高考数学一轮复习2.4幂函数与二次函数课件理新人教B版
新高考数学一轮复习教师用书:第2章 4 第4讲 二次函数与幂函数
第4讲 二次函数与幂函数1.幂函数(1)定义:形如y =x α(α∈R)的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x,y =x 2,y =x 3,y =x 12,y =x -1.(2)图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f(x)=ax 2+bx +c(a≠0). ②顶点式:f(x)=a(x -m)2+n(a≠0). ③零点式:f(x)=a(x -x 1)(x -x 2)(a≠0). (2)二次函数的图象和性质 解析式f(x)=ax 2+bx +c(a>0)f(x)=ax 2+bx +c(a<0)图象定义域 (-∞,+∞)(-∞,+∞)值域 ⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减对称性函数的图象关于x =-b2a对称[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)函数y =2x 12是幂函数.( )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (3)当n<0时,幂函数y =x n是定义域上的减函数.( )(4)二次函数y =ax 2+bx +c,x ∈[a,b]的最值一定是4ac -b24a.( )(5)二次函数y =ax 2+bx +c,x ∈R 不可能是偶函数.( )(6)在y =ax 2+bx +c(a≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ [教材衍化]1.(必修1P77图象改编)如图是①y=x a;②y=x b;③y=x c在第一象限的图象,则a,b,c 的大小关系为________.解析:根据幂函数的性质可知a<0,b>1,0<c<1,故a<c<b. 答案:a<c<b2.(必修1P39B 组T1改编)函数g(x)=x 2-2x(x∈[0,3])的值域为________.解析:由g(x)=x 2-2x =(x -1)2-1,x ∈[0,3],得g(x) 在[0,1]上是减函数,在[1,3]上是增函数. 所以g(x)min =g(1)=-1,而g(0)=0,g(3)=3. 所以g(x)的值域为[-1,3]. 答案:[-1,3] [易错纠偏](1)二次函数图象特征把握不准; (2)二次函数的单调性规律掌握不到位; (3)幂函数的图象掌握不到位.1.如图,若a<0,b>0,则函数y =ax 2+bx 的大致图象是________(填序号).解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a<0,b>0,所以二次函数图象的对称为x =-b2a>0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________. 解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m<0-12m ≤3,即m≤-16.答案:⎝⎛⎦⎥⎤-∞,-16 3.当x∈(0,1)时,函数y =x m的图象在直线y =x 的上方,则m 的取值范围是________. 答案:(-∞,1)幂函数的图象及性质(1)幂函数y =f(x)的图象过点(4,2),则幂函数y =f(x)的图象是( )(2)若(a +1)12<(3-2a)12,则实数a 的取值范围是________. 【解析】 (1)设幂函数的解析式为y =x α, 因为幂函数y =f(x)的图象过点(4,2), 所以2=4α,解得α=12.所以y =x,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y =x 的上方,对照选项,故选C.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a≥0,a +1<3-2a ,解得-1≤a<23.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫-1,23幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式. (2)判断幂函数y =x α(α∈R)的奇偶性时,当α是分数时,一般将其先化为根式,再判断. (3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.1.已知幂函数f(x)=xm 2-2m -3(m∈Z)的图象关于y 轴对称,并且f(x)在第一象限是单调递减函数,则m =________.解析:因为幂函数f(x)=xm 2-2m -3(m∈Z)的图象关于y 轴对称,所以函数f(x)是偶函数,所以m 2-2m -3为偶数,所以m 2-2m 为奇数,又m 2-2m<0,故m =1. 答案:12.当0<x<1时,f(x)=x 1.1,g(x)=x 0.9,h(x)=x -2的大小关系是________.解析:如图所示为函数f(x),g(x),h(x)在(0,1)上的图象,由此可知h(x)>g(x)>f(x).答案:h(x)>g(x)>f(x)求二次函数的解析式已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.【解】 法一:(利用一般式)设f(x)=ax 2+bx +c(a≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f(x)=-4x 2+4x +7.法二:(利用顶点式)设f(x)=a(x -m)2+n(a≠0). 因为f(2)=f(-1), 所以抛物线的对称轴为x =2+(-1)2=12. 所以m =12.又根据题意函数有最大值8,所以n =8,所以f(x)=a ⎝ ⎛⎭⎪⎫x -122+8. 因为f(2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f(x)=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三:(利用零点式)由已知f(x)+1=0的两根为x 1=2,x 2=-1, 故可设f(x)+1=a(x -2)(x +1), 即f(x)=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a24a =8.解得a =-4或a =0(舍去),所以所求函数的解析式为f(x)=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.若函数f(x)=(x +a)(bx +2a)(常数a,b ∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析:由f(x)是偶函数知f(x)的图象关于y 轴对称,所以-a =-⎝ ⎛⎭⎪⎫-2a b ,即b =-2,所以f(x)=-2x2+2a 2,又f(x)的值域为(-∞,4],所以2a 2=4,故f(x)=-2x 2+4.答案:-2x 2+42.已知二次函数f(x)的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x∈R ,都有f(2-x)=f(2+x),求f(x)的解析式.解:因为f(2+x)=f(2-x)对任意x∈R 恒成立, 所以f(x)的对称轴为x =2.又因为f(x)的图象被x 轴截得的线段长为2, 所以f(x)=0的两根为1和3. 设f(x)的解析式为f(x)=a(x -1)(x -3)(a≠0), 又f(x)的图象过点(4,3), 所以3a =3,a =1, 所以所求f(x)的解析式为 f(x)=(x -1)(x -3), 即f(x)=x 2-4x +3.二次函数的图象与性质(高频考点)高考对二次函数图象与性质进行考查,多与其他知识结合,且常以选择题形式出现,属中高档题.主要命题角度有:(1)二次函数图象的识别问题; (2)二次函数的单调性问题; (3)二次函数的最值问题. 角度一 二次函数图象的识别问题已知abc>0,则二次函数f(x)=ax 2+bx +c 的图象可能是( )【解析】 A 项,因为a<0,-b2a<0,所以b<0. 又因为abc>0,所以c>0,而f(0)=c<0,故A 错. B 项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B 错. C 项,因为a>0,-b2a <0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C 错.D 项,因为a>0,-b2a >0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D. 【答案】 D角度二 二次函数的单调性问题函数f(x)=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________. 【解析】 当a =0时,f(x)=-3x +1在[-1,+∞)上递减,满足条件. 当a≠0时,f(x)的对称轴为x =3-a2a,由f(x)在[-1,+∞)上递减知⎩⎪⎨⎪⎧a<03-a 2a ≤-1,解得-3≤a<0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0](变条件)若函数f(x)=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?