第2讲 随机变量的概念与离散性随机变量

合集下载

概率论第二章知识点

概率论第二章知识点

第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =两点分布的方差:()(1)D X p p =-(2)二项分布: 若一个随机变量X 的概率分布由式{}(1),0,1,...,.k k n k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k e k k λλλ-==>=则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k e k k λλλ-==>=泊松分布的期望:()E X λ=泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt -∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度: 均匀分布的期望:()2a bE X +=均匀分布的方差:2()()12b a D X -=(2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩则称X 服从参数为λ的指数分布,记为 X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f ⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a ab x f指数分布的期望:1()E X λ=指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X 的概率密度为22()21()x f x ex μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()21()x f x ex μσ--=-∞<<+∞正态分布的期望:()E X μ=正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==2222()()x t xx ex e dt ϕφ---∞=⎰标准正态分布表的使用: (1)0()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数:设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论第二章习题讲解

概率论第二章习题讲解
j
( )
j
i
i
二. 二维连续随机变量的边缘分布 x +∞ F X ( x ) = F ( x , +∞ ) = ∫ dx ∫ f ( x , y )dy ∞ ∞ d +∞ f X (x ) = FX (x )= ∫ ∞ f ( x , y )dy dx y +∞ FY ( y ) = F (+ ∞ , y ) = ∫ dy ∫ f ( x , y )dx ∞ ∞ +∞ d fY ( y ) = FY ( y ) = ∫ ∞ f ( x , y )dx dy 一. 离散型随机变量的独立性 p xi , y j = pX ( xi ) pY y j 二. 连续随机变量的独立性
+∞ ∞

f (z y( x , y )dy
2. 平方和的分布
n
FZ ( z ) =
∫∫ f ( x , y )dxdy
x2 + y2 < z
n
3.(独立的随机变量) 3.(独立的随机变量)最大值与最小值的分布
Fmax ( z ) = ∏ Fi ( z ),
i =1
p 1 q[ x ] F ( x ) = P ( X ≤ x ) = ∑ pq m 1 = = 1 q [ x ] = 1 (1 p)[ x ] 1 q m =1 其中,[x]为 x 的整数部分. 其中, 为 的整数部分.
8
(
)
当 x ≥ 1 时,
4 自动生产线在调整以后出现废品的概率为 p (0<p<1), 生产过程中出现废品时立即重新调整, 生产过程中出现废品时立即重新调整 求在两次调整之间生产的合格品数的概率分布. 求在两次调整之间生产的合格品数的概率分布 设随机变量X表示自动生产线 解 设随机变量 表示自动生产线 : 在两次调整之间生产的合格品数, 在两次调整之间生产的合格品数, 的所以可能取值:0,1,2,…,n,…. 则X的所以可能取值 的所以可能取值

第二章 随机变量及其分布(第2讲)

第二章  随机变量及其分布(第2讲)
分布函数还具有相当好的性质,有利于用数 学分析方法来处理;
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ

e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效

工程数学概率 第二章(一)

工程数学概率 第二章(一)

1
2
……
30
3 X ~ b(30, ) 4
设100件产品中有95件合格品,5件次品,先从中 例2、 随机抽取10件,每次取一件,X—10件产品中的次品数, (1)有放回的抽取,求 X的分布律; (2)无放回的抽取,求 X的分布律; (3)有放回的情况,求10件产品中至少有2件次品的概率。 解:(1) A — 取得次品, P(A)=0.05,
1/ 5e x / 5 f ( x) 0
x0 x 0,
机动 目录 上页 下页 返回 结束
3、正态分布
定义1:若随机变量 X 的概率密度函数为
则称X 服从参数为 的正态分布或高斯分布, f (x)的图形:
特点:(52页)
(1) f (x)关于 (2) f (x)在 (3)
定义2、
解 由题意可知
,则
的分布律为
机动
目录
上页
下页
返回
结束

带入可得 的分布律为
34页例2:几何分布
机动
目录
上页
下页
返回
结束
二、常用的离散型随机变量及其分布
Ⅰ. (0—1)分布 定义1.如果随机变量
的分布律为
则称
服从参数为
的(0—1)分布。
(0 —1)分布的分布律也可写成 注:如果随机试验只有两个结果,总能定义一个服从 (0 —1)分布的随机变量。
1. 概率密度 定义1. 设 F(x) 是随机变量 X的分布函数,若存在非负 函数 f x x , ,使对任意实数 x 有
则称 X为连续型随机变量,称 f ( x)为 X 的概率密度函 数,简称概率密度或密度函数。
机动
目录
上页

第2讲概率论复习及R相关应用

第2讲概率论复习及R相关应用

例 抛掷一枚硬币可能出现的两个结果,也可以
用一个变量来描述
X
( )
1, 0,
正面向上 反面向上
二、引入随机变量的意义 有了随机变量,随机试验中的各种事件, 就可以通过随机变量的关系式表达出来. 如:单位时间内某电话交换台收到的呼 叫次数用X表示,它是一个随机变量.
事件{收到不少于1次呼叫} { X 1}
{没有收到呼叫} {X= 0}
§2.1 随机变量的概念 随机变量的概念
定义 设E是一随机试验,S 是它的样本空间, 若
S 按一定法则 实数 X ()
则称 S 上的单值实值函数 X ( )为随机变量
随机变量一般用 X, Y , Z ,或小写希腊字母 , , 表示
如,若用X 表示电话总机在9:00~10:00接到 的电话次数,则
解:设x,y分别为甲、乙到达时刻(分钟) 令A={两人能会面}={(x,y)||x-y|≤20,x≤60,y≤60}
P(A)=A的面积/S的面积=(602-402)/602=5/9
三.概率的频率定义
例2:从同一型号同一批次的反坦克弹中任抽一 发反坦克弹射击目标,观测命中情况。设A代表 “命中”这一事件,求P(A)?
意义:
(1) 提供了估计概率的方法; (2)提供了一种检验理论正确与否的准则.
§1.3 条件概率
设试验的基本事件总数为n,事件A所 包含的基本事件总数为m,事件AB所包含 的基本事件总数为k。
PB A k k / n P(AB) m m / n P(A)
定义 设A、B为两事件, P ( A ) > 0 , 则
公式方法 两者 一般方法 联系
表示 方法
分布率 性 密度函数 质
正态标 准化

