2019年秋陕西省西安市高新一中初三年第一次月考数学试卷
2018-2019年陕西省西安市高新一中中考数学1模试卷(无答案)
2019年陕西省西安市高新一中中考数学一模试卷一.选择题(共10小题)1.下列各数中比1-小的数是( )A .2-B .1-C .13-D .12.如图是一个空心圆柱体,其俯视图是( )A .B .C .D .3.如图AB CD ∥,点E 是CD 上一点,EF 平分AED ∠交AB 于点F ,若42AEC ∠=︒,则AFE ∠的度数为( )A .42︒B .65︒C .69︒D .71︒4.已知正比例函数(0)y kx k =≠的图象经过点(13)- ,,则此正比例函数的关系式为( ) A .3y x =B .3y x =-C .13y x =D .13y x =-5.下列运算正确的是( ) A .224a a a +=B .236()b b -=-C .23222x x x =D .222()m n m n -=-6.如图,在菱形ABCD中,DE AB⊥,3cos5A=,3AE=,则tan DBE∠的值是( )A.12B.2C.52D.557.直线21y x=+向右平移得到21y x=-,平移了( )个单位长度.A.2-B.1-C.1D.28.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若3EH=,4EF=,那么线段AD与AB的比等于( )A.25:24B.16:15C.5:4D.4:39.如图,在圆O中,直径AB平分弦CD于点E,且43CD=,连接AC,OD,若A∠与DOB∠互余,则EB的长是( )A.23B.4C3D.210.已知二次函数2y ax bx c =++的图象经过点(0)m ,、(4)m ,和(1)n ,,若n m <,则( ) A .0a >且40a b += B .0a <且40a b += C .0a >且20a b += D .0a <且20a b += 二.填空题(共4小题)11.分解因式32x xy -的结果是 .12.把两个同样大小的含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若2AB =,则CD = .13.如图,OAC △和BAD △都是等腰直角三角形,90ACO ADB ∠=∠=︒,反比例函数3y x=在第一象限的图象经过点B ,则OAC △与BAD △的面积之差OAC BAD S S -△△为 .14.如图,点A 是直线y x =-上的动点,点B 是x 轴上的动点,若2AB =,则AOB ∆面积的最大值为 .三.解答题(共10小题)15.(本题满分5分)计算:()()22312sin 60π-+-+-︒.16.(本题满分5分)解方程:31133x x-=--.17.(本题满分5分)如图,ABC △中,AB AC =,请你利用尺规在BC 边上求一点P ,使ABC PAC △∽△(不写画法,保留作图痕迹)18.(本题满分5分)已知:如图,D 是AC 上一点,AB DA =,DE AB ∥,B DAE ∠=∠.求证:BC AE =.19.(本题满分7分)西安市2016年中考,综合素质测试满分为100分.某校为了调查学生对于综合素质的掌握程度,在九年级学生中随机抽取了部分学生进行模拟测试,并将测试成绩绘制成下面两幅统计图.试根据统计图中提供的数据,回答下面问题:(1)计算样本中,成绩为98分的学生有 分,并补全条形统计图. (2)样本中,测试成绩的中位数是 分,众数是 分.(3)若该校九年级共有2000名学生,根据此次模拟成绩估计该校九年级中考综合速度测试将有多少名学生可以获得满分.20.(本题满分7分)小明学校门前有座山,山上有一电线杆PQ ,他很想知道电线杆PQ 的高度。
2019年高新一中第一次中考模拟试题(卷)
2019年高新一中第一次中考模拟试题(卷)一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中比﹣1小的数是()A.﹣2 B.﹣1 C.0 D.12.如图,一个空心圆柱体,其主视图正确的是()A.B.C.D.3.如图AB∥CD,点E是CD上一点,EF平分∠AED交AB于点F,若∠AEC=42°,则∠AFE的度数为()A.42°B.65°C.69°D.71°4.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为()A.y=3x B.y=﹣3x C.D.5.下列运算正确的是()A.a3•a2=a6 B.(﹣a3)2=a6 C.2a+3a2=5a3 D.6.如图,在菱形ABCD中,DE⊥AB,cos A=,AE=3,则tan∠DBE的值是()A.B.2 C.D.7.在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度8.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:39.如图,在⊙O中,直径AB与弦CD垂直相交于点E,连结AC,OC,若∠A=30°,OC=4,则弦CD的长是()A.B.4 C.D.810.已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0 C.a>0且2a+b=0 D.a<0且2a+b=0 二、填空题(本大题共4小题,每小题3分,共12分)11.分解因式:x3﹣xy2=.12.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=.第12题图第13题图13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差为.14.如图,点A是直线y=﹣x上的动点,点B是x轴上的动点,若AB=2,则△AOB面积的最大值为.三、解答题(共11小题,共78分,解答题写出过程)15.(本题满分5分)计算:.16.(本题满分5分)解方程:=﹣.17.(本题满分5分)如图,△ABC中,AB=AC,请你利用尺规在BC边上求一点P,使△ABC∽△P AC(不写画法,保留作图痕迹)18.(本题满分5分)已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.19.(本题满分7分)某地区八年级期末将对学生进行身体素质统一测试(满分为100分).某校为了率先了解学生的身体素质情况,在八年级学生中随机抽取了部分学生进行模拟测试,并将测试成绩绘制成下面两幅统计图.试根据统计图中提供的数据,回答下面问题:(1)计算样本中,成绩为98分的学生有人,并补全条形统计图;(2)若该校八年级共有2000名学生,根据此次模拟成绩估计该校八年级身体素质测试将有多少名学生可以获得满分.20.(本题满分7分)如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)21.(本题满分7分)“低碳生活,绿色出行”,共享单车已经成了很多人出行的主要选择,今年1月份,“摩拜”共享单车又向长沙河西新投放共享单车640辆.(1)若1月份到3月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.求月平均增长率.(2)考虑到共享单车市场竞争激烈,摩拜公司准备用不超过60000元的资金再购进A,B两种规格的自行车100辆,且A型车不超过60辆.已知A型的进价为500元/辆,B型车进价为700元/辆,设购进A 型车m辆,求出m的取值范围.(3)已知A型车每月产生的利润是100元/辆,B型车每月产生的利润是90元/辆,在(2)的条件下,求公司每月的最大利润.22.(本题满分7分)车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.23.(本题满分8分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tan C.24.(本题满分10分)我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数.例如:y=2x2+4x﹣5的友好同轴二次函数为y=﹣x2﹣2x﹣5.(1)请你分别写出y=﹣,y=+x﹣5的友好同轴二次函数;(2)满足什么条件的二次函数没有友好同轴二次函数?满足什么条件的二次函数的友好同轴二次函数是它本身?(3)如图,二次函数L1:y=ax2﹣4ax+1与其友好同轴二次函数L2都与y轴交于点A,点B、C分别在L1、L2上,点B,C的横坐标均为m(0<m<2),它们关于L1的对称轴的对称点分别为B′,C′,连结BB′,B′C′,C′C,CB.①若a=3,且四边形BB′C′C为正方形,求m的值;②若m=1,且四边形BB′C′C的邻边之比为1:2,直接写出a的值.25.(本题满分12分)(1)如图(1),在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD 的面积为;问题探究:(2)如图(2),在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;(3)如图(3),在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD内(包含共边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE的面积最大。
陕西省西安市高新一中2020-2021学年第一学期九年级第一次月考数学试卷
2020~2021学年度第一学期月考(一)试题九年级 数学一、选择题(每小题3分,共30分)1. 下列各点在反比例函数xy 2=图象上的是( ) A. (-2,1) B.(1,-2) C.(-2,-2) D.(1,2)2. 如图,在ABC Rt ∆中,。
90=∠C ,4=BC ,5=AB ,那么B sin 的值是( )A. 53B.43C.54D.34 3. 二次函数()5432-+=x y 的图象的顶点坐标为( )A.(4,5)B.(-4,5)C.(4,-5)D.(-4,-5)4.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则I 与R 的函数表达式为( )A. R I 12=B.R I 8=C.R I 6=D.RI 4= 5.如图,一个小球由地面沿着坡度2:1=i 的坡面向上前进了m 52,此时小球距离地面的高度为( )A. m 5B.m 52C.m 2D.m 310 6. 在下列四个函数中,y 随x 的增大而减小的函数是( )A.x y 3=B.()02<=x xy C.25+=x y D.()02>=x x y 7. 如图,两根竹竿AB 和AD 斜靠在墙CE 上,量的α=∠ABC ,β=∠ADC ,则竹竿AB 与AD 的长度之比为( )A. βαtan tanB.αβsin sinC.βαsin sinD.αβcos cos 8. 二次函数()02≠++=a c bx ax y 的图象如图所示,对称轴是直线1=x ,则下列四个结论错误的是( )A. 0>cB.02=+b aC.042>-ac b D.0>+-c b a 9.在同一直角坐标系中,函数k kx y -=与()0≠=k xk y 的图象大致是( )10.在同一平面直角坐标系中,若抛物线()42122-+-+=m x m x y 与()n x n m x y ++=3-2关于y 轴对称,则符合条件的m ,n 的值为( ) A.75=m ,718-=n B.5=m ,6-=n C.-1=m ,6=n D.1=m ,2-=n 二、填空题(每小题3分,共21分)11.在ABC ∆中,()0tan 121cos 2=-+-B A ,则C ∠的度数是. 12.高新一中初中校区九年级(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的A 处,用高为1.5米的仪器测得旗杆顶部B 处的仰角为。
陕西西安市高新一中2019-2020学年九年级(上)第一次月考数学试卷(10月份) 含解析
2019-2020学年九年级(上)第一次月考数学试卷一.选择题(共10小题)1.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm2.如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A.B.C.D.3.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣D.y=x2﹣14.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定5.如图所示为农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米,原来捣头点E着地,现在踏脚D着地,则捣头点E 上升了()A.1.2米B.1米C.0.8米D.1.5米6.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是()A.∠A=55°,∠D=35°B.AC=9,BC=12,DF=6,EF=8C.AC=3,BC=4,DF=6,DE=8D.AB=10,AC=8,DE=15,EF=97.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b8.如图,△ABC中,点D为BC边上一点,点E在AD上,过点E作EF∥BD交AB于点F,过点E作EG∥AC交CD于点G,下列结论错误的是()A.B.C.D.=19.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.810.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.12B.10C.8D.8+4二.填空题(共6小题)11.如果=,那么的值是.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为.13.在人体躯和身高的比例上,肚脐是理想的黄金分割点,即(下半身长m与身高l)比例越接近0.618越给人以美感,某女士身高165cm,下半身长(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约cm的高跟鞋看起来更美.(结果保留整数)14.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE=米.(结果保留根号)15.如果,那么k的值为.16.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.三.解答题(共9小题)17.运动会的领奖台可以近似的看成如图所示的立体图形,请你画出它的三视图.18.如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B 为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)19.如图,已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD,使新图与原图的相似比为2:1;(2)分别写出A,B的对应点C、D的坐标;(3)求△OCD的面积.20.如图,在▱ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=3,AD=7,BE=2,求FC的长.21.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择了在测量点A、B、C 进行测量,点B、C分别在AM、AN上,现测得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直线隧道MN的长.22.如图所示,甲物体高4米,影长3米,乙物体高2米,影长4米,两物体相距5米.(1)在图中画出灯的位置,并画出丙物体的影子.(2)若灯杆,甲、乙都与地面垂直并且在同一直线上,试求出灯的高度.23.