解:因为函数f(x)=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a<0,a -3-2a =-1,解得a =-3.角度三 二次函数的最值问题已知函数f(x)=x 2-2ax +1,x ∈[-1,2]. (1)若a =1,求f(x)的最大值与最小值;(2)f(x)的最小值记为g(a),求g(a)的解析式以及g(a)的最大值. 【解】 (1)当a =1时,f(x)=x 2-2x +1=(x -1)2,x ∈[-1,2], 则当x =1时,f(x)的最小值为0,x =-1时,f(x)的最大值为4. (2)f(x)=(x -a)2+1-a 2,x ∈[-1,2], 当a<-1时,f(x)的最小值为f(-1)=2+2a, 当-1≤a≤2时,f(x)的最小值为f(a)=1-a 2, 当a>2时,f(x)的最小值为f(2)=5-4a, 则g(a)=⎩⎪⎨⎪⎧2+2a ,a<-1,1-a 2,-1≤a≤2,5-4a ,a>2,可知,g(a)在(-∞,0)上单调递增,在(0,+∞)上单调递减,g(a)的最大值为g(0)=1.(1)确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向; 二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息. (2)二次函数最值的求法二次函数的区间最值问题一般有三种情况:①对称轴和区间都是给定的;②对称轴动,区间固定;③对称轴定,区间变动.解决这类问题的思路是抓住“三点一轴”进行数形结合,三点指的是区间两个端点和中点,一轴指的是对称轴.具体方法是利用函数的单调性及分类讨论的思想求解.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.1.若函数f(x)=x 2+ ax +b 在区间[0, 1]上的最大值是M,最小值是m,则M -m( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关 D .与a 无关,但与b 有关解析:选 B.f(x)=⎝ ⎛⎭⎪⎫x +a 22-a 24+b,①当0≤-a 2≤1时,f(x)min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b,f(x)max =M =max{f(0),f(1)}=max{b,1+a +b},所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f(x)在[0,1]上单调递增,所以M -m =f(1)-f(0)=1+a 与a 有关,与b 无关;③当-a2>1时,f(x)在[0,1]上单调递减,所以M -m =f(0)-f(1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.2.若函数f(x)=ax 2+20x +14(a >0)对任意实数t,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f(x 1)-f(x 2)|≥8成立,则实数a 的最小值为________.解析:因为a >0,所以二次函数f(x)=ax 2+20x +14的图象开口向上.在闭区间[t -1,t +1]上总存在两实数x 1,x 2, 使得|f(x 1)-f(x 2)|≥8成立, 只需t =-10a时f(t +1)-f(t)≥8,即a(t +1)2+20(t +1)+14-(at 2+20t +14)≥8, 即2at +a +20≥8,将t =-10a代入得a≥8. 所以a 的最小值为8. 故答案为8. 答案:8三个“二次”间的转化(2020·金华市东阳二中高三调研)已知二次函数f(x)=x 2+ax +b(a,b ∈R).(1)当a =-6时,函数f(x)的定义域和值域都是⎣⎢⎡⎦⎥⎤1,b 2,求b 的值; (2)当a =-1时在区间[-1,1]上,y =f(x)的图象恒在y =2x +2b -1的图象上方,试确定实数b 的范围.【解】 (1)当a =-6时,函数f(x)=x 2-6x +b,函数对称轴为x =3,故函数f(x)在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.①当2<b≤6时,f(x)在区间⎣⎢⎡⎦⎥⎤1,b 2上单调递减;故有⎩⎪⎨⎪⎧f (1)=b2f ⎝ ⎛⎭⎪⎫b 2=1,无解;②当6<b≤10时,f(x)在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f(1)≥f ⎝ ⎛⎭⎪⎫b 2,故⎩⎪⎨⎪⎧f (1)=b 2f (3)=1,解得b =10; ③当b>10时,f(x)在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f(1)<f(b 2),故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫b 2=b 2f (3)=1,无解.所以b 的值为10.(2)当a =-1时,f(x)=x 2-x +b,由题意可知x 2-x +b>2x +2b -1对x∈[-1,1]恒成立, 化简得b<x 2-3x +1,令g(x)=x 2-3x +1,x ∈[-1,1],图象开口向上,对称轴为x =32,在区间[-1,1]上单调递减,则g(x)min=-1,故b<-1.(1)二次函数、二次方程与二次不等式统称三个“二次”,它们常结合在一起,而二次函数又是三个“二次”的核心,通过二次函数的图象贯穿为一体.因此,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a≥f(x)恒成立⇔a ≥f(x)max ,a ≤f(x)恒成立⇔a ≤f(x)min .[提醒] 当二次项系数a 是否为0不明确时,要分类讨论.1.(2020·宁波市余姚中学期中检测)设a<0,(3x 2+a)(2x +b)≥0在(a,b)上恒成立,则b -a 的最大值为( )A.13 B.12 C.33D.22解析:选A.因为(3x 2+a)(2x +b)≥0在(a,b)上恒成立, 所以3x 2+a≥0,2x +b≥0或3x 2+a≤0,2x +b≤0,①若2x +b≥0在(a,b)上恒成立,则2a +b≥0,即b≥-2a>0,此时当x =0时,3x 2+a =a≥0不成立, ②若2x +b≤0在(a,b)上恒成立,则2b +b≤0,即b≤0,若3x 2+a≤0在(a,b)上恒成立,则3a 2+a≤0,即-13≤a ≤0,故b -a 的最大值为13.2.已知函数f(x)=x 2-x +1,在区间[-1,1]上不等式f(x)>2x +m 恒成立,则实数m 的取值范围是________.解析:f(x)>2x +m 等价于x 2-x +1>2x +m,即x 2-3x +1-m>0, 令g(x)=x 2-3x +1-m,要使g(x)=x 2-3x +1-m>0在[-1,1]上恒成立,只需使函数g(x)=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. 因为g(x)=x 2-3x +1-m 在[-1,1]上单调递减, 所以g(x)min =g(1)=-m -1. 由-m -1>0,得m<-1 .因此满足条件的实数m 的取值范围是(-∞,-1). 答案:(-∞,-1)[基础题组练]1.已知幂函数f(x)=k·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12 B .1 C.32D .2 解析:选C.因为函数f(x)=k·x α是幂函数,所以k =1,又函数f(x)的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32. 2.若幂函数f(x)=x mn(m,n ∈N *,m,n 互质)的图象如图所示,则( )A .m,n 是奇数,且mn <1B .m 是偶数,n 是奇数,且mn >1C .m 是偶数,n 是奇数,且mn <1D .m 是奇数,n 是偶数,且mn>1解析:选C.由图知幂函数f(x)为偶函数,且mn <1,排除B,D ;当m,n 是奇数时,幂函数f(x)非偶函数,排除A ;选C.3.若函数f(x)=x 2+bx +c 对任意的x∈R 都有f(x -1)=f(3-x),则以下结论中正确的是( ) A .f(0)<f(-2)<f(5) B .f(-2)<f(5)<f(0) C .f(-2)<f(0)<f(5)D .f(0)<f(5)<f(-2)解析:选A.若函数f(x)=x 2+bx +c 对任意的x∈R 都有f(x -1)=f(3-x),则f(x)=x 2+bx +c 的图象的对称轴为x =1且函数f(x)的图象的开口方向向上,则函数f(x)在(1,+∞)上为增函数,所以f(2)<f(4)<f(5),又f(0)=f(2),f(-2)=f(4),所以f(0)<f(-2)<f(5).4.(2020·瑞安四校联考)定义域为R 的函数f(x)满足f(x +1)=2f(x),且当x∈[0,1]时,f(x)=x 2-x,则当x∈[-2,-1]时,f(x)的最小值为( )A .-116B .-18C .-14D .0解析:选A.