初中八年级(初二)物理 摆球的质量单摆的周期公式 (2)
初中八年级(初二)物理 摆球的质量单摆的周期公式

0.00030 0.00045 0.00064 0.00088
xຫໍສະໝຸດ xx在偏角很小的情况下:
F mg x l
令k mg l
F kx
探究单摆做简谐运动周期
对比猜想:单摆周期T可能与什么因素有关呢? 探究过程Ⅰ:定性实验、控制变量法 实验(一):探究单摆周期T与摆球质量m的关系
11.4 单摆
一、单摆
在竖直平面内摆动
细线的质量与小球相比可以忽略
小球的直径与线的长度相比可以忽 略 与小球受到的重力及绳的拉力相比,空气 等对它的阻力可以忽略
单摆是一个理想化的模型
以下摆是否是单摆?
细 绳
橡
粗
细
皮
绳
绳
筋
绕
细 绳
在
杆
上
①
②
③
④
⑤
思考: 单摆振动是不是简谐运动?
(1)振动图像 振动图像是不是正弦曲线?
对于单摆:
k=mg/l ,m为摆球的质量
单摆的周期公式: T 2 l
g
单摆周期公式
T 2 l
g
荷兰的物理学家、天文学家、 数学家惠更斯,研究单摆的现象, 发现:
单摆的振动周期跟摆长的平方
根成正比,跟重力加速度的平方根 成反比。
1629~1695
单摆周期公式的应用
1、计时器
1656年惠更斯首先将摆引入时钟成为摆钟。
(2)回复力 F=-KX ?
二、单摆的回复力 M
1、受力分析:
A
B
O 单摆的平衡
位置
仔细观察下面表格:你能得到什么结论?
角度
1o 2o
sinθ
0.01754 0.03490
初中物理m为摆球的质量单摆的周期公式

二、单摆的回复力 M
1、受力分析:ຫໍສະໝຸດ ABO 单摆的平衡
位置
仔细观察下面表格:你能得到什么结论?
角度
1o 2o
sinθ
0.01754 0.03490
θ弧度值
0.01754 0.03491
θ弧度值与sinθ的差值 0.00000 0.00001
3o 0.05234
0.05236
对于单摆:
k=mg/l ,m为摆球的质量
单摆的周期公式: T 2 l
g
单摆周期公式
T 2 l
g
荷兰的物理学家、天文学家、 数学家惠更斯,研究单摆的现象, 发现:
单摆的振动周期跟摆长的平方
根成正比,跟重力加速度的平方根 成反比。
1629~1695
单摆周期公式的应用
1、计时器
1656年惠更斯首先将摆引入时钟成为摆钟。
0.00002
4o 0.06976
0.06981
0.00006
5o 0.08716
0.08727
0.00011
6o 0.10453
0.10472
0.00019
7o 0.12187 8o 0.13917 9o 0.15700 10o 0.17444
0.12217 0.13863 0.15636 0.17356
例题1
周期为2s的单摆叫做秒摆,秒摆的摆长是多少?
解:根据单摆的周期公式:T 2 l
g
l
g
4 2
T
2
≈0.993m
可得,
小结:在近似计算时,g≈π2
单摆周期公式的应用
2、测重力加速度 g 4 2 l T2
初三物理知识点单摆周期公式推导

三一文库()/初中三年级〔初三物理知识点单摆周期公式推导〕公式推导M = - m * g * l * Sin x.其中m为质量,g是重力加速度,l是摆长,x是摆角。
我们希望得到摆角x的关于时间的函数,来描述单摆运动。
由力矩与角加速度的关系不难得到,M = J * β。
其中J = m * l^2是单摆的转动惯量,β = x''(摆角关于时间的2阶导数)是角加速度。
于是化简得到x'' * l = - g * Sin x.我们对上式适当地选择比例系数,就可以把常数l与g约去,再移项就得到化简了的运动方程x'' + Sin x = 0.第1页共5页因为单摆的运动方程(微分方程)是x'' + Sin x = 0 (1)而标准的简谐振动(如弹簧振子)则是x'' + x = 0 (2)相关解释我们知道(1)式是一个非线性微分方程,而(2)式是一个线性微分方程。
所以严格地说上面的(1)式描述的单摆的运动并不是简谐运动。
不过,在x比较小时,近似地有Sin x ≈ x。
(这里取的是弧度制。
即当x -> 0时有Sin x / x = o(1)。
)因而此时(1)式就变为(2)式,单摆的非线性的运动被线性地近似为简谐运动。
然后说一下为什么是10°。
由于Sin x ≈ x这个近似公式只在角度比较小的时候成立(这一个可以从正弦函数的在原点附近的图象近似看出),所以只有在小角度下(1)式化作(2)式才是合理的。
事实上5°≈0.087266弧度,Sin 5°≈0.087155,二者相差只有千分之一点几,是十分接近的。
在低精度的实验中,这种系统误差可以忽略不计(因为实验操作中的偶然误差就比它大)。
但如果换成25°,误差高达百分之三,就不宜再看成是简谐振动了。
由于正弦函数的性质,这个近似是角度越小,越精确,角度25。
单摆周期公式 T

