。

在微积分学中,函数的零点和方程的根被用来确定函数的最值、函数的性态等。

这一时期的数学家在函数和方程的根的研究上取得了巨大的进展,为后来的数学理论和应用奠定了基础。

到了18世纪,数学家对于函数的零点和方程的根进行了更加深入的研究。

法国数学家拉格朗日在他的《函数的微积分理论》中,给出了函数的零点的定义,并研究了函数的零点的性质。

他提出了拉格朗日乘子法,利用函数的零点来求解约束条件下的极值问题。

意大利数学家欧拉在他的《算法分析》一书中,研究了方程的复根和多项式方程的根的分布。

这些数学家的工作不仅推动了函数和方程根的研究,还对整个数学理论的发展做出了重大贡献。

方程的根与函数的零点

方程的根与函数的零点

方程的根与函数的零点1.函数零点的概念对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.函数y =f (x )的零点就是方程f (x )=0的实数根,也就是函数y =f (x )的图象与x 轴的交点的横坐标.比如,由于方程f (x )=lg x =0的解是x =1,所以函数f (x )=lg x 的零点是1.注意 函数的零点不是点 我们把使f (x )=0成立的实数x 叫做函数y =f (x )的零点,因此函数的零点不是点,而是函数y =f (x )与x 轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f (x )=x +1,当f (x )=x +1=0时仅有一个实根x =-1,因此函数f (x )=x +1有一个零点-1,由此可见函数f (x )=x +1的零点是一个实数-1,而不是一个点.【例1】函数f (x )=x 2-1的零点是( ) A .(±1,0) B .(1,0) C .0 D .±1解析:解方程f (x )=x 2-1=0,得x =±1,因此函数f (x )=x 2-1的零点是±1.答案:D2【例2】若abc A .0 B .1 C .2 D .1或2解析:∵b 2=ac ,∴方程ax 2+bx +c =0的判别式Δ=b 2-4ac =b 2-4b 2=-3b 2.又∵abc ≠0,∴b ≠0.因此Δ<0.故函数f (x )=ax 2+bx +c 的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f (x )=0有实根⇔函数f (x )的图象与x 轴有交点⇔函数f (x )有零点.【例3-1】若函数f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值.解析:因为函数f (x )=x 2+ax +b 的零点就是方程x 2+ax +b =0的根,故方程x 2+ax +b =0的根是2和-4,可由根与系数的关系求a ,b 的值.解:由题意,得方程x 2+ax +b =0的根是2和-4,由根与系数的关系,得2(4),2(4),a b +-=-⎧⎨⨯-=⎩即(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联系密切,下面以a >0为例列表说明.因此,对于二次函数的零点问题,我们可以像研究一元二次方程那样,探讨方程的判别式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D 点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x =0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3.故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F (x )=f (x )-g (x )的零点就是方程F (x )=0即方程f (x )=g (x )的实数根,也就是函数y =f (x )的图象与y =g (x )的图象的交点的横坐标.这样,我们就将函数F (x )的零点问题转化为函数f (x )与g (x )图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x 2+7x +6;(2)f (x )=1-log 2(x +3);(3)f (x )=2x -1-3;(4)f (x )=24122x x x +--.解析:分别解方程f (x )=0得函数的零点.解:(1)解方程f (x )=x 2+7x +6=0,得x =-1或-6.故函数的零点是-1,-6. (2)解方程f (x )=1-log 2(x +3)=0,得x =-1.故函数的零点是-1.(3)解方程f (x )=2x -1-3=0,得x =log 26.故函数的零点是log 26. (4)解方程f (x )=24122x x x +--=0,得x =-6.故函数的零点为-6.辨误区 忽略验根出现错误 本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f (x )=ln x -11x -的零点的个数是( ) A .0 B .1 C .2 D .3解析:在同一坐标系中画出函数y =ln x 与11y x =-的图象如图所示,因为函数y =ln x 与11y x =-的图象有两个交点,所以函数f (x )=ln x -11x -的零点个数为2.答案:C ,5.判断零点所在的区间零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点(至少一个),即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1) 当函数y =f (x )同时满足:①函数的图象在区间[a ,b ]上是连续曲线;②f (a )·f (b )<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 解:【例5-2】函数f (x )=lg x -9x的零点所在的大致区间是( )(提示先做图) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0.∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10).答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布(正负分布)所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2 ①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔c a <0. ④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0. (2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程的根的k 分布(即x 1,x 2相对于k 的位置)【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意. (2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1).若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1]. 点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时,(1)方程有一根;(2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根. (2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩ 解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.知识应用考点一 函数零点的求法1.函数2()41f x x x =--+的零点为( )A、1-+、1- C、1-、不存在 2.函数32()32f x x x x =-+的零点个数为( )A 、0B 、1C 、2D 、33. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)4. 求证方程231x xx -=+在(0,1)内必有一个实数根.5.函数f (x )=log 5(x -1)的零点是( )A .0B .1C .2D .36 已知函数f (x )=x 2-1,则函数f (x -1)的零点是________.7. 若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是___________8.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________.A.0个B.1个C.2个D.3个考点二 零点存在性定理1.xA.(-1,0) B .(0,1)2.函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(e,3)3. 设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4. 若函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,则a 的取值范围是________.考点三 一元二次方程根的分布1.已知关于x 的方程ax 2-2(a +1)x +a -1=0,探究a 为何值时,(1)方程有一正一负两根; (2)方程的两根都大于1;(3)方程的一根大于1,一根小于1.2. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围.3. 已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.4. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围.(1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点.。