当x∈[-2,-1]时,x +2∈[0,1],则f(x +2)=(x +2)2-(x +2)=x 2+3x +2,又f(x +2)=f[(x +1)+1]=2f(x +1)=4f(x),所以当x∈[-2,-1]时,f(x)=14(x 2+3x +2)=14⎝ ⎛⎭⎪⎫x +322-116,所以当x =-32时,f(x)取得最小值,且最小值为-116,故选A.5.若函数f(x)=x 2-2x +1在区间[a,a +2]上的最小值为4,则a 的取值集合为( ) A .[-3,3] B .[-1,3] C .{-3,3}D .{-1,-3,3}解析:选C.因为函数f(x)=x 2-2x +1=(x -1)2,对称轴为x =1,因为在区间[a,a +2]上的最小值为4,所以当1≤a 时,y min =f(a)=(a -1)2=4,a =-1(舍去)或a =3,当a +2≤1时,即a≤-1,y min =f(a +2)=(a +1)2=4,a =1(舍去)或a =-3,当a<1<a +2,即-1<a<1时,y min =f(1)=0≠4,故a 的取值集合为{-3,3}.6.(2020·温州高三月考)已知f(x)=ax 2+bx +c(a >0),g(x)=f(f(x)),若g(x)的值域为[2,+∞),f(x)的值域为[k,+∞),则实数k 的最大值为( )A .0B .1C .2D .4解析:选C.设t =f(x),由题意可得g(x)=f(t)=at 2+bt +c,t ≥k,函数y =at 2+bt +c,t ≥k 的图象为y =f(x)的图象的部分,即有g(x)的值域为f(x)的值域的子集, 即[2,+∞)⊆[k,+∞), 可得k≤2,即有k 的最大值为2. 故选C.7.已知幂函数f(x)=x -12,若f(a +1)<f(10-2a),则实数a 的取值范围是________.解析:因为f(x)=x -12=1x (x>0),易知x∈(0,+∞)时为减函数,又f(a +1)<f(10-2a),所以⎩⎪⎨⎪⎧a +1>0,10-2a>0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a>-1,a<5,a>3,所以3<a<5. 答案:(3,5)8.已知函数f(x)=x 2-2ax +2a +4的定义域为R,值域为[1,+∞),则a 的值为________. 解析:由于函数f(x)的值域为[1,+∞),所以f(x)min =1.又f(x)=(x -a)2-a 2+2a +4,当x∈R 时,f(x)min =f(a)=-a 2+2a +4=1,即a 2-2a -3=0,解得a =3或a =-1.答案:-1或39.(2020·杭州四中第一次月考)已知函数f(x)=x 2+ax +1,若存在x 0使|f(x 0)|≤14,|f(x 0+1)|≤14同时成立,则实数a 的取值范围为________.解析:由f(x)=⎝ ⎛⎭⎪⎫x +a 22+4-a 24,考察g(x)=x 2+h,当h =0时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12+1≤14同时成立;当h =-12时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,|g(-12+1)|≤14同时成立.所以-12≤h ≤0,即-12≤4-a 24≤0,解得-6≤a ≤-2或2≤a≤ 6.答案:[-6,-2]∪[2,6]10.设函数f(x)=x 2-1,对任意x∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x)≤f(x-1)+4f(m)恒成立,则实数m 的取值范围是________.解析:依据题意,得x 2m 2-1-4m 2(x 2-1)≤(x-1)2-1+4(m 2-1)在x∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在x∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立.当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m≤-32或m≥32. 答案:⎝⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 11.已知幂函数f(x)=(m 2-5m +7)x m -1为偶函数.(1)求f(x)的解析式;(2)若g(x)=f(x)-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 解:(1)由题意m 2-5m +7=1,解得m =2或m =3, 若m =2,与f(x)是偶函数矛盾,舍去, 所以m =3,所以f(x)=x 2.(2)g(x)=f(x)-ax -3=x 2-ax -3,g(x)的对称轴是x =a 2,若g(x)在[1,3]上不是单调函数, 则1<a2<3,解得2<a<6.12.(2020·台州市教学质量调研)已知函数f(x)=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称.(1)求f(x)的解析式;(2)若m <3,求函数f(x)在区间[m,3]上的值域.解:(1)因为函数f(x)=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称, 所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0,所以f(x)=x 2-2x.(2)当1≤m<3时,f(x)min =f(m)=m 2-2m, f(x)max =f(3)=9-6=3, 所以f(x)的值域为[m 2-2m,3];当-1≤m<1时,f(x)min =f(1)=1-2=-1, f(x)max =f(-1)=1+2=3,所以f(x)的值域为[-1,3].当m <-1时,f(x)min =f(1)=1-2=-1, f(x)max =f(m)=m 2-2m,所以f(x)的值域为[-1,m 2-2m].[综合题组练]1.(2020·台州质检)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a-b =1;③a-b +c =0;④5a<b.其中正确的结论是( )A .②④B .①④C .②③D .①③解析:选B.因为二次函数的图象与x 轴交于两点,所以b 2-4ac>0,即b 2>4ac,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y>0,即a -b +c>0,③错误;由对称轴为x =-1知,b =2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.2.(2020·温州市十校联考)已知函数f(x)是定义在R 上的奇函数,当x≥0时,f(x)=12(|x -a 2|+|x-2a 2|-3a 2).若∀x ∈R,f(x -1)≤f(x),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33 解析:选B.因为当x≥0时,f(x)=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x≤a 2时,f(x)=12(a 2-x +2a 2-x -3a 2)=-x ;当a 2<x <2a 2时,f(x)=12(x -a 2+2a 2-x -3a 2)=-a 2;当x≥2a 2时,f(x)=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f(x)=12(|x -a 2|+|x -2a 2|-3a 2)在x≥0时的解析式等价于f(x)=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f(x)在R 上的大致图象如下,观察图象可知,要使∀x ∈R,f(x -1)≤f(x),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. 3.已知函数f(x)=|x 2+ax +b|在区间[0,c]内的最大值为M(a,b ∈R,c >0为常数)且存在实数a,b,使得M 取最小值2,则a +b +c =________.解析:函数y =x 2+ax +b 是二次函数,所以函数f(x)=|x 2+ax +b|在区间[0,c]内的最大值M 在端点处或x =-a 2处取得.若在x =0处取得,则b =±2, 若在x =-a 2处取得,则|b -a24|=2,若在x =c 处取得,则|c 2+ac +b|=2. 若b =2,则|b -a 24|≤2,|c 2+ac +b|≤2,解得a =0,c =0,符合要求,若b =-2,则顶点处的函数值的绝对值大于2,不成立. 可得a +b +c =2.故答案为2. 答案:24.(2020·宁波市余姚中学高三期中)已知f(x)=34x 2-3x +4,若f(x)的定义域和值域都是[a,b],则a+b =________.解析:因为f(x)=34x 2-3x +4=34(x -2)2+1,所以x =2是函数的对称轴,根据对称轴进行分类讨论:①当b<2时,函数在区间[a,b]上递减,又因为值域也是[a,b],所以得方程组⎩⎪⎨⎪⎧f (a )=bf (b )=a ,即⎩⎪⎨⎪⎧34a 2-3a +4=b 34b 2-3b +4=a,两式相减得34(a +b)(a -b)-3(a -b)=b -a,又因为a≠b ,所以a +b =83,由34a 2-3a +4=83-a,得3a 2-8a +163=0,所以a =43,所以b =43,故舍去. ②当a<2≤b 时,得f(2)=1=a,又因为f(1)=74<2,所以f(b)=b,得34b 2-3b +4=b,所以b =43(舍)或b=4,所以a +b =5.