泄露天机2018高考押题卷 文科数学(二)
2018年全国高考数学考前押题文科数学题卷及答案解析
1 2
D. ,
1 2
第Ⅱ卷
本 卷 包 括 必 考 题 和 选 考 题 两 部 分 。 第 (13)~(21) 题 为 必 考 题 , 每 个 试 题 考 生 都 必须作答。第 (22)~(23) 题为选考题,考生根据要求作答。 二、填空题:本大题共 4 小题,每小题 5 分。
… , x10 ,
是抛物线 C 的焦点,若 x1 x2 x10 10 ,则
x y 2≥0 y 15.若 x , y 满足约束条件 x y 4≤0 ,则 的取值范围为__________. x 1 y≥2
16 .在三棱椎 P ABC 中,底面 ABC 是等边三角形,侧面 PAB 是直角三角形,且
F F 2 PF2 ,设 C1 与 C2 的 的焦点 F 1, F 2 ,若点 P 是 C1 与 C2 在第一象限内的交点,且 1 2
离心率分别为 e1 , e2 ,则 e2 e1 的取值范围是( A. , )
1 3
B. ,
1 3
C. ,
B. n 2017 i
C. n 2018 i )
D. n 2017 i
π 2 ,则“ cosx x ”是“ cos x<x ”的( 2
A.充分而不必要条件 C.充分必要条件
B.必要而不充分条件 D.既不充分也不必要条件
9.如图为正方体 ABCD A1B1C1D1 ,动点 M 从 B1 点出发,在正方体表面上沿逆时针方
PA PB 2 , PA AC ,则该三棱椎外接球的表面积为________.
三、解答题:解答应写出文字说明、证明过程或演算步骤。
泄露天机2018高考押题卷文科数学(二)
泄露天机2018高考押题卷文科数学(二) 2018年普通高等学校招生全国统一考试文科数学(二)注意事项:1.答题前,考生需在答题卡上填写姓名和准考证号。
2.回答选择题时,用铅笔在答题卡上涂黑对应题目的答案标号,如需更改,先用橡皮擦干净再涂其他答案标号。
非选择题需写在答题卡上,写在试卷上无效。
3.考试结束后,将试卷和答题卡一并上交。
第Ⅰ卷一、选择题(共12小题,每小题5分,共60分)1.已知集合$A=\{x\in Z|x^2-3x-4\leq 0\}$,$B=\{x<\lnx<2\}$,则$AB=$()A。
$\{1,2,3,4\}$B。
$\{3,4\}$C。
$\{2,3,4\}$D。
$\{-1,0,1,2,3,4\}$答案】C解析】$A=\{x\in Z|-1\leq x\leq 4\}=\{-1,0,1,2,3,4\}$,$B=\{x|1<x<e^2\}$,所以$AB=\{2,3,4\}$。
2.设复数$z=1-2i$($i$是虚数单位),则$z+z$的值为()A。
32B。
2C。
1D。
22答案】B解析】$z+z=2$,$z\cdot z=5-4i$。
3.“$p\land q$为假”是“$p\lor q$为假”的()条件。
A。
充分不必要B。
必要不充分C。
充要D。
既不充分也不必要答案】B解析】由“$p\land q$为假”得出$p,q$中至少一个为假。
当$p,q$为一假一真时,$p\lor q$为真,故不充分;当“$p\lor q$为假”时,$p,q$同时为假,所以$p\land q$为假,所以是必要的,所以选B。
4.已知实数$x,y$满足约束条件$\begin{cases}x\leq 2\\x-2y+2\geq 0\\x+y+2\geq 0\end{cases}$,则$z=-\frac{x}{3}+y$的最大值为($\frac{3}{4}$)。
答案】C解析】作出的可行域为三角形(包括边界),把$z=-\frac{x}{3}+y$改写为$y=\frac{x}{3}+z$,当且仅当动直线$y=\frac{x}{3}+z$过点$(2,2)$时,$z$取得最大值为$\frac{3}{4}$。
《泄露天机》陕西省西安市2018届高三高考押题卷文科数学Word版含答案
陕西省西安市2018届高三高考押题卷文科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d ,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481πB .6π C .481D .616.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( ) A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e xf x x x =-,关于()f x 的性质,有以下四个推断:①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数; ③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( )A .()0,2B .()1,6C .(D .()0,612.已知正方体1111ABCD A BC D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A BC D -在棱上的交点,则下列说法错误的是( ) A .HF //BEB .BM =C .∠MBND .△MBN 的面积是4第Ⅱ卷本卷包括必考题和选考题两部分。
2018年高等学校招生全国统一考试押题卷文科数学试卷(二)含解析
1.设 i 是虚数单位,若复数 z i ,则 z 的共轭复数为(
)
1i
11
A.
i
22
1 B.1 i
2
1 C. 1 i
2
11
D.
i
22
【答案】 D
【解析】复数 z i i 1 ,根据共轭复数的概念得到, z 的共轭复数为: 1 1 i .故
1i 2
22
答案为: D.
2.设 z i 1 , f x
2
x
x
1 ,所以向量 a 与 b 的夹角为 2π.
2
3
8.已知点 P 在圆 C :x2 y2 4x 2 y 4 0 上运动,则点 P 到直线 l :x 2 y 5 0
的距离的最小值是(
)
A. 4
B. 5
C. 5 1
D. 5 1
【答案】 D
【解析】 圆 C : x2
y2
4x 2y
4
2
0 化为 x 2
2
y 1 1 ,圆心 C 2,1 半径
【答案】 A
C. 7
D. 9
【解析】 根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为 y ax z ,当直线过点 4,6 时,有最大值, 将点代入得到 z 4a 6 18 a 3 ,
故答案为: A .
10.双曲线
x2 a2
y2 b2
1 ( a 0,b 0) 的左、右焦点分别为 F1 ,F2 ,过 F1 作倾斜角为 60
1,则 f
z
(
)
i1
A.i
B. i
C. 1 i
D. 1 i
【答案】 A
【解析 】
fx
x2 x 1 ,
高考数学文科押题试卷含答案 精校打印版名校用过
2018届高三高考押题卷文科数学试卷(内部资料 注意保密)2018.05.29本试卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★ ★ 挑战自我★ ★ 实现梦想★ 一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|||3}A x x =≤,{}|N x a x x B ∈<=,且,若集合{0,1,2}A B =,则实数a 的取值范围是( ).A [2,4] .B [2,4) .C (2,3] .D [2,3]2. 若在复平面内,复数2()45miz m R i+=∈-所对应的点位于第二象限,则实数m 的取值范围为( ) .A 5(,)2-+∞ .B 8(,)5+∞ .C 58(,)25- .D 85(,)52-3. 若公比为2的等比数列{}n a 的前n 项和为S n ,且25,9,a a 成等差数列,则20S =( ).A 10241⨯- .B 1041- .C 9241⨯- .D 1141-4.已知双曲线221(0)6x y m m m -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程是( ) .A 22124x y -= .B 22148x y -= .C 2218y x -= .D 22128x y -= 5. 更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”下图是该算法的程序框图,如果输入98a =, 63b =,则输出的a 值是( ).A 35 .B 21 .C 14 .D 76. 任取[k ∈,直线:30l kx y -+=与圆224690C x y x y +--+=:相交与,M N 两点,则||MN ≥概率是( ).A 2 .B 3.C 12 .D 137. 某四棱锥的三视图所示,其中每个小格是边长为1的正方形,则该几何体的侧面积为( ).A 24+ .B 224+.C 27+ .D 227+ 8. 将函数2()2cos ()16g x x π=+-的图像向右平移4π个单位长度,再把纵坐标伸长到原来的2倍,得到函数()f x ,则下列说法正确的是( ).A 函数()f x 的最小正周期为2π .B 函数()f x 在区间75[,]124ππ上单调递增 .C 函数()f x 在区间上25[,]34ππ的最小值为.D 3x π=函数()f x 的一条对称轴 9. ()f x 是定义在R 上的奇函数,且当(0,)x ∈+∞时,2018()2018log x f x x =+,则函数()f x 的零点的个数是( ).A 1 .B 2 .C 3 .D 410. 若不等式组221(1)(2)0x yy mx x x ≥-⎧⎪≤+⎨⎪--≤⎩围成的区域的面积为1,则2z x y =-的最小值为( ) .A 43- .B 23- .C 13- .D 011. 在ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知2=c ,B A sin 3sin =,则ABC ∆面积的最大值为( ).A 23.B 3 .C 2 .D 2 12. 已知直线l 与抛物线22x py =交于,A B 两点,且OA OB ⊥,OD AB ⊥于D ,点D 坐标是(2,4),则p 的值为( ).A 2 .B 4 .C 32 .D 52二、填空题:本题共4小题,每小题5分,共20分 13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0y ≥0x +y ≤1时,恒有ax +by ≤1,求以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积________.14.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:则甲同学答错的题目的题号是 ,其正确的选项是 .15.设奇函数()f x 在(0,+∞)上为单调递增的,且(2)0f =,则不等式()()0f x f x x--≥的解集为 ____ ____.16.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为___ _____.三、解答题:共70分。
2018届全国高考数学文科模拟闯关押题模拟(二)(解析版)
2018届全国高考数学文科模拟闯关押题模拟(二)(解析版)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={-1,a},B={0,1},若A∩B={0},则A∪B=( )A. {0,1}B. {-1,0}C. {-1,0,1}D. {-1,1,2}【答案】C【解析】由A∩B={0},得 ,所以,A∪B={-1,0,1}.2. 已知=1-yi,其中x,y是实数,i是虚数单位,则x-y=( )A. 1B. 2C. 3D. 4【答案】A【解析】由题意,(x-x i)=1-y i,解得x=2,y=1.故x-y=1.点睛:本题重点考查复数的基本运算和复数的概率,属于基本体,首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如,其次要熟悉复数的相关基本概念,如复数的实部为,虚部为,模为,对应点为,共轭复数为.3. 命题“∃x∈R,≥0”的否定是( )A. “∃x∈R,≤0”B. “∃x∈R,<0”C. “∀x∈R,≤0”D. “∀x∈R,<0”【答案】D【解析】由于特称命题的否定是全称命题,否定方法是先改变量词,然后否定结论,故命题“∃x∈R,≥0”的否定是“∀x∈R,<0”4. 将函数f(x)=sin的图象向左平移个单位,得到g(x)的图象,则g(x)=( )A. sinB. cosC. sin 2xD. cos 2x【答案】A【解析】函数f(x)=sin的图象向左平移个单位,得到g(x)5. 右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:kg).记甲组数据的众数与中位数分别为x1,y1,乙组数据的众数与中位数分别为x2,y2,则( )A. x1>x2,y1>y2B. x1>x2,y1<y2C. x1<x2,y1>y2D. x1<x2,y1<y2【答案】D【解析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.6. 已知函数f(x)的导数为f′(x),且满足关系式f(x)=+2xf′(1),则f′(1)-f′(-1)=( )A. 1B. -1C. 0D. 2【答案】C【解析】由f(x)=+2xf′(1),得f′(x)=-+2f′(1),则f′(1)=-1+2f′(1),解得f′(1)=1.则f′(x)=-+2.则f′(-1)=-1+2=1.故f′(1)-f′(-1)=0.7. 已知m,n,l为三条不同的直线,α,β为两个不同的平面,给出下面4个命题:①由α∥β,m⊂α,n⊂β,得m与n平行或异面;②由m∥n,m⊥α,n⊥l,得l∥α;③由m∥n,m∥α,得n∥α;④由m⊥α,n⊥β,α⊥β,l⊥m,得l∥n.其中正确命题的序号是( )A. ①B. ②④C. ①②D. ①②④【答案】A【解析】①正确;对于②,还有可能l⊂α,故②不对;对于③,当m∥n,m∥α时,直线n与平面α不一定平行,还有可能n⊂α,故③不对;对于④,l与m还可能异面或相交,故④不对.8. 若抛物线y2=4x的准线过双曲线的一个焦点,且双曲线的实轴长为,则该双曲线的渐近线方程为( )A. y=±2xB. y=±xC. y=±4xD. y=±3x【答案】B【解析】依题意,抛物线y2=4x的准线是x=-1,双曲线的一个焦点是(-1,0),即,又双曲线的实轴长为双曲线的渐近线方程为y=±x.9. 