囚徒困境
囚徒困境的概念

囚徒困境一、定义囚徒困境(Prisoner'sDilemma)是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。
或者说在一个群体中,个人做出理性选择却往往导致集体的非理性。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
“囚徒困境”是1950年美国兰德公司的梅里尔·弗勒德(MerrillFlood)和梅尔文·德雷希尔(MelvinDresher)拟定出相关困境的理论,后来由顾问艾伯特·塔克(AlbertTucker)以囚徒方式阐述,并命名为“囚徒困境”。
两个共谋犯罪的人被关入监狱,不能互相沟通情况。
如果两个人都不揭发对方,则由于证据不确定,每个人都坐牢一年;若一人揭发,而另一人沉默,则揭发者因为立功而立即获释,沉默者因不合作而入狱十年;若互相揭发,则因证据确凿,二者都判刑八年。
由于囚徒无法信任对方,因此倾向于互相揭发,而不是同守沉默。
最终导致纳什均衡仅落在非合作点上的博弈模型。
二、理论起源囚徒困境的故事讲的是,两个嫌疑犯作案后被警察抓住,分别关在不同的屋子里接受审讯。
警察知道两人有罪,但缺乏足够的证据。
警察告诉每个人:如果两人都抵赖,各判刑一年;如果两人都坦白,各判八年;如果两人中一个坦白而另一个抵赖,坦白的放出去,抵赖的判十年。
于是,每个囚徒都面临两种选择:坦白或抵赖。
然而,不管同伙选择什么,每个囚徒的最优选择是坦白:如果同伙抵赖、自己坦白的话放出去,抵赖的话判一年,坦白比不坦白好;如果同伙坦白、自己坦白的话判八年,比起抵赖的判十年,坦白还是比抵赖的好。
结果,两个嫌疑犯都选择坦白,各判刑八年。
如果两人都抵赖,各判一年,显然这个结果好。
囚徒困境所反映出的深刻问题是,人类的个人理性有时能导致集体的非理性-聪明的人类会因自己的聪明而作茧自缚,或者损害集体的利益。
三、主要内容单次多重单次和多次的囚徒困境,结果不会一样。
囚徒困境经济学原理

囚徒困境经济学原理引言:囚徒困境是博弈论中一个经典的问题,也是经济学中的重要原理之一。
囚徒困境的情境是两个囚徒被捕后被分开审讯,检方没有足够的证据定罪,但却希望能定罪并判刑。
如果两个囚徒都保持沉默,则检方只能以轻罪定罪。
然而,如果其中一个囚徒选择合作并供出另一个囚徒,那么供出者将获得免罪的机会,而被供出者将面临重刑。
如果两个囚徒都选择供出对方,则两人都将面临有限的刑期。
囚徒困境问题展示了个人理性行为在博弈过程中可能导致的不利结果,对经济学有着重要的启示意义。
1.囚徒困境的基本情景囚徒困境的基本情景是两个囚徒在被捕后被审讯,他们面临着个人决策的困难。
在这个情境中,囚徒可以选择合作或背叛对方。
合作意味着保持沉默,而背叛意味着供出对方。
囚徒的决策将决定他们的命运,而他们并不知道对方的选择。
在这种情况下,囚徒需要权衡自己的利益和对方的选择来做出决策。
2.囚徒困境的策略和收益在囚徒困境中,每个囚徒都有两种策略可选择:合作或背叛。
合作的收益是较低的刑期,而背叛的收益是免罪。
然而,如果两个囚徒都选择背叛,那么他们都将面临较长的刑期。
因此,囚徒困境的最佳策略是背叛,因为无论对方选择什么,背叛都能获得更好的结果。
3.囚徒困境的启示意义囚徒困境问题揭示了个人理性行为可能导致不利结果的情况。
尽管合作对于整体利益是最好的选择,但个人追求自身利益往往会导致困境的产生。
囚徒困境的启示意义在于,个体之间的合作需要建立在互信和合作机制的基础上,才能避免困境的发生。
4.囚徒困境与经济学的关系囚徒困境经济学原理在经济学领域有着广泛的应用。
例如,在市场竞争中,企业可能面临类似的囚徒困境。