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.24.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x 轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=4时,求点E的坐标;(2)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD 沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm【分析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得=,又由b =3cm,c=8cm,d=12cm,即可求得a的值.【解答】解:∵四条线段a、b、c、d成比例,∴=,∵b=3cm,c=8cm,d=12cm,∴=,解得:a=2cm.故选:A.2.如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该组合体的俯视图为故选:A.3.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣D.y=x2﹣1【分析】根据反比例函数的定义判断即可.【解答】解:A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.4.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小C.不变D.无法确定【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以白炽灯向上移时,阴影会逐渐变小.相反当乒乓球越接近灯泡时,它在地面上的影子变大.【解答】解:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接近灯泡时,它在地面上的影子变大.故选:A.5.如图所示为农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米,原来捣头点E着地,现在踏脚D着地,则捣头点E 上升了()A.1.2米B.1米C.0.8米D.1.5米【分析】由题可知,易得题中有一组相似三角形,利用它们的对应边成比例即可解答.【解答】解:根据题意得:AD:DE=AB:x∴解得:x=0.8.故选:C.6.在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件中不能判定这两个三角形相似的是()A.∠A=55°,∠D=35°B.AC=9,BC=12,DF=6,EF=8C.AC=3,BC=4,DF=6,DE=8D.AB=10,AC=8,DE=15,EF=9【分析】根据相似三角形的判定方法对各个选项进行分析即可.【解答】解:A、相似:∵∠A=55°∴∠B=90°﹣55°=35°∵∠D=35°∴∠B=∠D ∵∠C=∠F∴△ABC∽△DEF;B、相似:∵AC=9,BC=12,DF=6,EF=8,∴,∵∠C=∠F∴△ABC∽△DEF;C、有一组角相等两边对应成比例,但该组角不是这两边的夹角,故不相似;D、相似:∵AB=10,BC=6,DE=15,EF=9,∴,∵∠C=∠F∴△ABC∽△DEF;故选:C.7.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.8.如图,△ABC中,点D为BC边上一点,点E在AD上,过点E作EF∥BD交AB于点F,过点E作EG∥AC交CD于点G,下列结论错误的是()A.B.C.D.=1【分析】根据相似三角形的判定得出△AEF∽△ADB,△DEG∽△DAC,再根据相似三角形的性质和平行线分线段成比例定理逐个判断即可.【解答】解:A、∵EF∥BD,∴△AEF∽△ADB,∴=,∵EG∥AC,∴=,∴≠,故本选项符合题意;B、∵GE∥AC,∴△DEG∽△DAC,∴=,故本选项不符合题意;C、∵EF∥BD,EG∥AC,∴,,∴,故本选项不符合题意;D、∵GE∥AC,EF∥BD,∴△AEF∽△ADB,△DEG∽△DAC,∴,,∴==1,故本选项不符合题意;故选:A.9.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.4B.4 C.2D.8【分析】由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.【解答】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE=×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.10.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.12B.10C.8D.8+4【分析】可设BE=x,CE=y,由题意可得△ABE≌ECF,并且△ECF∽△FDG,从而得出关于x、y的两个方程,求解后即可得出矩形ABCD的周长.【解答】解:∵小正方形的面积为1,∴小正方形的边长也为1设BE=x,CE=y,∵∠AEB+∠CEF=90°,而∠EFC+∠CEF=90°∴∠AEB=∠EFC又∵∠B=∠C=90°,AE=EF=4∴△ABE≌ECF(AAS)∴AB=EC=y,BE=CF=x∴由勾股定理可得x2+y2=42而同理可得∠EFC=∠FGD,且∠C=∠D=90°∴△ECF∽△FDG∴∴FD=EC=,∵AB=CD∴y=x+y∴y=2x,将其代入x2+y2=42中于是可得x=,y=而矩形ABCD的周长=2(x+y)+2y=5y=5×=8故选:C.二.填空题(共6小题)11.如果=,那么的值是.【分析】将=变形为+2=,再根据等式的性质即可求解.【解答】解:=,+2=,=.故答案为:.12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为12 .【分析】由主视图所给的图形可得到俯视图的对角线长为2,利用勾股定理可得俯视图的面积,乘以高即为这个长方体的体积.【解答】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为2,∴a2+a2=(2)2,解得a2=4,∴这个长方体的体积为4×3=12.13.在人体躯和身高的比例上,肚脐是理想的黄金分割点,即(下半身长m与身高l)比例越接近0.618越给人以美感,某女士身高165cm,下半身长(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约8 cm的高跟鞋看起来更美.(结果保留整数)【分析】根据黄金分割定义:下半身长与全身的比等于0.618即可求解.【解答】解:根据已知条件可知:下半身长是165×0.6=99cm,设需要穿的高跟鞋为ycm,则根据黄金分割定义,得=0.618,解得:y≈7.8≈8,经检验y≈7.8是原方程的根,答:她应该选择大约8cm的高跟鞋.故答案为8.14.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE=(18﹣10)米.(结果保留根号)【分析】设FE⊥AB于点F,那么在△AEF中,∠AFE=90°,解直角三角形AEC可以求得AF的长,进而求得DE=AB﹣AF即可解题.【解答】解:设冬天太阳最低时,甲楼最高处A点的影子落在乙楼的E处,那么图中ED 的长度就是甲楼的影子在乙楼上的高度,设FE⊥AB于点F,那么在△AEF中,∠AFE=90°,EF=20米.∵物高与影长的比是1:,∴=,则AF=EF=10,故DE=FB=18﹣10.故答案为(18﹣10)15.如果,那么k的值为或﹣1 .【分析】①当a+b+c≠0时,由等比定理(若a:b=c:d(其中b,d≠0),则(a+c):(b+d)=(a﹣c):(b﹣d)=a:b=c:da:b=c:d=e:f=…m:k则(a+c+e+…+m):(b+d+f+…+k)=a:b称为等比定理)解答k的值;②当a+b+c=0时,a+b=﹣c,将其整体代入比例式解答k的值.【解答】解:①当a+b+c≠0时,由等比定理得=k,即k=;②当a+b+c=0时,a+b=﹣c,∴,∴k=﹣1;故答案为:或﹣1.16.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【解答】解:作A关于BC的对称点A',连接AA',交BC于F,过A'作A'E⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB•AC=BC•AF,∴3×=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是;故答案为:.三.解答题(共9小题)17.运动会的领奖台可以近似的看成如图所示的立体图形,请你画出它的三视图.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,据此作答.【解答】解:如图所示:.18.如图,△ABC中,P是线段AB上一点,尺规作图:在BC边上找一点D,使以P、D、B 为顶点的三角形与△ABC相似(保留作图痕迹,不写作法)【分析】过P作PD∥AC交BC于点D,或作∠BPD=∠C,即可利用相似三角形的判定解答即可.【解答】解:如图所示:19.如图,已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD,使新图与原图的相似比为2:1;(2)分别写出A,B的对应点C、D的坐标;(3)求△OCD的面积.【分析】(1)延长AO到C使得OC=2OA,延长BO到D,使得OD=2OB,连接CD,△OCD 即为所求.(2)根据C,D的位置写出坐标即可.(3)利用分割法求出三角形的面积即可.【解答】解:(1)如图,△OCD即为所求.(2)C(﹣6,﹣2),D(﹣4,2),(3)S△OCD=24﹣×4×2﹣×6×2﹣×2×4=10.20.如图,在▱ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=3,AD=7,BE=2,求FC的长.【分析】(1)由平行四边形的性质可知AB∥CD,AD∥BC,根据平行线的性质得到∠B=∠ECF,∠DAE=∠AEB,又因为∠DAE=∠F,进而可证明:△ABE∽△ECF,由相似三角形的性质即可证得结论;(2)由(1)可知:△ABE∽△ECF,可得,由平行四边形的性质可知BC=AD=7,所以EC=BC﹣BE=7﹣2=5,代入计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴∠B=∠ECF,∠DAE=∠AEB,又∵∠DAE=∠F,∴∠AEB=∠F,∴△ABE∽△ECF,(2)解:∵△ABE∽△ECF,∴,∵四边形ABCD是平行四边形,∴BC=AD=7.∴EC=BC﹣BE=7﹣2=5.∴,∴.21.中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”,修建高铁时常常要逢山开道、遇水搭桥,如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算M、N两点之间的直线距离,选择了在测量点A、B、C 进行测量,点B、C分别在AM、AN上,现测得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直线隧道MN的长.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:∵,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,∵BC=45∴MN=3000,答:直线隧道MN长为3000米.22.如图所示,甲物体高4米,影长3米,乙物体高2米,影长4米,两物体相距5米.(1)在图中画出灯的位置,并画出丙物体的影子.(2)若灯杆,甲、乙都与地面垂直并且在同一直线上,试求出灯的高度.【分析】(1)首先连接GA、HC并延长交于点O,从而确定点光源,然后连接OE并延长即可确定影子;(2)OM⊥QH设OM=x,BM=y,根据三角形相似列出比例式即可确定灯的高度.【解答】解:(1)点O为灯的位置,QF为丙物体的影子;(2)作OM⊥QH设OM=x,BM=y,由△GAB∽△GOM得=即:①,由△CDH∽△OMH得即:②由①②得,x=4.8,y=0.6.答灯的高度为4.8米.23.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)由等腰三角形的三线合一定理先证AD⊥BC,再证∠DAB+∠DBA=90°,由邻余四边形定义即可判定;(2)由等腰三角形的三线合一定理先证BD=CD,推出CE=5BE,再证明△DBQ∽△ECN,推出==,即可求出NC,AC,AB的长度.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.24.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x 轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=4时,求点E的坐标;(2)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)由相似三角形的性质求出BH=6,得出OE=8即可求出点E的坐标.(2)本题需先证出△BCP∽△BAE,求出AE=t,再分两种情况讨论,求出t的值,即可得出P点的坐标.【解答】解:(1)当t=4时,PC=4,过点E作CB的垂线,垂足为H,如图1所示:∵A(2,0),C(0,3),∴OA=2,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=2,∵∠BPC+∠PBC=90°,∠PBC+∠EBH=90°,∴∠BPC=∠EBH,∵∠EHB=∠BCP=90°,∴△PBC∽△BEH,∴=,即=,解得:BH=6,∴AE=BH=6,∴OE=OA+AE=2+6=8,∴点E的坐标是(8,0);(2)存在,理由如下:∵∠ABE+∠ABP=90°,∠PBC+∠ABP=90°,∴∠ABE=∠PBC,∵∠BAE=∠BCP=90°,∴△BCP∽△BAE∴=,∴=,∴AE=t,当点P在点O上方时,如图2所示:若=时,△POE∽△EAB,∵OP=3﹣t,OE=2+t,∴=,解得:t1=,t2=(舍去),∴OP=3﹣=,∴P的坐标为(0,),当点P在点O下方时,如图3所示:①若=,则△OPE∽△ABE,=,解得:t1=3+,t2=3﹣(舍去),OP=t﹣3=3+﹣3=,P的坐标为(0,﹣),②若=,则△OEP∽△ABE,=,整理得:t2=﹣9,∴这种情况不成立,综上所述,存在以P、O、E为顶点的三角形与△ABE相似,P的坐标为:(0,)或(0,﹣).25.如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD 沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.(2)①证明△ADM∽△GMN,可得=,由此即可解决问题.②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①如图2中,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG==8,在Rt△DCG中,DG==10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DMG=∠DMN+∠NMG=∠DAM+∠ADM,∠DMN=∠DAM,∴∠ADM=∠NMG,∴△ADM∽△GMN,∴=,∴=,∴y=x2﹣x+10.当x=4时,y有最小值,最小值=2.②存在.由题意:∠DMN=∠DGM.可以推出∠DNM=∠DMG,推出∠DNM≠∠DMN,所以有两种情形:如图3﹣1中,当MN=MD时,∵∠MDN=∠GDM,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∵MN=DM,∴DG=GM=10,∴x=AM=8﹣10.如图3﹣2中,当MN=DN时,作MH⊥DG于H.∵MN=DN,∴∠MDN=∠DMN,∵∠DMN=∠DGM,∴∠MDG=∠MGD,∴MD=MG,∵MH⊥DG,∴DH=GH=5,由△GHM∽△GBA,可得=,∴=,∴MG=,∴x=AM=8﹣=.综上所述,满足条件的x的值为8﹣10或.。