执行如图所示的程序框图,输出的z值为( )A. 9B. 15C. 125D. 225【答案】D【解析】S=0,a=3;S=log23,a=5;S=log23+log25=log215,a=7>5,z=4log215=152=225.10. 祖暅原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,意思是两个同高的几何体,如在等高处截面的面积恒相等,则体积相等.已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为( )A. B. C. 3 D. 6【答案】B【解析】由祖暅原理可知,该不规则几何体的体积与已知三视图几何体体积相等,图示几何体是一个三棱锥,其直观图如下图:其底面是底和高分别为5,的三角形,高为,则该三棱锥的体积为V=.从而该不规则几何体的体积为.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11. 已知向量m=(-2,3)与n=(1,t),若向量m+n与m-n的夹角为锐角,则函数f(t)=t2-2t +3的值域是( )A. ∪B. ∪C. D.【答案】A【解析】m+n=(-1,t+3),m-n=(-3,3-t),(m+n)·(m-n)>0,3+9-t2>0,-2<t<2,又-3(t+3)≠-(3-t),∴t≠-,∴f(t)=(t-)2∈.12. 已知函数若函数g(x)=b-f(1-x)有3个零点x1,x2,x3,则x1+x2+x3的取值范围是( )A. (-1,1)B. (-1,2)C. (1-,1)D. (2-,2)【答案】D【解析】f(1-x)=,f(1-x)=b的三个根为x1,x2,x3,不妨设x1<x2<x3,则x2+x3=2,-<x1<0,∴2-<x1+x2+x3<2.二、填空题:本题共4小题,每小题5分,共20分.13. 若函数f(x)=ax-x3的图象过点(1,3),则f(-2)=________.【答案】0【解析】函数f(x)=ax-x3的图像过点(1,3),,解得,即f(x)=4x-x3,则.14. 若x,y满足,则2x+3y的最小值为________.【答案】-4【解析】依题意,不等式组表示区域如下图所示直线2x+3y =0如图中虚线所示,当直线平移经过点C时,2x+3y取得最小值,由得:C(7,-6), 此时.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.15. 在△ABC中,角A,B,C的对边分别为a,b,c,若acosB-bcosA=c,则A=________.【答案】【解析】在△ABC中,∵acosB-bcosA=c,根据正弦定理可得:sinAcosB-sinBcosA=sinC,又sinC=sin(A+B)=sinAcosB+sinBcosA,∴sinBcosA=0,∵A,B∈(0,π),∴cosA=0,解得A=.16. 已知圆C:(x-a)2+(y-b)2=1(a<0)的圆心在直线y=(x+1)上,且圆C上的点到直线y=-x 距离的最大值为1+,则a2+b2=________.【答案】3【解析】由已知可得圆C的圆心坐标为(a,b)又圆心在直线y=(x+1)上则则圆C上的点在直线y=-x距离的最大值为1+即解得或,又故可得则则三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 已知各项都为正数的数列{a n}满足a1=1,=2a n+1(a n+1)-a n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{a n·b n}的前n项和T n.【答案】(Ⅰ)a n=()n-1(Ⅱ)T n=2-(n+1)( )n-1.【解析】试题分析:(Ⅰ)由=2a n+1(a n+1)-a n,化简可得.进而可得a n=()n-1.(Ⅱ)根据错位相减法,即可求出数列的数列{a n·b n}的前n项和T n.试题解析:(Ⅰ)由=2a n+1(a n+1)-a n,得2a n+1(a n+1)=a n(a n+1),因为数列{a n}的各项都为正数,所以.故数列{a n}是首项为1,公比为的等比数列,因此a n=()n-1.(Ⅱ)由(Ⅰ)知a n=()n-1,故b n=n-1,所以a n·b n=(n-1)( )n-1,数列{a n·b n}的前n项和T n=+2×()2+3×()3+…+(n-2)×()n-2+(n-1)×()n-1①T n=()2+2×()3+3×()4+…+(n-2)×()n-1+(n-1)×()n,②①-②得T n=+()2+()3+…+()n-1-(n-1)×()n=-(n-1)×()n=1-()n-1-(n-1)×()n=1-(n+1)( )n,T n=2-(n+1)( )n-1.18. 某P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:组数分组人数(单位:人)第一组[20,25) 2第二组[25,30) a第三组[30,35) 5第四组[35,40) 4第五组[40,45) 3第六组[45,50] 2(Ⅰ)求a的值并画出频率分布直方图;(Ⅱ)在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.【答案】(Ⅰ)见解析(Ⅱ) P=.【解析】试题分析:(Ⅰ)由题意a=20-2-5-4-3-2=4,可依次求得直方图中小矩形的高度从而画出频率直方图.(Ⅱ)从5人中选取2人的取法有10种,其中2人都小于45岁的有3种,所求概率为P=.试题解析:(Ⅰ)a=20-2-5-4-3-2=4,直方图中小矩形的高度依次为=0.02,=0.04,=0.05,=0.04,=0.03,=0.02,频率直方图如图(Ⅱ)记第五组中的3人为A,B,C,第六组中的2人为a,b,则从中选取2人的取法有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab共10种,其中2人都小于45岁的有3种,所以所求概率为P=.19. 四棱锥A-BCDE中,侧棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC =2DE=4,H,I分别是AD,AE的中点.(Ⅰ)在AB上求作一点F,BC上求作一点G,使得平面FGI∥平面ACD;(Ⅱ)求平面CHI将四棱锥A-BCDE分成的两部分的体积比.【答案】(Ⅰ)见解析(Ⅱ).【解析】试题分析:(Ⅰ)通过证明IG∥HC和FG∥AC.从而平面FGI∥平面ACD.(Ⅱ)先求得四棱锥A-BCHI的体积V1=××=,和四棱锥A-BCDE的体积V=××(2+4)×2×2=4,通过作差得到多面体HI-ABCD的体积V2=V-V1=,可得两部分体积比为.试题解析:(Ⅰ)如右图所示,分别作AB的四等分点F(离A较近),BC的四等分点G(离C较近),则其使得平面FGI∥平面ACD.证明如下:因为H,I分别是AD,AE的中点,所以HI∥DE,且HI=DE.又DE∥BC,BC=2DE,所以HI∥BC且HI=BC.所以HI∥GC且HI=GC.所以四边形HIGC是平行四边形.所以IG∥HC.由题意,,所以FG∥AC.又IG∩FG=G,HC∩AC=C,所以平面FGI∥平面ACD.(Ⅱ)连接BI,∵H,I分别为AD,AE中点,∴HI∥DE,HI=DE=1,又DE∥BC,∴HI∥BC,∴平面CHI将四棱锥分成四棱锥A-BCHI与多面体HI-ABCD两部分,过D作D M⊥CH,垂足为M,则A到平面BCHI的距离等于DM,∵AD⊥平面BCDE,∴AD⊥CD,在Rt△CDH中,CD=2,DH=1,CH=,DM=,∵BC⊥CD,AD⊥BC,AD∩CD=D,∴BC⊥平面ACD,∵CH⊂平面ACD,∴BC⊥CH,四边形BCHI的面积为(1+4)×=,四棱锥A-BCHI的体积V1=××=,四棱锥A-BCDE的体积V=××(2+4)×2×2=4,多面体HI-ABCD的体积V2=V-V1=,∴平面CHI将四棱锥A-BCDE分成的两部分体积比为.20. 已知椭圆C:(a>b>0)的离心率为,焦距为2c,且c,,2成等比数列.(Ⅰ)求椭圆C的标准方程;(Ⅱ)点B坐标为(0,),问是否存在过点B的直线l交椭圆C于M,N两点,且满足 (O为坐标原点)?若存在,求出此时直线l的方程;若不存在,请说明理由.【答案】(Ⅰ)+y2=1(Ⅱ)y=x+或y=-x+.【解析】试题分析:(Ⅰ)根据题意可以知道: ()2=2·c ,椭圆的离心率可得a=,即可求得a和b的值,即可求得椭圆方程;(Ⅱ)设直线MN的方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,即可求得k的值,直线l 的方程.试题解析:(Ⅰ)()2=2·c,解得c=1.又e′==,及a2=b2+c2,解得a=,b=1.所以椭圆C的标准方程为+y2=1.(Ⅱ)若直线l过点B(0,).当直线l的斜率不存在时,显然不符合题意;故直线l的斜率存在,设为k,则直线l的方程为y-=kx,即y=kx+.联立方程组消去y,得(1+2k2)x2+4kx+2=0.显然Δ=(4k)2-4(1+2k2)×2>0,解得k>或k<-.(*)设点M(x1,y1),N(x2,y2),则x1+x2=,x1x2=.由,得=0,则x1x2+y1y2=0.即+(kx1+)(kx2+)=0,得+k2x1x2+k(x1+x2)+2=0,得+k2·+k+2=0,化简得=0,解得k=±.符合(*)式,此时直线l的方程为y=x+或y=-x+.故存在过点B的直线l交椭圆C于M,N两点,且满足,此时直线l的方程为y=x+或y=-x+.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21. 对于函数f(x)(x∈D),若x∈D时,均有f′(x)<f(x)成立,则称函数f(x)是J函数.(Ⅰ)当函数f(x)=x2+m(e x+x),x≥e是J函数时,求实数m的取值范围;(Ⅱ)若函数g(x)为R+上的J函数,试比较g(a)与e a-1g(1)的大小.【答案】(Ⅰ)m>(Ⅱ)见解析【解析】试题分析:(1)根据J函数的定义,解不等式f'(x)>f(x),通过这个不等式,我们可以求出m的取值范围,(2)根据函数g(x)为(0,+∞)上的J函数,构造函数h(x)=,利用函数的单调性进行判断.试题解析:(Ⅰ)由f(x)=x2+m(e x+x),x≥e得f′(x)=2x+m(e x+1),x≥e,由f′(x)<f(x)得2x+m(e x+1)<x2+m(e x+x),∴m(x-1)>2x-x2,又x≥e,∴m>,令y=,则y′=<0,又x≥e,∴y max=,∴m>.(Ⅱ)构造函数h(x)=,x∈R+,则h′(x)=<0,可得h(x)为R+上的减函数.当a>1时,h(a)<h(1),即,得g(a)<e a-1g(1);当0<a<1时,h(a)>h(1),即,得g(a)>e a-1g(1);当a=1时,h(a)=h(1),即,得g(a)=e a-1g(1).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 以平面直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系.已知圆C的极坐标方程为ρ=2sin θ,直线l的参数方程为(t为参数),若l与C交于A,B两点.(Ⅰ)求|AB|;(Ⅱ)设P(1,2),求|PA|·|PB|的值.【答案】(Ⅰ) (Ⅱ)1.【解析】试题分析:(Ⅰ)将直线l的参数方程为带入圆的普通方程,化简得10t2-8t+1=0,利用参数t的意义求|AB|即可.(Ⅱ)利用两点间的距离公式可得|PA|·|PB|=10|t1t2|=1.试题解析:(Ⅰ)由ρ=2sin θ,得ρ2=2ρsin θ,即x2+y2=2y,把x=1-t,y=2-3t代入上式得(1-t)2+(2-3t)2=2(2-3t),∴10t2-8t+1=0,则t1+t2=,t1t2=,(t1-t2)2=(t1+t2)2-4t1t2=-=,∴|AB|====.(Ⅱ)|PA|·|PB|===10|t1t2|=1.23. 设函数f(x)=|2x+1|+|x+1|.(Ⅰ)求不等式f(x)≤8的解集;(Ⅱ)若不等式f(x)>|a-2|对任意x∈R恒成立,求实数a的取值范围.【答案】(Ⅰ)(Ⅱ)a∈.【解析】试题分析:(1)分,,三段解不等式,得结论;(2)本题不等式恒成立,只要求得f(x)原最小值,然后解不等式|a-2|<即可.试题解析:(Ⅰ)f(x)=f(x)≤8,则或或∴-≤x≤2或-1<x<-或-≤10≤-1,∴-≤x≤2,∴f(x)≤8的解集为.(Ⅱ)由(Ⅰ)得f(x)最小值为,依题意,|a-2|<,∴<a<,即a∈.。
2018年高考押题猜题试卷文科数学(有答案)