单摆周期公式 T=2Π√L/g 和弹簧振子周期公式 T=2π√m/k的推导过程
1,弹簧振子周期公式 T=2π√m/k的推导过程。
弹簧振子的振动是简谐振动,回复力大小与位移成正比,方向相反。
f=-kx=ma (0)
2,物体运动的加速度:a=d(dx/dt)/dt. 故有:
-kx=ma=m[d(dx/dt)/dt]. 即
[d(dx/dt)/dt]+kx/m=0 (1)
3,我们知简谐振动的位移方程:x=Asin(wt) (2)
dx/dt=d(Asin(wt))/dt=wAcos(wt)
d(dx/dt)/dt=-wwAsin(wt)=-wwx (3)
4.式(1),(3)得:-wwx+kx/m =0 即 ww=k/m (4)
5.从(2)是看,x=Asin(wt)是正弦函数,
正弦函数的周期T=2π/w
W=2fπ=2π/T 把此代入(4)得:
(2π/T)^2=k/m 故得:
T=2π(m/k)^1/2.
这就是“弹簧振子周期公式 T=2π√m/k的推导过程”。
至于单摆周期公式,只是把第(0)式的回复力换成
f=-mgx/l=ma
l
f B
A
mg
摆长l,摆幅AB=x,
x/l=f/mg f=xmg/l 这就是回复力。
依次下来,到第(4)步的式(4)就是:
-wwx+kx/m= -wwx+xmg/l m= -wwx+xg/l=0
即 ww=g/l =(2π/T)^2
T=2π(l/g)^1/2 这就是“单摆周期公式 T=2Π√L/g的推导过程”。
单摆周期公式的推导

单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。
用单摆的周期公式测重力加速度考点

用单摆的周期公式测重力加速度考点(1)摆长的测量:让单摆自由下垂,用米尺量出摆线长L /(读到0.1mm ),用游标卡尺量出摆球直径(读到0. 1mm )算出半径r ,则摆长L =L /+r(若摆长没有加小球的半径,则重力加速度的测量测量值变小)(2)开始摆动时需注意:摆角要小于10° (保证简谐运动,不形成圆锥摆,形成圆周摆后,测量值变大)(3)从摆球通过最低点时开始计时,测出单摆通过最低点n 次所用时间,算出周期1n t 2T -= (若摆动少计算一次,则周期变大,重力加速度的测量测量值变小)(4)改变摆长重做几次,计算每次实验得到的重力加速度,再求这些重力加速度的平均值。
(5)选取摆长约1米的不可伸长的细丝线;质量大体积小的小球。
(6)做T 2——L 图:①不加小球半径如图1;正常如图2;加了小球直径如图3(7)2121L L T T = 221121221)R R (M M g g T T == hR R h R R g g T T h h +=+==2)(验证机械能守恒定律1.原理:物体做自由落体运动,根据机械能守恒定律有:mgh=221mV 在实验误差范围内验证上式成立。
2.实验器材:打点计时器,纸带,重锤,毫米刻度尺,铁架台,烧瓶夹、低压交流电源(4_6V)3.实验条件:a .打点计时器应该竖直固定在铁架台上b .在手释放纸带的瞬间,打点计时器刚好打下一个点子,纸带上最初两点间的距离约为2毫米。
g L T θπcos 2=3.测量的量:a.从起始点到某一研究点之间的距离,就是重锤下落的高度h,则重力势能的减少量为mgh1;测多个点到起始点的高h1、h2、h3、h4(各点到起始点的距离要远一些好)b.不必测重锤的质量5.误差分析:由于重锤克服阻力作功,所以动能增加量略小于重力势能减少量6.易错点:a.选择纸带的条件:打点清淅;第1、2两点距离约为2毫米。
b.打点计时器应竖直固定,纸带应竖直。
单摆周期公式的推导

单摆周期公式的推导一.简谐运动物体的运动学特征作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F −=,其中k 是比例系数。
对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有:kx ma F −==,即xmka −=因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。
因为x (或F )是变量,所以a 也是变量,小球作变加速运动。
把加速度a 写成22dt x d ,并把常数m k写成2ω得到x dtxd 222ω−=。
对此微分方程式,利用高等数学方法,可求得其解为)sin(ϕω+=t A x 。
这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为Tm k πω2==,从而得到作简谐运动物体的周期为kmT π2=。
二.单摆周期公式的推导单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。
当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。
让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。
在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。
当摆球运动到任一点P时,重力G 沿着圆弧切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很小﹝如θ<010﹞时,lx≈≈θθsin ,所以单摆受到的回复力x lmgF −=,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数,所以lmg可以用常数k 来表示,于是上式可写成kx F −=。
因此,在偏角θ很小时,单摆受到的回复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。
单摆的周期