2019年陕西省西安市高新一中中考数学一模试卷(解析版)
2019年陕西省西安市高新一中中考数学一模试卷一、选择题(共10小题,每小题3分,计30分)1.实数的相反数是()A.﹣B.C.﹣D.2.如图所示的工件,其俯视图是()A.B.C.D.3.下列运算正确的是()A.(x3)2=x5B.(﹣x)5=﹣x5C.x3•x2=x6D.3x2+2x3=5x54.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°5.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为()A.y=3x B.y=﹣3x C.D.6.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16B.14C.12D.67.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M在AD边上,连接MO并延长交BC边于点M′,连接MB,DM′,则图中的全等三角形共有()A.3对B.4对C.5对D.6对9.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB 互余,则EB的长是()A.2B.4C.D.210.已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0B.a<0且4a+b=0C.a>0且2a+b=0D.a<0且2a+b=0二、填空题(共4小题,每小题3分,计12分)11.不等式1﹣2x<6的负整数解是.12.用科学记算器计算:2×sin15°×cos15°=.13.已知,直线y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S=.△AOB14.如图,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=6,BC=3,则四边形的面积为.三、解答题(共11题,计78分,解答应写出过程)15.计算:2cos30°+﹣|﹣3|﹣()﹣216.化简:(x﹣1﹣)÷.17.如图,△ABC中,AB=AC,请你利用尺规在BC边上求一点P,使△ABC∽△PAC(不写画法,保留作图痕迹)18.在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B ﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?19.如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE.求证:AF=CE.20.太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.23.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.24.已知抛物线y=a(x﹣1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)有一个动点P从原点O出发,沿x轴正方向以每秒2个单位的速度运动,设运动时间为t 秒,求t为何值时PA+PB最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C作DE∥x轴,分别交l1,l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.25.(1)如图1,半径为2的圆O 内有一点P ,且OP =1,弦AB 过点P ,则弦AB 长度的最大值为 ;最小值为 .(2)如图2,等腰△ABC ,AB =12,AC =BC ,∠ACB =120°,将△ABC 放在平面直角坐标系中,使点A 与坐标原点O 重合,点B 在x 轴的正半轴上,在x 轴上方是否存在点M ,使得∠AMB =60°,且S △AMB =S △ABC ?若存在,请确定M 的坐标;若不存在,请说明理由.(3)如图3,△ABC 是葛叔叔家的菜地示意图,其中∠ABC =90°,AB =80米,BC =60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD ,且满足∠ADC =60°,你认为葛叔叔的想法能实现?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.2018年陕西省西安市高新一中中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)1.实数的相反数是()A.﹣B.C.﹣D.【分析】直接利用实数的性质和相反数的定义分析得出答案.【解答】解:实数的相反数是:﹣.故选:A.【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.下列运算正确的是()A.(x3)2=x5B.(﹣x)5=﹣x5C.x3•x2=x6D.3x2+2x3=5x5【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式=x6,故本选项错误;B、原式=﹣x5,故本选项正确;C、原式=x5,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.4.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°【分析】根据角平分线的定义可得∠AOC=∠BOC,再根据两直线平行,内错角相等即可得到结论.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC=AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选:B.【点评】本题考查了角平分线的定义,平行线的性质,熟记各性质并准确识图是解题的关键.5.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为()A.y=3x B.y=﹣3x C.D.【分析】根据待定系数法即可求得.【解答】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选:B.【点评】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.6.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A .16B .14C .12D .6【分析】根据等腰三角形的性质可得AD ⊥BC ,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【解答】解:∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,∴∠ADC =90°,∵点E 为AC 的中点,∴DE =CE =AC =.∵△CDE 的周长为21,∴CD =6,∴BC =2CD =12.故选:C .【点评】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.7.已知一次函数y =kx +3和y =k 1x +5,假设k <0且k 1>0,则这两个一次函数的图象的交点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【分析】根据一次函数的性质作出两个函数的大体图象,依据图象即可判断.【解答】解:∵k <0,∴一次函数y =kx +3经过第一、二、四象限;∵k 1>0,∴y =k 1x +5经过第一、二、三象限.则两个函数的大体图象是:则两个一次函数的图象交点在第二象限.故选:B .【点评】本题考查了一次函数的图象的性质,即可取出两个一次函数的图象交点8.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M在AD边上,连接MO并延长交BC边于点M′,连接MB,DM′,则图中的全等三角形共有()A.3对B.4对C.5对D.6对【分析】由矩形的性质可得AB=CD,AD=BC,∠A=∠C=90°,AD∥BC,由全等三角形的判定依次可证△ABD≌△CDB,△MOD≌△M'OB,△MOB≌△M'OD,△BMD≌△DM'B,△MBM'≌△M'MD,Rt△ABM≌Rt△CDM'.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,AD∥BC∴△ABD≌△CDB(SAS)∵AD∥BC∴∠ADB=∠DBC,且BO=DO,∠MOD=∠M'OB∴△MOD≌△M'OB(ASA)∴MO=M'O,MD=BM',∵MO=M'O,BO=DO,∠BOM=∠DOM',∴△MOB≌△M'OD(SAS)∴BM=DM',且BD=BD,DM=BM'∴△BMD≌△DM'B(SSS)∵BM=DM',且DM=BM',MM'=MM'∴△MBM'≌△M'MD(SSS)∵AB=CD,BM=DM'∴Rt△ABM≌Rt△CDM'(HL)综上所述:共6组全等三角形,故选:D.【点评】本题考查了全等三角形的判定和性质,矩形的性质,熟练运用全等三角形的判定和性质是本题的关键.9.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB互余,则EB的长是()A.2B.4C.D.2【分析】先根据垂径定理得出AB⊥CD,再由∠A与∠DOB计算∠DOB=60°,根据直角三角形30度角的性质可得OD和OE的长,从而得结论.【解答】解:∵直径AB平分弦CD,CD不是直径,∴AB⊥CD,∴∠DOB=2∠A,∵∠A与∠DOB互余,∴∠DOB=60°,∵CD=4,∴ED=CD=2,∴OE=2,OD=4,∴BE=OB﹣OE=4﹣2=2,故选:D.【点评】本题考查的是垂径定理、勾股定理、直角三角形30度角的性质等知识,熟知平分弦(不是直径)的直径垂直于这条弦,并且平分弦所对的两条弧是解答此题的关键.10.已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0B.a<0且4a+b=0C.a>0且2a+b=0D.a<0且2a+b=0【分析】利用抛物线的对称性得到抛物线的对称轴为直线x=﹣=2,则b+4a=0,然后利用x =1,y=n,且n<m可确定抛物线的开口向上,从而得到a>0.【解答】解:∵点(0,m)、(4,m)为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即﹣=2,∴b+4a=0,∵x=1,y=n,且n<m,∴抛物线的开口向上,即a>0.故选:A.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共4小题,每小题3分,计12分)11.不等式1﹣2x<6的负整数解是﹣2,﹣1.【分析】根据不等式的性质求出不等式的解集,找出不等式的整数解即可.【解答】解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.【点评】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.12.用科学记算器计算:2×sin15°×cos15°=0.5.【分析】本题要求同学们能熟练应用计算器,会用科学记算器进行计算.【解答】解:用计算器按MODE,有DEG后,按2×sin15×cos15=显示结果为0.5.故答案为0.5.【点评】本题考查了熟练应用计算器的能力.13.已知,直线y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于=.第一象限点C,若BC=2AB,则S△AOB【分析】根据题意可以设出点C的坐标,从而可以得到OA和OB的长,进而得到△AOB的面积,本题得以解决.【解答】解:∵直线y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,BC=2AB,∴设点C的坐标为(c,),则OA=c,OB=×=,=•OA•OB=×c×=.∴S△AOB故答案为.【点评】本题考查了反比例函数与一次函数的交点问题,平行线分线段成比例定理,三角形的面积,解答本题的关键是用点C的横坐标正确表示出OA与OB的长.14.如图,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=6,BC=3,则四边形的面积为.【分析】连接AC,作CH⊥AB交AB的延长线于点H,根据直角三角形的性质求出BH,根据勾股定理求出CH,根据三角形的面积公式计算即可.【解答】解:连接AC,作CH⊥AB交AB的延长线于点H,∵∠ABC=120°,∴∠CBH=60°,∴∠BCH=30°,∴BH=BC=,由勾股定理得,CH==,AC==,∵DA=DC,∠ADC=60°,∴△ADC为等边三角形,∴四边形ABCD的面积=×AB×CH+×AC×AC=,故答案为:.【点评】本题考查的是勾股定理、直角三角形的性质、三角形的面积计算,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(共11题,计78分,解答应写出过程)15.计算:2cos30°+﹣|﹣3|﹣()﹣2【分析】直接利用特殊角的三角函数值以及二次根式的性质、负指数幂的性质分别化简得出答案.【解答】解:原式===.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.化简:(x﹣1﹣)÷.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.如图,△ABC中,AB=AC,请你利用尺规在BC边上求一点P,使△ABC∽△PAC(不写画法,保留作图痕迹)【分析】以AC为边、点A为顶点,作一个角等于∠B,角的另一条边与BC的交点即为所求.【解答】解:如图所示,点P即为所求.【点评】本题主要考查作图﹣相似变换,解题的关键是掌握相似三角形的判定与性质及作一个角等于已知角的尺规作图.18.在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B ﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是A﹣国学诵读.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?【分析】(1)由C项目人数及其所占百分比可得总人数,总人数乘以B的百分比求得B项目的人数,继而根据各项目的人数之和等于总人数求得D的人数即可补全图形;(2)根据众数的定义求解可得;(3)总人数乘以样本中A项目人数占被调查人数的比例即可得.【解答】解:(1)∵被调查的总人数为12÷20%=60(人),∴B项目人数为60×15%=9,则D项目人数为60﹣(27+9+12)=12(人),补全条形图如下:(2)由条形图知,A项目的人数最多,由27人,所以所抽取的学生参加其中一项活动的众数是A﹣国学诵读,故答案为:A﹣国学诵读;(3)估算全校学生希望参加活动A有800×=360(人).【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE.求证:AF=CE.【分析】首先证明AE∥CF,△ABE≌△CDF,再根据全等三角形的性质可得AE=CF,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF是平行四边形,根据平行四边形的性质可得AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等.20.