2018年高考押题猜题试卷文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,3,5,6,9U =,{}3,6,9A =,则图中阴影部分表示的集合是( )A .{1,3,5}B .{1,5,6}C .{6,9}D .{1,5}2z 的共轭复数z =( )ABC D3.已知焦点在y轴上的双曲线的渐近线方程为2y x =±,则该双曲线的离心率为( )AB .32 C或32 D .24.已知空间几何体的三视图如图所示,则该几何体的体积是() A .43 B .83 C .4 D .8 5.已知函数()()sin f x x ωϕ=+,x ∈R (其中0ω>,ππω-<<)的部分图象,如图所示,那么()f x 的解析式为() ABCD6.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里 C .此人第三天走的路程占全程的18 D .此人后三天共走了42里路 7.已知x ,y 满足约束条件010 220x y x y x y -+--⎧⎪⎨⎪+⎩≤≥≥,则2z x y =++的最大值是( ) A .3 B .5 C .6 D .7此卷只装订不密封班级姓名准考证号考场号座位号82a b ==,()()22a b a b +⋅-=-,则a b 与的夹角为( )A .30︒B .45︒C .60︒D .120︒9.已知定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,()f x x =,则函数()()4log g x f x x =-的零点个数是( )A .0B .2C .4D .610.在锐角ABC △中,角A ,B ,C 对应的边分别是a ,b ,c ,向量()sin ,tan a C A =,()tan ,sin b A A =,且cos cos a b A C ⋅=+,则)A .)1B .(12,2+C .(1++D .11.若直线y x b =+与曲线3y =b 的取值范围是()A .1⎡-+⎣ BC .1,1⎡-+⎣ D .1⎡⎤-⎣⎦12.在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就坐,且相邻座位(如1与2,2与3)上的人要有共同的体育兴趣爱好.现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是( )A .小方B .小张C .小周D .小马第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.函数()1sin f x x x +-=在()0,2π上的单调情况是_______________.14.如图是某算法的程序框图,则程序运行后输出的结果是__________. 15.已知函数()()sin π01f x x x =<<,若a b ≠,且()()f a f b =,则41a b +的最小值为_____________. 16.如图,在四面体ABCD 中,点1B ,1C ,1D 分别在棱AB ,AC ,AD 上,且平面111B C D ∥平面BCD ,1A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD =,对于函数()V f x =,则下列结论正确的是__________. ①当23x =时,函数()f x 取到最大值; ②函数()f x 在2,13⎛⎫ ⎪⎝⎭上是减函数; ③函数()f x 的图像关于直线12x =对称; ④不存在0x ,使得()014A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积). 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.各项均为正数的等比数列{}n a ,前n 项和为n S ,且满足322a a -=,37S =. (1)求数列{}n a 的通项公式; (2)若()2111log n n b n a +=+⋅,求数列{}n b 的前n 项和n T .18.据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)若销售金额(单位:万元)不低于平均值x 的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.19.已知三棱锥A BCD -中,ABC △是等腰直角三角形,且AC BC ⊥,2BC =,AD ⊥平面BCD ,1AD =.(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 中点,求点A 到平面CED 的距离.20.已知椭圆E 的中心在原点,焦点在x 轴,焦距为2倍.(1)求椭圆E 的标准方程;(2)设()2,0P ,过椭圆E 左焦点F 的直线l 交E 于A 、B 两点,若对满足条件的任意直线l ,不等式PA PB λ⋅≤(λ∈R )恒成立,求λ的最小值.21.已知二次函数()f x 的最小值为4-,且关于x 的不等式()0f x ≤的解集为{}13x x x ∈R -≤≤,. (1)求函数()f x 的解析式; (2(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分) 22.已知直线l 的参数方程为cos 1sin x t y t αα==+⎧⎨⎩(0πα<≤,t 为参数),曲线C 的极坐标方 (1)将曲线C 的极坐标方程化为直坐标方程,并说明曲线C 的形状; (2)若直线l 经过点()1,0,求直线l 被曲线C 截得的线段AB 的长. 23.已知0a >,0b >,函数()f x x a x b =++-的最小值为4. (1)求a b +的值; (2)求221149a b +的最小值.2018年高考押题猜题试卷文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】∵{}1,3,5,6,9U =,{}3,6,9A =,∴{}1,5U A =ð,∴图中阴影部分表示的集合是{}1,5U A =ð,故选D .2.【答案】C 【解析】(11i z --=+z故选C .3.【答案】A【解析】因为焦点在y轴上的双曲线的渐近线方程为y x =22225455b a c a ==-,2295a c =,295e =,5e =,故选A .4.【答案】B【解析】几何体为四棱锥,高为2,底面为正方形面积为22=4⨯,1824=33V ∴=⨯⨯,选B .5.【答案】A【解析】周期2ππ42π2T ω==⨯=,∴1ω=,()()sin f x x ϕ=+,∵()0sin 1f ϕ==,π2ϕ=,A .6.【答案】C【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由6378S =求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.7.【答案】C【解析】绘制不等式组表达的平面区域如图所示,则目标函数22z x y x y =++=++,结合目标函数的几何意义可知目标函数在点()2,2C 处取得最大值:max 2226z =++=. 本题选择C 选项. 8.【答案】C 【解析】由()()22a b a b +⋅-=-2222a a b b +⋅-=-, 22cos ,22a a b a b b +<>-=-,又2a b ==,∴44cos ,82a b +<>-=-, 1cos ,2a b <>=,∵两向量夹角的范围为[]0180︒︒,,∴a 与b 的夹角为60︒.故选:C . 9.【答案】D 【解析】由题意,偶函数()f x 的周期为2,作出函数()f x 象,如图所示,观察图象可知,两个函数的交点个数为6个,所以函数()()4log g x f x x =-的零点个数是6. 10.【答案】B 【解析】cos cos a b A C ⋅=+,()()cos cos cos sin sin sin A C A A A C ∴+=⋅+, 22cos sin cos cos sin sin A A A C A C ∴-=-+,()cos2cos cos A A C B ∴=-+=,2B A ∴=, 因为ABC △是锐角三角形,所以π02C <<,π022B A <=<,πππ32B A A ∴--=-<,π6A ∴>,ππ64A ∴<<,由正弦定理,可得:ππ64A <<,cos A <<,此卷只装订不密封班级姓名准考证号考场号座位号sin sin sin 3sin 2sin cos 2cos sin 22sin cos sin sin sin c bC BA AA A A A A Aa A A A+++++===24cos 2cos 1A A =+-,214cos 2cos 12A A ∴+<+-<+.本题选择B 选项.11.【答案】D【解析】将曲线的方程3y =()()22234x y -+-=()13,04y x ≤≤≤≤,即表示以()2,3A 为圆心,以2为半径的一个半圆,如图所示:由圆心到直线y x b =+的距离等于半径2,可∴1b =+或1b =-D .12.【答案】A【解析】重新整理:篮球:小林,小马; 网球:小林,小张;羽毛球:小林,小李; 足球:小方,小张;排球:小方,小李; 跆拳道:小方,小周;棒球:小马,小李; 击剑:小周,小张乒乓球:小马; 自行车:小周由于小周的自行车与小马的乒乓球没有共同兴趣爱好者,所以小周两边一事实上是跆拳道与击剑的,小马两边只能是棒球与篮球的.即小马与小林一定相邻,所以1号位是小林,2号位一定是小马,3号位就是棒球的小李.小周与小张及小方一定相邻,所以小周坐5号位.从3号位角度,4号位只能是排球和羽毛球(小林,不可能),所以是排球小方.6号位小张.选A .第Ⅱ卷 二、填空题:本大题共4小题,每小题5分. 13.【答案】单调递增 【解析】在()0,2π上有()1cos 0f x x ='->,所以()f x 在()0,2π单调递增,故答案为单调递增. 14.【答案】10 【解析】当0s =,1n =时,()01109s =+-+=<,则112n =+=;当0s =,2n =时,()201239s =+-+=<,则213n =+=;当3s =,3n =时,()331359s =+-+=<,则314n =+=;当5s=,4n =时,()4514109s =+-+=>,此时运算程序结束,输出10s =,应填答案10. 15.【答案】9 【解析】画出了函数图象,()()f a f b =,故得到a 和b 是关于轴对称的,1a b +=;45549b a a b +++=≥.等号成立的条件为2a b =.故答案为9. 16.【答案】①②④ 【解析】令1A BCD V -=,1AD x AD =11A A h x h =-,所以()()21f x x x =-,()01x <<,()()()()221123f x x x x x x '=-+-=-,则()f x 在20,3⎛⎫ ⎪⎝⎭单调递增,2,13⎛⎫ ⎪⎝⎭单②④. 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.【答案】(1)12n n a -=;(2)1n nT n =+.【解析】(1)设等比数列{}n a 的公比为q ,由3232 7a a S ==⎧⎨⎩-得()21121217a q a q a q q -=+=⎧⎪⎨⎪⎩+,解得2q =或15q =-,∵数列{}n a 为正项数列,∴2q =,代入2112a q a q -=,得11a =,∴12n n a -=.(2)()2111log n nn a b +=+⋅()()21log 21n n n n =+=+,此时()11111n b n n n n ==-++, ∴121111112231n n T b b b n n =++⋯+=-+-+⋯+-+1111nn n =-=++.18.【答案】(1)推断该地区110家微商中有55家优秀;(2)35.【解析】(1)6家微商一周的销售金额分别为8,14,17,23,26,35, 故销售金额的平均值为1814172326352056x =+++++=()..由题意知优秀微商有3家,故优秀的概率为12,由此可推断该地区110家微商中有55家优秀.(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,有15种, 设“恰有1家是优秀微商”为事件A ,则事件A 包含的基本事件个数为9种,所以()93155P A ==.即恰有1家是优秀微商的概率为35.19.【答案】(1)见解析; (2)5d =.【解析】(1)证明:因为AD ⊥平面BCD ,BC ⊂平面BCD ,所以AD BC ⊥,又因为AC BC ⊥,AC AD A =,所以BC ⊥平面ACD ,BC ⊂平面ABC ,所以平面ABC ⊥平面ACD .(2)由已知可得CD =,取CD 中点为F ,连结EF,由于12ED EC AB ===以ECD △为等腰三角形,从而2EF =1)知BC ⊥平面ACD ,所以E 到平面ACD 的距离为1令A 到平面CED 的距离为d ,有5d =. 20.【答案】(1(2)172. 【解析】(1)依题意,a =,1c =, 解得22a =,21b =,∴椭圆E 的标准方程为2212x y +=. (2)设11,A x y (),22,B x y (), 则()()()()112212122,2,22x y x y x x P PB y y A ⋅⋅=--=-+-, 当直线l 垂直于x 轴时,121x x ==-,12y y =-且2112y =, 此时()13,PA y =-,()()213,3,PB y y =-=--, 所以()2211732PA PB y ⋅=--=; 当直线l 不垂直于x 轴时,设直线():1l y k x =+, 由()22122y k x x y ⎧=+⎪⎨+=⎪⎩,整理得()2222124220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+, 所以()()()2121212241+1PA PB x x x x k x x ⋅=-++++()()()2221212=124k x x k x x k ++-+++()()2222222224=1241212k k k k k k k -+⋅--⋅++++()2221721713172122221k k k +==-<++, 要使不等式PA PB λ⋅≤(λ∈R )恒成立,只需()max 172PA PB λ⋅=≥,即λ的最小值为172. 21.【答案】(1)()223f x x x =--; (2)1个. 【解析】(1)∵()f x 是二次函数,且关于x 的不等式()0f x ≤的解集为()()()21323f x a x x ax ax a =+-=--,且0a >. ∴()()min 144f x f a ==-=-,1a =.故函数()f x 的解析式为()223f x x x =--.(2)∵()()22334ln 4ln 20x x g x x x x x x x --=-=--->, ∴()()()2213341x x g x x x x --=+='-,令()0g x '=,得11x =,23x =. 当x 变化时,()g x ',()g x 的取值变化情况如下:又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点,故()g x 在()3,+∞上仅有1个零点.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1)详见解析; (2)8.【解析】(1可得22sin 4cos ρθρθ=,即24y x =, ∴曲线C 表示的是焦点为()1,0,准线为1x =-的抛物线.(2)将()1,0代入cos 1sin x t y t αα==+⎧⎨⎩,得1cos 01sin t t αα==+⎧⎨⎩,∴tan 1α=-,∵0πα<≤,∴lt 为参数).将直线l 的参数方程代入24y x =得220t ++=,由直线参数方程的几何意义可知,128AB t t =-===.23.【答案】(1)4a b +=;(2)最小值为1613.【解析】(1()()0x a x b +-<时等号成立, 又0a >,0b >,所以a b a b +=+, 所以()f x 的最小值为a b +,所以4a b +=.(2)由(1)知4a b +=,4b a =-,所以()2222111144949a b a a +=+-2138163699a a =-+=2131616361313a ⎛⎫-+ ⎪⎝⎭, 故当1613a =,3613b =时,221149a b +的最小值为1613.。
2018年高考数学(文)原创押题预测卷 02(新课标Ⅱ卷)(参考答案)
易得 g x 0 ,∴ g x g 1 3 0 ,则 h x 0 .