实验猜想
单摆的周期与M 有关。 单摆的周期与 球有关。 单摆的周期与振幅 有关 单摆的周期与振幅A有关。 振幅 有关。 单摆的周期与摆长 有关 单摆的周期与摆长L有关。 摆长 有关。 单摆的周期与它所处的地理位置有关。 单摆的周期与它所处的地理位置有关。 它所处的地理位置有关
解决方法
控制变量法
实验录像演示一
控制变量法控制变量法他发现单摆的周期t和摆长l的二次方根成正比和重力加速度g的二次方根成反比跟振幅和摆球的质量无荷兰物理学家惠更斯曾经对单摆进行过详尽的研究
一步一个脚印, 一步一个脚印,
回顾
单摆: 单摆:
1、摆线不可伸 摆线不可伸 长 2、摆线质量可 、 以忽略不计 3、小球的半径 、 可以忽略不计
解决方法
控制变量法
实验录像演示二
两单摆周 期一样
初步结论: 初步结论: 单摆周期与 振幅A无关 振幅 无关 振幅A不等, 相等,摆长L相等 振幅 不等,M球相等,摆长 相等 不等
实验猜想
单摆的周期与M 有关。 单摆的周期与 球有关。 单摆的周期与振幅 有关 单摆的周期与振幅A有关。 振幅 有关。 单摆的周期与摆长 有关 单摆的周期与摆长L有关。 摆长 有关。 单摆的周期与它所处的地理位置有关。 单摆的周期与它所处的地理位置有关。 它所处的地理位置有关
学以致用
请利用本节课所学知识, 请利用本节课所学知识,设计一个方 测量校园内旗杆的高度。 案,测量校园内旗杆的高度。
提示: 提示:在升旗的绳下端系一小而 重的物体,测其摆动时的周期。 重的物体,测其摆动时的周期。
小结
实验探究
单摆的周期公式
学以致用
单摆的摆动: 单摆的摆动:
当偏角很小 ( )的情况 的情况 下,单摆做 <50 简谐运动。 简谐运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论: A、无关 B、有关 单摆的等时性 实验(三):探究单摆周期T与摆长l的关系
结论:A、无关 B、有关
探究单摆做简谐运动周期
探究过程Ⅱ:理论定量推导 简谐运动周期公式 T 2 m
k
对于弹簧振子:
k为弹簧的劲度系数, m为小球的质量
0.00002
4o 0.06976
0.06981
0.00006
5o 0.08716
0.08727
0.00011
6o 0.10453
0.10472
0.00019
7o 0.12187 8o 0.13917 9o 0.15700 10o 0.17444
0.12217 0.13863 0.15636 0.17356
解:此单摆的周期: T 120s 重1s力加速度的影响因数 120 1、跟纬度有关
由单摆周期公式:T 2 l g赤<g极地 2g、跟高度有关
g
4 2l
T2
4
3.14 2 12
0.248h越9高.79(,mg越s 2 )小
对于单摆:
k=mg/l ,m为摆球的质量
单摆的周期公式: T 2 l
g
单摆周期公式
T 2 l
g
荷兰的物理学家、天文学家、 数学家惠更斯,研究单摆的现象, 发现:
单摆的振动周期跟摆长的平方
根成正比,跟重力加速度的平方根 成反比。
1629~1695
单摆周期公式的应用
1、计时器
1656年惠更斯首先将摆引入时钟成为摆钟。
11.4 单摆
一、单摆
在竖直平面内摆动
细线的质量与小球相比可以忽略
小球的直径与线的长度相比可以忽 略 与小球受到的重力及绳的拉力相比,空气 等对它的阻力可以忽略
单摆是一个理想化的模型来自下摆是否是单摆?细 绳
橡
粗
细
皮
绳
绳
筋
绕
细 绳
在
杆
上
①
②
③
④
⑤
思考: 单摆振动是不是简谐运动?
(1)振动图像 振动图像是不是正弦曲线?
(2)回复力 F=-KX ?
二、单摆的回复力 M
1、受力分析:
A
B
O 单摆的平衡
位置
仔细观察下面表格:你能得到什么结论?
角度
1o 2o
sinθ
0.01754 0.03490
θ弧度值
0.01754 0.03491
θ弧度值与sinθ的差值 0.00000 0.00001
3o 0.05234
0.05236
0.00030 0.00045 0.00064 0.00088
x
x
x
在偏角很小的情况下:
F mg x l
令k mg l
F kx
探究单摆做简谐运动周期
对比猜想:单摆周期T可能与什么因素有关呢? 探究过程Ⅰ:定性实验、控制变量法 实验(一):探究单摆周期T与摆球质量m的关系
例题1
周期为2s的单摆叫做秒摆,秒摆的摆长是多少?
解:根据单摆的周期公式:T 2 l
g
l
g
4 2
T
2
≈0.993m
可得,
小结:在近似计算时,g≈π2
单摆周期公式的应用
2、测重力加速度 g 4 2 l T2
例题2
用摆长为24.8cm的单摆测定某地的重力加 速度,测得完成 120次全振动所用时间为 120s,求该地重力加速度。