太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC=HG,推出=,列出方程求出CA=106(米),由=,可得=,由此即可解决问题.【解答】解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:舍利塔的高度AB为55米.【点评】本题考查解直角三角形的应用、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=6,b=8;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?【分析】(1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值;(2)利用待定系数法求正比例函数解析式求出y1,分x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.【解答】解:(1)由y1图象上点(10,480),得到10人的费用为480元,∴a=×10=6;由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,480),∴10k1=480,∴k1=48,∴y1=48x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,80×10+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【解答】解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,可得x2+62=(x+8)2﹣102,解方程即可解决问题.【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)解:连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,∴x2+62=(x+8)2﹣102,解得x=,∴BC==.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.已知抛物线y=a(x﹣1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)有一个动点P从原点O出发,沿x轴正方向以每秒2个单位的速度运动,设运动时间为t 秒,求t为何值时PA+PB最短;(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C作DE∥x轴,分别交l1,l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.【分析】(1)利用待定系数法即可解决问题;(2)如图1中,作点A关于x轴的对称点A′,连接BA′交x轴于P,点P即为所求.(3)如图2中,设抛物线向右平移后的解析式为y=﹣(x﹣m)2+3.想办法用m表示点C的坐标,分两种情形,利用待定系数法即可解决问题;【解答】解:(1)把A(0,2)代入抛物线的解析式可得,2=a+3,∴a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+3,∴抛物线的顶点B坐标为(1,3).(2)如图1中,作点A关于x轴的对称点A′,连接BA′交x轴于P,点P即为所求.∵A′(0,﹣2),B(1,3),∴直线A′B的解析式为y=5x﹣2,∴P(,0),∴t==时,PA+PB最短(3)如图2中,设抛物线向右平移后的解析式为y=﹣(x﹣m)2+3.由,解得x=,∴点C的横坐标,∵MN=m﹣1,四边形MDEN是正方形,∴C(,m﹣1),把点C的坐标代入y=﹣(x﹣1)2+3,得到m ﹣1=﹣+3,解得m =3或﹣5(舍弃),∴移后抛物线的解析式为y =﹣(x ﹣3)2+3.当点C 在x 轴下方时,C (,1﹣m ),把点C 的坐标代入y =﹣(x ﹣1)2+3,得到1﹣m =﹣+3,解得m =7或﹣1(舍弃),∴移后抛物线的解析式为y =﹣(x ﹣7)2+3.【点评】本题考查二次函数综合题、待定系数法、正方形的性质、轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,学会利用参数解决问题,属于中考压轴题. 25.(1)如图1,半径为2的圆O 内有一点P ,且OP =1,弦AB 过点P ,则弦AB 长度的最大值为 4 ;最小值为 .(2)如图2,等腰△ABC ,AB =12,AC =BC ,∠ACB =120°,将△ABC 放在平面直角坐标系中,使点A 与坐标原点O 重合,点B 在x 轴的正半轴上,在x 轴上方是否存在点M ,使得∠AMB =60°,且S △AMB =S △ABC ?若存在,请确定M 的坐标;若不存在,请说明理由.(3)如图3,△ABC 是葛叔叔家的菜地示意图,其中∠ABC =90°,AB =80米,BC =60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD ,且满足∠ADC =60°,你认为葛叔叔的想法能实现?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.【分析】(1)当AB 为直径时,弦最长;当OP ⊥AB 时,AB 最短,用垂径定理求解即可; (2)以C 为圆心,OC 长为半径作⊙C ,过C 作x 轴的平行线交⊙C 于M 1,M 2,点M 1,M 2即为所求的点;(3)由题意,AC =100,∠ADC =60°,即点D 在优弧ADC 上运动,当点D 运动到优弧ADC 的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD 为等边三角形,计算出△ADC 的面积和AD 的长即可得出这个四边形鱼塘面积和周长的最大值.【解答】解:(1)如图①,当OP ⊥AB 时,AB 最短,连接OB ,∵OP =1,OB =2,∴BP =,∴AB =2BP =, 当AB 为直径时,弦最长,为4,故答案为:4,(2)如图②,作CH ⊥AB 于H ,∵AB =12,AC =BC ,∠ACB =120°,∴∠COB =30°,OH =BH =, ∴OH =6,OC =12,以C 为圆心,OC 长为半径作⊙C ,过C 作x 轴的平行线交⊙C 于M 1,M 2,则∠OMB =∠OCB =60°,且S △AMB =S △ABC ,∴点M 1,M 2符合题意,∵点C 的坐标为(,6),∴存在点M ,坐标为M 1(,6),M 2(,6) (3)如图③,∵∠ABC =90°,AB =80米,BC =60米,∴AC =米,作△AOC ,使得∠AOC =120°,OA =OC ,以O 为圆心,OA 长为半径画⊙O , ∵∠ADC =60°,∴点D 在优弧ADC 上运动,当点D 是优弧ADC 的中点时,四边形ABCD 面积和周长取得最大值,连接DO 并延长交AC 于H ,则DH ⊥AC ,AH =CH ,∴DA =DC ,∵∠ADC =60°,∴△ACD 为等边三角形,∴AD =CD =100,∵AH=CH=50,∴DH=,∴这个四边形鱼塘面积最大值为(平方米);这个四边形鱼塘周长的最大值为100+100+60+80=340(米).【点评】本题考查了垂径定理,圆周角定理,勾股定理,构造辅助圆是解决本题的关键.。
陕西省西安市高新一中2019年中考数学一模试卷(含解析)
2019年中考数学一模试卷一.选择题(共10小题)1.下列各数中比﹣1小的数是()A.﹣2 B.﹣1 C.﹣D.12.如图是一空心圆柱,其主视图正确的是()A.B.C.D.3.如图AB∥CD,点E是CD上一点,EF平分∠AED交AB于点F,若∠AEC=42°,则∠AFE 的度数为()A.42°B.65°C.69°D.71°4.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为()A.y=3x B.y=﹣3x C.D.5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n26.如图,在菱形ABCD中,DE⊥AB,cos A=,AE=3,则tan∠DBE的值是()A.B.2 C.D.7.直线y=2x+1向右平移得到y=2x﹣1,平移了()个单位长度.A.﹣2 B.﹣1 C.1 D.28.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:39.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB 互余,则EB的长是()A.2B.4 C.D.210.已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=0二.填空题(共4小题)11.分解因式:x3﹣xy2=.12.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB =,则CD=.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差为.14.如图,点A是直线y=﹣x上的动点,点B是x轴上的动点,若AB=2,则△AOB面积的最大值为.三.解答题(共11小题)15.计算:﹣22+(﹣π)0+|1﹣2sin60°|.16.解分式方程:.17.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BPA∽△BAC(保留作图痕迹,不写作法).18.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.19.西安市2016年中考,综合素质测试满分为100分.某校为了调查学生对于综合素质的掌握程度,在九年级学生中随机抽取了部分学生进行模拟测试,并将测试成绩绘制成下面两幅统计图.试根据统计图中提供的数据,回答下面问题:(1)计算样本中,成绩为98分的学生有分,并补全条形统计图.(2)样本中,测试成绩的中位数是分,众数是分.(3)若该校九年级共有2000名学生,根据此次模拟成绩估计该校九年级中考综合速度测试将有多少名学生可以获得满分.20.小明学校门前有座山,山上有一电线杆PQ,他很想知道电线杆PQ的高度.于是,有一天,小明和他的同学小亮带着测角器和皮尺来到山下进行测量,测量方案如下:如图,首先,小明站在地面上的点A处,测得电线杆顶端点P的仰角是45°;然后小明向前走6米到达点B处,测得电线杆顶端点P和电线杆底端点Q的仰角分则是60°和30°,设小明的眼睛到地面的距离为1.6米,请根据以上測量的数据,计算电线杆PQ的高度(结果精确到1米,参考数据=1.7,=1.4).21.“低碳生活,绿色出行”共享单车已经成了很多人出行的主要选择.(1)考虑到共享单车市场竞争激烈,摩拜公司准备用不超过60000元的资金再购进A,B两种规格的自行车100辆,且A型车不超过60辆.已知A型的进价为500元/辆,B 型车进价为700元/辆,设购进A型车m辆,求出m的取值范围;(2)已知A型车每月产生的利润是100元/辆,B型车每月产生的利润是90元/辆,在(1)的条件下,求公司每月的最大利润.22.车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.23.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tan C.24.我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数.例如:y=2x2+4x﹣5的友好同轴二次函数为y=﹣x2﹣2x﹣5.(1)请你写出y=x2+x﹣5的友好同轴二次函数;(2)如图,二次函数L1:y=ax2﹣4ax+1与其友好同轴二次函数L2都与y轴交于点A,点B、C分别在L1、L2上,点B,C的横坐标均为m(0<m<2)它们关于L1的对称轴的对称点分别为B,C,连接BB′,B′C′,C′C,CB.若a=3,且四边形BB′C′C为正方形,求m的值.25.问题提出:(1)如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为;问题探究:(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC =3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;问题解决:(3)如图3,在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD中(包含其边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE 的面积最大.若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各数中比﹣1小的数是()A.﹣2 B.﹣1 C.﹣D.1【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、﹣>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.2.如图是一空心圆柱,其主视图正确的是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的棱都应表现在主视图中.【解答】解:圆柱的主视图是矩形,里面有两条用虚线表示的看不到的棱,故选:C.3.如图AB∥CD,点E是CD上一点,EF平分∠AED交AB于点F,若∠AEC=42°,则∠AFE 的度数为()A.42°B.65°C.69°D.71°【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.故选:C.4.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为()A.y=3x B.y=﹣3x C.D.【分析】根据待定系数法即可求得.【解答】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选:B.5.下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.6.如图,在菱形ABCD中,DE⊥AB,cos A=,AE=3,则tan∠DBE的值是()A.B.2 C.D.【分析】在直角三角形ADE中,cos A=,求得AD,再求得DE,即可得到tan∠DBE=.【解答】解:设菱形ABCD边长为t.∵BE=2,∴AE=t﹣2.∵cos A=,∴.∴=.∴t=5.∴BE=5﹣3=2,∴DE==4,∴tan∠DBE==2,故选:B.7.直线y=2x+1向右平移得到y=2x﹣1,平移了()个单位长度.A.﹣2 B.﹣1 C.1 D.2【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线y=2x+1平移后,得到直线y=2x﹣1,∴2(x+a)+1=2x﹣1,解得:a=﹣1,故向右平移1个单位长度.故选:C.8.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:3【分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【解答】解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5.又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故选:A.9.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB 互余,则EB的长是()A.2B.4 C.D.2【分析】先根据垂径定理得出AB⊥CD,再由∠A与∠DOB计算∠DOB=60°,根据直角三角形30度角的性质可得OD和OE的长,从而得结论.