∴ x 1, , h x h 1 1 ,∴ b 1 .
2
2
综上所述,实数
b
的取值范围是
1 2
,
.……12
分
22.(本小题满分 10 分) 选修 4-4:坐标系与参数方程
【解析】(I)由 2
2 2sin2
2
lnx 1 x2 bx 0 在 x 1, 上恒成立,
2
即 bx lnx 1 x2 ,∴ b lnx 1 x ……7 分
2
x2
设 h x
lnx x
1 2
x
,则
h x
2
2lnx 2x2
x2
.
文科数学 第 3页(共 7页)
设 g x 2 2lnx x2 ,则 g x 2 2x, x 1, ,
m
m
8
∴ 1 k 1 ,且 k 0 .
8
8
综合①②,可知直线
BG
的斜率
k
的取值范围是
1 8
,
0
0,
1 8
.……12
分
21.(本小题满分 12 分)
【解析】(1) f (x) 1 1 1 x ,令 f (x) 0 ,得 x 1 ,……2 分
x
x
当 a 1时, x (0,1) , f (x) 0 ; x (1, a) , f (x) 0 ,所以,当 x 1 时, f (x) 取到最大值
种选法;其中价格之和大于 12 元,即选取的 2 片都为“一级”瓷砖的有 AB,AC,AD,BC,BD,CD 共
文科数学 第 1页(共 7页)
6 种选法. …………11 分
2018高考文科数学押题及解析
山东省2018届高三高考押题数学试题(文)2018.5一、选择题:本大题共10个小题,每小题5分,共50分. ★★★★★1.设复数()(),2,1zz a bi a b R i P a b i=+∈=-+,若成立,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限复数的考察主要分为以下几点:希望同学们好好掌握,以不变应万变!考试方向: ①复数的概念及化简:例:复数2 ()1miz m R i+=∈+是纯虚数,则m =( ) A .2- B . 1- C .1 D .2②复数的模长:例.复数)()2(2为虚数单位i ii z -=,则=||z(A)5 (B) 41 (C)6 (D) 5③共轭复数:设z 的共轭复数是z ,若z+z =4,z ·z =8,则zz等于 (A)i(B)-i(C)±1(D)±i④复数相等:已知2a ib i i+=+(,)a b R ∈,其中i 为虚数单位,则a b +=( ) (A )-1 (B )1 (C )2 (D )3⑤复平面:复数z=(为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限 易错点:没看到题目要求1、A ;①A ②A ③D ④B ⑤B★★★★★2.已知集合{}{}R x y y N x x x M x ∈==≥=,2,2,则MN = ( )A .)(1,0 B .]1,0[ C .)1,0[ D .]1,0( 集合的考察主要是分两大类:①集合的概念:设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于②集合的运算:设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C ABA .[-1,0]B .[-1,0]∪[)4,+∞ C .[-1,0]∪()4,+∞ D .()(,0)0,-∞⋃+∞ 易错点:不注意集合中的元素2、D ①()0,1②D ★★★★★3.下列命题中,真命题是A .00,||0x R x ∃∈≤B .2,2xx R x ∀∈> C .a -b =0的充要条件是1ab= D .若p ∧q 为假,则p ∨q 为假(p ,q 是两个命题) 逻辑结构用语主要考察以下几个方面: ①充要条件的判定: 给定两个命题,的必要而不充分条件,则( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 ②四种命题:下列命题中,正确的是( )A .命题“”的否定是“”B .命题“为真”是命题“为真”的必要不充分条件C .“若,则”的否命题为真D .若实数,则满足的概率为③特称命题:命题“∀x ∈[0,+∞),30x x +≥”的否定是( )A .∀x ∈(-∞,0),30x x +<B .∀x ∈(-∞,0),30x x +≥22ii-+i 2,0x x x ∀∈-≤R 2,0x x x ∃∈-≥R q p ∧p q ∨22am bm ≤a b ≤[],1,1x y ∈-221x y +≥4πC .∃0x ∈[0,+∞),30x x +<D .∃0x ∈[0,+∞),30x x +≥ ④真假命题的判定:.已知命题:p x R ∃∈,使5sin ;2x =命题:q x R ∀∈,都有210.x x ++> 给出下列结论:① 命题“q p ∧”是真命题 ② 命题“q p ⌝∧”是假命题 ③ 命题“q p ∨⌝”是真命题 ④ 命题“q p ⌝∨⌝”是假命题其中正确的是 A .① ② ③ B .③ ④ C .② ④ D .② ③ 易错点:否命题与命题的否定区别;3、A ;①A ②C ③C ④D★★★★4.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表: 由附表:()()()()()22n ad bc K a b c d a c b d -=++++算得,()2250040270301609.96720030070430K ⨯⨯-⨯=≈⨯⨯⨯ 参照附表,得到的正确结论是A.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”C.有99%以上的把握认为“需要志愿者提供帮助与性别有关”D.有99%以上的把握认为“需要志愿者提供帮助与性别无关”此题主要考察独立性检验:对付此类问题主要明白2K 的计算方式,并会根据计算结果在附表中读取信息即可!★★★★★5.若变量x ,y 满足约束条件0,0,4312,x y x y ≥⎧⎪≥⎨⎪+≤⎩则31y z x +=+的取值范围是( )A. (34,7)B. [23,5 ]C. [23,7]D. [34,7]此类题目主要考察不等式的线性规划,主要分三类题目:①简单的三个不等式的组合,并且所求均为一次函数形式,可用方程组进行求解若变量y x ,满足约束条件13215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则3log (2)w x y =+的最大值是②对于三个以上的不等式的组合,一定先作图在进行求解:一般来说斜率正上小下大,斜率负上大下小.若实数满足,且的最小值为,则实数的值为③对于所求为二次函数的形式(一般为圆),考虑点到直线的距离,0022Ax By Cd A B++=+已知,x y 满足不等式组242y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则22222z x y x y =++-+的最小值为A.95B.2C.3D.2 易错点:①计算失误②直线非一般式③找点不准确;5、D ①2②94③B ,x y 20x y y x y x b-≥≥≥-+2z x y =+3b★★★★★6.执行右面的程序框图,如果输入a=3,那么输出的n 的值为 A.2 B.3 C.4 D.5程序框图的考察,主要是会读程序框图,对于循环结构的条件,以及输出结果要有准确的运算: 主要注意以下两点:①无限覆盖性②“=”为赋值号,从左向右赋值★★★★7.∆ABC 中内角A ,B ,C 的对边分别是a ,b ,c.若223sin 23sin a b bc C B -==,,则A=( )A .56πB .23πC .3πD .6π本题主要考察解三角形的知识:关于解三角形主要有以下几点:①正弦定理的应用:主要是两角一边,两边及一边对角,角边统一,外接圆 ②余弦定理的应用:主要是三边、两边及一边对角,两边及夹角③三角形面积公式:111sin sin sin 222s ac B bc A ab C === ④常用结论:sin()sin A B C +=,cos()cos A B C +=-⑤面积最值:均值不等式⑥求边长(周长)范围:化边为角,利用三角函数求值域 ★★★★8.将函数()3sin 2cos2f x x x =-的图像向左平移6π个单位得()g x ,则关于函数()g x 下列说法正确的是( )A.3π-是()g x 的一条对称轴B.(,0)6π-是()g x 的一个对称中心C. (,)26ππ-是()g x 的一个递增区间D.当12x π=时,()g x 取得最值本题主要考察三角函数的基本概念:对于上述四个选项一般采用带入法①三角函数的最值 ②三角函数的周期 ③三角函数的单调区间 ④三角函数的对称中心 ⑤三角函数的对称轴 ⑥图像的平移变换 ⑦在区间上求最值 ⑧在区间上求单调区间注意遇到三角函数一定先考虑三个统一:统一1次幂;统一角度;统一名称; ★★★★★8.在区间[-1,1]上随机取一个数k ,使直线52y kx =+与圆221x y +=相交的概率为 (A)34(B)23 (C) 12(D) 13本题主要是考察几何概率:几何概率主要是长度、面积、体积的比值,注意作图①.从集合区间[]1,4中随机抽取一个数为a ,从集合[]2,3中随机抽取一个数为b ,则b a >的概率是 A .12 B .13 C .25D .15②.在区间[0,]π上随机取一个数x ,sin x 的值介于0到21之间的概率为( ). A.31 B.π2C.21D.32 ③.在区间[2,2]-上随机地取两个实数a ,b ,则事件“直线1x y +=与圆()22()2x a y b -+-=相交”发生的概率为①A ②A ③11/20★★★9. 函数ln ||||x x y x =的图象大致是主要考察函数的图像及其辨别:方法:①奇偶性:奇函数:sinx ,tanx ,nx ,n 为奇数; 偶函数:cosx ,nx ,n 为偶数;x②带特殊点:注意观察图像的不同 本题选B定义运算,则函数的图像大致为( A )★★★10.对具有线性相关关系的变量x ,y ,测得一组数据如下表:X 2 4 5 6 8 y 20 40 60 70 80根据上表,利用最小二乘法得它们的回归直线方程为,据此模型来预测当x=20时,y 的估计值为A .210B .210.5C .211.5D .212.5 ★★★回归直线方程一定过(,)x y★★★10.已知直线m ,n 不重合,平面α,β不重合,下列命题正确的是 A.若m β⊂,n β⊂,m//α,n//α,则//αβ B.若m α⊂,m β⊂,//αβ,则m//n C.若αβ⊥,m α⊂,n β⊂,则m n ⊥D.若m α⊥,n α⊂,则m n ⊥本题主要考察空间点线面之间的关系及其判断:利用手中的笔,桌面、地面等进行判断。
2018年高考仿真卷文科数学试卷(二)含解析答案
2018高考仿真卷²文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从 1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.(p)∧(q)C.(p)∧qD.p∧(q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元)与销售额y(单位:万元)的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A²x-ay-c=0与bx+sin B²y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V 正四棱锥P-ABCD=,则球O的表面积是()A.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)²cos x 的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C 上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2018高考仿真卷²文科数学(二)1.B解析 (方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C 的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以(p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以²2R2²R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知PA2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时PA=,AC=.所以该几何体的体积V=³1³.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x²cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n= 解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解 (1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2³(3c)³c³=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解 (1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40³0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40³0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),( A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种, 则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB²DD1=³2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|PA|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|PA|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解 (1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解 (1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