如果所有企业都选择合作并遵守竞争规则,市场将保持公平竞争的状态。
然而,如果有企业选择背叛并采取不正当手段获取竞争优势,其他企业也会被迫采取同样的策略,从而导致整个市场的恶性竞争。
囚徒困境经济学原理提醒我们,建立公平竞争的机制和规则对于市场的稳定和发展至关重要。
囚徒困境

合作协议:达成合作协议,明确双方的责任和义务
惩罚机制:设立惩罚机制,对背叛行为进行惩罚
01
纳什均衡:在博弈论中,纳什均衡是指一种稳定的策略组合,使得每个参与者都不会因为改变策略而获得更好的结果。
02
合作与竞争:博弈论研究如何在合作与竞争中实现最优策略,以达到最佳结果。
03
应用领域:博弈论在政治、经济、军事、管理等领域都有广泛的应用,可以帮助人们更好地理解和解决实际问题。
04
经济学
博弈论:囚徒困境是博弈论的经典案例,研究参与者在决策过程中如何达到最优解
04
囚徒困境在市场营销中的应用:分析企业在市场竞争中的策略选择和合作竞争关系
囚徒困境在博弈论中的应用:分析博弈双方在决策过程中的策略选择
囚徒困境的破解
合作策略
建立信任:通过沟通和交流,建立双方之间的信任关系
01
信息共享:共享信息,使双方都能了解对方的意图和策略
02
制定规则:制定合作规则,确保双方都能遵守并执行
演讲人
囚徒困境
囚徒困境概述
囚徒困境的破解
囚徒困境的应用
囚徒困境概述
概念解释
囚徒困境:一种博弈论模型,描述两个囚犯在无法沟通的情况下,如何进行决策以获得最佳结果。
01
囚徒困境的决策结果:如果两个囚犯都选择合作,则两人都获得较低的刑罚;如果两个囚犯都选择背叛,则两人都获得较高的刑罚;如果一个囚犯选择合作,另一个选择背叛,则选择合作的囚犯将受到最严重的惩罚,选择背叛的囚犯将获得最轻的惩罚。
市场机制:囚徒困境可以解释市场机制中的合作与竞争关系
企业战略:囚徒困境可以指导企业在市场竞争中制定战略
公共政策:囚徒困境可以应用于公共政策制定,如环境保护、税收政策等
经济学中的囚徒困境及其应对措施

经济学中的囚徒困境及其应对措施经济学中的囚徒困境(Prisoner’s Dilemma)是博弈论中的一种典型模型,由于其简单和直观的表现形式,在经济学中一直被广泛应用。
囚徒困境模型主要讨论了类似合作与背叛的场景,在实际生活中也存在着很多类似的问题。
本文将从囚徒困境的定义、特点、解决方法等方面进行探讨。
一、囚徒困境的定义囚徒困境是博弈论中一个典型的非零和博弈模型。
在该模型中,两名囚徒被关进同一个监狱中,警察给他们分别下达交待自己罪行的指令,如果两人都交待自己的罪行,则两人都会被判处6个月的监禁。
如果其中一人交待,而另一人不交待,则交待的人将被判处1年的徒刑,而不交待的人将被判处10年的徒刑。
如果两人都不交待,则两人都将被判处3个月的徒刑。
二、囚徒困境的特点囚徒困境有以下几个特点:1. 合作与背叛之间的博弈:囚徒困境是一个两个囚犯之间的博弈,每个囚犯可以选择“合作”或“背叛”,两个人的最终结果受到对方选择的影响。
2. 零和博弈:囚徒困境是一个零和博弈模型,即囚犯们的收益和损失一直相对的,当一个囚犯获利时,另一个囚犯则会遭受损失,总收益和总损失相互抵消。
3. 完全信息博弈:囚徒困境是一种完全信息博弈,即双方都清楚地知道对方的选择和结果,不会出现信息不对称的情况。
三、囚徒困境的应对措施由于囚徒困境的特殊性质,协作往往不是两个囚犯的首选,因此我们需要一些应对措施来协调两方的行为。
1. 形成合作共赢的利益:在囚徒困境中,形成合作共赢的利益是解决问题的关键。
双方需要理解,合作是最优选择,互相信任,才能够达到最有利的结果。
因此,构建自信、信任、孕育互利的关系对双方都是有利的。
2. 及时沟通:沟通也是非常重要的一环。
囚徒困境中,双方需要传递信息,相互解析彼此的意图。