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

数学选修2-3讲义:第2章2.12.1.1 离散型随机变量含答案

2.1离散型随机变量及其分布列2.1.1离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.会用离散型随机变量描述随机现象.(难点)教材整理离散型随机变量阅读教材P40练习以上部分,完成下列问题.1.随机变量(1)定义:在试验中,试验可能出现的结果可以用一个变量X来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X叫做一个随机变量.(2)表示:随机变量常用大写字母X,Y,…表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.()(3)随机变量是用来表示不同试验结果的量.()(4)试验之前可以判断离散型随机变量的所有值.()(5)在掷一枚质地均匀的骰子试验中,“出现的点数”是一个随机变量,它有6个取值.()【解析】(1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)√因为由随机变量的定义可知,该说法正确.(4)√因为随机试验所有可能的结果是明确并且不只一个,只不过在试验之前不能确定试验结果会出现哪一个,故该说法正确.(5)√因为掷一枚质地均匀的骰子试验中,所有可能结果有6个,故“出现的点数”这一随机变量的取值为6个.【答案】(1)√(2)√(3)√(4)√(5)√随机变量的概念【例1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2019年5月1日的旅客数量;(2)2019年5月1日至10月1日期间所查酒驾的人数;(3)2019年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.【精彩点拨】利用随机变量的定义判断.【解】(1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数(2)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率【解析】(1)B项中水沸腾时的温度是一个确定值.(2)A中取到产品的件数是一个常量不是变量,B,D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.【答案】(1)B(2)C离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某座大桥一天经过的车辆数X;(2)某超市5月份每天的销售额;(3)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(4)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ.【精彩点拨】随机变量的实际背景→判断取值是否具有可列性→得出结论【解】(1)车辆数X的取值可以一一列出,故X为离散型随机变量.(2)某超市5月份每天销售额可以一一列出,故为离散型随机变量.(3)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(4)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.“三步法”判定离散型随机变量1.依据具体情境分析变量是否为随机变量.2.由条件求解随机变量的值域.3.判断变量的取值能否被一一列举出来,若能,则是离散型随机变量;否则,不是离散型随机变量.2.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ.(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后结果都加上6分,求最终得分η的可能取值,并判定η是否为离散型随机变量.【解】(1)(2)由题意可得:η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},所以η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为6,11,16,21.显然,η为离散型随机变量.随机变量的可能取值及试验结果[探究问题]1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?【提示】 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字?【提示】 X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?【提示】 “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.【精彩点拨】分析题意→写出X可能取的值→分别写出取值所表示的结果【解】(1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两张卡片”;X=4,表示“取出标有1,3的两张卡片”;X=5,表示“取出标有2,3或标有1,4的两张卡片”;X=6,表示“取出标有2,4或1,5的两张卡片”;X=7,表示“取出标有3,4或2,5或1,6的两张卡片”;X=8,表示“取出标有2,6或3,5的两张卡片”;X=9,表示“取出标有3,6或4,5的两张卡片”;X=10,表示“取出标有4,6的两张卡片”;X=11,表示“取出标有5,6的两张卡片”.用随机变量表示随机试验的结果问题的关键点和注意点1.关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.2.注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.【解】(1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②在一段时间内,某候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3D.4【解析】由随机变量定义可以直接判断①②③④都是正确的.故选D.【答案】 D2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则{ξ=5}表示的试验结果是()A第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标【解析】{ξ=5}表示前4次均未击中,而第5次可能击中,也可能未击中,故选C.【答案】 C3.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X所有可能取值的个数是________.【解析】由于抽球是在有放回条件下进行的,所以每次抽取的球号均可能是1,2,3,4,5中某个.故两次抽取球号码之和可能为2,3,4,5,6,7,8,9,10,共9种.【答案】94.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【解析】甲可能在3次射击中,一次也未中,也可能中1次,2次,3次.【答案】0,1,2,35.写出下列各随机变量可能的取值,并说明这些值所表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷两枚骰子,所得点数之和是偶数X.【解】(1)X的可能取值为1,2,3, (10)X=k(k=1,2,…,10)表示取出第k号球.(2)X的可能取值为0,1,2,3,4.X=k表示取出k个红球,4-k个白球,其中k=0,1,2,3,4.(3)X的可能取值为2,4,6,8,10,12.X=2表示(1,1);X=4表示(1,3),(2,2),(3,1);…;X=12表示(6,6).X的可能取值为2,4,6,8,10,12.。

2概率统计第二讲

2概率统计第二讲


k ≥1
pk=1.
三、一维离散型r.v的几个常用分布 一维离散型 的几个常用分布
1. 退化分布 单点分布) 退化分布(单点分布 单点分布 X~P{X=a}=1,其中 为常数。 ~ 为常数。 = = ,其中a为常数 2. (0-1)分布 两点分布 - 分布 两点分布) 分布(两点分布 X~P{X=k}=pk(1-p)1-k, (0<p<1) k=0,1 ~ = = - - = , 3. 几何分布 X~P{X=k}= (1-p)k-1 p, (0<p<1) k=1, 2, … ~ = = - - = 4. 二项分布 二项分布B(n, p) - - X~P{X=k}= Ck pk(1-p)n-k, ~ = = n (0<p<1) k=0, 1, 2, …, n =
3. [04(一)(三)(四)一(6)] 设r.v.X服从参数为λ的指数分布 则 服从参数为λ 一 三 四一 服从参数为 的指数分布,
P { X > DX } = _____ .
4. [98(三)(四)二(5)] 设F1(x)与F2(x)分别为 r.v.X1与X2的 三 四二 与 分别为 分布函数, 为使F(x)=a F1(x)−b F2(x)是某一 的分布函数 是某一r.v.的分布函数 分布函数 为使 − 是某一 的分布函数, 在下列给定的各组数值中应取 (A) a=3/5, b= −2/5 (C) a= −1/2, b= 3/2 5. 已知 ~ 已知X X P (B) a=2/3, b= 2/3 (D) a=1/3, b= −3/2 [ ]
2. 多维离散型随机变量函数的分布律
定理2 定理 设X1,X2,… , Xn是一个n维随机变量,若y= 则 Y=g(X1,X2,…, Xn)也是一个随机变量。 以二维为例,若 (X, Y)~P(X=xi, Y=yk)=pik ,i, k=1, 2, … 则 Z=g(X, Y)~P{Z=zl}=