河北省衡水中学2018年高考押题(二)文科数学(含答案)
河北衡水中学2018年高考押题试卷文数(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|23,}A x x x Z =-<<∈,{2,1,0,1,2,3}B =--,则集合AB 为( )A .{2,1,0,1,2}--B .{1,0,1,2}-C .{1,0,1,2,3}-D .{2,1,0,1,2,3}-- 2.若复数(,)z x yi x y R =+∈满足()13z i i +=-,则x y +的值为( ) A .3- B .4- C .5- D .6- 3.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( ) A .426- B .426+ C .718D .23 4.抛掷一枚质地均匀的骰子两次,记事件{A =两次的点数均为偶数且点数之差的绝对值为2},则()P A =( ) A .19 B .13 C .49 D .595.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率[2,2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6πB .[,]63ππC .[,]43ππD .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A .313(3)2222π+++ B .3133()22242π+++C .13222π+ D .13224π+ 7.函数sin ln y x x =+在区间[3,3]-的图象大致为( )A .B .C .D .8.已知函数()()1312,222,2,02x x x f x a x a R a x +-⎧+≤⎪⎪=⎨⎪->∈≠⎪-⎩,若()()()635f f f =-,则a 为( )A .1B .3425C .22D .34 9.执行如图的程序框图,若输入的x ,y ,n 的值分别为0,1,1,则输出的p 的值为( )A .81B .812 C .814 D .81810.已知数列{}n a 是首项为1,公差为2的等差数列,数列{}n b 满足关系31212312n n n a a a a b b b b +++⋅⋅⋅+=,数列{}n b 的前n 项和为n S ,则5S 的值为( )A .454-B .450-C .446-D .442- 11.若函数()2ln f x m x x mx =+-在区间()0,+∞内单调递增,则实数m 的取值范围为( )A .[]0,8B .(]0,8C .(][),08,-∞+∞D .()(),08,-∞+∞12.已知函数()sin()f x A x ωϕ=+(0,0,,)2A x R πωϕ>><∈的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A .函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x 的最大值为22C .函数()g x 的图象上存在点P ,使得在P 点处的切线与直线l :31y x =-平行D .方程()2g x =的两个不同的解分别为1x ,2x ,则12x x -最小值为2π 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.向量(,)a m n =,(1,2)b =-,若向量a ,b 共线,且2a b =,则mn 的值为 .14.已知点()1,0A -,()1,0B ,若圆2286250x y x y m +--+-=上存在点P 使0PA PB ⋅=,则m 的最小值为 .15.设x ,y 满足约束条件2402010x y x y y +-≤⎧⎪-+≥⎨⎪-≥⎩,则32x y +的最大值为 .16.在平面五边形ABCDE 中,已知120A ∠=,90B ∠=,120C ∠=,90E ∠=,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且222cos cos sin 3sin sin B C A A B -=-. (1)求角C ; (2)若6A π∠=,ABC ∆的面积为43,M 为AB 的中点,求CM 的长.18.如图所示的几何体P ABCD -中,四边形ABCD 为菱形,120ABC ∠=,AB a =,3PB a =,PB AB ⊥,平面ABCD ⊥平面PAB ,ACBD O =,E 为PD 的中点,G 为平面PAB 内任一点.(1)在平面PAB 内,过G 点是否存在直线l 使//OE l ?如果不存在,请说明理由,如果存在,请说明作法; (2)过A ,C ,E 三点的平面将几何体P ABCD -截去三棱锥D AEC -,求剩余几何体AECBP 的体积. 19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为E 的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点23(,)22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=(O 为坐标原点). (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由. 21.设函数22()ln ()f x a x x ax a R =-+-∈. (1)试讨论函数()f x 的单调性;(2)如果0a >且关于x 的方程()f x m =有两解1x ,212()x x x <,证明122x x a +>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C :3cos 2sin x ty t αα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围; (2)当3a =时,两曲线相交于A ,B 两点,求AB . 23.选修4-5:不等式选讲 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.文数(二)试卷答案一、选择题1-5: BCAAD 6-10: AADCB 11、12:AC二、填空题13. 8- 14. 16 15.22316. )3,33⎡⎣三、解答题17.解:(1)由222cos cos sin 3sin sin B C A A B -=-, 得222sin sin sin 3sin sin C B A A B -=-. 由正弦定理,得2223c b a ab -=-, 即2223c a b ab =+-.又由余弦定理,得22233cos 222a b c ab C ab ab +-===.因为0C π<∠<,所以6C π∠=.(2)因为6A C π∠=∠=,所以ABC ∆为等腰三角形,且顶角23B π∠=. 故2213sin 4324ABC S a B a ∆===,所以4a =. 在MBC ∆中,由余弦定理,得2222cos CM MB BC MB BC B =+-⋅1416224282=++⨯⨯⨯=. 解得27CM =.18.解:(1)过G 点存在直线l 使//OE l ,理由如下: 由题可知O 为BD 的中点,又E 为PD 的中点, 所以在PBD ∆中,有//OE PB .若点G 在直线PB 上,则直线PB 即为所求作直线l , 所以有//OE l ;若点G 不在直线PB 上,在平面PAB 内, 过点G 作直线l ,使//l PB ,又//OE PB ,所以//OE l , 即过G 点存在直线l 使//OE l .(2)连接EA ,EC ,则平面ACE 将几何体分成两部分: 三棱锥D AEC -与几何体AECBP (如图所示).因为平面ABCD ⊥平面PAB ,且交线为AB , 又PB AB ⊥,所以PB ⊥平面ABCD . 故PB 为几何体P ABCD -的高.又四边形ABCD 为菱形,120ABC ∠=,AB a =,3PB a =,所以2233242ABCD S a a =⨯=四边形, 所以13P ABCD ABCD V S PB -=⋅四边形231313322a a a =⨯⨯=. 又1//2OE PB ,所以OE ⊥平面ACD , 所以D AEC E ACD V V --=三棱锥三棱锥3111348ACD P ABCD S EO V a ∆-=⋅==,所以几何体AECBP 的体积P ABCD D EAC V V V --=-三棱锥333113288a a a =-=.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,故可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=. (2)这100名学生成绩的平均分为1(321005690780100⨯+⨯+⨯370260)91.3+⨯+⨯=(分), 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)按分层抽样抽取的4人中有1名男生,3名女生,记男生为a ,3名女生分别为1b ,2b ,3b .从中抽取2人的所有情况为1ab ,2ab ,3ab ,12b b ,13b b ,23b b ,共6种情况,其中恰好抽取1名男生的有1ab ,2ab ,3ab ,共3种情况,故所求概率12P =. 20.解:(1)由题意可知22c a =, 所以222222()a c a b ==-,整理,得222a b =,①又点23(,)22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)2232m k -为定值,理由如下: 设11(,)A x y ,22(,)B x y ,由0OA OB ⋅=, 可知12120x x y y +=.联立方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,化简得222(12)4220k x kmx m +++-=, 由2222168(1)(12)0k m m k ∆=--+>, 得2212k m +>, 由根与系数的关系,得122412kmx x k+=-+,21222212m x x k -=+,③ 由12120x x y y +=,y kx m =+, 得1212()()0x x kx m kx m +++=,整理,得221212(1)()0k x x km x x m ++++=.将③代入上式,得22222224(1)01212m kmk km m k k-+-⋅+=++.化简整理,得222322012m k k--=+,即22322m k -=. 21.解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-222(2)()x ax a x a x a x x--+-==. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当(0,)2ax ∈-时,'()0f x <,函数()f x 单调递减,当(,)2ax ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)要证122x x a +>,只需证122x x a +>. 设()()2'2a g x f x x a x ==-+-, 因为()22'20a g x x=+>,所以()()'g x f x =为单调递增函数. 所以只需证()12''02x x f f a +⎛⎫>=⎪⎝⎭, 即证2121220a x x a x x -++->+,只需证()12212210x x a x x a-++->+. (*)又22111ln a x x ax m -+-=,22222ln a x x ax m -+-=,所以两式相减,并整理,得()1212212ln ln 10x x x x a x x a--++-=-.把()1212212ln ln 1x x x x a a x x -+-=-代入(*)式,得只需证121212ln ln 20x x x x x x --+>+-,可化为12112221ln 01x x x x x x ⎛⎫- ⎪⎝⎭-+<+. 令12x t x =,得只需证()21ln 01t t t --+<+. 令()()21ln (01)1t t t t t ϕ-=-+<<+, 则()()()()222141'011t t t t t tϕ-=-+=>++, 所以()t ϕ在其定义域上为增函数, 所以()()10t ϕϕ<=. 综上得原不等式成立. 22.解:(1)曲线1C :3cos 2sin x t y tαα=+⎧⎨=+⎩,消去参数t 可得普通方程为222(3)(2)x y a -+-=.由4sin ρθ=,得24sin ρρθ=.故曲线2C :4sin ρθ=化为平面直角坐标系中的普通方程为22(2)4x y +-=. 当两曲线有公共点时a 的取值范围为[1,5].(2)当3a =时,曲线1C :3cos 2sin x t y tαα=+⎧⎨=+⎩,即22(3)(2)9x y -+-=,联立方程()()()222232924x y x y ⎧-+-=⎪⎨+-=⎪⎩,消去y ,得两曲线交点A ,B 所在直线方程为23x =.曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =,所以4822493AB =-=.23.解:(1)因为()211f x x x =-++3,112,1213,2x x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩, 所以作出函数()f x 的图象如图所示.从图中可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而 2222142[(1)(1)]117a b a b +=+++++22222214214(1)()[5()]1711b a a a b a b +++=++≥++++ 2222214(1)18[52]7117b a a b ++=+⋅=++. 当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。
2018年高考押题卷文数2(解析版)