通过及时的沟通,发现问题所在,就可以很好地协调双方共同的利益。
3. 保持稳定合作:保持长期的合作也是非常重要的,而不是单纯的为了一时的利益。
在交往的过程中,需要建立习惯性的长期合作意识和文化,促进双方之间的信任。
囚徒困境

一、囚徒困境(prisoner's dilemma )1、囚徒困境简介囚徒困境是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
囚徒困境最早是由美国普林斯顿大学数学家阿尔伯特·塔克(Albert tucker)1950年提出来的。
他当时编了一个故事向斯坦福大学的一群心理学家们解释什么是博弈论,这个故事后来成为博弈论中最著名的案例。
故事内容是:两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是“坦白从宽,抗拒从严”,如果两人都坦白则各判8 年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年;如果都不坦白则因证据不足各判1年。
单次发生的囚徒困境,和多次重复的囚徒困境结果不会一样。
在重复的囚徒困境中,博弈被反复地进行。
因而每个参与者都有机会去“惩罚”另一个参与者前一回合的不合作行为。
这时,合作可能会作为均衡的结果出现。
欺骗的动机这时可能被受到惩罚的威胁所克服,从而可能导向一个较好的、合作的结果。
作为反复接近无限的数量,纳什均衡趋向于帕累托最优。
囚徒困境的主旨为,囚徒们虽然彼此合作,坚不吐实,可为全体带来最佳利益(无罪开释),但在资讯不明的情况下,因为出卖同伙可为自己带来利益(缩短刑期),也因为同伙把自己招出来可为他带来利益,因此彼此出卖虽违反最佳共同利益,反而是自己最大利益所在。
但实际上,执法机构不可能设立如此情境来诱使所有囚徒招供,因为囚徒们必须考虑刑期以外之因素(出卖同伙会受到报复等),而无法完全以执法者所设立之利益(刑期)作考量。
2、经典的囚徒困境1950年,由就职于兰德公司的梅里尔·弗拉德(Merrill Flood)和梅尔文·德雷希尔(Melvin Dresher)拟定出相关困境的理论,后来由顾问阿尔伯特·塔克(Albert Tucker)以囚徒方式阐述,并命名为“囚徒困境”。
囚徒困境

囚徒困境(Prisoner's dilemma)囚徒困境是博弈论中具有代表性的例子,反映个人最佳选择并非团体最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
囚徒困境最早是由美国普林斯顿大学数学家阿尔伯特·塔克(Albert tucker)1950年提出来的。
他当时编了一个故事向斯坦福大学的一群心理学家们解释什么是博弈论,这个故事后来成为博弈论中最著名的案例。
故事内容是:两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是“坦白从宽,抗拒从严”,如果两人都坦白则各判8 年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年;如果都不坦白则因证据不足各判1年。
囚徒困境的主旨为,囚徒们虽然彼此合作,坚不吐实,可为全体带来最佳利益(无罪开释),但在资讯不明的情况下,因为出卖同伙可为自己带来利益(缩短刑期),也因为同伙把自己招出来可为他带来利益,因此彼此出卖虽违反最佳共同利益,反而是自己最大利益所在。
但实际上,执法机构不可能设立如此情境来诱使所有囚徒招供,因为囚徒们必须考虑刑期以外之因素(出卖同伙会受到报复等),而无法完全以执法者所设立之利益(刑期)作考量。