③当a≥2时,函数在区间[a,b]上递增,又因为值域是[a,b],所以得方程组⎩⎪⎨⎪⎧f (a )=af (b )=b ,即a,b 是方程34x 2-3x +4=x 的两根,即a,b 是方程3x 2-16x +16=0的两根,所以⎩⎪⎨⎪⎧a =43b =4,但a≥2,故应舍去.综上得a +b =5.答案:55.已知函数f(x)=ax 2+bx +c(a >0,b ∈R,c ∈R). (1)若函数f(x)的最小值是f(-1)=0,且c =1,F(x)=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F(2)+F(-2)的值;(2)若a =1,c =0,且|f(x)|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2,所以f(x)=(x +1)2.所以F(x)=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f(x)=x 2+bx,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b≤1x -x 且b≥-1x-x 在(0,1]上恒成立.又当x∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b≤0.故b 的取值范围是[-2,0].6.(2020·宁波市余姚中学期中检测)已知函数f(x)=-x 2+2bx +c,设函数g(x)=|f(x)|在区间[-1,1]上的最大值为M.(1)若b =2,试求出M ;(2)若M≥k 对任意的b 、c 恒成立,试求k 的最大值.解:(1)当b =2时,f(x)=-x 2+4x +c 在区间[-1,1]上是增函数, 则M 是g(-1)和g(1)中较大的一个, 又g(-1)=|-5+c|,g(1)=|3+c|,则M =⎩⎪⎨⎪⎧|-5+c|,c ≤1|3+c|,c>1.(2)g(x)=|f(x)|=|-(x -b)2+b 2+c|,(ⅰ)当|b|>1时,y =g(x)在区间[-1,1]上是单调函数, 则M =max{g(-1),g(1)},而g(-1)=|-1-2b +c|,g(1)=|-1+2b +c|,则2M≥g(-1)+g(1)≥|f(-1)-f(1)|=4|b|>4,可知M>2.(ⅱ)当|b|≤1时,函数y =g(x)的对称轴x =b 位于区间[-1,1]之内, 此时M =max{g(-1),g(1),g(b)}, 又g(b)=|b 2+c|,①当-1≤b≤0时,有f(1)≤f(-1)≤f(b),则M =max{g(b),g (1)}≥12(g(b)+g(1))≥12|f(b)-f(1)|=12(b -1)2≥12;②当0<b≤1时,有f(-1)≤f(1)≤f(b).则M =max{g(b),g(-1)}≥12(g(b)+g(-1))≥12|f(b)-f(-1)|=12(b +1)2>12.综上可知,对任意的b 、c 都有M≥12.而当b =0,c =12时,g(x)=⎪⎪⎪⎪⎪⎪-x 2+12在区间[-1,1]上的最大值M =12,故M≥k 对任意的b 、c 恒成立的k 的最大值为12.。
高三数学一轮总复习第二章函数导数及其应用2.4二次函数与幂函数课件
解析:(1)由于 f(x)有两个零点 0 和-2, 所以可设 f(x)=ax(x+2)(a≠0)。 这时 f(x)=ax(x+2)=a(x+1)2-a, 由于 f(x)有最小值-1,
所以必有-a>a0=,-1, 解得 a=1。 因此 f(x)的解析式是 f(x)=x(x+2)=x2+2x。
25
(2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式。 解析:(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点 P′(-x, -y)必在 f(x)图象上, 所以-y=(-x)2+2(-x), 即-y=x2-2x,y=-x2+2x, 故 g(x)=-x2+2x。
解析:因为函数 f(x)=4x2-mx+5 的单调递增区间为m8 ,+∞,所以m8 ≤2,即 m≤16。
答案:(-∞,16]
16
5.设函数 f(x)=mx2-mx-1,若 f(x)<0 的解集为 R,则实数 m 的取值范围是 __________。
m<0, 解析:当 m=0 时,显然成立;当 m≠0 时,Δ=-m2+4m<0, 解得-4<m <0。 综上可知,实数 m 的取值范围是(-4,0]。 答案:(-4,0]
26
►名师点拨 二次函数解析式的求法 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点坐标,宜选用一般式; (2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与 x 轴两交点坐标,宜选用两根式。
27
通关特训 2 已知二次函数 f(x)同时满足条件: (1)f(1+x)=f(1-x); (2)f(x)的最大值为 15; (3)f(x)=0 的两根平方和等于 17。 求 f(x)的解析式。 解析:依条件, 设 f(x)=a(x-1)2+15 (a<0), 即 f(x)=ax2-2ax+a+15。 令 f(x)=0,即 ax2-2ax+a+15=0, ∴x1+x2=2,x1x2=1+1a5。 x21+x22=(x1+x2)2-2x1x2=4-21+1a5=2-3a0=17, ∴a=-2,∴f(x)=-2x2+4x+13。
第03讲 幂函数与二次函数(课件)-2024年高考数学一轮复习
=
−
<
(2)方程有两个不等负根 , ⇔
= >
(3)方程有一正根和一负根,设两根为 , ⇔ = <
常用结论
3、有关二次函数的问题,关键是利用图像.
(1)要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类
问题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个
一般地,函数______叫做幂函数,其中x是自变量,α为常数.
(2)常见的五种幂函数的图象
(3)幂函数的性质
①幂函数在(0,+∞)上都有定义;
(0,0)
(1,1)
②当α>0时,幂函数的图象都过点_____和_____,且在(0,+∞)上单调
递增;
(1,1)
③当α<0时,幂函数的图象都过点_____,且在(0,+∞)上单调递减;
1
,即
或
(−1) > 0
> −3
(1) > 0
<1
1
D. − , 0 ⋃(1, +∞)
3
>1
−1 < < 1
1
,
> −3
<1
1
解得− 3 < < 0,
故选:C
题型三:二次方程 2 + + = 0 ≠ 0 的实根分布及条件
【对点训练5】(2023·全国·高三专题练习)方程 2 + ( − 2) + 5 − = 0的一根在区间(2,3)内,另一根在区间(3,4)
以2 − 2 − 2 = 1,解得 = 3或 = −1,又因为()
2.4幂函数与二次函数课件高三数学一轮复习
单调递减,则 n 的值为( B )
A.-3
B.1
C.2
D.1 或 2
【解析】 由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只 有 n=1 符合题意,故选 B.
12
12
11
3.若 a= 2 3 ,b= 5 3 ,c= 2 3 ,则 a,b,c 的大小关系是( D )
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
【解析】
∵y=x
2 3
(x>0)是增函数,∴a=12
2 3
>b=15
2 3
.∵y=12x 是减函数,
∴a=12
2 3
<c=12
1 3
,∴b<a<c.故选
D.
考点二 求二次函数的解析式
【例 1】 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是 8,试确 定此二次函数的解析式.
【思路探索】 根据 f(2),f(-1)可设一般式;根据 f(x)的最大值为 8,可设顶点式; 根据隐含的 f(2)+1=0,f(-1)+1=0 可考虑零点式.
【解】 解法一(利用一般式): 设 f(x)=ax2+bx+c(a≠0),
4a+2b+c=-1, 由题意得4aa-c4-ba+b2c==8-,1,
上单调
在x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba 对称
提醒:二次函数系数的特征 (1)二次函数 y=ax2+bx+c(a≠0)中,系数 a 的正负决定图象的开口方向及开口大小. (2)-2ba的值决定图象对称轴的位置. (3)c 的取值决定图象与 y 轴的交点. (4)b2-4ac 的正负决定图象与 x 轴的交点个数.
高考数学大一轮总复习 第二章 函数、导数及其应用 2.4 二次函数与幂函数名师课件 文 北师大版
_奇__函__数____
__非__奇__非__偶_ __函__数_____
__奇__函__数___
函数
单调 性
y=x
y=x2
y=x3
在__(_-__∞__,__0_) _
_在__R_上__单___ 上__单__调__递__减__,_ _在__R__上__单__ 调__递__增___ 在__(_0_,__+__∞__)上_ _调__递__增____
2
D.
