高等数学 第五章 定积分 习题课
高等数学(同济大学第五版)第五章 定积分
π
3 6 3
, M = f ( 3 ) = 3 arctan 3 =
π
3
.
因此
π
6 3
( 3−
1 3
) ≤ ∫ 1 x arctan xdx ≤
3
3
π
3
( 3−
1 3
),
即
π
9
≤ ∫ 1 x arctan xdx ≤
3
2
3
2π . 3
(4)先求函数 f ( x) = e x
f ′( x ) = e x
成 n 个长度相等的小区间, 各个小区间的长度为: Δx i =
第二步: 在第i个小区间[xi−1, xi] (i=1, 2, ⋅ ⋅ ⋅, n)上取右端点 ξ i = x i = a +
S n = ∑ f (ξ i )Δx i = ∑ [(a +
i =1 i =1 n n
b−a 2 b−a i ) +1]⋅ n n
2 2 2 2 1 1
b
b
b
b
(4) ∫0 xdx 还是 ∫0 ln(1+ x)dx ? (5) ∫0 e x dx 还是 ∫0 (1+ x)dx ? 解 (1)因为当 0≤x≤1 时, x2≥x3, 所以 ∫0 x 2 dx ≥ ∫0 x 3 dx . 又当 0<x<1 时, x2>x3, 所以 ∫0 x 2 dx > ∫0 x 3 dx . (2)因为当 1≤x≤2 时, x2≤x3, 所以 ∫1 x 2 dx ≤ ∫1 x 3 dx . 又因为当 1<x≤2 时, x2<x3, 所以 ∫1 x 2 dx < ∫1 x 3 dx . (3)因为当 1≤x≤2 时, 0≤ln x<1, ln x≥(ln x)2, 所以 ∫1 ln xdx ≥ ∫1 (ln x) 2 dx . 又因为当 1<x≤2 时, 0<ln x<1, ln x>(ln x)2, 所以 ∫1 ln xdx > ∫1 (ln x) 2 dx . (4)因为当 0≤x≤1 时, x≥ln(1+x), 所以 ∫0 xdx ≥ ∫0 ln(1+ x)dx . 又因为当 0<x≤1 时, x>ln(1+x), 所以 ∫0 xdx > ∫0 ln(1+ x)dx . (5)设f(x)=ex−1−x, 则当 0≤x≤1 时f ′(x) =ex−1>0, f(x)=ex−1−x是单调增加的. 因此当 0≤x≤1 时, f(x)≥f(0)=0, 即ex≥1+x, 所以 ∫0 e x dx ≥ ∫0 (1+ x)dx . 又因为当 0<x≤1 时, ex>1+x, 所以 ∫0 e x dx > ∫0 (1+ x)dx .
高等数学第五章定积分及其应用
⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。
高等数学第05章 定积分及其应用习题详解
0
x 1 sin tdt 0dt 1 , 2
b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3
1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n
b a
cdx lim f ( i ) xi lim c(b a) c(b a) .
x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2
中国地质大学(武汉)《高等数学A1》第五章习题课及答案解析
6 若 f (x) 在[0,1] 上有三阶导数,且 f= (0) f= (1) 0 ,,设 F (x) = x3 f (x) ,
求证:至少存在一点ξ ∈ (0,1) ,使得 F′′′(ξ ) = 0 。
证法一:由题设知, F (x) , F′(x) , F′′(x) , F′′′(x) 在[0,1] 上存在,
= f+′(a)
lim f (x) − f (a) < 0 , x→a+ x − a
由极限的保号定理,可知 ∃δ1 > 0, 当 x ∈ (a, a + δ1) 时,有
f (x) − f (a) < 0 ⇒ f (x) < f (a) x−a
同理, ∃δ2 > 0, 当 x ∈ (b − δ2,b) 时,有
ξ ∈ (0,1) ,使得 (2ξ +1) f (ξ ) + ξ f ′(ξ ) = 0 。
分析: 由ξ ∈ (0,1) ,则 (2ξ +1) f (ξ ) + ξ f ′(ξ ) = 0
⇔ (2 + 1 ) f (ξ ) + f ′(ξ ) = 0 ξ
⇔ p(ξ )(2 + 1 ) f (ξ ) + p(ξ ) f ′(ξ ) = 0 ξ
eξ
f [ g (ξ
′(ξ )+
) g′(ξ )]
g= (b) g= (a) 1