2.经典的囚徒困境1950年,由就职于兰德公司的梅里尔·弗拉德(Merrill Flood)和梅尔文·德雷希尔(Melvin Dresher)拟定出相关困境的理论,后来由顾问阿尔伯特·塔克(Albert Tucker)以囚徒方式阐述,并命名为“囚徒困境”。
经典的囚徒困境如下:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:∙若一人认罪并作证检举对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
∙若二人都保持沉默(相关术语称互相“合作”),则二人同样判监半年。
囚徒困境名词解释

囚徒困境名词解释囚徒困境是博弈论中的一个经典问题,用于描述两个个体在没有沟通或合作的情况下所面临的困境。
在这个问题中,两个囚徒被同时关押在不同的牢房中,警方缺乏足够的证据定罪,只能以较轻的罪名判刑,但如果其中一个供认自己的罪行,而另一个保持沉默,则供认者可以得到更轻的刑期,而另一个将会受到较重的惩罚;如果两人都供认,则两人都将受到一定的惩罚。
在这种情况下,囚徒可能会因为不信任对方而都选择供认自己的罪行,导致两人都受到惩罚,这就构成了囚徒困境。
囚徒困境揭示了个体在面临利益冲突时的困境和悖论。
虽然对于两个囚徒来说,最优的结果是两人都保持沉默,使得两人都能够得到较轻的判罪,但由于彼此之间缺乏合作和沟通的机会,彼此不信任的情况下,个体往往会做出不合理的选择。
囚徒困境不仅在刑事案例中有应用,也存在于许多其他领域,如商业竞争、环境保护和国际关系等。
在商业竞争中,企业可能会陷入囚徒困境,各自选择采取激烈竞争、降低价格等策略,短期内可能会获得一定利益,但最终可能导致整个市场竞争趋于恶性循环。
在环境保护中,各个国家可能都面临着类似的困境,各国都在追求经济发展,但如果各国都不采取措施来减少环境污染,最终可能导致整个地球环境的破坏。
在国际关系中,大国之间的博弈也常常落入囚徒困境,彼此不信任,在不明确对方意图的情况下可能持有敌对态度,最终可能导致冲突的升级。
为了解决囚徒困境带来的问题,学者们提出了一系列的解决方案,如合作博弈、迭代博弈、契约博弈等。
合作博弈强调通过合作和沟通使得双方能够达成共赢的结果;迭代博弈则通过重复多次囚徒困境的游戏,让个体能够建立起彼此的信任和合作;契约博弈通过建立契约和规则来约束个体的行为,保证双方都能得到一定的利益。
囚徒困境作为博弈论中的一个经典问题,不仅在理论研究中产生了重要的影响,也在实际场景中得到了广泛的应用和启示。
它向我们揭示了在缺乏合作和沟通的情况下,个体常常会被自身利益所限制,从而导致最终结果并不是最优的。
囚徒困境

囚徒困境囚徒困境囚徒困境(prisoner's dilemma )是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
囚徒困境(prisoner's dilemma ):两个被捕的囚徒之间的一种特殊博弈,说明为什么甚至在合作对双方都有利时,保持合作也是困难的。
单次和多次重单次发生的囚徒困境,和多次重复的囚徒困境结果不会一样。
在重复的囚徒困境中,博弈被反复地进行。
因而每个参与者都有机会去“惩罚”另一个参与者前一回合的不合作行为。
这时,合作可能会作为均衡的结果出现。
欺骗的动机这时可能被受到惩罚的威胁所克服,从而可能导向一个较好的、合作的结果。
作为反复接近无限的数量,纳什均衡趋向于帕累托最优。
囚徒困境的主旨囚徒们虽然彼此合作,坚不吐实,可为全体带来最佳利益(无罪开释),但在资讯不明的情况下,因为出卖同伙可为自己带来利益(缩短刑期),也因为同伙把自己招出来可为他带来利益,因此彼此出卖虽违反最佳共同利益,反而是自己最大利益所在。
但实际上,执法机构不可能设立如此情境来诱使所有囚徒招供,因为囚徒们必须考虑刑期以外之因素(出卖同伙会受到报复等),而无法完全以执法者所设立之利益(刑期)作考量。