52-1,2
【解析】 因为函数 y=x21的定义域为[0,+∞), 且在定义域内为增函数,
所以不等式等价于 2mm2++m1≥-01,≥0, 2m+1>m2+m-1。
解 2m+1≥0,得 m≥-12;
- 解 m2+m-1≥0,得 m≤
25-1或 m≥
52-1。
解 2m+1>m2+m-1,得-1<m<2,
1
(2)幂函数 y=x,y=x2,y=x3,y=x2,y=x-1 的图像与性质
函数
y=x
定义域
R
值域
R
奇偶性 _奇__函__数____
y=x2 R
_{_y_|y_≥__0_}_
_偶__函__数Biblioteka __y=x3y=x-1
R
__{x_|_x_≥__0_}_ _{_x_|x_≠__0_}__
R
__{_y|_y_≥__0_} __{_y_|y_≠__0_}_
解析 正确。由幂函数的图像可知。
(6)关于
x
的不等式
ax2+bx+c>0
a>0, 恒成立的充要条件是b2-4ac<0。
( × )解析 错误。当 a=0,b=0,c>0 时也恒成立。ax2+bx+c>0(a≠0)恒
2.4二次函数与幂函数(一轮复习)
图象
题 型 重 点 研 讨
定义域 值域
4ac-b2 ,+∞ 4a
R
2 4 ac - b -∞, 4a
课 时 跟 踪 检 测
必考部分 第二章 §2.4
第 9页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
题 型 重 点 研 讨
必考部分
真 题 演 练 集 训
课 时 跟 踪 检 测
必考部分 第二章 §2.4
第 1页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
题 型 重 点 研 讨
第二章
函数概念与基本初等函数Ⅰ
真 题 演 练 集 训
课 时 跟 踪 检 测 真 题 演 练 集 训
题 型 重 点 研 讨
必考部分 第二章 §2.4
第12页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
1 题 f(x)=________. x2 型 重 点 研 解析:设 f(x)=xα,则 讨
[双基夯实]
真 题 演 练 集 训
1.[教材习题改编]已知幂函数 f(x)的图象过点(2, 2),则函数
2.(1)[教材习题改编]若函数 f(x)=4x2-kx-8 在[-1,2]上是单
题 型 重 点 研 讨
8
8
8
-8 或 k≥16.故所求 k 的取值范围是(-∞,-8]∪[16 ,+∞).
课 时 跟 踪 检 测
必考部分 第二章 §2.4
第14页
名师伴你行 ·高考一轮总复习 ·数学(理)
2025数学大一轮复习讲义人教版 第二章 二次函数与幂函数
域为
A.(2,10) C.[2,10]
B.[1,2)
√D.[1,10)
当x∈(-2,2)时,-3<x-1<1, 则f(x)=x2-2x+2=(x-1)2+1∈[1,10).
自主诊断
4.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,则实数 a的取值范围是__(-__∞__,__4_]__.
依题意,设函数f(x)=a(x-2)2+h(a≠0), 由二次函数f(x)的图象过点(0,3),得f(0)=3, 所以4a+h=3,即h=3-4a, 所以f(x)=a(x-2)2+3-4a, 令f(x)=0,即a(x-2)2+3-4a=0, 所以ax2-4ax+3=0, 设方程的两根为x1,x2,
知识梳理
(3)幂函数的性质 ①幂函数在(0,+∞)上都有定义; ②当α>0时,幂函数的图象都过点 (1,1) 和 (0,0) ,且在(0,+∞)上单调 递增; ③当α<0时,幂函数的图象都过点 (1,1) ,且在(0,+∞)上单调递减; ④当α为奇数时,y=xα为 奇函数 ;当α为偶数时,y=xα为 偶函数 .
限内的交点坐标为(1,1),
当
0<x<1
时,x
m n
>x,则mn <1;
m
又y=x n 的图象关于y轴对称,
m
∴y=x n 为偶函数,
m
m
∴ (x) n =n -xm=x n =n xm,
又m,n互质,∴m为偶数n为奇数.
题型二 二次函数的解析式
例2 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8, 试确定该二次函数的解析式.
依题意 3b≤12,所以 b≤16,
高三数学一轮复习知识点专题2-4二次函数与幂函数
精品基础教育教学资料,仅供参考,需要可下载使用!专题2-4二次函数与幂函数【核心素养分析】1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.3.培养学生逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】 知识点一 幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 知识点二 二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质【特别提醒】1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.【典型题分析】高频考点一 幂函数的图象与性质例1.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.【答案】-1【解析】由题意知α可取-1,1,3.又y =x α在(0,+∞)上是减函数, ∴α<0,取α=-1.【方法技巧】(1)幂函数y =x α的形式特点是“幂指数坐在x 的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y 轴左侧的增减性即可.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.【变式探究】(2020·山东临沂一中质检)幂函数y =x (m ∈Z)的图象如图所示,则m 的值为( )A .-1B .0C .1D .2【答案】C【解析】从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.高频考点二 求二次函数的解析式例2.(2020·河北衡水中学调研) 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.【答案】f (x )=-4x 2+4x +7.【解析】法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 2-2-3mm法三:(利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8, 即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7. 【方法技巧】求二次函数解析式的策略 (1)已知三点坐标,选用一般式(2)已知顶点坐标、对称轴、最值,选用顶点式 (3)已知与x 轴两点坐标,选用零点式【变式探究】(2020·湖南湘潭二中模拟)已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.【答案】19x 2+49x -59【解析】法一:(一般式)设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎨⎧-b2a=-2,4ac -b24a=-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:(顶点式)设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.高频考点三 二次函数的图象及应用例3.(2020·吉林长春实验中学模拟)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是()【答案】A【解析】若0<a<1,则y=log a x在(0,+∞)上单调递减,y=(a-1)x2-x开口向下,其图象的对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上是增函数,y=(a-1)x2-x图象开口向上,且对称轴在y轴右侧,因此B项不正确,只有选项A满足.【方法技巧】1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是抛物线上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【变式探究】(2020·河南商丘一中模拟)已知abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()A BC D【答案】D【解析】A项,因为a<0,-b2a<0,所以b<0.又因为abc>0,所以c>0,而f(0)=c<0,故A错.B项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B错.C项,因为a>0,-b2a<0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C错.D项,因为a>0,-b2a>0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D。
高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版
• 四、实系数一元二次方程ax2+bx+c=0(a≠0)的实根的 符号与系数之间的关系 • 1.方程有两个不相等的正实数根⇔
• 2.方程有两个不相等的负实根⇔
• 五、一元二次方程f(x)=ax2+bx+c=0(a≠0)的区间根问 题 • 研究一元二次方程的区间根,一般情况下需要从以下三 个方面考虑: • 1.一元二次方程根的判别式; • 2.对应二次函数区间端点函数值的正负;
(3)若f(x0)· f(b0)<0,则方程f(x)=0的一个根位于区间 (x0,b0)中,令a1=x0,b1=b0. 1 第四步:取区间(a1,b1)的中点x1= 2 (a1+b1),重复第 二、第三步,……直到第n次,方程f(x)=0的一个根总在 区间(an,bn)中. 第五步:当|an-bn|<ε,(ε是规定的精确度)时,区间 (an,bn)内的任何一个值就是方程f(x)=0的一个近似根. 注意:二分法只适用于求函数f(x)的变号零点.
解析:(1)设投资x万元时,A产品的利润为f(x)万 元,B产品的利润为g(x)万元. 由题设f(x)=k1x,g(x)=k2 x, 1 1 由图知f(1)=4,∴k1=4. 5 5 又g(4)=2,∴k2=4. 1 5 从而f(x)= x(x≥0),g(x)= x(x≥0). 4 4
• 解析:(1)当0<x≤100时,f(x)=60; • 当100<x≤600时,f(x)=60-(x-100)×0.01=61- 0.01x.