绝密★启用前2018年普通高等学校招生全国统一考试押题卷文科数学(二)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i是虚数单位,若复数z 的共轭复数为( )A B C .D 【答案】D【解析】z 的共轭复数为:D . 2.设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i --【答案】A 【解析】()21f x x x =-+,()()()()i 11i i 12ii i 1i 11i 2z +--+-====-----,()()()()2i i i 1i f z f ∴=-=---+=,故选A .3.已知函数()ln f x x =,若()11f x -<,则实数x 的取值范围是( ) A .(),e 1-∞+ B .()0,+∞ C.()1,e 1+D .()e 1,++∞【答案】C【解析】已知函数()ln f x x =,若()11f x -<,则()()1ln e e f x f -<=,由函数为增函数,故:01e 11e x x <-<⇒<<+,故选C .4.函数()12xf x ⎛⎫= ⎪⎝⎭,()0,x ∈+∞的值域为D ,在区间()1,2-上随机取一个数x ,则x D ∈的概率是( ) A .12B .13C .14D .1【答案】B【解析】0x >,1012x⎛⎫∴<< ⎪⎝⎭,即值域()0,1D =,若在区间()1,2-上随机取一个数x ,x D ∈的事件记为A ,则()()101213P A -==--,故选B .5.执行如图所示的程序框图,如果输入的100t =,则输出的n =( )A .5B .6C .7D .8【答案】A【解析】2+5+14+41+122100S =>,故输出5n =.6.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”.就是说:圆堡瑽(圆柱体)的体积为112V =⨯(底面圆的周长的平方⨯高),则由此可推得圆周率π的取值为( ) A .3B .3.1C .3.14D .3.2【答案】A【解析】设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得体积为:2πV r h =.,解得π3=.故选A .7.若5⋅=-a b ,则向量a 与b的夹角为( )ABC D【答案】D【解析】所以向量a 与b 的夹角为 8.已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l:250x y --=的距离的最小值是() A .4 BC1+D 1-【答案】D【解析】圆C :224240x y x y +--+=化为()()22211x y -+-=,圆心()2,1C 半径为1,则圆上一点P 到直线l:250x y --=的距离的最小值是1.选D .9.设x ,y 满足约束条件360200,0x y x y x y --≤-+≥≥≥⎧⎪⎨⎪⎩,若目标函数()0z ax y a =+>的最大值为18,则a 的值为( ) A .3B .5C .7D .9【答案】A【解析】根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为y ax z =-+,当直线过点()4,6时,有最大值,将点代入得到46183z a a =+=⇒=,故答案为:A .10.双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( )A B .2+ C .2D 1【答案】B【解析】双曲线22221x y a b-=(0,0)a b >>的左焦点F 为(),0c -,直线l的方程为)y x c =+,令0x =,则y =,即()A ,因为A 平分线段1FB ,根据中点坐标公式可得(),B c ,代入双曲线方程可得2222121c c a b -=,由于()1c e e a =>,则2221211e e e -=-,化简可得421410e e -+=,解得27e =±由1e >,解得2e =+,故选B . 11.已知函数()()2e 32x f x x a x =+++在区间()1,0-有最小值,则实数a 的取值范围是( )A B C .D【答案】D【解析】由()()2e 32x f x x a x =+++可得,()e 232x f x x a '=+++, 函数()()2e 32x f x x a x =+++在区间()1,0-上有最小值,∴函数()()2e 32x f x x a x =+++在区间()1,0-上有极小值,而()e 2320x f x x a '=+++=在区间()1,0-上单调递增,()e 2320x f x x a '∴=+++=在区间()1,0-上必有唯一解,由零点存在定理可得()()11e 232001320f a f a -'-=-++<'⎧=++>⎪⎨⎪⎩,解得∴实数aD .12.若关于x 在()()00-∞+∞,,上恒成立,则实数k 的取值范围为( )A )25e ⎛+∞ ⎝,B )23e ⎛+∞ ⎝,C 25e ⎫⎛+∞⎪ ⎭⎝,D 23e ⎫⎛+∞⎪ ⎭⎝,【答案】A【解析】依题意,e xk 201e x x x x k >⎧⎪⎨+->⎪⎩或1,令,则)()()21e e 2e e x x xxx x +--, 所以当(),1x ∈-∞-时,()0f x '<,当()1,0x ∈-时,()0f x '>,当()0,2x ∈时,()0f x '>,当()2,x ∈+∞时,()0f x '<, 所以()2k f >或()1k f <-或e k <-,故选A . 第Ⅱ卷本卷包括必考题和选考题两部分。
2018年全国高考数学考前押题文科数学题卷二及答案解析
2018年高考数学考前押题文科数学题卷2(满分150分。
考试用时120分钟。
)第Ⅰ卷一、选择题:本大题共12小题,每小题5分。
1.已知全集{}1,2,3,4U =,若,,则等于( )A .B .C .D .2.在下列函数中,最小值为的是( ) A . BC .D . 3.从某校高三年级随机抽取一个班,对该班名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校专业对视力的要求在以上,则该班学生中能报专业的人数为()A .B .C .D .4.函数的部分图象大致为( )A .B .21y x x=+2y =122x xy =+50A 0.9A 30252220sin 21cos xy x=+C .D .5.已知等差数列的前项和为,且,则数列的公差为( )A .3B .C .D .66.某几何体由上、下两部分组成,其三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则该几何体上部分与下部分的体积之比为( )A .B .C .D .7.如果函数在区间上单调递减,那么的最大值为( ) A .16B .18C .25D .308.已知函数(),若是函数的一条对称轴,且,则所在的直线为( ) A .B .C .D .9.在如图所示的程序框图中,若输入的,输出的,则判断框内可以填入的条件是( ){}n a n n S 233215S S -={}n a 4-5-13122356()()()()2128122f x m x n x m =-+-+>[]2,1--mn ()sin cos f x a x b x =+x ∈R 0x x =()f x 0tan 2x =()a b ,20x y -=20x y +=20x y -=20x y +=A .B .C .D .10.函数的图像如图所示,则的值等于( )A .B .C .D .111.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(且)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,,当,,不共线时,面积的最大值是() A .BCD 12.已知函数是定义在上的奇函数,其导函数为,若对任意的正实数,都有恒成立,且,则使成立的实数的集合为( )A .B . C.D .第Ⅱ卷本卷包括必考题和选考题两部分。
2018年普通高考(泄露天机)押题卷+文科数学(二)+Word版含解析
1,
10
所以
xi
i1
2
2
=11,所以数据
x1 ,x2 ,
,x10 的方差为 1 10 xi 10 i 1
2
2 =1.1 ,因为 1.1 1,
所以数据 x1 , x2 , , x10 相对于原数据变得比较不稳定.
9.设 an 表示正整数 n 的所有因数中最大的奇数与最小的奇数的等差中项,数列
an 的前 n
项和为
Sn ,那么
Sn 2
1
(
)
A. 2n 1 n 2
B. 2n 1 2 4n 1 2 C. 2n n
3
3
【答案】 B
D. 2n n 2
【解析】由已知得,当
n 为偶数时, an
an ,当 n 为奇数时, an
2
1n
.
2
因为 S2n 1 a1 a2 a3 a4
所以
a2n 1 ,
【答案】 B
【解析】 z z 2 , z z 2 .
3.“ p q为假”是“ p q 为假”的(
)条件.
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要
【答案】 B
【解析】由“ p q 为假”得出 p , q 中至少一个为假.当 p , q 为一假一真时, p q 为真, 故不充分;当“ p q 为假”时, p , q 同时为假,所以 p q 为假,所以是必要的,所以选
)
A.一样稳定
B.变得比较稳定
C.变得比较不稳定
D.稳定性不可以判断
【答案】 C
【解析】因为数据 x1, x2 , , x10 , 2 的平均值为 2,所以数据 x1, x2 , , x10 的平均
最新--泄露天机高三高考押题精粹文科数学试题及i答案 精品推荐
泄露天机——2018年高考押题精粹(数学文课标版)(30道选择题+20道非选择题)一. 选择题(30道)1. 已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A.{}1-B.{}2C.{}2,1 D. {}2,02. 已知全集U R =,集合{}31<<=x x A ,{}2>=x x B ,则U A C B =( ) A. {}21≤<x x B. {}32<<x x C. {}21<<x x D.{}2≤x x3. 已知i 为虚数单位,R a ∈,若ia i+-2为纯虚数,则复数i a z 2)12(++=的模等于( )A .2B .3C .6D .114.复数z 满足(1i)2i z +=,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5. 设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .﹁q 为假C .p ∧q 为假D .p ∨q 为真6. “1x ≥”是“2x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 一个算法的程序框图如右,则其输出结果是( )A .0B .2C .12+D 18.阅读如图所示的程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A .S <8,B .S <9,C .S <18,D .S <189.已知函数cos(),(0)2y A x A ϕπ=+>在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为( ) ABC .1D .218.若ABC ∆的内角,,A B C 所对的边,,a b c 满足422=-+c b a )(,且060C =,则ab 的值为( )A .348-B . 1C .34D .3218.要得到函数sin(2)4y x π=-的图象,只要将函数sin 2y x =的图象( )A .向左平移4π单位B .向右平移4π单位C .向左平移8π单位D .向右平移8π单位18、在 ABC 中,若对任意的R ∈λ,都有BC AC AB ≥+λ,则 ABC ∆ ( )A.一定为锐角三角形B.一定为钝角三角形C.一定为直角三角形D.可以为任意三角形 18.已知21,e e 是夹角为32π的两个单位向量,若向量2123e e a -=,则=⋅1e ( )A .2B .4C .5D .718.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )18.一个球的球心到过球面上A 、B 、C 三点的平面的距离等于球半径的一半,若AB=BC=CA=3,则球的体积为 ( )A .8πB . 43π4C .18πD .32π318. 在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(a 为常数)所表示平面区域的面积等于2,则a 的值为( )]A.-5B.1C.2D.318. 已知()f x 是定义在R 上的奇函数,当0x >时,2()2x f x x =+,若2(2)()f a f a ->,则实数a 的取值范围是( )A. (1,2)-B. (2,1)-C. (,1)(2,)-∞-+∞ D. (,2)(1,)-∞-+∞18.如图,大正方形靶盘的边长为5,四个全等的直角三角形围成一个小正方形,即阴影部分.较短的直角边长为3,现向大正方形靶盘投掷飞镖,则飞镖落在阴影区域的概率为( ) A.251 B. 254 C. 51 D. 25919.已知函数131)(223+++=x b ax x x f ,若a 是从123,,三个数中任取的一个数,b 是从012,,三个数中任取的一个数,则该函数有两个极值点的概率为( )A. 97 B. 31 C.95 D.3220.某商场为了了解毛衣的月销售量y (件)与月平均气温)(C x ︒之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程ˆybx a =+中的b =2-,气象部门预测下个月的平均气温约为C ︒6,据此估计该商场下个月毛衣销售量约为( )件. A .46 B .40 C .38 D .5821.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,180]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( )A .588B .480C .450D .18022.等差数列{}n a 的前n项和为5128,11,186,n S a S a ==则=( )A .18B .20C .21D .2223.等比数列{}n a 的各项为正,公比q 满足24q =,则3445a a a a ++的值为 ( )A .14B .2C .12±D .1224.