固定局数的囚徒困境试想像囚徒困境的情况进行十次。
我们可以合理地设想,如果囚徒第一次被对方指控,第二次这个囚徒也会指控对方。
相反,如果第一次相关书籍别人保持沉默,建立了互信的关系,你也会保持沉默,达致帕累托最优。
当然,两个囚徒都会有相似的想法,在第一局保持沉默,以期望建立互信关系,所以双方都会保持沉默。
第二局时,双方亦应有相似的想法,继续保持沉默,以期继续在互信的情况下进行第三局,以致余下的八局。
这种想法合理吗?在第十局时,互信的关系明显是没有意义的,因为十局已经完结,囚徒没有必要为维持互信的关系而沉默(没有第十一局),所以第十局囚徒一定会背叛对方的,理由和只有一局囚徒困境一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整理囚徒困境的基本博弈结构,可更清楚地分析囚徒困境。实验经济学常用这种博弈的一般形式分析各种论题。以下是实现一般形式的其中一例:
有两个参与者和一个庄家。参与者每人有一式两张卡片,各印有“合作”和“背叛”。参与者各把一张卡片文字面朝下,放在庄家面前。文字面朝下排除了参与者知道对方选择的可能性。然后,庄家翻开两个参与者卡片,根据以下规则支付利益:
囚徒困境的主旨
囚徒们虽然彼此合作,坚不吐实,可为全体带来最佳利益(无罪开释),但在资讯不明的情况下,因为出卖同伙可为自己带来利益(缩短刑期),也因为同伙把自己招出来可为他带来利益,因此彼此出卖虽违反最佳共同利益,反而是自己最大利益所在。但实际上,执法机构不可能设立如此情境来诱使所有囚徒招供,因为囚徒们必须考虑刑期以外之因素(出卖同伙会受到报复等),而无法完全以执法者所设立之利益(刑期)作考量。
5, 0
1, 1
背叛
T, S
P, P
背叛
大胜-大负
负-负
简单博弈获得的点数可以得出一些一般化的结论。
T、R、P、S符号表符号分数英文中文(非术语)解释
T 5 Temptation背叛诱惑单独背叛成功所得。R 3 Reward合作报酬共同合作所得P 1 Punishment背叛惩罚共同背叛所得S
0
Suckers
下一个问题是,双方都有相同的想法,明知第九局对方会背叛自己,所以第八局保持沉默也是没有意思的,第七局亦然,如此类推,纳什均衡是十局都会互相背叛,建立互信关系是没有可能的。
只有在囚徒困境的局数大家都不肯定的情况下,上述的推论才不会发生,才会出现互相保持沉默的现象。
经典的囚徒困境
例子
1950年,由就职于兰德公司的梅里尔·弗勒德(Merrill Flood)和梅尔文·德雷希尔(Melvin Dresher)拟定出相关困境的理论,后来由顾问艾伯特·塔克(Albert Tucker)以囚徒方式阐述,并命名为“囚徒困境”。经典的囚徒困境如下:
在第十局时,互信的关系明显是没有意义的,因为十局已经完结,囚徒没有必要为维持互信的关系而沉默(没有第十一局),所以第十局囚徒一定会背叛对方的,理由和只有一局囚徒困境一样。
问题是,既然大家都知道在第十局,无论如何对方都会背叛自己的,你在第九局保持沉默也是没有意思的,要知道,保持沉默(友好关系)的原因是为了希望下一局别人保持沉默。所以第九局双方都一定会背叛对方的。
固定局数的囚徒困境
试想像囚徒困境的情况进行十次。
我们可以合理地设想,如果囚徒第一次被对方指控,第二次这个囚徒也会指控对方。相反,如果第一次别人保持沉默,建立了互信的关系,你也会保持沉默,导致帕累托最优。
当然,两个囚徒都会有相似的想法,在第一局保持沉默,以期望建立互信关系,所以双方都会保持沉默。第二局时,双方亦应有相似的想法,继续保持沉默,以期继续在互信的情况下进行第三局,以致余下的八局。这种想法合理吗?