【解答】解:∵直径AB平分弦CD,CD不是直径,∴AB⊥CD,∴∠DOB=2∠A,∵∠A与∠DOB互余,∴∠DOB=60°,∵CD=4,∴ED=CD=2,∴OE=2,OD=4,∴BE=OB﹣OE=4﹣2=2,故选:D.10.已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=0【分析】利用抛物线的对称性得到抛物线的对称轴为直线x=﹣=2,则b+4a=0,然后利用x=1,y=n,且n<m可确定抛物线的开口向上,从而得到a>0.【解答】解:∵点(0,m)、(4,m)为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即﹣=2,∴b+4a=0,∵x=1,y=n,且n<m,∴抛物线的开口向上,即a>0.故选:A.二.填空题(共4小题)11.分解因式:x3﹣xy2=x(x+y)(x﹣y).【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).12.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差为 3 .【分析】根据△OAC和△BAD都是等腰直角三角形可得出OC=AC、AD=BD,设OC=a,BD =b,则点B的坐标为(a+b,a﹣b),根据反比例函数图象上点的坐标特征即可求出a2﹣b2=6,再根据三角形的面积即可得出△OAC与△BAD的面积之差.【解答】解:∵△OAC和△BAD都是等腰直角三角形,∴OC=AC,AD=BD.设OC=a,BD=b,则点B的坐标为(a+b,a﹣b),∵反比例函数y=在第一象限的图象经过点B,∴(a+b)(a﹣b)=a2﹣b2=6,∴S△OAC﹣S△BAD=a2﹣b2=3.故答案为:3.14.如图,点A是直线y=﹣x上的动点,点B是x轴上的动点,若AB=2,则△AOB面积的最大值为+1 .【分析】作△AOB的外接圆⊙C,连接CB,CA,CO,过C作CD⊥AB于D,则CA=CB,连接OD,则OD≤OC+CD,依据当O,C,D在同一直线上时,OD的最大值为OC+CD=+1,即可得到△AOB的面积最大值.【解答】解:如图所示,作△AOB的外接圆⊙C,连接CB,CA,CO,过C作CD⊥AB于D,则CA=CB,由题可得∠AOB=45°,∴∠ACB=90°,∴CD=AB=1,AC=BC==CO,连接OD,则OD≤OC+CD,∴当O,C,D在同一直线上时,OD的最大值为OC+CD=+1,此时OD⊥AB,∴△AOB的面积最大值为AB×OD=×2(+1)=+1,当点A在第二象限内,点B在x轴正半轴上时,同理可得,△AOB面积的最大值为﹣1(舍去).故答案为:+1.三.解答题(共11小题)15.计算:﹣22+(﹣π)0+|1﹣2sin60°|.【分析】根据乘方、零指数幂、绝对值、特殊角的三角函数值进行计算即可.【解答】解:原式=﹣4+1+|1﹣2×|=﹣3+﹣1=﹣4.16.解分式方程:.【分析】分式方程变形后去分母得到整式方程,解之,经检验即可得到答案.【解答】解:原方程可整理得:﹣1=,去分母得:3﹣(x﹣3)=﹣1,去括号得:3﹣x+3=﹣1,移项得:﹣x=﹣1﹣3﹣3,合并同类项得:﹣x=﹣7,系数化为1得:x=7,经检验x=7是分式方程的解.17.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BPA∽△BAC(保留作图痕迹,不写作法).【分析】作出AB的垂直平分线,可得BP=AP,则∠PBA=∠BAP,进而得出△BPA∽△BAC.【解答】解:如图所示:点P即为所求,此时△BPA∽△BAC.18.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【分析】根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.19.西安市2016年中考,综合素质测试满分为100分.某校为了调查学生对于综合素质的掌握程度,在九年级学生中随机抽取了部分学生进行模拟测试,并将测试成绩绘制成下面两幅统计图.试根据统计图中提供的数据,回答下面问题:(1)计算样本中,成绩为98分的学生有14 分,并补全条形统计图.(2)样本中,测试成绩的中位数是98 分,众数是100 分.(3)若该校九年级共有2000名学生,根据此次模拟成绩估计该校九年级中考综合速度测试将有多少名学生可以获得满分.【分析】(1)先根据96分人数及其百分比求得总人数,再根据各组人数之和等于总数可得98分的人数;(2)根据中位数和众数的定义可得;(3)利用样本中100分人数所占比例乘以总人数可得.【解答】解:(1)本次调查的人数共有10÷20%=50人,则成绩为98分的人数为50﹣(20+10+4+2)=14(人),补全统计图如下:故答案为:14;(2)本次测试成绩的中位数为=98分,众数100分,故答案为:98,100;(3)∵2000×=800,∴估计该校九年级中考综合速度测试将有800名学生可以获得满分.20.小明学校门前有座山,山上有一电线杆PQ,他很想知道电线杆PQ的高度.于是,有一天,小明和他的同学小亮带着测角器和皮尺来到山下进行测量,测量方案如下:如图,首先,小明站在地面上的点A处,测得电线杆顶端点P的仰角是45°;然后小明向前走6米到达点B处,测得电线杆顶端点P和电线杆底端点Q的仰角分则是60°和30°,设小明的眼睛到地面的距离为1.6米,请根据以上測量的数据,计算电线杆PQ的高度(结果精确到1米,参考数据=1.7,=1.4).【分析】设QH=x米,根据正切的定义分别用x表示出DH、PH,根据题意列式求出x,求出电线杆PQ的高度.【解答】解:设QH=x米,由题意得,∠PDH=60°,∠QDH=30°,∴∠DPH=30°,在Rt△QDH中,tan∠QDH=,则DH===x,在Rt△PDH中,tan∠PDH=,则PH==3x,∵∠PCH=45°,∴CH=PH,即6+x=3x,解得,x=3+,则PQ=3x﹣x=2x=6+2≈9,答:电线杆PQ的高度约为9米.21.“低碳生活,绿色出行”共享单车已经成了很多人出行的主要选择.(1)考虑到共享单车市场竞争激烈,摩拜公司准备用不超过60000元的资金再购进A,B两种规格的自行车100辆,且A型车不超过60辆.已知A型的进价为500元/辆,B 型车进价为700元/辆,设购进A型车m辆,求出m的取值范围;(2)已知A型车每月产生的利润是100元/辆,B型车每月产生的利润是90元/辆,在(1)的条件下,求公司每月的最大利润.【分析】(1)设购进A型车m辆,则购买B型车(100﹣m)辆,根据A型车不超过60辆且购买资金不超过60000元,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围;(2)设公司每月的利润为w元,根据总利润=每辆的月利润×数量,即可得出w关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设购进A型车m辆,则购买B型车(100﹣m)辆,依题意,得:,解得:50≤m≤60.答:m的取值范围为50≤m≤60.(2)设公司每月的利润为w元,依题意,得:w=100m+90(100﹣m)=10m+9000.∵10>0,∴w值随m值的增大而增大,∴当m=60时,w取得最大值,最大值为9600.答:公司每月的最大利润为9600元.22.车辆经过润扬大桥收费站时,有A、B、C、D四个收费通道,假设车辆通过每个收费通道的可能性相同,车辆可随机选择一个通过.(1)一辆车经过此收费站时,A通道通过的概率为;(2)两辆车经过此收费站时,用树状图或列表法求选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,画树状图得:由树状图可知:两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.23.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tan C.【分析】(1)连接OD,求出OD∥AC,求出DF⊥OD,根据切线的判定得出即可;(2)由AC=3AE可得AB=AC=3AE,EC=4AE;连结BE,由AB是直径可知∠AEB=90°,根据勾股定理求出BE,解直角三角形求出即可.【解答】解:(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,点D在⊙O上,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE==2AE,在Rt△BEC中,tan C===.24.我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数.例如:y=2x2+4x﹣5的友好同轴二次函数为y=﹣x2﹣2x﹣5.(1)请你写出y=x2+x﹣5的友好同轴二次函数;(2)如图,二次函数L1:y=ax2﹣4ax+1与其友好同轴二次函数L2都与y轴交于点A,点B、C分别在L1、L2上,点B,C的横坐标均为m(0<m<2)它们关于L1的对称轴的对称点分别为B,C,连接BB′,B′C′,C′C,CB.若a=3,且四边形BB′C′C为正方形,求m的值.【分析】(1)根据友好同轴二次函数的定义,找出y=x2+x﹣5的友好同轴二次函数即可;(2)根据二次函数L1的解析式找出其友好同轴二次函数L2的函数解析式,代入a=3,利用二次函数图象上点的坐标特征可得出点B、C、B′、C′的坐标,进而可得出BC、BB′的值,由正方形的性质可得出BC=BB′,即关于m的一元二次方程,解之取其大于0小于2的值即可得出结论.【解答】解:(1)∵1﹣=,1×(÷)=2,∴函数y=x2+x﹣5的友好同轴二次函数为y=x2+2x﹣5.(2)二次函数L1:y=ax2﹣4ax+1的对称轴为直线x=﹣=2,其友好同轴二次函数L2:y=(1﹣a)x2﹣4(1﹣a)x+1.∵a=3,∴二次函数L1:y=ax2﹣4ax+1=3x2﹣12x+1,二次函数L2:y=(1﹣a)x2﹣4(1﹣a)x+1=﹣2x2+8x+1,∴点B的坐标为(m,3m2﹣12m+1),点C的坐标为(m,﹣2m2+8m+1),∴点B′的坐标为(4﹣m,3m2﹣12m+1),点C′的坐标为(4﹣m,﹣2m2+8m+1),∴BC=﹣2m2+8m+1﹣(3m2﹣12m+1)=﹣5m2+20m,BB′=4﹣m﹣m=4﹣2m.∵四边形BB′C′C为正方形,∴BC=BB′,即﹣5m2+20m=4﹣2m,解得:m1=,m2=(不合题意,舍去),∴m的值为.25.问题提出:(1)如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为3;问题探究:(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC =3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;问题解决:(3)如图3,在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD中(包含其边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE 的面积最大.若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由.【分析】(1)由题意可证△ABD≌△CBD,可得∠ADB=∠CDB=30°,可求AB=BC=,即可求四边形ABCD的面积;(2)由轴对称的性质可得BE=EM,AB=AM=2,BF=FN,BC=CN=3,可得△BEF的周长=BE+BF+EF=NF+EF+EM=MN,由勾股定理可求MN的长,即可得△BEF的最小周长;(3)由圆的内接四边形性质可得∠AEC=30°,由矩形的性质可得BC=MN=2,BN=CM,∠CBN=90°,由勾股定理可得CE=4+2=AE,由当点E在AC的垂直平分线上时,S最大,即可求四边形ABCE的最大面积.四边形ABCE【解答】解:(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°∴△ABD≌△CBD(SAS)∴∠ADB=∠CDB,且∠ADC=60°∴∠ADB=∠CDB=30°,且∠BAD=∠BCD=90°∴AB=BC=∴四边形ABCD的面积=2××3×=3故答案为:3(2)如图,作点B关于AD的对称点M,作点B关于CD的对称点N,连接MN,交AD于点E,交CD于点F,过点M作MG⊥BC,交CB的延长线于点G,∵点B,点M关于AD对称∴BE=EM,AB=AM=2,∴BM=4∵点B,点N关于CD对称∴BF=FN,BC=CN=3∴△BEF的周长=BE+BF+EF=NF+EF+EM=MN∵∠ABC=135°,∴∠GBM=45°,且GM⊥BG,∴∠GBM=∠GMB=45°∴BG=GM,且BG2+GM2=BM2,∴BG=4=GM,∴GN=BG+BC+CN=4+3+3=10,∴在Rt△GMN中,MN===2∴△BEF的最小周长为2(3)作△ABC的外接圆,交CD于点E,连接AC,AE,过点A作AM⊥CD于点M,作BN⊥AM于点N,∵四边形ABCE是圆内接四边形∴∠ABC+∠AEC=180°∴∠AEC=30°,∵BN⊥AM,AM⊥CD,∠BCD=90°,∴四边形BCMN是矩形∴BC=MN=2,BN=CM,∠CBN=90°,∵∠ABC=150°,∴∠ABN=60°,且BN⊥AM∴∠BAN=30°,∴BN=AB=1,AN=BN=∴AM=+2,CM=1∵∠AEC=30°,AM⊥CE,∴AE=2AM=2+4,ME=AM=3+2∴CE=CM+ME=4+2=AE∴点E在AC垂直平分线上,∵S四边形ABCE=S△ABC+S△ACE,且S△ABC是定值,AC长度是定值,点E在△ABC的外接圆上,∴当点E在AC的垂直平分线上时,S四边形ABCE最大∴S四边形ABCE=S四边形ABCM+S△AME=××1+=8+4。
高新一中初三模考数学试卷
一、选择题(每题5分,共50分)1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-2),则a的取值范围是()。
A. a > 0B. a < 0C. a = 0D. a的取值无限制2. 在等腰三角形ABC中,AB=AC,AD是底边BC上的高,若∠BAC=60°,则∠BAD的度数是()。
A. 30°B. 45°C. 60°D. 90°3. 已知一元二次方程x^2-5x+6=0的两个实数根为m和n,则m+n的值为()。
A. 5B. 6C. 7D. 84. 下列函数中,有最小值的是()。
A. y=2x+3B. y=x^2-2x+1C. y=3x+4D. y=x-25. 已知直线y=kx+b与x轴和y轴分别交于点A和B,若点A在第二象限,点B在第四象限,则k和b的取值范围是()。
A. k > 0,b < 0B. k < 0,b > 0C. k > 0,b > 0D. k < 0,b < 06. 在平面直角坐标系中,点P(2,3)关于原点的对称点P'的坐标是()。
A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)7. 已知正方体ABCD-A1B1C1D1的棱长为a,则对角线AC1的长度是()。
A. aB. √2aC. √3aD. 2a8. 在△ABC中,若∠A=30°,∠B=75°,则△ABC的面积是()。
A. √3/4B. √3/2C. √2/2D. 1二、填空题(每题5分,共50分)9. 已知函数y=2x-3,若x=2,则y=________。
10. 在等边三角形ABC中,若AB=AC=BC=5,则∠B的度数是________。
11. 若方程x^2-6x+9=0的两个实数根相等,则该方程的解是________。
12. 已知函数y=-x^2+4x-3,其图象的顶点坐标是________。
2019年九年级上学期第一次月考数学试题 (63)