2023考研概率统计全考点精讲-第二讲 随机变量及其分布

2023考研概率统计全考点精讲-第二讲  随机变量及其分布

第二讲 随机变量及其分布【考试要求】1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤−∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.(数一了解,数三掌握)泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为λ的指数分布()λE 的概率密度为()e ,00,0x x f x x λλ−⎧>=⎨≤⎩.5.会求随机变量函数的分布.考点:随机变量与分布函数1.随机变量:设试验E 的样本空间为Ω,如果对于每一个样本点Ω∈ω,都有一个实数)(ωX 与之对应,则称定义在Ω上的单值实值函数)(ωX 为随机变量,简记为X . 通常用,,X Y Z 等表示随机变量.【注】随机变量的等式和不等式可表示随机事件. 2.分布函数(1)定义:设X 是一个随机变量,x 是任意实数,称(){}()F x P X x x =≤−∞<<+∞为X 的分布函数.(2)基本性质①单调不减,即若12x x <,则12()()F x F x ≤;②lim ()0x F x →−∞=,lim ()1x F x →+∞=; ③()F x 是右连续,即(0)()F x F x +=.【注】这三条性质是一个函数作为某随机变量的分布函数的充分必要条件. (3)其他性质(用分布函数()F x 求概率)①)()(}{a F b F b X a P −=≤<; ②)0(}{−=<a F a X P ;③)0()(}{−−==a F a F a X P ;④)0()0(}{−−−=<≤a F b F b X a P ; ⑤)()0(}{a F b F b X a P −−=<<; ⑥{}()(0)P a X b F b F a ≤≤=−−. 【注】分布函数在处连续.【例1】 下述函数中,可以作为某个随机变量的分布函数的是( ) (A ) ()211F x x =+ (B )()x x F sin = (C ) ()11arctan π2F x x =+ (D ) ()1e ,020,0xx F x x −⎧−>⎪=⎨⎪≤⎩【例2】 设随机变量X 的分布函数为()00πsin 02π12,x F x A x,x ,x ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则A _____=,6P X ______π⎧⎫<=⎨⎬⎩⎭.【例3】 已知随机变量X 的分布函数为()0,11,18,111,1x x F x ax b x x <−⎧⎪⎪=−⎪=⎨⎪+−<<⎪≥⎪⎩,且()F x a {}0P X a ⇔=={}114P X ==,则_____,_____a b ==. 【例4】 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥−<≤<=−1,110,210,0)(x e x x x F x,则{}1P X ==( )(A )0 (B )21(C )121−−e (D )11e −−考点:离散型随机变量及其分布1.离散型随机变量定义:若随机变量X 所有可能取值是有限或可列无限个,则称X 为离散型随机变量.2.分布律(1)定义:设离散型随机变量X 的所有可能取值为()12i x i ,,=,且X 取ix 的概率为i p ,则称{}()12i i P X x p i ,,===为离散型随机变量X 的分布律.X(2)基本性质:①0,1,2,i p i ≥=;②11ii p∞==∑.【注】这两条性质也是一个数列可以作为某随机变量分布律的充分必要条件. 3.离散型随机变量的分布函数若离散型随机变量X 的分布律为{}()12i i P X x p i ,,===,则X 的分布函数为(){}{}()i i i i x xx xF x P X x P X x p x ≤≤=≤===−∞<<+∞∑∑.若123x x x <<<,则()111212230,,,x x p x x x F x p p x x x <⎧⎪≤<⎪=⎨+≤<⎪⎪⎩. 【注】若已知X 的分布函数()F x (阶梯函数),则X 的分布律为{}()()0i i i P X x F x F x ==−−,12i ,,=.【例1】 (1)做n 次伯努利实验,已知每次成功的概率均为()10<<p p ,令X 表示n 次试验中成功的次数,求X 的分布律.(2)做伯努利试验,已知每次成功的概率均为()10<<p p ,令X 表示直到第一次成功为止所进行的实验次数,求X 的分布律.【例2】 设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X 表示3个球中新球个数,求X 的分布律与分布函数.考点:连续型随机变量及其分布1.连续型随机变量及其概率密度(1)定义:设随机变量X 的分布函数为()F x ,若存在非负可积函数()f x ,使得对于任意实数x ,有()()xF x f t dt −∞=⎰,则称X 为连续型随机变量,()f x 称为X 的概率密度函数,简称概率密度(简写为.f .d .p ).【注】①只有存在概率密度的随机变量才能称为连续型随机变量,分布函数连续的随机变量不一定是连续型随机变量.②存在既非连续型又非离散型的随机变量.③(),()()0()F x x F x f x x F x '⎧=⎨⎩为的可导点,为的不可导点. (2)概率密度的基本性质:①()0f x ≥;②()1f x dx +∞−∞=⎰.【注】这两条性质是一个函数可以作为概率密度函数的充分必要条件.(3)连续型随机变量的其他性质: ①)(x F 处处连续.②对()+∞∞−∈∀,a ,有{}.0==a X P ③若()f x 在x 处连续,则有()()F x f x '=. ④对于任意的实数()1212x ,x x x ≤,有{}()()211221()x x P x X x F x F x f x dx <≤=−=⎰.【例1】 设随机变量X 的概率密度为()x f ,则下列函数中必为某随机变量的概率密度的是( )(A )()x f 2 (B )()x f 2 (C )()x f −1 (D )()x f −1【例2】 设随机变量X 的概率密度为()cos ,||20,||2A x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,求(1)常数A ; (2)X 的分布函数为()x F . 【例3】 设随机变量X 的概率密度为()1||,||10,x x f x else −<⎧=⎨⎩,则______412=⎭⎬⎫⎩⎨⎧<<−X P .考点:常见分布1.常见的离散型随机变量 (1) 0-1分布若随机变量X 的分布律为{}()()110101kk P X k p p ,k ,p −==−=<<,则称X 服从0-1分布,记为),1(~p B X .(2) 二项分布若随机变量的分布律为{}C (1),0,1,2,k k n kn P X k p p k n −==−=,其中01p <<,则称X 服从二项分布,记为~(,)X B n p .(3) 几何分布若随机变量X 的分布律为{}1(1)k P X k p p −==−⋅,1,2,3k =,其中01p <<,则称X 服从参数为p 的几何分布,记为()~X G p .(4) 超几何分布(从未考过)若随机变量X 的分布律为{}C C C k n kM N MnNP X k −−==,其中N k ∈,且{}{}n M k N n M ,min ,0max ≤≤−+,则称X 服从超几何分布.【注】:此公式的数学模型为:设N 件产品中含M 件次品,现从中任取n 件产品,则所取的n 件产品恰有k 件次品的概率.(5) 泊松分布 ①定义若随机变量X 的分布律为{}e !kP X k k λλ−==,0,1,2,k =,其中0λ>,则称X 服从参数为λ的泊松分布,记为~()X P λ.X②泊松定理(数一了解;数三掌握)设0λ>是一个常数,n 是任意正整数,若lim n n np λ→∞=,则对于任意的非负整数k ,有()e lim 1.!nk n kkknn n C p p k λλ−−→∞−=【例1】 设随机变量X 服从参数为()2,p 的二项分布,随机变量Y 服从参数为()3,p 的二项分布,若{}519P X ≥=,则{}1_______P Y ≥=. 【例2】 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为1e,则这段时间内至少有两辆汽车通过的概率为___________. 2.常见的连续型随机变量 (1) 均匀分布若X 的概率密度为1,()0,a xb f x b a⎧<<⎪=−⎨⎪⎩其它,则称X 在()a,b 上服从均匀分布,记为()~,X U a b ,其分布函数为0,(),1,x a x aF x a x b b a x b<⎧⎪−⎪=≤<⎨−⎪⎪≥⎩. (2) 指数分布若X 的概率密度为e ,0()0,0x x f x x λλ−⎧>=⎨≤⎩,其中0λ>,则称X 服从参数为λ的指数分布,记为()XE λ,其分布函数为1e ,0()0,0x x F x x λ−⎧−≥=⎨<⎩.(3) 正态分布若随机变量X的概率密度为22()2()()x f x x μσ−−=−∞<<+∞,其中0σ>,μ与σ均为常数,则称X 服从参数为,μσ的正态分布,记为2~(,)X N μσ,其分布函数为22()2()d ()t xF x t x μσ−−=−∞<<+∞⎰.特别地,当0,1μσ==,即~(0,1)X N ,称X 服从标准正态分布,其概率密度为22(),x x x ϕ−=−∞<<+∞,分布函数22()d t xx t −Φ=⎰,x −∞<<+∞.【注】(1)指数分布的无记忆性:若()~X E λ,则对任意的0,0s t >>,有{}{}|.P X s t X s P X t >+>=>【例3】 设随机变量()6,1~U X ,则方程012=++Xy y 有实根的概率为____.【例4】 设随机变量()~2,5X U ,现对X 进行三次独立重复观测,求至少有两次观测值大于3的概率.【例5】 设随机变量Y 服从参数为12λ=的指数分布,求关于未知量x 的方程2230x Yx Y ++−=没有实根的概率.【例6】 设随机变量的概率密度函数为()221e ()x x f x k x −+−=−∞<<+∞X则常数=_______k .【例7】 设随机变量()22,X N σ且{}240.3P X <<=,则{}0_______P X <=.【例8】 设随机变量()2,X N μσ,则概率{}P X μσ−<的值随着σ的增大而( )(A )增大 (B )减小 (C )保持不变 (D )无法确定考点:随机变量函数的分布1.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,函数()g x 连续,则随机变量()Y g X =的分布律为{}(),1,2,i k k i g x y P Y y p k ====∑.做法:找到Y 全部可能的取值,算出相应值的概率.【例1】 设随机变量X 在()1,2−上服从均匀分布,1,01,0X Y X −<⎧=⎨≥⎩,求Y 的分布律.【例2】(课后作业)设随机变量X 的概率分布为,求常数和的概率分布. 2.连续型随机变量函数的分布情形一:Y 为离散型. 做法:找到Y 全部可能的取值,算出相应值的概率. 情形二:Y 为连续型.(1)分布函数法(代数法和几何法)先求出()Y g X =的分布函数()Y F y ,即()(){}()()Y g x y F y P g X y f x dx ≤=≤=⎰,再对()YF y 求导得到Y 的概率密度()Y f y .(2)公式法 若()y g x =在X 的取值区间内有连续导数()g x ',且()0g x '>或者()0g x '<,则()Y g X =是连续型随机变量,且其概率密度为{}(1,2,)3k c P X k k ===c sin()2Y X π=()()()',0,X Y f h y h y y f y αβ⎧<<⎡⎤⎪⎣⎦=⎨⎪⎩其他其中(),αβ为()y g x =的值域,()h y 是()g x 的反函数.情形三:Y 既非连续型又非离散型 做法:分布函数法求其分布函数.【例3】 设随机变量X 服从()0,2上的均匀分布,则随机变量2Y X =在()0,4内的概率密度()Y f y _______=.【例4】 设随机变量X 的概率密度为()22,00,x x f x ππ⎧<<⎪=⎨⎪⎩其它,求sin Y X =的概率密度()Y f y .。