受骗支付
被单独背叛所获
若以T(Temptation)=背叛诱惑,R(Reward)=合作报酬,P(Punishment)=背叛惩罚,S(Suckers)=受骗支付,以个人选择得分而言,可得出以下不等式。T>R>P>S
(解:从5>3>1>0获得以上不等式)若以整体获分而言,将得出以下不等式。
现实的博弈参与者不只一方,会有多方参与的囚徒困境。加勒特·詹姆斯·哈丁(Garrett James Hardin)的公用品悲剧就是一例:“公用品悲剧是指凡是属于最多数人的公共财产常常是最少受人照顾的事物”,例如渔业,公海中的鱼是属于公共的,而在本身不滥捕其他人也滥捕的思想下,渔民会没有节制的大捞特捞,结果海洋生态破坏,渔民的生计也受影响(共同背叛的结果)。但是,多方囚徒困境的提法有待商榷,因为其总是可以被分解为一组组经典的二方囚徒困境。就是说只有二方的囚徒困境,没有多方的。所谓多方的囚徒困境只是由多个二方囚徒困境混杂在一起而形成的错觉。
二人面对的情况一样,所以二人的理性思考都会得出相同的结论——选择背叛。背叛是两种策略之中的支配性策略。因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑8年。
这场博弈的纳什均衡,显然不是顾及团体利益的帕累托最优解决方案。以全体利益而言,如果两个参与者都合作保持沉默,两人都只会被判刑1年,总体利益更高,结果也比两人背叛对方、判刑8年的情况较佳。但根据以上假设,二人均为理性的个人,且只追求自己个人利益。均衡状况会是两个囚徒都选择背叛,结果二人判决均比合作为高,总体利益较合作为低。这就是“困境”所在。例子漂亮地证明了:非零和博弈中,帕累托最优和纳什均衡是相冲突的。
成功策略的另一个品质是必须要宽恕。虽然它们不报复,但是如果对手不继续背叛,它们会一再退却到合作。这停止了报复和反报复的长期进行,最大化了得分点数。不嫉妒
最后一个品质是不嫉妒,就是说不去争取得到高于对手的分数(对于“友善”的策略来说这也是不可能的,也就是说“友善”的策略永远无法得到高于对手的分数)。
因此,阿克塞尔罗德得到一种给人以乌托邦印象的结论,认为自私的个人为了其自私的利益会趋向友善、宽恕和不嫉妒。阿克塞尔罗德关于重复囚徒困境的研究的重要结论之一,是友善的家伙能先完成交易。
警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:
若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
若二人都保持沉默(相关术语称互相“合作”),则二人同样判监1年。若二人都互相检举(相关术语称互相“背叛”),则二人同样判监8年。用表格概述如下:
·一人背叛、一人合作:背叛者得5分(背叛诱惑),合作者0分(受骗支付)。·二人都合作:各得3分(合作报酬)。·二人都背叛:各得1分(背叛惩罚)。
用支付矩阵表格展示支付如下(以红和蓝分别表示二参与者):
一般形式囚徒困境的支付矩阵以“T、R、P、S”符号表示以“胜-负”术语表示一般形式囚徒困境的支付矩阵以“T、R、P、S”符号表示以“胜-负”术语表示合作背叛合作背叛合作背叛合作3, 3 0, 5合作R, R S, T合作胜-胜大负-大胜背叛
策略成功必要条件
通过分析高分策略,阿克塞尔罗德指定了策略获得成功的几个必要条件。友善
最重要的条件是策略必须“友善”,这就是说,不要在对手背叛之前先背叛。几乎所有的高分策略都是友善的。因此,完全自私的策略仅仅出于自私的原因,也永远不会首先打击其对手。报复
但是,阿克斯洛德主张,成功的策略必须不是一个盲目乐观者。要始终报复。一个非报复策略的例子是始终合作。这是一个非常糟糕的选择,因为“下流”策略将残酷地剥削这样的傻瓜。宽恕
不同策略的参与者一再重复了很长时间之后,从利己的角度来判断,最终“贪婪”策略趋向于减少,而比较“利他”策略更多地被采用。他用这个博弈来说明,通过自然选择,一种利他行为的机制可能从最初纯粹的自私机制进化而来。