方程的根与函数的零点

方程的根与函数的零点
系为 b>a>c .
方法指导
解析
将方程的根转化为函数图象的交点的横坐标问题,画图即可得出结果.
由题意可得 2x+x=2⇒2x=2-x,log2x+x=2⇒log2x=2-x,
则 a,b,c 分别为 y=2-x 与 y=2x,y=2-x 与 y=log2x,y=log2(-x)
与 y=2x 图象的交点的横坐标,如图,在同一坐标系中画出 y=2x,y=log2x,y=log2(-x),y=2x,y=2x 的图象,可得 b>a>c.
2022
湘教版必修第一册
第四章
幂函数、指数函数和对数函数
4.4 函数与方程
4.4.1 方程的根与函数的零点


1
课前预学
2
课堂导学
课前预学
课堂导学
1.理解函数的零点与方程的根的关系.
2.掌握函数零点的性质.
3.掌握函数零点个数的判断方法以及零点分布情况.
课前预学
课堂导学
下图为函数 f(x)在[-4,4]上的图象:
课前预学
课堂导学
方法总结 判断函数零点所在区间的三个步骤
(1)代入:将区间端点值代入函数求出函数的值;
(2)判断:把所得的函数值相乘,并进行符号判断;
(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号
为负且函数连续,则在该区间内至少有一个零点.
课前预学
课堂导学
【巩固训练】
课前预学
课堂导学
问题 2:一般地,方程 f(x)=0 的根与函数 y=f(x)的零点是什么关系?
答案
方程 f(x)=0 的根就是函数 y=f(x)的零点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.
生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:
代数法;
几何法.
二次函数的零点:
二次函数

1)△>0,方程 有两不等
师:引导学生运用函数零点的意义探索二次函数零点的情况.
环节
教学内容设置
师生双边互动




实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
例2.求函数 ,并画出它的大致图象.
师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.




1.利用函数图象判断下列方程有没有根,有几个根:
(1) ;
(2) .
4.已知 :
(1) 为何值时,函数的图象与 轴有两个零点;
(2)如果函数至少有一个零点在原点右侧,求 的值.
5.求下列函数的定义域:
(1) ;
(2) ;
(3)




研究 , ,
, 的相互关系,以零点作为研究出发点,并将研究结果尝试用一种系统的、简洁的方式总结表达.
考虑列表,建议画出图象帮助分析.
生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.
师:引导学生理解函数零点存在定理,分析其中各条件的作用.
环节
教学内容设置
师生互动设计




例1.求函数 的零点个数.
问题:
1)你可以想到什么方法来判断函数零点个数?
2)判断函数的单调性,由单Biblioteka 性你能得该函数的单调性具有什么特性?
课题:§
教学目标:
知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.
过程与方法零点存在性的判定.
情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.
教学重点:
重点零点的概念及存在性的判定.
难点零点的确定.
教学程序与环节设计:
教学过程与操作设计:
在区间 上有零点______;
_______, _______,
· _____0(<或>).
在区间 上有零点______;
· ____0(<或>).
(Ⅱ)观察下面函数 的图象
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
在区间 上______(有/无)零点;
· _____0(<或>).
由以上两步探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.
生:分析函数,按提示探索,完成解答,并认真思考.
师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.
环节
教学内容设置
师生双边互动




先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:
方程 与函数
方程 与函数
方程 与函数
师:引导学生解方程,画函数图象,分析方程的根与图象和 轴交点坐标的关系,引出零点的概念.
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.
师:上述结论推广到一般的一元二次方程和二次函数又怎样?
(1) ;
(2) ;
(3) ;
(4) .
2.利用函数的图象,指出下列函数零点所在的大致区间:
(1) ;
(2) ;
(3) ;
(4) .
师:结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的重要作用.





1.已知 ,请探究方程 的根.如果方程有根,指出每个根所在的区间(区间长度不超过1).




函数零点的概念:
对于函数 ,把使 成立的实数 叫做函数 的零点.
函数零点的意义:
函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标.
即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
函数零点的求法:
求函数 的零点:
(代数法)求方程 的实数根;
(几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.
教学反思
说说方程的根与函数的零点的关系,并给出判定方程在某个区产存在根的基本步骤.
2.设函数 .
(1)利用计算机探求 和 时函数 的零点个数;
(2)当 时,函数 的零点是怎样分布的?
环节
教学内容设置
师生互动设计




1.教材P108习题3.1(A组)第1、2题;
2.求下列函数的零点:
(1) ;
(2) ;
(3)

3.求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零:
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.
零点存在性的探索:
(Ⅰ)观察二次函数 的图象:
相关文档
最新文档