第 1 页 (共 5 页)北师大版九年级上学期第一次月考九年级数学试题 2019.9.18注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用铅笔或圆珠笔直接答在试卷上.2.答题前将密封线内的项目填写清楚.一、选择题(每小题3分,共18分)下面各小题均有四个答案,其中只有一个是正确的,将正确的代号字母填入题后的括号内.1.下列方程中,是关于x 的一元二次方程的是 ( ) A .03=+x B .y x x =-32C .52-=x D . 112=+x x2.的值为则的根是方程若c a a cx x a a +=++≠,0)0(2 ( )A .-1B .0C .1D .23.一架长2.5m 的梯子,斜立在一竖直的墙上,这时梯子底端距墙底端0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将滑动 ( ) A .0.9m B .1.5m C .0.5m D .0.8m 4. 如图,l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 、一处B 、二处C 、三处D 、四处 5.给出下列命题,正确的有 ( )①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形;A .1个B .2个C .3个D .4个6.如果等腰三角形的底和腰是方程2680x x -+=的两个实数根,则这个三角形的周长为 ( ) A .8 B.10 C.8或10 D.不能确定二、填空题(每小题3分,共27分)7. 命题:“等腰三角形的两个底角相等”的逆命题为 . 8.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .9. 如下图,在ABC △中,点D 是BC 上一点,80BAD ∠=°,AB AD DC ==,则C ∠= __________度.10. 如下图,∠AOB 是一钢架,且∠AOB=10°,为了使钢架更牢固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根 .班级 姓名 考场 考号题号 一 二 三 总分 16 17 18 19 20 21 22 23 分数 得分 评卷人 得分 评卷人ACBD80o第9题第10题第4题第 2 页 (共 5 页)11.已知m 是方程0132=-+x x 的一个根,则代数式3622-+m m 的值为 . 12.在实数范围内定义一个新运算*,其规则为22*a b a b =-,根据这个规则,方程(2)*50x +=的解是 .13.小军同学家开了一个商店,今年1月份的利润是1000元,3月份的利润是1210元,请你帮助小军同学算一算,他家的这个商店这两个月的利润平均月增长率是___________.14. 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C 。
2019年陕西省中考数学一模试卷-含详细解析
2019年陕西省中考数学一模试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-2019的相反数是()A. −2019B. 2019C. −12019D. 120192.一个几何体的三视图如图所示,则这个几何体是()A. 圆柱B. 圆锥C. 三棱柱D. 长方体3.如图,直线l1∥l2 ,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为()A. 92∘B. 98∘C. 102∘D. 108∘4.点A(-3,2)在反比例函数y=kx(k≠0)的图象上,则k的值是()A. −6B. −32C. −1D. 65.下列运算正确的是()A. 2m2+m2=3m4B. (mn2)2=mn4C. 2m⋅4m2=8m2D. m5÷m3=m26.如图,四边形ABCD中∠DAB=60°,∠B=∠D=90°,BC=1,CD=2,则对角线AC的长为()A. √21B. √213C. 2√213D. 5√2137.已知直线l:y=-12x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为()A. y=12x−1 B. y=2x−1 C. y=12x−4 D. y=2x−48.如图,矩形ABCD中,AB=2,AD=3,点E、F、G、H分别是矩形AB、BC、CD、DA的中点,则四边形EFGH的周长为()A. 10B. 5C. √13D. 2√139.如图所示,点A,B,C,D在⊙O上,CD是直径,∠ABD=75°,则∠AOC的度数为()A. 15∘B. 25∘C. 30∘D. 35∘10.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(-2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A. 5个B. 4个C. 3个D. 2个二、填空题(本大题共4小题,共12.0分)11.比较大小:−2√5______−3√2.12.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______度.13.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1 y2=1y1+12,则这个反比例函数的解析式为______.14.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2,S△BQC=25cm2,则图中阴影部分的面积为______cm2.三、计算题(本大题共3小题,共17.0分)15. 计算:√6×(-√2)+|1-√3|+(-13)-216. 先化简,再求值:x 2+2x+1x 2+x÷(1+x 2x-2x ),其中x =√2+117. 某服装厂每天生产A 、B 两种品牌的服装共600件,A 、B 两种品牌的服装每件的成本和利润如表:设每天生产A 种品牌服装x 件,每天两种服装获利y 元.A B 成本(元/件) 50 35 利润(元/件)2015(1)请写出y 关于x 的函数关系式;(2)如果服装厂每天至少投入成本26400元,那么每天至少获利多少元?四、解答题(本大题共8小题,共61.0分) 18. 如图,已知△ABC 中,∠ACB =90°,请作△ABC 的外接圆.(保面作图痕迹,不写作法)19. 如图,点B 、F 、C 、E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD ,AD 交BE 于O .求证:AD 与BE 互相平分.20.为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=______,b=______,样本成绩的中位数落在______范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?21.城墙作为古城西安的地标性建筑,自然是吸引了不少人慕名而来,每逢春节,城墙上都会支起万盏花灯,小画和小明去城墙观赏花灯,看见宏伟的城墙后,他们想要测量城墙的高,小明在城墙下看见城墙上有一根灯杆AB(点A为灯泡的位置),于是小明提议用灯下的影长来测量城墙的高,首先小明站在E处,测得其影长EF=1m,小画站在H处,测得其影长HM=1.6m,小画和小明之间的距离HE=4m,已知小明的身高DE为1.5m,小画的身高GH为1.6m,灯杆AB的高为1.8m,点B 在直线AC上,AC⊥CM,DE⊥CM,GH⊥CM.请你根据以上信息,求出城墙的高BC.22.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠.本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠,指针指向其它区域无优惠:方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为__________;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.23.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;时,求AF的长.(2)当BC=3,sin A=3524.如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.25.问题发现.(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2019的相反数是:2019.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】C【解析】解:由三视图知这个几何体是三棱柱,故选:C.由常见几何体的三视图即可判断.本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.3.【答案】B【解析】【分析】本题主要考查了平行线的性质和三角板的特征以及角度的计算,解答本题的关键是利用平行线的性质.依据l1∥l2,即可得到∠1=∠3=52°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=98°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=52°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-52°-30°=98°,故选:B.4.【答案】A【解析】【分析】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A(-3,2)在反比例函数y=(k≠0)的图象上,∴k=(-3)×2=-6.故选A.5.【答案】D【解析】解:A、2m2+m2=3m2,故此选项错误;B、(mn2)2=m2n4,故此选项错误;C、2m•4m2=8m3,故此选项错误;D、m5÷m3=m2,正确.故选:D.直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.此题主要考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】C【解析】解:延长DC交AB的延长线于点K;在Rt△ADK中,∠DAK=60°∠AKD=30°,BC=1,∴,∴DK=CD+CK=4,∴AD==,在△Rt△ADC中,AC==,故选:C.延长DC与AB交于一点K.解直角三角形求出DK,再求出AD,利用勾股定理求出AC.考查了解直角三角形的应用,解题关键在于构造直角三角形ADK.7.【答案】D【解析】解:设直线l'的解析式为y=kx+b,∵直线l'⊥直线l,∴-×k=-1,即k=2,在直线l:y=-x+1中,令y=0,则x=2,∴P(2,0),代入y=2x+b,可得0=4+b,解得b=-4,∴直线l'的解析式为y=2x-4,故选:D.设直线l'的解析式为y=kx+b,根据直线l'⊥直线l,即可得到k=2,再根据P(2,0),即可得出直线l'的解析式为y=2x-4.本题考查了利用待定系数法求直线的解析式:先设直线的解析式为y=kx+b,然后把已知点的坐标代入得到关于k、b的方程组,解方程组即可.8.【答案】D【解析】解:连接BD,AC,如图,∵矩形ABCD中,AB=2,AD=3,∴AC=BD==,∵点E、F、G、H分别是矩形AB、BC、CD、DA的中点,∴HG为△ACD为中位线,EF为△BAC为△BAC的中位线,∴HG=AC=,EF=AC=,同理可得EH=BD=,GF=BD=,∴四边形EFGH的周长为4×=2.故选:D.连接BD,AC,如图,根据矩形的性质和勾股定理得到AC=BD=,再利用三角形中位线性质得到HG=AC==EF,EH=GF=BD=,然后计算四边形EFGH的周长.本题考查了中点四边形:顺次连接任意四边形各边中点所得的四边形为平行四边形.也考查了矩形的性质.9.【答案】C【解析】解:连接AC,∵∠ABD=75°,∴∠DCA=75°,∵OA=OC,∴∠AOC=180°-2×75°=30°,故选:C.由CD是直径,∠ABD=75°,由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,求得∠DCA的度数,即可求得∠AOC的度数.此题考查了圆周角定理.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.10.【答案】B【解析】解:①∵对称轴是y轴的右侧,∴ab<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;②∵-=1,∴b=-2a,2a+b=0,故②正确;③由图象得:y=3时,与抛物线有两个交点,∴方程ax2+bx+c=3有两个不相等的实数根;故③正确;④∵抛物线与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,∴抛物线与x轴的另一个交点坐标为(-2,0);故④正确;⑤∵抛物线的对称轴是x=1,∴y有最大值是a+b+c,∵点A(m,n)在该抛物线上,∴am2+bm+c≤a+b+c,故⑤正确;本题正确的结论有:②③④⑤,4个,故选B.【分析】结合函数图象,根据二次函数的性质及二次函数与一元二次方程、一元二次不等式间的关系逐一判断即可.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);也考查了抛物线与x轴的交点以及二次函数的性质.11.【答案】<【解析】解:∵-2=-,-3=-,∴-2<-3,故答案为:<.先把根号外的因式移入根号内,再根据两个负数比较大小,其绝对值大的反而小比较即可.本题考查了实数的大小比较法则,能熟记实数的大小比较法则内容是解此题的关键,注意:两个负数比较大小,其绝对值大的反而小.12.【答案】108【解析】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°-108°=72°,∠7=180°-72°-72°=36°.∠AOB=360°-108°-108°-36°=108°,故答案为:108.根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.13.【答案】y=4x【解析】解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵,∴-=,∴=,∴=,∴k=2(x2-x1),∵x2=x1+2,∴x2-x1=2,∴k=2×2=4,∴这个反比例函数的解析式为:y=,故答案为:y=.设这个反比例函数的表达式为y=,可得x1•y1=x2•y2=k,变形后得:=,=,将其代入已知,可得=,根据x2=x1+2,即可求得k的值.本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.14.【答案】41【解析】解:连接E、F两点,∵四边形ABCD是平行四边形,∴AB∥CD,∴△EFC的FC边上的高与△BCF的FC边上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=16cm2,S△BQC=25cm2,∴S四边形EPFQ=41cm2,故答案为:41.连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.15.【答案】解:原式=-2√3+√3-1+9=8-√3.【解析】先计算二次根式的乘法、去绝对值符合、计算零指数幂,再合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则、绝对值性质及负整数指数幂.16.【答案】解:原式=(x+1)2x(x+1)÷(1+x 2x -2x 2x ) =x+1x ÷1−x 2x =1+x x•x (1+x)(1−x) =11−x ,当x =√2+1时,原式=1−√2−1=-√22. 【解析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.17.