知识讲解离散型随机变量

知识讲解离散型随机变量

知识讲解离散型随机变量110(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除离散型随机变量及其分布列【学习目标】1.了解离散型随机变量的概念.2.理解取有限个值的离散型随机变量及其分布列的概念.3.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题.4. 理解两个特殊的分布列:“两点分布”和“超几何分布”。

【要点梳理】要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a.试验可以在相同的情形下重复进行.B.试验的所有可能结果是明确可知的,并且不止一个.c.每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示。

要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。

例如,任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数量性质,但仍可以用数量来表示它,比如,我们用ξ来表示这个随机试验中出现正面向上的次数,则ξ=0,表示试验结果为反面向上,ξ=1,表示试验结果为正面向上。

(2)随机变量实质是将随机试验的结果数量化。

3.离散型随机变量的定义如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0, 1,2,….4. 随机变量的分类随机变量有以下两种:(1)离散型随机变量:(2)连续型随机变量: 如果随机变量可以取其一区间内的一切值,这样的随机变量叫做连续型随机变量.要点诠释:离散型随机变量和连续型随机变量的区别:离散型随机变量,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值按一定次序一一列出.连续性随机变量可取某一区间内的一切值,我们无法将其中的值一一列举.例如,抛掷一枚骰子,可能出现的点数就是一个离散型随机变量;某人早晨在出租车站等出租车的时间(单位:秒)就不是一个离散型随机变量.5. 若ξ是随机变量,,a b ηξ=+其中a,b 是常数,则η也是随机变量,并且不改变其属性(离散型、连续型)。