60 ∴f(x)= 61-0.01x
0<x≤100 . 100<x≤600
• • • • •
(2)设利润为y元,则0<x≤100时, y=60x-50x=10x, ∴x=100时,ymax=1000元. 当100<x≤600时, y=(61-0.01x)·x-50x=11x-0.01x2
北师版高考总复习一轮理科数精品课 第2章 函数的概念与性质 第4节 幂函数与二次函数
1
a= ,所以
9
1
f(x)= (x+2)2-1,即
9
1 2 4 5
f(x)= x + x- .
9
9 9
考点三
二次函数的图像与性质(多考向探究)
考向1.二次函数的图像
典例突破
例3.如图是二次函数y=ax2+bx+c(a≠0)图像的一部分,
图像过点A(-3,0),对称轴为直线x=-1.给出下面四个结论:
选项符合题意,故选C.
考向2.二次函数的单调性与最值
典例突破
例4.(2021新疆乌鲁木齐模拟)若定义在R上的二次函数f(x)的值域为[-4,
+∞),且满足f(1+x)=f(1-x),f(2)=-3.
(1)求函数f(x)的解析式;
(2)求f(x)在[t,t+1]上的最小值g(t).
解:(1)由于f(1+x)=f(1-x),则二次函数f(x)的图像关于直线x=1对称,因为二次
衍生考点
核心素养
1.幂函数的图像与性质
2.二次函数的解析式
3.二次函数的图像
4.二次函数的性质
5.三个“二次”之间的关
系
1.数学抽象
2.直观想象
3.数学运算
4.逻辑推理
强基础 增分策略
1.幂函数
(1)幂函数的定义
一般地,函数 y=xα
叫作幂函数,其中x是自变量,α是常数.
微点拨幂函数的特点:①自变量x处在幂底数的位置,幂指数α为常数;②xα图像上的一些特殊
点,如函数图像与y轴的交点,与x轴的交点等.
从这三方面入手,能准确地判断出二次函数的图像,反之,也能从图像中得
2024届高考数学一轮总复习第二章函数导数及其应用第四讲幂函数与二次函数课件
当 x=0 时,-3<0,符合题意;
当 x≠0 时,a<321x-312-61,
易得1x∈(-∞,-1]∪[1,+∞),所以当 x=1 时,右边取得 最小值12,所以 a<12.
综上,实数 a 的取值范围是-∞,21. 答案:-∞,21
答案:B
考向 2 二次函数的单调性 通性通法:处理函数的单调性问题要注意数形结合思想的应 用,尤其是求给定区间上的二次函数最值的问题,要先“定性” (作草图),再“定量”(看图求解).
[例 2](多选题)若函数 f(x)=(x-1)·|x+a|在区间(1,2)上单调递
增,则满足条件的实数 a 的值可能是( )
方法二(分离参数):当 x∈[1,3]时,f(x)<-m+5 恒成立, 即当 x∈[1,3]时,m(x2-x+1)-6<0 恒成立. ∵x2-x+1=x-122+34>0, 又 m(x2-x+1)-6<0, ∴m<x2-6x+1.
∵函数 y=x2-6x+1=x-1262+34在[1,3]上的最小值为67, ∴只需 m<67即可. 综上所述,m 的取值范围是-∞,67.
公共点
在(-∞,0]上单 在 R 上 在[0, 在(-∞,0)
调递减;在[0, 单调递 +∞)上 和(0,+∞)
+∞)上单调递增 增
单调递增 上单调递减
(1,1)
【名师点睛】巧记幂函数 y=xα的图象 五个幂函数在第一象限内的图象的大致情况可以归纳为“正 抛负双,大竖小横”,即α>0(α≠1)时的图象是抛物线型(α>1 时 的图象是竖直抛物线型,0<α<1 时的图象是横卧抛物线型), α<0 时的图象是双曲线型.K
高考数学一轮复习第2章函数导数及其应用第4节二次函数与幂函数课件理北师大版
►考法 3 二次函数中的恒成立问题
【例 4】 (1)已知函数 f(x)=ax2-2x+2,若对一切 x∈12,2,f(x)>0 都成立,则实数 a 的取值范围为( )
A.12,+∞ C.[-4,+∞)
B.12,+∞ D.(-4,+∞)
(2)已知函数 f(x)=x2+mx-1,若对于任意 x∈[m,m+1],都有 f(x)<0
幂函数的图像及性质
1.幂函数 y=f(x)的图像经过点(3, 3),则 f(x)是( ) A.偶函数,且在(0,+∞)上是增函数 B.偶函数,且在(0,+∞)上是减函数 C.奇函数,且在(0,+∞)上是减函数 D.非奇非偶函数,且在(0,+∞)上是增函数
D
[设幂函数 f(x)=xα,则 f(3)=3α=
二次函数的图像与性质
►考法 1 二次函数的单调性
【例 2】 函数 f(x)=ax2+(a-3)x+1 在区间[-1,+∞)上是递减的,
则实数 a 的取值范围是( )
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
D [当 a=0 时,f(x)=-3x+1 在[-1,+∞)上递减,满足题意. 当 a≠0 时,f(x)的对称轴为 x=3- 2aa, 由 f(x)在[-1,+∞)上递减知 a<0, 3- 2aa≤-1, 解得-3≤a<0. 综上,a 的取值范围为[-3,0].]
1
1
3.若(a+1)2<(3-2a)2,则实数 a 的取值范围是________.
-1,23
1
[易知函数 y=x2的定义域为[0,+∞),在定义域内为增函数,
a+1≥0, 所以3-2a≥0,
a+1<3-2a,
解之得-1≤a<23.]
高三数学一轮复习 幂函数与幂函数的图象变换课件 新人教B版
• (文)f ′(x)是f(x)的导函数,f ′(x)的图象如图 所示,则f(x)的图象可能是( )
• 解析:由图可知,当b>x>a时,f ′(x)>0, 故在[a,b]上,f(x)为增函数.且曲线上 每一点处切线的斜率先增大再减小,故选 D. • 答案:D
• (理)已知函数y=f(x),y=g(x)的导函数的 图象如图,那么y=f(x)式知,当m=1时,为偶函数,∴选C.
分析:观察两个数的特征可以发现,指数相同,都是
1 1 - - ,底数不同,故可视作幂函数y=x 3 的两个函数值,利 3 用幂函数的性质求解.
解析:幂函数y=x
-
1
3 在(0,+∞)上为减函数,函数值
y>0;在(-∞,0)上也是减函数,函数值y<0. a+1<0 ∴有a+1>3-2a>0或0>a+1>3-2a或 ,∴ 3-2a>0 2 3 <a< 或a<-1 3 2 2 3 即a的取值范围为( , )∪(-∞,-1). 3 2 2 3 答案:( , )∪(-∞,-1) 3 2
• 已知P为圆x2+(y-1)2=1上任意一点(原 点O除外),直线OP的倾斜角为θ弧度, 记d=|OP|.在图中的坐标系中,画出以(θ, d)为坐标的点的轨迹大致图形.
• 解析:依题意,设圆与y轴 的另一交点为D,则 D(0,2).从而|OP|= |OD|·sinθ,∴d= 2sinθ(θ∈(0,π)).其图象 为正弦曲线一段.故作简 图如右图.
