陕西省西安市高新一中2020年中考数学二模试卷(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年陕西省西安市高新一中中考数学二模试卷
一.选择题(共10小题)
1.﹣3的相反数是()
A.3 B.﹣3 C.±3 D
2.某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是()
A.舍B.我C.其D.谁
3.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()
A.0.18×107B.1.8×105C.1.8×106D.18×105
4.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()
A.35°B.30°C.25°D.15°
5.下列运算中正确的是()
A.2a+3b=5ab B.2a2+3a3=5a5
C.6a2b﹣6ab2=0 D.2ab﹣2ba=0.
6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4
7.如图,函数y1=kx(k>0)和y2=ax+4(a<0)的图象相交于点A(m,3),坐标原点为O,AB ⊥x轴于点B,△AOB的面积为3,则满足y1<y2的实数x的取值范围是()
A.x>2 B.x<2 C.x>3 D.x<3
8.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()
A.3 B.4 C.5 D.6
9.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()
A B C D.2π
10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()
A.1或﹣2 B C D.1
二.填空题(共4小题)
11.不等式﹣5x+15≥0的解集为.
12.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为.
13.如图,点A是双曲线y AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动点C的位置也不断
变化,但点C始终在双曲线y k的值为.
14.如图,在边长为3的正方形ABCD的外部作等腰Rt△AEF,AE=1,连接DE,BF,BD,则DE2+BF2=.
三.解答题(共11小题)
152)﹣3﹣6tan30°
16
17.已知:如图,∠ABC,射线BC上一点D.
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
18.如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=
CD
19.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”
的有多少名?
20.(7分)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的
俯角为α其中tanα=AH为米,桥的长度为1255米.
①求点H到桥左端点P的距离;
②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.
21.小东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,y1、y2分别表示小东、小明离B地的距离(千米)与所用时间x(小时)的关系如图所示,根据图象提供的信息,回答下列问题:
(1)试用文字说明:交点P所表示的实际意义;
(2)求y1与x的函数关系式;
(3)求A、B两地之间的距离及小明到达A地所需的时间.
22.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.
(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
23.如图,在△ABC中,∠C=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.
(1)求证:EH=EC;
(2)若BC=4,sin A AD的长.
24.在平面直角坐标系中,抛物线y2﹣6x+4的顶点M在直线L:y=kx﹣2上.(1)求直线L的函数表达式;
(2)现将抛物线沿该直线L方向进行平移,平移后的抛物线的顶点为N,与x轴的右交点为C,连接NC,当tan∠NCO=2时,求平移后的抛物线的解析式.
25.(12分)解决问题:
(1)如图①,半径为4的⊙O外有一点P,且PO=7,点A在⊙O上,则PA的最大值和最小值分别是和.
(2)如图②,扇形AOB的半径为4,∠AOB=45°,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得△PEF周长的最小,请在图②中确定点E、F的位置并直接写出△PEF周长的最小值;
拓展应用