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

2.1.2 离散型随机变量的分布列(一)学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念.2.了解分布列对于刻画随机现象的重要性.3.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)X 与P 的对应关系为梳理 (1)离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.1.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( × ) 2.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( × )3.在离散型随机变量分布列中,所有概率之和为1.( √ )类型一 离散型随机变量分布列的性质例1 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1 (1)设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________.(2)设随机变量X 的分布列为P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 (1)(5,6] (2)37解析 (1)由条件知P (ξ=k )=112,k =5,6,…,16, P (ξ<x )=112,故5<x ≤6.(2)由已知得随机变量X 的分布列为∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.类型二 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例2 已知随机变量ξ的分布列为分别求出随机变量η1=12ξ,η2=ξ2的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法解 由η1=12ξ知,对于ξ取不同的值-2,-1,0,1,2,3时,η1的值分别为-1,-12,0,12,1,32, 所以η1的分布列为由η2=ξ2知,对于ξ的不同取值-2,2及-1,1,η2分别取相同的值4与1,即η2取4这个值的概率应是ξ取-2与2的概率112与16的和,η2取1这个值的概率应是ξ取-1与1的概率14与112的和,所以η2的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练2 已知随机变量ξ的分布列为分别求出随机变量η1=-ξ+12,η2=ξ2-2ξ的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关随机变量分布列的求法解 由η1=-ξ+12,对于ξ=-2,-1,0,1,2,3,得η1=52,32,12,-12,-32,-52,相应的概率值为112,14,13,112,16,112.故η1的分布列为由η2=ξ2-2ξ,对于ξ=-2,-1,0,1,2,3,得η2=8,3,0,-1,0,3. 所以P (η2=8)=112,P (η2=3)=14+112=13,P (η2=0)=13+16=12,P (η2=-1)=112.故η2的分布列为命题角度2 利用排列、组合求分布列例3 某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 将O ,A ,B ,AB 四种血型分别编号为1,2,3,4, 则X 的可能取值为1,2,3,4.P (X =1)=C 110C 145=29,P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845,P (X =4)=C 115C 145=13.故X 的分布列为反思与感悟 求离散型随机变量分布列的步骤 (1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率; (3)列表对应,即为分布列.跟踪训练3 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X 表示取出的3个球中的最小号码,写出随机变量X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 随机变量X 的可能取值为1,2,3.当X =1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P (X =1)=C 24C 35=610=35;当X =2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P (X =2)=C 23C 35=310;当X =3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为类型三 离散型随机变量的分布列的综合应用例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139D.1310 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 P (X =10)=1-23-…-239=139.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13 B.14 C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4 D .P (X ≤1)=0.3考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误. 4.设ξ是一个离散型随机变量,其分布列为则P (ξ≤0)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2-12解析 由分布列的性质,得1-2q ≥0,q 2≥0, 12+(1-2q )+q 2=1, 所以q =1-22,q =1+22(舍去). P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2×⎝⎛⎭⎫1-22=2-12. 5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么()A.n=3 B.n=4C.n=10 D.n=9考点离散型随机变量分布列的性质及应用题点由分布列的性质求参数答案 C解析由题意知P(X<4)=3P(X=1)=0.3,∴P(X=1)=0.1,又nP(X=1)=1,∴n=10.2.若随机变量η的分布列如下:则当P(η<x)=0.8时,实数x的取值范围是()A.x≤1 B.1≤x≤2C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.3.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1,∴a =54. ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得ξ=1, ∴P (ξ=1)=13.5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6 D .0.7考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 又P (Y =2)=P (X =4)=0.3.6.抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两枚骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1] 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 0.6解析 由离散型随机变量的分布列的性质,可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527.11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 (1)由x 2-x -6≤0, 得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.将一枚骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差为X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P (X =-5)=136,P (X =-4)=236=118,…, P (X =5)=136.故X 的分布列为四、探究与拓展14.袋中有4个红球,3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)=________. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 答案1335 解析 取出的4个球中红球的个数可能为4,3,2,1,相应的黑球个数为0,1,2,3,其得分ξ=4,6,8,10,则P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 03C 47+C 34×C 13C 47=1335. 15.在一次购物抽奖活动中,假设某10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 的分布列,并求出P (5≤X ≤25)的值.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)该顾客中奖的概率P =1-C 26C 210=1-13=23.(2)X 的可能取值为0,10,20,50,60. P (X =0)=C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故随机变量X 的分布列为所以P (5≤X ≤25)=P (X =10)+P (X =20)=25+115=715.。

概率论与数理统计第二讲

概率论与数理统计第二讲

定义 设X是S上的随机变量F(x)为其分布函数, 如果存在定义在(-∞,+∞)上的非负实质函数 f(x),使得
F ( x)
x

f ( t )dt, x
则称X为连续型随机变量,称F(x)为连续型分 布函数,称f(x)为X的概率密度函数(或概率 密度或分布密度)。
设X为连续型随机变量,F(x)与f(x)分别 为其分布函数和概率密度 1)对任意常数a<b有

P(X<0)=P(X-3<-3)=0.1。
当μ=0且σ=1的正态分布N(0,1),称为标准正 态分布。 x2 1 2 概率密度 ( x ) e , x ,
2
在统计用表中给出了 x 0至x 3.49所对应 的( x)值。 当x 3.49时,( x) 1 ;
P(λ)
λ=np=1
0.368 0.368 0.184 0.061 0.015 0.004
例 某物业管理公司负责10000户居民的 房屋维修工作。假定每户居民是否报修 是相互独立的,且报修的概率都是0.04% 另外,一户居民住房的维修只需一名修理 工来处理。易知,在某个时段报修的居民 数X~B(10000,0.0004).试问 1)该物业管理公司至少需要配备多少名 维修工人,才能使居民报修后能得到及时 修理的概率不低于99%。
P (a X b) f ( x )dx
a
b
2)F(x)是连续函数,且当f(x)在x=x0处连续时
F ( x0 ) f ( x0 )
3)对任意常数c,P(X=c)=0,从而对任何a<b,有
P (a X b) P (a X b) P (a X b) P (a X b)