• 5.有关结论 • 若f(a+x)=f(a-x),x∈R恒成立,则y= f(x)的图象关于直线x=a成轴对称图形. • 误区警示 • 1.对于函数y=|f(x)|与y=f(|x|)一定要区 分开来,前者将y=f(x)位于x轴下方的图 象翻折到x轴上方,后者将y=f(x)图象在y 轴左侧图象去掉作右侧关于y轴的对称图, 后者是偶函数而前者y≥0.比如y=|sinx|与y =sin|x|.
高考数学大一轮复习 第二章 函数 2.4 幂函数与二次函数教案(含解析)-人教版高三全册数学教案
§2.4幂函数与二次函数考情考向分析以幂函数的图象与性质的应用为主,常与指数函数、对数函数交汇命题;以二次函数的图象与性质的应用为主,常与方程、不等式等知识交汇命题,着重考查函数与方程、转化与化归及数形结合思想,题型一般为填空题,中档难度.1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.(2)常见的五种幂函数的图象和性质比较函数y=x y=x2y=x312y x y=x-1图象性质定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点(1,1)解析式f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0)图象定义域R R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在x ∈⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在x ∈⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在x ∈⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在x ∈⎣⎢⎡⎭⎪⎫-b2a ,+∞上单调递减对称性 函数的图象关于直线x =-b2a对称概念方法微思考1.二次函数的解析式有哪些常用形式? 提示 (1)一般式:y =ax 2+bx +c (a ≠0); (2)顶点式:y =a (x -m )2+n (a ≠0); (3)零点式:y =a (x -x 1)(x -x 2)(a ≠0).2.已知f (x )=ax 2+bx +c (a ≠0),写出f (x )≥0恒成立的条件. 提示 a >0且Δ≤0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c (a ≠0),x ∈[a ,b ]的最值一定是4ac -b24a.( × )(2)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ ) (3)函数122yx 是幂函数.( × )(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (5)当n <0时,幂函数y =x n是定义域上的减函数.( × ) 题组二 教材改编2.[P89练习T3]已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.答案 32解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k ·⎝ ⎛⎭⎪⎫12α.∴k =1,α=12.∴k +α=32.3.[P40练习T3]已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值X 围是________. 答案 (-∞,-3]解析 函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3. 题组三 易错自纠 4.幂函数21023a a f x x -+=(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a =________. 答案 5解析 因为a 2-10a +23=(a -5)2-2,2(5)2a f x x --=(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6, 又(a -5)2-2为偶数,所以只能是a =5.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是______. 答案 -1解析 函数y =2x 2-6x +3的图象的对称轴为x =32>1,∴函数y =2x 2-6x +3在[-1,1]上单调递减, ∴y min =2-6+3=-1.6.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”) 答案 >解析 f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0.题型一 幂函数的图象和性质1.已知幂函数223(22)n nf x n n x -=+-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为________. 答案 1解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意.2.若四个幂函数y =x a,y =x b,y =x c,y =x d在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是________.(用“>”连接)答案 a >b >c >d解析 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d .3.若1133(1)(32)a a --+-,则实数a 的取值X 围是____________.答案 (-∞,-1)∪⎝ ⎛⎭⎪⎫23,32 解析 不等式1133(1)(32)a a --+-等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.4.已知幂函数f (x )=x α的部分对应值如下表,则不等式f (|x |)≤2的解集是________.x 112 f (x )122答案 [-4,4]解析 由题意知,22=⎝ ⎛⎭⎪⎫12α,∴α=12,∴f (x )=12x ,∴f (|x |)=12x ,由12x ≤2,得|x |≤4,故-4≤x ≤4.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键. 题型二 求二次函数的解析式例1(1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________. 答案 f (x )=x 2-2x +3 解析 由f (0)=3,得c =3, 又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称, ∴b2=1,∴b =2, ∴f (x )=x 2-2x +3.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax ,由4a ×0-4a24a=-1,得a =1,所以f (x )=x 2+2x . 思维升华求二次函数解析式的方法跟踪训练1(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________. 答案 x 2+2x +1解析 设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0), 又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 x 2-4x +3解析 因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线xf (x )的图象被x 轴截得的线段长为2,所以f (xf (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.题型三 二次函数的图象和性质命题点1 二次函数的图象例2设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值X 围是________. 答案 [0,2]解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0, 又由--2a 2a=1得图象的对称轴是直线x =1,所以a >0.所以函数的图象开口向上,且在[1,2]上单调递增,f (0)=f (2), 则当f (m )≤f (0)时,有0≤m ≤2.命题点2 二次函数的单调性例3函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值X 围是________. 答案 [-3,0]解析 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a2a≤-1,解得-3≤a <0.综上,a 的取值X 围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a2a=-1,∴a =-3.命题点3 二次函数的最值例4已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,某某数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a . (1)当-a <12即a >-12时,f (x )max =f (2)=4a +5,(2)当-a ≥12即a ≤-12时,f (x )max =f (-1)=2-2a ,综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.命题点4 二次函数中的恒成立问题例5 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值X 围为____________. 答案 (-∞,-1)解析 设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1. (2)函数f (x )=a 2x+3a x-2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________. 答案 2解析 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎢⎡⎦⎥⎤1a ,a ,显然g (t )在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以1<a ≤2,所以a 的最大值为2. 思维升华解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值X 围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路的关键都是求函数的最值或值域. 跟踪训练2(1)(3-a )(a +6)(-6≤a ≤3)的最大值为________. 答案 92解析 易知函数y =(3-a )(a +6)的两个零点是3,-6,图象的对称轴为a =-32∈[-6,3],y =(3-a )(a +6)的最大值为y =⎝⎛⎭⎪⎫3+32·⎝⎛⎭⎪⎫-32+6=⎝ ⎛⎭⎪⎫922,则(3-a )(6+a )的最大值为92.(2)已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________. 答案 -1或3解析 由于函数f (x )的值域为[1,+∞),所以f (x )min f (x )=(x -a )2-a 2+2a +4, 当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0,解得a =3或a =-1.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值X 围为________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 由题意得a >2x -2x2对1<x <4恒成立,又2x -2x 2=-2⎝ ⎛⎭⎪⎫1x -122+12,14<1x <1, ∴⎝ ⎛⎭⎪⎫2x -2x 2max =12,∴a >12.数形结合思想和分类讨论思想在二次函数中的应用研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.例设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.24m my x-=(m ∈Z )的图象如图所示,则m 的值为________.答案 2解析 ∵24m m y x -=(m ∈Z )的图象与坐标轴没有交点, ∴m 2-4m <0,即0<m <4.