若圆09422=--+x y x 与y 轴的两个交点B A ,都在双曲线上,且B A ,两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为( )A .172922=-y x B. 172922=-x y C. 1811622=-y x D.1168122=-x y 25.已知直线:90l x y +-=和圆22:228810M x y x y +---=,点A 在直线l 上,,B C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 的横坐标的取值范围为( ) A .[2,6] B .[0,6] C .[1,6] D .[3,6]26.已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y2b2=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为 ( )A .2+2B .5+1C .3+1D .2+127.函数()f x 是定义域为R 的奇函数,且0x ≤时,1()22x f x x a =-+,则函数()f x 的零点个数是( )A .1B . 2C .3D .428.已知()21sin ,42f x x x π⎛⎫=++ ⎪⎝⎭()f x '为()f x 的导函数,则()f x '的图像是( )29.设函数()(1)cos ()k f x x x k N *=-∈,则( ) A.当k=2018时,()f x 在x=1处取得极小值 B.当k=2018时,()f x 在x=1处取得极大值C.当k=2018时,()f x 在x=1处取得极小值D.当k=2018时,()f x 在x=1处取得极大值30. 设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线(0)y kx k k =+>与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是 ( ) A .]31,41( B .]41,0( C .]31,41[ D .)31,41[ 二.填空题(8道)31. 已知442cos sin ,(0,)32πααα-=∈,则2cos(2)3πα+= . 32.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 .33.已知实数y x ,满足⎪⎩⎪⎨⎧≥≤+≤14y ay x xy ,若y x z +=3的最大值为,16则.________=a34. 点,,,A B C D 在同一个球的球面上,2,AB BC AC ===面体ABCD 体积的最大值为43,则该球的表面积为 .35. 下图茎叶图是甲、乙两人在5次综合测评中成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为 .36.已知数列}a {n 是正项等差数列,若n321na a 3a 2a b n321n ++++++++=,则数列}b {n 也为等差数列. 类比上述结论,已知数列}c {n 是正项等比数列,若n d = ,则数列{n d }也为等比数列.37.如图,在△ABC 中,已知B =π3,AC =43,D 为BC边上一点.若AB =AD ,则△ADC 的周长的最大值为________.38.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,点P 在双曲线上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A .若OA b =,则该双曲线的离心率为__________________.三.解答题(12道)39.在△ABC 中,角A B C ,,的对边分别为a b c ,,,且a b c <<,2sin b A =.(Ⅰ)求角B 的大小;(Ⅱ)若2a =,b =,求c 边的长和△ABC 的面积.40. 已知等差数列{}n a 满足{}3577,26,n a a a a =+=的前n 项和为n S . (1)求n a 及n S ; (2)令*21()1n n b n N a =∈-,求数列{}n b 的前n 项和n T .41. 为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.(Ⅰ)分别求出a ,b ,x ,y 的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法 抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中 恰好没有第3组人的概率.42. 为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼称为“非高收入族”.(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01(2)赞成楼市限购令的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++43. 如图1,在直角梯形ABCD中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为AC 中点.将ADC∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (I )在CD 上找一点F ,使//AD 平面EFB ; (II )求点C 到平面ABD 的距离.44、已知椭圆C 的中心在坐标原点,右焦点为(1,0)F ,A 、B 是椭圆C 的左、右顶点,P 是椭圆C 上异于A 、B 的动点,且△APB 面积的最大值为(1)求椭圆C 的方程;(2)直线AP 与直线2x =交于点D ,证明:以BD 为直径的圆与直线PF 相切.45. 已知抛物线)0(22>=p py x 的焦点为F ,点A 为抛物线上的一点,其纵坐标为1,45=AF . (I )求抛物线的方程;(II )设C B ,为抛物线上不同于A 的两点,且AB AC ⊥,过,B C 两点分BACD图1EACD图2E别作抛物线的切线,记两切线的交点为D ,求OD 的最小值.46. 已知函数()(1)e 1.x f x x =-- (I )求函数()f x 的最大值; (Ⅱ)设()(),f x g x x=证明()g x 有最大值()g t ,且-2<t <-147. 已知322()2f x x ax a x =+-+. (1)若0,a ≠ 求函数()f x 的单调区间;(2)若不等式22ln ()1x x f x a '≤++恒成立,求实数a 的取值范围.48.如图所示,PA为圆O 的切线,A为点,两点,于交圆C B O PO ,20PA =,10,PB =BAC ∠的角平分线与BC 和圆O 分别交于点D 和E .(I ) 求证AB PC PA AC ⋅=⋅(II ) 求AD AE ⋅的值.49. 坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是2sin()3πρθ+=:3OM πθ=与圆C的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.50. 已知关于x 的不等式34x x m -+-<的解集不是空集. ( I )求参数m 的取值范围的集合M ; ( II )设a,b M,求证:a+b<ab+1.泄露天机——2014年高考押题精粹(数学文课标版)(30道选择题+20道非选择题)【参考答案及点评】三.选择题(30道)1.【答案】B2.【答案】A【点评】:集合问题是高考必考内容之一,题目相对简单.集合的表示法有列举法、描述法、图示法三种,高考中与集合的子,交,并,补相结合,侧重考查简单的不等式的有关知识。
2018年高考数学(文)精准押题卷02(全国II卷)试卷(含答案)
2018年高考精准押题卷02(全国II 卷)数学·文一、选择题1.已知集合A={x|y= }.B={y|y=2x x ≥0}.则A ∩B=( ) A.[1,4] B.[0,+∞] C .(1, +∞) D.[1,+∞]2.已知复数Z 满足(1-2i )Z=3+2i (i 为虚部单位)则 的实部是( ) A.51-B.57-C.51D.573.已知等差数列{n a }的前n 项和为n S ,431-=a a ,4a 是2a 与5a 的等比中项,则=10S ( ) A. 10 B.110 C. -10 D.-1004.设点E 是△ABC 内一点,存在下列4个命题,其中错误命题的个数是( )① 若 · =0, · =0则 ·=0 ② 对于正数m ,n 存在 =m +n③ 如果3= + ,那么3 = + ④ 若| |=| |=| |则△ABC 是钝角三角形 A .1 B .2 C .3 D .45.一个球O 与棱长为4的正四面体的各个棱都相切,则球O 的表面积为( ) A.4π B.6π C.π D.8π6.六位选手争夺百米赛跑冠军,观众甲.乙.丙.丁.先做如下猜测:甲说:获奖不是1号就是2号,乙说:获奖的不可能是3号.丙说:4号.5号6号都不可能获奖.丁说:获奖的是4号.5号.6号中的一个比赛结果只有一个人猜对.则猜对者是( ) A .丙 B.乙 C.甲 D.丁7.一个几何体的三视图如图1所示,则该几何体的体积是( )A .4+π B +π C314+ π D.5+π 8.如图所示的程序框图的输出结果为( )A. 20192017B. 20191009C. 201922017∙ D .201920189. 直线0=-+m my x 恒经过的定点到双曲线12222=-b y a x ()0,0>>b a 的一条渐近线的距离为21,则双曲线的离心率为( ) A.2 B.4 C.5 D 2410. 函数)42lg()(2a ax x x f --=在区间]1,(--∞上是减函数,则实数a 的取值范围( ) A ),1[+∞ B ]1,32(-C ),1[)32,(+∞--∞ D[),32+∞- 11.椭圆 +=1上到直线2x+3y+1=0的距离等于的点的个数是( )A. 2B. 4C. 3 D .112.已知函数 =(x-1)2e x-1,若函数g (x )= []+1 恰有了个零点,则实数k 的值为( ) A .8e 2 B .16+e 4C .32 D. +二、填空题13.已知函数 ( ∞, ( ,∞) 则满足 =的解集为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密 ★ 启用前2018年普通高等学校招生全国统一考试文 科 数 学(二)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =∈--≤Z ,{}0ln 2B x x =<<,则AB =( )A .{}1,2,3,4B .{}3,4C .{}2,3,4D .{}1,0,1,2,3,4-【答案】C【解析】{}{}{}2340141,0,1,2,3,4A x x x x x =∈--≤=∈-≤≤=-Z Z ,{}{}20ln 21e B x x x x =<<=<<,所以{}2,3,4AB =.2.设复数1z =(i 是虚数单位),则z z+的值为( )A.B .2C .1D.【答案】B【解析】2z z +=,2z z +=.3.“p q ∧为假”是“p q ∨为假”的( )条件. A .充分不必要 B .必要不充分C .充要D .既不充分也不必要【答案】B【解析】由“p q ∧为假”得出p ,q 中至少一个为假.当p ,q 为一假一真时,p q ∨为真,故不充分;当“p q ∨为假”时,p ,q 同时为假,所以p q ∧为假,所以是必要的,所以选B .4.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3x z y =-+的最大值为( )A .143-B .2-C .43D .4【答案】C【解析】作出的可行域为三角形(包括边界),把3x z y =-+改写为3xy z =+,当且仅当动直线3x y z =+过点()2,2时,z 取得最大值为43. 5.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( )盏. A .2B .3C .26D .27【答案】C【解析】设顶层有灯1a 盏,底层共有9a 盏,由已知得,则()91991132691262a a a a a =⎧⎪⇒=⎨+=⎪⎩, 所以选C .6.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的值可以是( ) A .8B .9C .10D .11【答案】C【解析】依次运行流程图,结果如下:13S =,12n =;25S =,11n =;36S =,10n =;46S =,9n =,此时退出循环,所以a 的值可以取10.故选C .7.设双曲线()2222:10,0x y C a b a b-=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为( )A .2BC.D .4此卷只装订不密封班级 姓名 准考证号 考场号 座位号【答案】B【解析】因为双曲线2222:1x y C a b -=的两条渐近线互相垂直,所以渐近线方程为y x =±,所以a b =.因为顶点到一条渐近线的距离为1,所以12=,所以a b ==,双曲线C 的方程为22122x y-=,所以双曲线的一个焦点到一条渐近线的距离为b = 8.已知数据1x ,2x ,,10x ,2的平均值为2,方差为1,则数据1x ,2x ,,10x 相对于原数据( ) A .一样稳定 B .变得比较稳定 C .变得比较不稳定 D .稳定性不可以判断【答案】C【解析】因为数据1x ,2x ,,10x ,2的平均值为2,所以数据1x ,2x ,,10x 的平均值也为2,因为数据1x ,2x ,,10x ,2的方差为1,所以()()102211222111i i x =⎡⎤-+-=⎢⎥⎣⎦∑,所以()10212=11i i x =-∑,所以数据1x ,2x ,,10x 的方差为()102112=1.110i i x =-∑,因为1.11>,所以数据1x ,2x ,,10x 相对于原数据变得比较不稳定.9.设n a 表示正整数n 的所有因数中最大的奇数与最小的奇数的等差中项,数列{}n a 的前n 项和为n S ,那么21n S -=( )A .122n n +-- B .11222433n n --+⋅- C .2nn - D .22nn +-【答案】B【解析】由已知得,当n 为偶数时,2n n a a =,当n 为奇数时,12n na +=.