第二章 随机变量及其分布第一节 随机变量及其分布函数讲解

第二章 随机变量及其分布第一节 随机变量及其分布函数讲解
2
Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a

); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)

是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量

的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。

概率论习题讲解

概率论习题讲解

x e
x!
(x =0,1,2, …,)
N→∞, H (n, M , N ) B(n, p). p M ,
N
n →∞, B(n, p) P() np
1
§2.5 随 机 变 量 旳 分 布 函 数
一.定义
F(x) P(X x)
二.分布函数 旳性质:
(1) 0 F ( x) 1, ( x )
若 不是整数,则当 m [ ]时,P( X m)最大。
13
9. 一本书中每页印刷错误旳个数X 服从泊松分布P0.2,
写出X 旳概率分布,并求一页上印刷错误不多于1个旳概率。
解 X旳概率分布为:PX k 0.2k e0.2
k!
查表求
PX 1 PX 0 PX 1 0.8187 0.1638 0.9825
6设随机变量X 服从二项分布 Bn, p 当x 为何值时,概率
PX x取得最大值。

PX
=
x
=
C
x n
pxqn-x
PX x PX x 1
1
n 1p
xq
x
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
当 x n 1p 时, PX x PX x 1;
FX
x
x dx f x, ydy
f x, ydy
FY y F , y
y dy f x, ydx
fY y
d dy
FY
y
f x, ydx
§2.11 随机变量旳独立性
一. 离散型随机变量旳独立性 p xi , y j pX xi pY y j
二. 连续随机变量旳独立性

概率论与数理统计2-2-zh

概率论与数理统计2-2-zh

泊松定理
设 0是一个常数, n是任意正整数,
k k e . k!
设n pn , 则对任一固定的非负整 数k , 有
lim C pn (1 pn ) n k
n k n
上述定理表明当n很大、p很小时有以下的近似
C p (1 p )
k n
k
n k
e , 其中 np. k!
例4 某人进行射击,设每次射击的命中率为0.02, 独立射击400次,试求至少击中两次的概率.
解 设 X 表示命中的次数, 则 X ~ b(400,0.02).
k 400
P( X k) C
0.02 0.98
k
400 k
, k 0,1,,400.
P( X 2) 1 P ( X 0) P ( X 1)
引入分布函数的意义
a
b
2. 性质
F ( x ) P ( X x ).
X
(1)F ( x )是一个不减函数,即 若x1 x 2 , 则F ( x1 ) F ( x 2 ).
( 2)0 F ( x ) 1,
x

F ( ) lim F ( x ) 0, F ( ) lim F ( x ) 1.
q
k 1

k 1
p p q
k 1

k 1
q 1. p 1 q
(3)概率背景
55页 4 题(1)
例2
某射手每次向靶射击一发子弹,命中的 概率是 p (0<p<1) . 今向靶做独立重复射击, 直到中靶为止,则他消耗的子弹数 X 是一个 随机变量,求 X 的分布律. 解 X 可能取的值是1, 2, … P(X=1) = p, P(X=2) = (1- p) p, P(X=3) = (1- p)2 p, ……. X的分布律为 P(X=k) = (1- p) k-1 p, k=1, 2,…

第二讲随机变量

第二讲随机变量
则X的概率分布由 下式 给出
P{X k} Cnk pk (1 p)nk ,
此时称, X 服从参数为 n, p 的二项分布, 记为 X ~ b(n, p).
n=1时, P{X=k}=pk(1-p)1-k,(k=0,1),
注意
即P{X=0}=1-p, P{X=1}=p
(0-1)分布
X ~ b(n, p).
P{ X
k}
C
k n
pk (1
p)nk
,
二项分布的图形特点:
Pk
对于固定 n 及 p, 当 k 增
加时, 概率 P{ X k}先
是随之增加直至达到最
大值, 随后单调减少.
O
n

可以证明, 一般的二项分布的图形也具有这一
性质,且当 (n 1) p 不为整数时,二项概率
P{ X k} 在 k [(n 1) p] 达到最大值; 当 (n 1) p 为整数时, 二项概率 P{ X k} 在 k (n 1) p 和 k (n 1) p 1 处达到最
记载的实际年数作对照, 这些值及 P{ X k} 的值
均列入下表.
X Pk
理论年数
实际年数
0 12 3 45 6 0.055 0.160 0.231 0.224 0.162 0.094 0.045 3.5 10.1 14.6 14.1 10.2 5.9 2.8
4 8 14 19 10 4 2
X
7
售记录知道, 某种商品每月的销售数可以用参数
5 的泊松分布来描述, 为了以 95%以上的把
握保证不脱销, 问商店在月底至少应进该种商品
多少件?
解 设该商品每月的销售数为X , 已知 X 服从参数
5 的泊松分布. 设商店在月底应进该种商品 m

概率与数理统计,第二章

概率与数理统计,第二章

第一讲Ⅰ 授课题目第二章 随机变量及其分布§1 随机变量 §2 离散型随机变量及其分布律 Ⅱ 教学目的与要求1、深刻理解随机变量的意义,熟练掌握用随机变量表示随机试验的结果;2、离散型随机变量的分布律及其表示;3、熟记两点分布、二项分布、泊松分布的分布律或密度函数及性质。

教学方法:发现式为主,讲授式为辅,讲练案结合 Ⅲ 教学重点与难点重点:掌握离散型随机变量及其分布律,如何用分布律求任何事件的概率。

难点:随机变量的概念及离散型随机变量的分布。

Ⅳ 讲授内容: 一、 引言在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布. 二、§1 随机变量 1、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之. 例1 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S =记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223XTTTTTH THT HTT THH HTH HHT HHH e例2在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为=S {正面, 反面},记赢钱数为随机变量X , 则X 作为样本空间S 的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面e e e X例3 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量. 2、随机变量的定义定义 设随机试验的样本空间为{}=S e ,()e X X =是定义在样本空间S 上的实值单值函数,称)(e X X =为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值; (2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.如 例1中易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A =故 ,8/3)(}2{===A P X P 类似地,有.2/1},,,{}1{==≤TTT TTH THT HTT P X P3、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量. 三、 §2 离散型随机变量及其分布律 1、离散型随机变量及其概率分布有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。