【答案】解:(1)A 种品牌服装x 件,则B 种品牌服装(600-x )件,依题意,得 y =20x +15(600-x )=5x +9000;(2)A 种品牌服装x 件,则B 种品牌服装(600-x )件,依题意,得50x +35(600-x )≥26400,解得x ≥360,∴每天至少获利y =5x +9000=10800【解析】(1)A种品牌服装x件,则B种品牌服装(600-x)件;利润=A种品牌服装件数×A种品牌服装一件的利润+B种品牌服装件数×B种品牌服装一件的利润,列出函数关系式;(2)A种品牌服装x件,则B种品牌服装(600-x)件;成本=A种品牌服装件数×A种品牌服装一件的成本+B种品牌服装件数×B种品牌服装一件的成本,列出不等式,求x的值,再代入(1)求利润.本题考查一次函数的应用、不等式的应用,解题的关键是理解题意,学会用函数和不等式解决问题,属于中考常考题型.18.【答案】解:(1)如图,⊙O为所作;【解析】作AB的垂直平分线得到AB的中点O,再以O点为圆心,OA为半径作⊙O即可.本题考查了作图-复杂作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外接圆和圆周角定理.19.【答案】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,{∠ABC=∠DEF BC=EF∠ACB=∠DFE,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.【解析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE 是平行四边形,进而得到AD 与BE 互相平分.本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.20.【答案】8 20 2.0≤x <2.4【解析】解:(1)由统计图可得,a=8,b=50-8-12-10=20,样本成绩的中位数落在:2.0≤x <2.4范围内,故答案为:8,20,2.0≤x <2.4;(2)由(1)知,b=20,补全的频数分布直方图如右图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.(1)根据题意和统计图可以求得a 、b 的值,并得到样本成绩的中位数所在的取值范围;(2)根据b 的值可以将频数分布直方图补充完整;(3)根据统计图中的数据可以求得该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人.本题考查频数分布直方图、频数分布表、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:∵DE ∥AC ,GH ∥AC ,∴△DEF ∽△ACF ,△GHM ∽△ACM , ∴AC DE =CF EF ,AC GH =CM HM ,∴AC 1.5=CE+11,AC 1.6=CE+4+1.61.6,∴AC =13.8m ,∴BC =AC -AB =12m ,∴出城墙的高BC 为12m .【解析】由△DEF ∽△ACF ,△GHM ∽△ACM ,可得=,=,由此构建方程组即可解决问题;本题考查相似三角形的应用,解题的关键是准确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考常考题型.22.【答案】解:(1)14;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果, 所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为212=16.【解析】 本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.(1)由转动转盘甲共有四种等可能结果,其中指针指向A 区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A 区域只有1种情况,∴享受9折优惠的概率为,故答案为;(2)见答案.23.【答案】解:(1)连接OE ,BE ,∵DE =EF ,∴DE⏜=EF ⏜ ∴∠OBE =∠DBE∵OE =OB ,∴∠OEB =∠OBE∴∠OEB =∠DBE ,∴OE ∥BC∵⊙O 与边AC 相切于点E ,∴OE ⊥AC∴BC ⊥AC∴∠C =90°(2)在△ABC ,∠C =90°,BC =3,sin A =35 ∴AB =5,设⊙O 的半径为r ,则AO =5-r ,在Rt △AOE 中,sin A =OE OA =r 5−r =35∴r =158 ∴AF =5-2×158=54【解析】(1)连接OE ,BE ,因为DE=EF ,所以,从而易证∠OEB=∠DBE ,所以OE ∥BC ,从可证明BC ⊥AC ;(2)设⊙O 的半径为r ,则AO=5-r ,在Rt △AOE 中,sinA===,从而可求出r 的值.本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.24.【答案】解:(1)∵y =-x 2+6x -5=-(x -3)2+4,∴顶点P (3,4), 令x =0得到y =-5,∴C (0.-5).(2)令y =0,x 2-6x +5=0,解得x =1或5,∴A (1,0),B (5,0),设直线PC 的解析式为y =kx +b ,则有{3k +b =4b=−5,解得{b =−5k=3,∴直线PC 的解析式为y =3x -5,设直线交x 轴于D ,则D (53,0), 设直线PQ 交x 轴于E ,当BE =2AD 时,△PBQ 的面积等于△PAC 的面积的2倍, ∵AD =23,∴BE =43,∴E (113,0)或E ′(193,0),则直线PE 的解析式为y =-6x +22,∴Q (92,-5),直线PE ′的解析式为y =-65x +385,∴Q ′(212,-5),综上所述,满足条件的点Q (92,-5),Q ′(212,-5).【解析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C (0,-5);(2)直线PC 的解析式为y=3x-5,设直线交x 轴于D ,则D (,0),设直线PQ 交x 轴于E ,当BE=2AD 时,△PBQ 的面积等于△PAC 的面积的2倍,分两种情形分别求解即可解决问题.本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型. 25.【答案】125【解析】 解:(1)如图①,过点C 作CD ⊥AB 于D ,根据点到直线的距离垂线段最小,此时CD 最小,在Rt △ABC 中,AC=3,BC=4,根据勾股定理得,AB=5,∵AC×BC=AB×CD,∴CD==,故答案为;(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN=EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴BD×CF=BC×CD,∴CF==,由对称得,CE=2CF=,在Rt△BCF中,cos∠BCF==,∴sin∠BCF=,在Rt△CEN中,EN=CEsin∠BCE==;即:CM+MN的最小值为;(3)如图3,∵四边形ABCD是矩形,∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,∵AB=3,AE=2,∴点F在BC上的任何位置时,点G始终在AC的下方,设点G到AC的距离为h,∵S四边形AGCD=S△ACD+S△ACG=AD×CD+AC×h=×4×3+×5×h=h+6,∴要四边形AGCD的面积最小,即:h最小,∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,∴EG⊥AC时,h最小,由折叠知∠EGF=∠ABC=90°,延长EG交AC于H,则EH⊥AC,在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=2,sin∠BAC==,∴EH=AE=,∴h=EH-EG=-1=,∴S四边形AGCD最小=h+6=×+6=,过点F作FM⊥AC于M,∵EH⊥FG,EH⊥AC,∴四边形FGHM是矩形,∴FM=GH=∵∠FCM=∠ACB,∠CMF=CBA=90°,∴△CMF∽△CBA,∴,∴,∴CF=1∴BF=BC-CF=4-1=3.(1)根据点到直线的距离最小,再用三角形的面积即可得出结论;(2)先根据轴对称确定出点M和N的位置,再利用面积求出CF,进而求出CE,最后用三角函数即可求出CM+MN的最小值;(3)先确定出EG⊥AC时,四边形AGCD的面积最小,再用锐角三角函数求出点G到AC的距离,最后用面积之和即可得出结论,再用相似三角形得出的比例式求出CF即可求出BF.此题是四边形综合题,主要考查了矩形的性质,点到直线的距离,轴对称,解本题的关键是确定出满足条件的点的位置,是一道很好的中考常考题.。
2019届陕西省西安市九年级上学期第一次月考数学试卷【含答案及解析】
2019届陕西省西安市九年级上学期第一次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列函数中,是反比例函数的为()A. B. C. D.2. 下列四幅图中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A. B. C. D.3. 在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)与体积(单位:)满足函数关系式(为常数,),其图象如图所示,则的值为()A. B. C. D.4. 下列说法中错误的是()A. 在函数中,当时有最大值B. 在函数中,当时随的增大而增大C. 抛物线,,中,抛物线的开口最小,抛物线的开口最大 D. 不论是正数还是负数,抛物线的顶点都是坐标原点5. 三角函数、、之间的大小关系是()A. B.C. D.6. 在中,,都是锐角,且,,则的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形7. 已知一次函数与反比例函数的图象相交于,两点,其横坐标分别是和,当时,实数的取值范围是()A. 或B. 或C. 或D.8. 如图,在平面直角坐标系中,菱形在第一象限内,边与轴平行,、两点的纵坐标分别为、,反比例函数的图象经过,两点,则菱形的面积为()A. B. C. D.9. 在直角中,延长斜边到点,使,连接,若,则的值为()A. B. C. D.10. 如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接.若,,则的值是()A. B. C. D.二、填空题11. 函数是二次函数,则_________;12. 如图,是一个包装盒的三视图,则这个包装盒的体积是_________;13. 如图,在边长相同的小正方形组成的网格中,点、、、都在这些小正方形的顶点上,、相交于点,则的值是______________;14. 在函数(为常数)的图象上有三个点,,,将,,用“”号连接为______________.15. 这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点处的距离为,与地面垂直.现调节靠背,把绕点旋转到处.则调整后点比调整前点的高度降低了_____厘米.(结果取整数,参考数据:,,)16. 在平面直角坐标系的第一象限内,边长为的正方形的边均平行于坐标轴,点的坐标为,如图,双曲线与此正方形的边有交点,则的取值范围是________.三、判断题17. 画出下面立体图形的三视图.18. 计算下列各式的值:(1)(2),19. 如下图,路灯下,一墙墩(用线段表示)的影子是,小明(用线段表示)的影子是,在处有一棵大数,它的影子是.(1)试确定路灯的位置(用点表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛看成是点,试画图分析小明能否看见大树.20. 如图,一个以为底边的等腰,底边上的高(1)________和__________;(2)在等腰中,若底边米,求腰上的高.四、填空题21. 如图,王华晚上由路灯下的处走到处时,测得影子的长为米,继续往前走米到达处时,测得影子的长为米,已知王华的身高是米.求路灯A的高度AB是多少.五、判断题22. 如图,的顶点是双曲线与直线在第二象限的交点,轴于且(1)求这两个函数的解析式(2)求直线与双曲线的两个交点,的坐标和的面积.23. 如图,表示某引水工程的一段设计路线,从点到点的走向为北偏西,在点的北偏西方向上有一点,以点为圆心,以米为半径的圆形区域为居民区,取上另一点,测得的方向为北偏西.已知米,若不改变方向,则输水路线是否会穿过居民区?请通过计算说明理由.(参考数据:)24. 如图,实验数据显示,一般成年人喝半斤低度白酒后,时内其血液中酒精含量(毫克/百毫升)与时间(时)的关系可以近似的用二次函数刻画,小时后(包括小时)与可近似的用反比例函数刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当时,,求的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上在家喝完半斤低度白酒,第二天早晨能否驾车去上班?请说明理由.25. (1)【阅读理解】王亮同学在学习了“平分线分线段成比例定理”后,发现角平分线还具有性质“若是的一条角平分线(如图①),则.”对此结论他进行了证明,想法是:过点作的平分线交的延长线于点(如图②),你能按这个思路完成证明吗?请写出来.(2)【问题解决】请你利用以上角平分线的性质解决下列问题:如图③,已知反比例函数,点是该图象第一象限分支上的动点,连接并延长交另一支于点,以为斜边作等腰直角,顶点在第四象限,与轴交于点,连接,点在运动过程中,是否存在恰好平分的情况,若存在,请求出点的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
西安名校真题系列高新一中初三数学第一次月考