最佳确定性策略被认为是“以牙还牙”,这是阿纳托尔·拉波波特(Anatol Rapoport)开发并运用到锦标赛中的方法。它是所有参赛程序中最简单的,只包含了四行BASIC语言,并且赢得了比赛。这个策略只不过是在重复博弈的开头合作,然后,采取你的对手前一回合的策略。更好些的策略是“宽恕地以牙还牙”。当你的对手背叛,在下一回合中你无论如何要以小概率(大约是1%~5%)时而合作一下。这是考虑到偶尔要从循环背叛的受骗中复原。当错误传达被引入博弈时,“宽恕地以牙还牙”是最佳的。这意味着有时你的动作被错误地传达给你的对手:你合作但是你的对手听说你背叛了。
囚徒困境(prisoner's dilemma)是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
概念释义
囚徒困境(prisoner's dilemma):两个被捕的囚徒之间的一种特殊博弈,说明为什么甚至在合作对双方都有利时,保持合作也是困难的。
军备竞赛模型
重新考虑经典的囚徒困境一节中给定的军备竞赛模型:结论是,只是理性策略增进了军事力量,似乎两个国家都宁可花费其GDP在枪炮而不是黄油上。有趣的是,企图说明对抗国家实际上以这种方式(在“重复囚徒困境假定”下的不同时期,军费支出在“高”和“低”之间反复)竞赛的尝试,却经常表明假定的军备竞赛并没有如预想的那样出现。(例如希腊人和土耳其人的军费支出,看来并不像遵循“以牙还牙”的重复囚徒困境式的军备竞赛,却更可能是被其国内的政策所驱使。)这可能是一次性博弈和重复性博弈中的理性行为不同的例子。对一次性囚徒困境博弈来说,最佳(点数最大化的)策略是简单地背叛;正如前面解释的,无论对手的行动可能是什么,这都是真实的。但是,在重复的囚徒困境博弈中,最佳策略依赖于可能的对手的策略,和他们怎样对背叛和合作作出反应。例如,考虑这样一个人群,那里每个人每次都背叛,除了一个人是遵循以牙还牙策略。这个人处于一种轻微的不利地位,因为第一回合的损失。在这样的人群中,对这个人来说最佳策略就是每次都背叛。在一个有一定的百分比的总背叛者而剩下的则是以牙还牙者的人群中,对个人来说的最佳策略依赖于这个百分比和博弈的长度。
单次和多次重
单次发生的囚徒困境,和多次重复的囚徒困境结果不会一样。
在重复的囚徒困境中,博弈被反复地进行。因而每个参与者都有机会去“惩罚”另一个参与者前一回合的不合作行为。这时,合作可能会作为均衡的结果出现。欺骗的动机这时可能被受到惩罚的威胁所克服,从而可能导向一个较好的、合作的结果。作为反复接近无限的数量,纳什均衡趋向于帕累托最优。
一般有两种方法得到最佳策略
贝叶斯纳什均衡:如果对抗策略的统计分布能被确定(例如,50%以牙还牙,50%一直合作),就能从数学上获得最佳的相对策略[4]。
已经有了人群的蒙特卡罗模拟,在这里低分个人消失了,高分个人一再被生产出来(一种获得最佳策略的天才算法)。决赛人群中的算法合成通常依赖于初赛人群中的算法合成。尽管以牙还牙始终被认为是最可靠的基本策略,但是在重复囚徒困境的20周年纪念赛中,来英国南安普敦大学的一个小组(由尼古拉斯·詹宁斯(Nicholas Jennings)[1]领导,包括了拉蒂普·达什(Rajdeep Dash)、萨瓦帕里·拉姆琼(Sarvapali Ramchurn)、亚历克斯·罗杰斯(Alex Rogers)斯和皮鲁克里士南·维特林根(Perukrishnen Vytelingum))介绍了一个新的策略,这个策略证明了它比以牙还牙更成功。这个策略依赖于程序之间的合作,为单一程序中获得了最高的点数。南安普敦大学提交了60个程序参与竞赛,这些程序的开头被设计成通过一组5到10个的动作去彼此识别。一旦这些识别被作出,一个程序将总是合作,其他程序则总是背叛,保证背叛者得到最大的点数。如果程序识别出它在操作一个非南安普敦参与者,这程序将持续地背叛,企图去最小化竞争程序的得分。结果[5],这个策略以获得前3位结束了竞赛,也得到了大量接近底部的位置。虽然这个策略显著地证明了