离散型随机变量

离散型随机变量

离散型随机变量离散型随机变量(Discrete Random Variable)是概率论中的重要概念,指的是在一系列离散值中取值的随机变量。

与连续型随机变量不同,离散型随机变量的取值是有限或可数的。

离散型随机变量在很多实际问题中都有广泛的应用,比如掷骰子的点数、抛硬币的正反面等。

在这些问题中,变量的取值只能是确定的几个值,并且每个值的出现概率也可以通过统计得到。

离散型随机变量的特征可以用概率质量函数(Probability Mass Function,简称PMF)来描述。

PMF给出了随机变量取某个值的概率,通常表示为P(X=x),其中X代表随机变量,x代表其取值。

如果将所有可能的取值及其对应的概率列出来,就得到了离散型随机变量的概率分布表。

举个例子来说明离散型随机变量。

假设我们有一个骰子,骰子有六个面,上面分别标有1到6的数字。

我们掷骰子100次,记录每次掷骰子的点数。

这里的随机变量就是骰子的点数,取值范围为1到6。

通过统计,我们可以得到每个点数出现的次数及其概率。

对于离散型随机变量,我们还可以计算其期望值(Expectation)和方差(Variance)。

期望值表示随机变量的平均值,可以用来描述其集中趋势;方差表示随机变量取值的波动程度,可以用来描述其离散程度。

离散型随机变量在实际问题中的应用非常广泛。

比如在金融领域,股票价格的涨跌、汇率的波动等都可以视为离散型随机变量;在工程领域,电路中的信号传输、网络中的数据包传输等也可以视为离散型随机变量。

总结起来,离散型随机变量是概率论中的重要概念,用来描述在一系列离散值中取值的随机变量。

它可以通过概率质量函数来描述其概率分布,通过期望值和方差来描述其特征。

离散型随机变量在实际问题中有广泛的应用,是概率论和统计学的基础知识之一。

通过了解和掌握离散型随机变量的概念和特征,我们可以更好地理解和分析概率问题,并在实际应用中做出准确的决策和预测。

初中数学 什么是随机变量

初中数学  什么是随机变量

初中数学什么是随机变量
随机变量是概率论与统计学中的一个重要概念,它是指随机试验结果的数值特征。

在数学上,随机变量可以用来描述某个随机试验的结果,它可以取得不同的数值,而每个数值发生的概率也是已知的。

举个简单的例子来说明随机变量:假设我们进行一次抛硬币的实验,我们定义随机变量X 表示出现正面的次数,那么X可以取0(表示没有出现正面),1(表示出现一次正面)或者2(表示出现两次正面)。

在这个例子中,随机变量X描述了抛硬币这个随机试验的结果。

根据随机变量的性质,我们可以将随机变量分为两类:离散型随机变量和连续型随机变量。

离散型随机变量是指在一定的范围内取有限个或可数个值的随机变量,比如上面抛硬币的例子中的随机变量X就是一个离散型随机变量。

连续型随机变量是指在一定范围内可以取任意值的随机变量,比如测量一个人的身高就是一个连续型随机变量。

在概率论中,随机变量的概率分布函数是描述随机变量取值的概率规律的函数。

对于离散型随机变量,我们通常使用概率质量函数(Probability Mass Function,PMF)来描述其取值的概率分布;对于连续型随机变量,我们则使用概率密度函数(Probability Density Function,PDF)来描述其取值的概率分布。

通过研究随机变量及其概率分布函数,我们可以对随机试验的结果进行更深入的理解,从而在实际问题中进行概率计算、统计分析等工作。

随机变量在概率论与统计学中有着广泛的应用,是这两门学科的基础概念之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、随机变量的概念
1. 随机变量的引入 2. 随机变量的概念
定义1 设E随机试验的样本空间为S={e} . 如果对于每 一个e∈S有一个实数X(e)与之对应,这样就得到一个定义 在S上的单值实值函数X=X(e)称为随机变量.
说明: (3) 随机变量与随机事件的关系 随机事件包容在随机变量这个范围更广的概念之内.也 就是说,随机事件是从静态的观点来研究随机现象, 而随 机变量则是从动态的观点来研究随机现象.
例8 某公共汽车站每隔5分钟有一辆汽车通过, 如果
某人到达该车站的时刻是随机的, 则
X (e) “此人的等车的时间” ,
是一个随机变量. X(e) 的所有可能取值为: [0, 5]
一、随机变量的概念
1. 随机变量的引入 2. 随机变量的概念 3. 随机变量的分类 离散型 随机变量 随机变量所取的可能值可 随机变量所取的可能值是 以连续地充满某个区间 有限多个或可列个, 叫做 , 叫做连续型随机变量 离散型随机变量. .
一、随机变量的概念
1. 随机变量的引入 2. 随机变量的概念
定义1 设E随机试验的样本空间为S={e} . 如果对于每 一个e∈S有一个实数X(e)与之对应,这样就得到一个定义 在S上的单值实值函数X=X(e)称为随机变量.
简单地说:定义在样本空间上的单值函数称之为随机 变量.
一、随机变量的概念
一、随机变量的概念
1. 随机变量的引入 例1 在一装有4个红球, 6个白球的袋中任摸一个 小球,观察摸出小球的颜色.
1, X (e ) 0, e 红色, e 白色.
P{X(e)=0}=P{摸出白色小球}=3/5.
P{X(e)=1}=P{摸出红色小球}=2/5.
一、随机变量的概念
一、随机变量的概念
1. 随机变量的引入 2. 随机变量的概念
定义1 设E随机试验的样本空间为S={e} . 如果对于每 一个e∈S有一个实数X(e)与之对应,这样就得到一个定义 在S上的单值实值函数X=X(e)称为随机变量.
说明: (2) 随机变量的取值具有一定的概率规律 随机变量随着试验的结果不同而取不同的值,由于试验 的各个结果的出现具有一定的概率, 因此随机变量的取值 也有一定的概率规律.
一、随机变量的概念
二、离散型随机变量
1. 随机变量的引入 概率论是从数量上来研究随机现象内在规律性的 ,为
了更方便有力的研究随机现象,就要用数学分析的方法来
研究, 因此为了便于数学上的推导和计算,就需将任意的
随机事件数量化,当把一些非数量表示的随机事件用数字
来表示时, 就建立起了随机变量的概念.
一、随机变量的概念
一般情况下求离散型随机变量的分布率步骤: (1) 写出随机变量的所有可能取值; (2) 计算随机变量每一个可能取值的概率; (3) 尽可能列出表格或者统一表达式. 一般要求
x1 x2
xk
二、离散型随机变量
1. 离散型随机变量的分布律 X P x1 p1 x2 p2 … … xk … pk …
X (e) “射中目标的次数” ,
是一个随机变量.
X(e) 的所有可能取的概率是0.8,现该射 手不断向目标射击 , 直到击中目标为止,则
X (e) “所需射击的次数” ,
是一个随机变量. X(e) 的所有可能取值为:1,2,3, … .
例9
因此由分步率的性质,
p
k 1

k
1
1 . 所以 a e 1 1 k 1 2 x e x 1 x x 2! k 0 k !
a 1 k 1 k !