因为12342121n n S a a a a a --=+++++, 所以1112342121n n S a a a a a ++--=+++++()()111352462122+n n a a a a a a a a ++--=++++++++()1123211113151212222n n a a a a +-⎛⎫++++-=+++++++++ ⎪⎝⎭()()123211232n na a a a -=+++++++++()211222n nnS -+=+()211242n nn S -=++, 即()121211242n n nn S S +--=++, 所以()()()111221*********1224242422422233n n n n n n n S S --------=+++++++=+⋅-.10.过抛物线2y mx =()0m >的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =( ) A .4 B .6C .8D .10【答案】C【解析】因为2y mx =,所以焦点到准线的距离2mp =,设P ,Q 的横坐标分别是1x ,2x ,则 1232x x +=,126x x +=,因为54PQ m =,所以125+4x x p m +=,即5624m m +=,解得8m =.11.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,1,12,则此三棱锥外接球的表面积为( )A .174π B .214π C .4π D.5π【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A BC D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A BCD -的长、宽、高分别为2,1,12, 所以此三棱锥的外接球即为长方体1111ABCD A BC D -的外接球,半径4R ==,所以三棱锥外接球的表面积为22214444S R ⎛π=π=π= ⎝⎭.12.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标系原点)的斜率为k ,则下列一定成立的为( ) A .1k <- B .0k <C .1k <D .1k ≥【答案】C【解析】任意取x 为一正实数,一方面sin ln ln 1y x x x =+≤+,另一方面容易证ln 1x x +≤成立,所以sin ln y x x x =+≤,因为sin ln ln 1y x x x =+≤+与ln 1x x +≤中两个等号成立条件不一样,所以sin ln y x x x =+<恒成立,所以1k <,所以排除D ;当2x π≤<π时,sin ln 0y x x =+>,所以0k >,所以排除A ,B .所以选C .第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分,共20分.13.已知()1,21m =-a ,()2,2m =--b ,若向量∥a b ,则实数m 的值为_________.【答案】0m =或52m =【解析】因为向量∥a b ,所以12212m m -=--,所以0m =或52m =.14.从正五边形的对角线中任意取出两条,则取出的两条对角线为同一个等腰三角形的两腰的概率为_________. 【答案】12【解析】从5条对角线中任意取出2条,共有10个基本事件,其中取出的两条对角线为某一个等腰三角形的两腰有5个,所以取出的两条对角线为图中同一个等腰三角形的两腰的概率为510=12. 15.设函数1()f x =对于任意[11] x ∈-,,都有()0f x ≤成立,则实数a =_________. 【答案】1【解析】一方面,由20a x -≥对任意[11] x ∈-,恒成立得1a ≥;另一方面,由1()2f x =221022x a x ≤≤+--得1a ≤,所以1a =.16.若对任意的x ∈R ,都有()()()66f x f x f x ππ=-++,且(0)1f =-,16f π⎛⎫= ⎪⎝⎭,则1003f π⎛⎫⎪⎝⎭的值为_________.【答案】2【解析】因为()()()66f x f x f x ππ=-++①,所以()()()63f x f x f x ππ+=++②,①+②得,()()36f x f x ππ+=--,所以()()2f x f x π+=-, 所以()()f x f x +π=,所以T =π,所以10033f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 在()()()66f x f x f x ππ=-++中,令6x π=得,()(0)()63f f f ππ=+, 因为(0)1f =-,16f π⎛⎫=⎪⎝⎭,所以()23f π=. 三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)如图,四棱柱1111ABCD A B C D -为长方体,点P 是CD 中点,Q 是11A B 的中点. (1)求证:AQ ∥平面11PBC ;(2)若1BC CC =,求证:平面11A B C ⊥平面1PBC .【答案】(1)见解析;(2)见解析.【解析】(1)取AB 得中点为R ,连接PR ,1B R . 由已知点P 是CD 中点,Q 是11A B 的中点可以证得, 四边形111AQB R PRBC ,都为平行四边形,······2分 所以1AQ B R ∥,11B R PC ∥,所以1AQ PC ∥,······4分因为AQ ⊄平面11PBC ,1PC ⊂平面11PBC , 所以AQ ∥平面11PBC .······6分 (2)因为四棱柱1111ABCD A B C D -为长方体,1BC CC =,所以11B C BC ⊥,······7分 因为11A B ⊥平面11BB C C ,所以11A B ⊥1BC ,······8分 因为1111A B B C B =,所以1BC ⊥平面11A B C ,······10分 1BC ⊂平面1PBC ,所以平面11A B C ⊥平面1PBC .······12分18.(12分)在ABC △中,D BC ∈,sin sin ACD ABD S BS Cλ∠==∠△△.(1)求证:AD 平分BAC ∠;(2)当12λ=时,若1AD =,2DC =,求BD 和AC 的长.【答案】(1)见解析;(2)BD =1AC =.【解析】(1)在ABC △中,由正弦定理得,sin sin B ACC AB∠=∠,因为sin sin ACD ABD S B S C∠=∠△△,······2分所以1sin 21sin 2AC AD CADAC AB AB AD BAD ⋅∠=⋅∠,······3分所以sin sin CAD BAD ∠=∠,······4分因为CAD BAD ∠+∠<π,所以CAD BAD ∠=∠, 即AD 平分BAC ∠.······6分 (2)因为12ACD ABD S CDS BD==△△,DC =BD =······7分 在ABD △和ADC △中,由余弦定理得,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠,因为cos ADB ∠cos 0ADC +∠=,所以22222232AB AC AD BD DC +=++,因为1AD =,所以2226AB AC +=,······10分 因为sin 1sin 2B C ∠=∠,所以2AB AC =,······11分所以1AC =.······12分19.(12分)国家放开计划生育政策,鼓励一对夫妇生育2个孩子.在某地区的100000对已经生育了一胎夫妇中,进行大数据统计得,有100对第一胎生育的是双胞胎或多胞胎,其余的均为单胞胎.在这99900对恰好生育一孩的夫妇中,男方、女方都愿意生育二孩的有50000对,男方愿意生育二孩女方不愿意生育二孩的有1x 对,男方不愿意生育二孩女方愿意生育二孩的有2x 对,其余情形有3x 对,且123::300:100:99x x x =.现在用样本的频率来估计总体的频率. (1)说明“其余情形”指何种具体情形,并求出1x ,2x ,3x 的值;(2)该地区为进一步鼓励生育二孩,实行贴补政策:凡第一胎生育了一孩的夫妇一次性贴补5000元,第一胎生育了双胞胎或多胞胎的夫妇只有一次性贴补15000元.第一胎已经生育了一孩再生育了二孩的夫妇一次性再贴补20000元.这种补贴政策直接提高了夫妇生育二孩的积极性:原先男方或女方中只有一方愿意生育二孩的夫妇现在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫妇仍然不愿意生育二孩.试用样本估计该地区任意一对已经生育了一胎的夫妇获得5000元生育补助,15000元生育补助及25000元生育补助的概率.【答案】(1)“其余情形”指一对夫妇中的男方、女方都不愿意生育二孩;130000x =,210000x =,39900x =;(2)任意一对已经生育了一胎的夫妇获得15000元生育补助的概率为11000,获得25000元生育补助的概率为910,获得5000元生育补助的概率为991000.【解析】(1)“其余情形”指一对夫妇中的男方、女方都不愿意生育二孩. 由123::300:100:99x x x =,可设1300x n =,2100x n =,()399x n n =∈N , 由已知得,12349900x x x ++=,所以3001009949900n n n ++=, 解得100n =,······2分所以130000x =,210000x =,39900x =.······4分 (2)一对夫妇中,原先的生育情况有以下5种:第一胎生育的是双胞胎或多胞胎有100对,频率为10011000001000=,······5分男方、女方都愿意生育二孩的有50000对,频率为5000011000002=,······6分男方愿意生育二胎女方不愿意生育二胎的有30000对,频率为30000310000010=,······7分男方不愿意生育二胎女方愿意生育二胎的也有10000对,频率为10000110000010=,······8分其余情形即男方、女方都不愿意生育二孩的有9900对,频率为9900991000001000=,······9分根据统计学原理,可以用这100000对已经生育了一胎的夫妇获得的生育补助频率来估计该地区任意一对已经生育了一胎的夫妇获得的生育补助的概率,故可以估计如下:任意一对已经生育了一胎的夫妇获得15000元生育补助的概率为11000,······10分任意一对已经生育了一胎的夫妇获得25000元生育补助的概率为13192101010++=,······11分 任意一对已经生育了一胎的夫妇获得5000元生育补助的概率为991000.······12分 20.(12分)已知椭圆C 的方程为()222210x y a b a b +=>>,P ⎛ ⎝⎭在椭圆上,椭圆的左顶点为A ,左、右焦点分别为1F 、2F ,1PAF △的面积是2POF △1倍.(1)求椭圆C 的方程;(2)过()2,0Q 的直线l 与椭圆C 交于M ,N ,求1F MN △的面积的取值范围.【答案】(1)椭圆C 的方程为2221x y +=;(2)10,4F MN S ⎛∈ ⎝⎦△. 【解析】(1)由P ⎛ ⎝⎭在椭圆上,可得221112a b +=,······1分 由1PAF △的面积是2POF △1倍,可得1a cc-=-,即a =,······2分 又222a b c =+,可得a =,1b =,1c =,所以椭圆C 的方程为2221x y +=.······4分 (2)由题意可知直线l 的斜率存在,设直线l 的方程为()2y k x =-, 联立得()22222x x y y k ⎧==+-⎪⎨⎪⎩,消去y 得()2222218082k x k x k ++-=-,设()11,M x y ,()22,N x y ,所以2122821k x x k +=+,21228221k x x k -=+,······5分又0∆>,()()()22228421820kk k --+->,解得:)022k k -<<≠,······6分12MN x =-===,······8分1F 到直线l 的距离为d =,······9分112F MNS ==△===,······10分 令2121t k =+,由)0k k <<≠,所以112t <<,则1F MN S =△112t ⎛⎫<⎪⎝⎭<, 所以1F MN S ⎛∈ ⎝⎦△.······12分 21.(12分)设函数()()()2ln 10f x x a x a =-+>. (1)证明:当2ea ≤时,()0f x ≥; (2)若对任意的()1,e x ∈,都有()f x x ≤,求a 的取值范围.【答案】(1)见解析;(2)2e e ,2a ⎡⎫-∈+∞⎪⎢⎣⎭. 【解析】(1)函数的定义域为()0,+∞,令()2220a x af x x x x-'=-==,则x =······1分所以当x ⎛∈ ⎝时,()0f x '<,当+x ⎫∈∞⎪⎪⎭时,()0f x '>, (2)分 所以()f x 的最小值为=ln 122a a f ⎛⎫-+ ⎪⎝⎭,······3分当20e a <≤时,1ln 1ln 102ea +≤+=,所以=ln 1022a a f ⎛⎫-+≥ ⎪⎝⎭, 所以()0f x ≥成立.······4分(2)()f x x ≤,即()2ln 10x x a x --+<,令()2ln g x x x a x a =---,()1,e x ∈,()2221a x x ag x x x x--'=--=,·······5分令()0g x '=,得220x x a --=,()102x =<舍去,或12x =>,······6分所以,当0,2x ⎛∈ ⎝⎭时,()0g x '<;当2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g x '>;即当x ⎛∈ ⎝⎭时,()g x递减;当x ⎫∈+∞⎪⎪⎝⎭时,()g x 递增;······7分①当e ≤2e e 2a -≥,()g x 在()1,e 上递减,所以()()10g x g a <=-<,故()0g x <恒成立,符合题意.······9分②当e >2e e 02a -<<,当2x ∈⎛ ⎝⎭时,()g x递减;当e 2x ∈⎛⎫⎪⎝⎭时,()g x 递增; ()()22100e e 2e e 20e 0g a a a g ≤-≤-⇒⇒≥--≤≤⎧⎧⎪⎨⎨⎪⎩⎩与2e e 02a -<<矛盾,故舍去.······11分 综上所述,2e e ,2a ⎡⎫-∈+∞⎪⎢⎣⎭.······12分 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。