又∵函数的图象关于y 轴对称且m ∈Z , ∴m 2-4m 为偶数,∴m =2. 2.若幂函数2268(44)m m f x m m x -+=-+在(0,+∞)上为增函数,则m 的值为________.答案 1解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.3.(2019·某某省某某中学月考)若函数f (x )=x 2-2ax -1在(-∞,5]上单调递减,则实数a 的取值X 围是________.答案 [5,+∞)解析 由题意可得--2a2≥5,解得a ≥5.4.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解集为________________. 答案 {x |x >4或x <0}解析 函数f (x )=ax 2+(b -2a )x -2b 为偶函数,则b -2a =0,故f (x )=ax 2-4a =a (x -2)(x +2),因为函数f (x )在(0,+∞)上单调递增,所以a >0.根据二次函数的性质可知,不等式f (2-x )>0的解集为{x |2-x >2或2-x <-2}={x |x <0或x >4}.5.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a =________.解析 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.6.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值X 围是________. 答案 (-∞,-2)解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令f (x )=x 2-4x -2,x ∈(1,4),所以f (x )<f (4)=-2,所以a <-2.7.已知f (x )=x 2,g (x )=12x ,h (x )=x -2,当0<x <1时,f (x ),g (x ),h (x )的大小关系是________________.答案 h (x )>g (x )>f (x )解析 分别作出f (x ),g (x ),h (x )的图象如图所示,可知h (x )>g (x )>f (x ).8.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差的绝对值等于7,则此二次函数的解析式是________________.答案 f (x )=-4x 2-12x +40 解析 设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0), 方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 9.已知函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,那么f (2)的取值X 围是______.解析 函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.10.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫-22,0 解析 因为函数图象开口向上,所以根据题意只需满足⎩⎪⎨⎪⎧ f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 解得-22<m <0. 11.已知函数22k k f x x -++=(k ∈Z )满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q >0,使函数g (x )=1-qf (x )+(2q -1)x在区间[-1,2]上的值域为⎣⎢⎡⎦⎥⎤-4,178?若存在,求出q 的值;若不存在,请说明理由. 解 (1)∵f (2)<f (3),∴-k 2+k +2>0,解得-1<k <2.∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.(2)假设存在q >0满足题设,由(1)知 g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点⎝ ⎛⎭⎪⎫2q -12q,4q 2+14q 处取得. 而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q≥0, ∴g (x )max =4q 2+14q =178, g (x )min =g (-1)=2-3q =-4.解得q =2.∴存在q =2满足题意. 12.(2018·某某省如皋中学考试)已知函数f (x )=x 2+bx +c 的图象与y 轴的交点坐标为(0,1),且满足f (1-x )=f (1+x ).(1)求f (x )的解析式;(2)设g (x )=x f (x ),m >0,求函数g (x )在[0,m ]上的最大值.解 (1)因为图象与y 轴的交点坐标为(0,1),所以c =1,因为f (1-x )=f (1+x ),所以函数f (x )的图象关于直线x =1对称,所以b =-2,所以f (x )=x 2-2x +1.(2)因为f (x )=x 2-2x +1=(x -1)2,所以g (x )=x |x -1|=⎩⎪⎨⎪⎧ x 2-x ,x ≥1,x -x 2,x <1.作出函数g (x )的图象如图所示.当0<m ≤12时,g (x )max =g (m )=m -m 2; 当12<m ≤1+22时,g (x )max =g ⎝ ⎛⎭⎪⎫12=14; 当m >1+22时,g (x )max =g (m )=m 2-m , 综上,g (x )max =⎩⎪⎨⎪⎧ m -m 2,0<m ≤12,14,12<m ≤1+22,m 2-m ,m >1+22.y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是________.(填序号)答案 ①④解析 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a=-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.14.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值X 围是________. 答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立, 即m <-⎝ ⎛⎭⎪⎫x +4x 对x ∈(1,2)恒成立, 令y =x +4x ,x ∈(1,2),则函数y =x +4x在x ∈(1,2)上是减函数. ∴4<y <5,∴-5<-⎝ ⎛⎭⎪⎫x +4x <-4, ∴m ≤-5.方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,由f (x )<0恒成立,得⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0, 解得⎩⎪⎨⎪⎧ m ≤-5,m ≤-4,即m ≤-5.15.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,则实数m 的取值X 围是__________. 答案 [-2,0]解析 当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m 2≤0,即m ≤0; 当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m 2≤1,即m ≥-2. 综上,实数m 的取值X 围是[-2,0].16.是否存在实数a ∈[-2,1],使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,请说明理由.解 f (x )=(x -a )2+a -a 2,当-2≤a <-1时,f (x )在[-1,1]上为增函数,∴由⎩⎪⎨⎪⎧ f (-1)=-2,f (1)=2,得a =-1(舍去);当-1≤a ≤0时,由⎩⎪⎨⎪⎧ f (a )=-2,f (1)=2,得a =-1; 当0<a ≤1时,由⎩⎪⎨⎪⎧ f (a )=-2,f (-1)=2,得a 不存在;综上可得,存在实数a 满足题目条件,a =-1.。
数学一轮复习第二章2.4二次函数与幂函数学案理含解析
第四节二次函数与幂函数【知识重温】一、必记2个知识点1.幂函数(1)定义:形如①________________的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y =12x,y=x-1.(2)性质(ⅰ)幂函数在(0,+∞)上都有定义;(ⅱ)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(ⅲ)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式(ⅰ)一般式:f(x)=②________________________;(ⅱ)顶点式:f(x)=③________________________;(ⅲ)零点式:f(x)=④________________________。
(2)二次函数的图象和性质(-∞,+∞)(-∞,+∞)二、必明2个易误点1.研究函数f(x)=ax2+bx+c的性质,易忽视a的取值情况的讨论而盲目认为f(x)为二次函数.2.形如y=xα(α∈R)才是幂函数,如y=123x不是幂函数.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)函数y=132x是幂函数.()(2)当n〉0时,幂函数y=x n在(0,+∞)上是增函数.()(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.()(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。
()二、教材改编2.已知幂函数y=f(x)的图象过点(2,错误!),则函数y=f(x)的解析式为________.3.函数y=ax2-6x+7a(a≠0)的值域为[-2,+∞),则a 的值为()A.-1 B.-错误!C.1 D.2三、易错易混4.函数y=2x2-6x+3,x∈[-1,1],则y的最小值是() A.-1 B.-2 C.1 D.25.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图所示,则a,b,c,d的大小关系是()A.d>c〉b>a B.a>b〉c〉dC.d〉c〉a〉b D.a〉b〉d〉c四、走进高考6.[2020·江苏卷]已知y=f(x)是奇函数,当x≥0时,f(x)=23x,则f(-8)的值是________.考点一幂函数的图象及性质[自主练透型]1.已知点错误!在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数2.幂函数y=xm2-2m-3(m∈Z)的图象如图所示,则m 的值为()A.-1 B.0C.1 D.23.[2021·江西九江联考]已知a=0.40.3,b=0.30。
2024届新高考一轮复习北师大版 第2章 第4节 幂函数与二次函数 课件(54张)
返回导航
2.一元二次不等式恒成立的条件
若 f(x)=ax2+bx+c(a≠0),则当aΔ><00, 时恒有 f(x)>0,当aΔ<<00, 时,
恒有 f(x)<0.
返回导航
[思考辨析] 判断下列结论是否正确(请在括号中打“√”或“×”) (1) 二 次 函 数 y = ax2 + bx + c(a≠0) , x ∈ [m , n] 的 最 值 一 定 是 4ac-b2 4a .( ) (2)在 y=ax2+bx+c(a≠0)中,a 决定了图象的开口方向和在同一直角 坐标系中的开口大小.( )
B.(-∞,-210 )
C.(210 ,+∞)
D.(-210 ,0)
C 由题意知aΔ><00 即a1>-020a<0 ,解得 a>210 .故选 C.
返回导航
3.幂函数 f(x)=xa2-10a+23(a∈Z)为偶函数,且 f(x)在区间(0,+∞)
上是减函数,则 a 等于( )
A.3
B.4
C.5
返回导航
(3)函数
是幂函数.( )
(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (5)当 n<0 时,幂函数 y=xn 是定义域上的减函数.( )
答案:(1)× (2)√ (3)× (4)√ (5)×
返回导航
[对点查验]
1.若幂函数的图象经过点2,14 ,则它的单调递增区间是(
)
A.(0,+∞)
B.[0,+∞)
C.(-∞,+∞)
D.(-∞,0)
D 设 f(x)=xα,则 2α=14 ,α=-2,即 f(x)=x-2,它是偶函数,单
调递增区间是(-∞,0).故选 D.