a(e 1) 1
1 k x k!
例 10 设汽车在开往甲地途中需经过 4 盏信号灯, 每盏信号灯独立地以概率 p禁止 汽车通过. 令X表示首次停下时已通过的信 号灯盏数, 求X 的概率分布与p=0.6时的分 布 律. 解
k n k
Pn ( k ) P ( X k ) C p (1 p )
n k
,n
0–1 分布是 n = 1 的二项分布. 定理1 在n重贝努里试验中,如果事件A在每次试验 中发生的概率为p.那么事件A在n重贝努里试验中恰好发 生k此的概率为
Pn (k ) C p (1 p)
k n k
例1—— 例7
连续型型 例8
第2 讲
随机变量的概念与离散 型随机变量
一、随机变量的概念
二、离散型随机变量
1. 离散型随机变量的分布律 2. 分布律的性质
3. 常见离散型随机变量的概率分布
二、离散型随机变量
1. 离散型随机变量的分布律 如果随机变量所有的可能取值为有限个或可列无限 多个,则称这种随机变量为离散型随机变量。 设离散型随机变量X的可能取值为xk (k=1,2,…),事件 发生的概率为pk , 即
1. 随机变量的引入 2. 随机变量的概念
定义1 设E随机试验的样本空间为S={e} . 如果对于每 一个e∈S有一个实数X(e)与之对应,这样就得到一个定义 在S上的单值实值函数X=X(e)称为随机变量.
说明: (1) 随机变量与普通的函数不同 随机变量是一个函数,但它与普通的函数有着本质的差 别,普通函数是定义在实数轴上的,而随机变量是定义在样 本空间上的(样本空间的元素不一定是实数).
且各次轰击相互独立,一次次地轰击直到摧毁目标为止.求 所需轰击次数 X 的概率分布. 解 如果第 k 次摧毁目标,那么意味着前 k –1次击中 r – 1次, 第 k 次击中目标. 因此所求得分布率 P(X = k) = P(前 k –1次击中 r – 1次,第 k 次击中目标)
C p (1 p)
nk
,
k 0,1,2,, n
(d) 二项分布的取值情况 设 X ~ B( 8, X 0 1
1
1 k 2 8 k 3 ) 即 , P8 ( k ) P ( X k ) C ( ) ( ) 3 3 2 3 4 5 6 7 8
(b) 贝努里试验概型
设E为一贝努里试验,将E在相同的条件下重复进行 n次,每次试验中事件发生的可能性保持不变且为p. 把这n 次独立重复试验看成一次试验,这个试验称为n重贝努里 试验。
(2) 二项分布 (c) 二项分布的概念
如果随机变量X的分布率为
, k 0,1, 则称X服从参数为n, p 的二项分布.记作 X ~ B(n, p )
X P 0 1–p 1 p
0<p<1
则称X服从参数为p的0—1分布或两点分布.
例12
“抛硬币”试验,观察正、反两面情况.
0, e T , X X (e ) 1, e H .
随机变量X 服从(0-1)分布. 随机变量X 的分布率
1 1 k 1 k P( X k ) ( ) ( ) 2 2
X
0
1 2
k 0,1.
1
1 2
P
例13
200件产品中,有190件合格品,10件不合格品,现
从中随机抽取一件,那末,若规定
1, 取得不合格 品, X 0, 取得合格品.
则随机变量 X 服从(0-1)分布.
X
0
190 200
1
10 200
P
凡试验只有两个结果,常用0– 1分布描述,如
应用 场合
0, e e1 , X (e ) 1, e e2 , e e3 , 2, e e . 4
例5
设盒中有5个球 (2白3红), 从中任抽3个,则
X (e) “抽得的白球的个数” , 是一个随机变量.
X(e) 的所有可能取值为: 0,1,2.
例6 设某射手每次射击打中目标的概率是0.8, 现该 射手射了30次, 则
称为随机变量X的概率分布或分布律。
分布律常用表格 形式表示: X P x1 p1 x2 p2 … … xk… pk…
续例5
设盒中有5个球 (2白3红), 从中任抽3个,以
X表示取得白球的个数,试求随机变量X的分布率.
解 随机变量X 的所有可能取值为: 0, 1,2.
0 3 C2 C3 1 P{ X 0} 3 C5 10
产品是否合格、新生婴儿是男还是女、明天
是否下雨、种籽是否发芽、系统是否正常、
电力消耗是否超标等等.
(2) 二项分布 (a) n重复独立试验 将试验E 复进行n 次, 若各次试验的结果互不影响, 即每次试验结果出现的概率都不依赖于其它各次试验的 结果, 则称这n 试验是相互独立的,或称为n 次重复独立 试验.

X
0
1
2
3
4
P p 当p=0.6时 X 0 P 0.6
(1 p) p
1
(1 p)2 p (1 p)3 p (1 p)4
2 3 4
0.24
0.096
0.0384
0.0256
例11 一门大炮对目标进行轰击,假定此目标必须被击
中r 次才能被摧毁. 若每次击中目标的概率为p (0 < p < 1),
2. 分布律的性质
(1) pk 0, k 1,2,;
(2) pk 1;
k 1

(3) 事件组(X=xi) (i=1,2, …)是样本空间S 的一个 划分。
离散型随机变量X 的分布律为 a P { X xk } ( k 1, 2, , n, ), k! 求a 的值. 解 由于 a 1 1 a a( 1) a(e 1) k 1 k ! k 1 k ! k 0 k !
1. 随机变量的引入 例1 在一装有4个红球, 6个白球的袋中任摸一个 小球,观察摸出小球的颜色. ? S={红色、白色} 将S 数量化
非数量
可采用下列方法
相关文档
最新文档