2017~2018学年度第一学期月考一九年级 数学一、选择题:(本题共10小题,每小题3分,共30分)1.如图,在ABC △中,90C ∠=︒,13AB =,5BC =,则sin A 的值是( ).A .513B .1213C .512D .1352.抛物线231352y x ⎛⎫=-+- ⎪⎝⎭的顶点坐标是( ).A .1,32⎛⎫- ⎪⎝⎭B .1,32⎛⎫-- ⎪⎝⎭C .1,32⎛⎫⎪⎝⎭D .1,32⎛⎫- ⎪⎝⎭3.在Rt ABC △中,90C ∠=︒,直角边AC 的长为m ,35A ∠=︒,则斜边AB 的长是( ). A .sin35m ︒B .cos35m ︒C .sin35m︒D .cos35m︒4.若二次函数2y ax =的图象经过点(2,4)P -,则该图象必经过点( ).A .(2,4)B .(2,4)--C .(4,2)-D .(4,2)-5.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,3BC =,4AC =,则cos DCB ∠的值为( ).A .35B .45C .34D .436.如图,直线y mx =与双曲线ky x=交于A ,B 两点,过点A 作AM x ⊥轴,垂足为点M ,连接BM ,若4ABM S =△,则k 的值为( ).ABCDABCA .2-B .4-C .4D .8-7.已知双曲线ky x =过点(2,3)A --,则当6y >-时,x 应满足的条件是( ). A .1x <- B .1x >- C .10x -<<或0x > D .1x <-或0x >8.若二次函数24y x x c =--+的图像过1(3,)A y -、2(3)B y -+,3(1,)C y ,则1y ,2y ,3y 的大小关系是( ).A .123y y y >>B .213y y y >>C .321y y y >>D .312y y y >>9.如图,已知在Rt ABC △中,90ABC ∠=︒,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE AD ⊥于E ,CF AD ⊥于F ,则BE CF +的值( ).A .不变B .增大C .剪下D .先变大再变小10.某同学在用描点法画二次函数2y ax bx c =++的图像时,列出下面的表格:). ①该抛物线的对称轴是直线2x =-②该抛物线与y 轴的交点坐标为(0, 2.5)- ③240b ac ->④若点1(0.5,)A y 是该抛物线上一点,则1 2.5y <-二、填空题(本题共5小题,每小题3分,共15分) 11.已知反比例函数21m y x+=,当0x >时y 随x 的增大而增大,则m 满足的条件是__________.12.已知二次函数231213y x x =-+,则函数值y 的最小值是__________.DA BCEF13.某新建小区里安装了一架秋千,如果是一个小孩荡秋千的侧面示意图,秋千的链子OA 的长度为3米,秋千向两边摆动的最大角度相同,且最大角度的和BOC ∠恰好为90︒,则它摆至最高位置与最低位置的高度之差是__________.14.如图,在44⨯网格中,sin ACB ∠=__________.15.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②24b ac >;③20a b c ++<;④30a c +>.其中正确的是__________.(填写序号)三、解答题:(共75分) 16.计算:(每小题4分,共8分) (1)2sin 60tan 45tan30︒⋅︒-︒.(23cos605sin301︒︒-.17.解方程:(每小题4分,共8分) (1)2(2)2111x x x-+=--. (2)241250x x -+=.18.补全下边几何体的三种视图(注意符合三视图原则)(本题共4分)ABCOABC俯视图左视图主视图19.(本题满分6分)如图,在菱形ABCD 中,点E 是边AD 上一点,延长AB 至点F ,使BF AE =,连接BE 、CF .求证:BE CF =.20.(本题满分6分)如图,在Rt ABC △中,90ACB ∠=︒,2sin 3A =,点D 、E 分别在AB 、AC 上,DE AC ⊥,垂足为点E ,2DE =,9DB =.求(1)BC 的长.(2)tan CDE ∠. 21.(本题满分6分)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC AD ∥,斜坡AB 长20m ,斜坡AB的坡度i ,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53︒时,山体没有滑坡的危险.(1)求改造前坡顶与地面的距离BE 的长(结果保留根号).(2)为确保安全,学校计划改造时保持坡脚A 不动,坡顶B 沿BC 前进到F 点处,5m BF =,改造后请问山体有没有滑坡的危险?1.73,sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈). 22.(本题满分7分)如图,一艘潜艇在海面下400米深处的A 点,测得正前方俯角为31︒方向上的海底有黑匣子发出的信号,潜艇在同一深度保持直线航行500米,在B 点处测得海底黑匣子位于正前方俯角为37︒的方向上,求海底黑匣子C 所在点距离海面的深度.(精确到1米)(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin310.51︒≈,cos310.87︒≈,tan310.60︒≈)D ABE FDABCE23.(本题满分8分)如图,已知反比例函数1k y x=的图象与一次函数2y k x b =+的图象交于A ,B 两点,(3,)A n ,(1,3)B --.(1)求反比例函数关系式和一次函数关系式.(2)在直线AB 上是否存在一点C (C 不与点B 重合),使ACO △与AOB △的面积相等?若存在,求C 点坐标;若不存在,请说明理由. 24.(本题满分10分)如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点(3,4)A ,C 在x轴的负半轴上,抛物线24(2)3y x k =--+过点A .(1)求k 的值.(2)若把抛物线24(2)3y x k =--+沿x 轴向左平移(0)m m >个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C ,求m 的值,并判断点B 是否落在平移后的抛物线上,并说明理由. 25.(本题满分12分)小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:问题情境:如图1,四边形ABCD 中,AD BC ∥,点E 为DC 边的中点,连结AE 并延长交BC 的延长线于点F ,求证:ABF ABCD S S 四边形=△(S 表示面积);【注意有文字】C37°31°AB海面问题迁移:如图2,在已知锐角AOB ∠内有一定点P .过点P 任意作一条直线MN ,分别交射线OA 、OB 于点M 、N .小明将直线MN 绕着点P 旋转的过程中发现,MON △的面积存在最小值,请问:当PM 与PN 满足什么关系时,MON △的面积最小,并说明理由;实际应用:如图3,若在道路OA 、OB 之间有一村庄Q 发生疫情,防疫部分计划以公路OA 、OB 和经过防疫站P 的一条直线MN 为隔离线,建立一个面积最小的三角形隔离区MON △.若测得68AOB ∠=︒,30POB ∠=︒,6km OP =,试求MON △的面积.(结果精确到20.1km ) (参考数据:sin680.93︒≈,cos680.37︒≈,tan68 2.50︒≈1.73)图1()DA BCE F图2()ABOMN P。
陕西省西安市九年级上学期数学第一次月考试卷
陕西省西安市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017九上·宁波期中) 如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A . πB .C . 2πD . 3π2. (2分) (2018九上·义乌期中) 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A .B .C .D .3. (2分) (2020九下·长春模拟) 如图,在中,弦、相交于点,若,,则的大小为()A . 80°B . 100°C . 110°D . 105°4. (2分)(2020·泰安) 将含30°角的一个直角三角板和一把直尺如图放置,若,则等于()A . 80°B . 100°C . 110°D . 120°5. (2分) (2020九上·秀洲月考) 抛物线的对称轴是()A . 直线B . 直线C . 直线D . 直线6. (2分)(2018·崇阳模拟) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A . 8B . 4C . 2πD . π7. (2分)二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+ 化简结果为()A . aB . 1C . ﹣aD . 08. (2分) (2017九上·黄岛期末) 抛物线y=x2﹣2x+3的顶点坐标是()A . (1,3)B . (﹣1,3)C . (1,2)D . (﹣1,2)9. (2分)(2019·港南模拟) P是⊙O外一点,PA、PB分别交⊙O于C,D两点,已知的度数别为88°、32°,则∠P的度数为()A . 26°B . 28°C . 30°D . 32°10. (2分) (2017八上·上城期中) 如图,中, , 的平分线相交于,过点且与平行.的周长为,的周长为,则的长为().A .B .C .D .二、填空题 (共6题;共8分)11. (1分)(2019·淮安模拟) 一个扇形的圆心角为100°,面积为10π ,则此扇形的半径长为________.12. (1分)抛物线y= (x+3)2的顶点坐标是________.对称轴是________。
陕西省西安市九年级下学期数学第一次月考试卷
陕西省西安市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·亳州期中) 已知,两数在数轴上对应的点如图所示,下列结论正确的是()A . >B . <0C . >0D . >02. (2分) (2015七上·龙华期末) 如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是()A .B .C .D .3. (2分) (2018七上·瑶海期末) 下列运算中结果正确的是()A . 3a+2b=5abB . 5y﹣3y=2C . ﹣3x+5x=﹣8xD . 3x2y﹣2x2y=x2y4. (2分) (2017七下·宁江期末) 下列调查中,适合用普查方法的是()A . 了解CCTV1传统文化类节目《中国诗词大会》的收视率B . 了解初一(1)班学生的身高情况C . 了解庞各庄某地块出产西瓜的含糖量D . 调查某品牌笔芯的使用寿命5. (2分)(2020·北碚模拟) 若不等式组无解,则a的取值范围是A .B .C .D .6. (2分) (2015九上·龙岗期末) 一元二次方程ax2+x﹣2=0有两个不相等实数根,则a的取值范围是()A . aB . a=C . a 且a≠0D . a 且a≠07. (2分) (2017九上·点军期中) 在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A .B .C .D .8. (2分) (2018九下·嘉兴竞赛) 古代数学家祖冲之和他的儿子根据刘徽的“割圆术”(用圆内接正多边形的周长代替圆周长),来计算圆周率π的近似值.他从正六边形算起,一直算到正24576边形,将圆周率精确到小数后七位,在世界上领先一千多年.根据这个办法,由圆内接正六边形算得的圆周率π的近似值是()A . 2.9B . 3C . 3.1D . 3.149. (2分)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,交AB于点M,则∠2等于()A . 20°B . 25°C . 30°D . 40°10. (2分) (2019八下·岑溪期末) 如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)11. (1分) (2018七上·盐城期中) 珠港澳跨海大桥于2018年10月24日建成通车,这项超级工程耗资约1200亿元,这个数用科学计数法表示是________元.12. (1分)分解因式:12x2﹣3y2=________ .13. (1分)(2020·襄阳) 《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为 .从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为________.14. (1分)(2020七下·青岛期中) 把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=________°;15. (1分) (2017七上·江都期末) 如图,甲从A点出发向北偏东60°方向走到点C,乙从点A出发向南偏西25°方向走到点B,则∠BAC的度数是________.16. (1分)如图,在△ABC中,AB=AC , D、E是△ABC内两点,AD平分∠BAC ,∠EBC=∠E=60º,若BE=6 cm,DE=2cm,则BC=________.17. (1分) (2020八上·柯桥开学考) 现有两根木棒的长度分别为40CM和50CM,若要钉成一个直角三角形木架,则所需木棒长度为________.18. (1分) (2020八下·福州期中) 若点,都在直线上,则与的大小关系是________.三、解答题 (共8题;共105分)19. (5分) (2019七下·东阳期末) 先化简,再求值:,其中a=2017,b=201820. (15分) (2019九下·锡山月考) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B (3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1 ,点C1的坐标是________;(2)以点B为位似中心,在网格内画出△A2B2C2 ,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是________;(画出图形)________(3)△A2B2C2的面积是________平方单位.21. (20分)(2020·雄县模拟) 某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按、、、四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,级:90分~100分;级:75分-89分;级:60分~74分;级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人数;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到级的人数.22. (10分) (2018八下·邗江期中) 综合题(1)在下列表格中填上相应的值x…-6-4-3-2-112346……-1________-2________________________3________________1…(2)若将上表中的变量 ,用y来代替(即有y=),请以表中的 x,y 的值为点的坐标,在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点(3)在(2)的条件下,可将y看作是x的函数,请你结合你所画的图像,写出该函数图像的两个性质:________(4)结合图像,借助之前所学的函数知识,直接写出不等式的解集:________23. (10分)(2019·柳州) 如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且,连接FB,FD,FD交AB于点N.(1)若AE=1,CD=6,求⊙O的半径;(2)求证:△BNF为等腰三角形;(3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON·OP=OE·OM.24. (15分)(2020·郑州模拟) 某商场销售10台A型和20台B型加湿器的利润为2500元,销售20台A 型和10台B型加湿器的利润为2000元(1)求每台A型加湿器和B型加湿器的销售利润;(2)该商店计划一次购进两种型号的加湿器共100台,其中B型加湿器的进货量不超过A型加湿器的2倍,设购进A型加湿器x台.这100台加湿器的销售总利润为y元①求y关于x的函数关系式;②该商店应怎样进货才能使销售总利润最大?(3)实际进货时,厂家对A型加湿器出厂价下调m(0<m<100)元,且限定商店最多购进A型加湿器70台,若商店保持两种加湿器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台加湿器销售总利润最大的进货方案.25. (15分) (2018九下·游仙模拟) 在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN= EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF交对角线BD于点G(如图2),求线段MG的长.26. (15分) (2017九上·芜湖期末) 如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共105分)19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-3、。