∴
f (b) − f (a) eb − ea
=
f ′(ξ ) eξ [g(ξ ) + g′(ξ )]
(1)
又令ψ (x) = ex ,则由题设可知 f (x),ψ (x) 在[a,b] 上满足柯西中值定理的条件,
高等数学 第五章定积分习题课
∫
b
a
f ( x )dx ≤ ∫ g ( x )dx
a
b
⑧估值定理:设M 和 m 分别是函数 f ( x )在区间[a, b ]上的 估值定理: 最大值和最小值, 最大值和最小值,则
m (b − a ) ≤ ∫ f ( x )dx ≤ M (b − a )
a b
上连续, ⑨定积分中值定理:如果函数 f ( x ) 在闭区间[a, b ] 上连续 定积分中值定理: 则至少存在一点ξ ∈(a , b) ,使下式成立: 使下式成立: 使下式成立
b b b
b
a
b
b
∫
b
a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
⑤区间长: ∫ 1dx = b − a 区间长:
a
b
保号性: ⑥保号性:如果在区间[a, b ]上, f ( x ) ≥ 0 ,则∫ a f ( x )dx ≥ 0
b
⑦单调性:如果在区间 [a, b ] 上, f ( x ) ≤ g ( x ) 则 单调性:
b
∫
b
a
f ( x )dx = lim ∫ f ( x )dx −
t →b a
t
设 c ( a < c < b ) 为 f ( x ) 的瑕点,则有 的瑕点,
∫
b a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
= lim ∫ f ( x )dx + lim ∫ f ( x )dx − +
∫
b
a
f ′( x )dx = [ f ( x )] a = f (b) − f (a ) = a − b
高等数学习题课(5)定积分
0
则 b a
f
(
x)dx
0
(a b)
推论:(1) 如果在区间[a,b]上 f ( x) g( x) ,
则 b a
f
(
x
)dx
b
a g( x)dx
(a b)
(2)
b
a
f
(
x)dx
b
a
f
( x)dx
(a b)
性质6 设M 及m 分别是函数 f ( x) 在区间[a,b]
上的最大值及最小值,
则
b
即 F( x) x ( f ( x) f (t) 2)dt 0 a f (t) f (x) F ( x) 单调增加.
又 F (a) 0, F(b) F(a) 0,
即
b
f ( x)dx
b dx
(b a)2.
a
a f (x)
例8
( x et2 dt)2
求 lim x
0
x e2t2 dt
( x)
x
a
f
(t )dt 在[a,b]上具有导数,且它的导数
是
( x)
dx
dx a
f (t)dt
f (x)
(a x b)
定理 3(微积分基本公式) 如果F ( x) 是连续函数 f ( x)在区间[a, b]上的一个原函数,则
b
a f ( x)dx F (b) F (a)
也可写成
b a
b
b
a
f
( x)dx
lim
a
f ( x)dx
b
b
a
f
( x)dx
lim
0 a
高等数学(第五章)定积分
二、定积分的定义
定义 设 f ( x) 在[ a , b ]上有界
(1) 将[ a , b ] 任意分成 n 个小区间 [ x0 , x1 ],[ x1 , x2 ],, [ xi 1 , xi ] ,, [ xn 1 , xn ], x0 a , xn b . xi xi xi 1 (i 1, 2,, n), 为第 i 个小区间的长度 .
f ( )x . 在 x 与 x x 之间 . x 0 , x
定理 2 (变上限的积分求导定理) 设 f ( x) 在[ a , b ] 上连续 , x 则 f (t )dt f ( x) .
a
x a
f (t )dt
f (t)
b a
o a
c1
c2
b
f ( x) dx .
x
根据定积分的几何意义 我们可以计算一些简单的定积分 .
y
yx
例1
b a
1dx b a . ?
ab 1 2 2 x dx ? (b a) (b a ) . 2 2
o
a
b
x
例2
例3
b a
R 0
R x dx
2 2
0
i 1
n
并称极限值为 f ( x) 在[ a , b ]上的定积分.
记为
b a
f ( x)dx
上限
b a
f ( x)dx lim f (i )xi .
0
i 1
n
下限
a 叫积分下限 , b 叫积分上限 ,[ a , b ]叫积分区间. f ( x) 叫被积函数 , x 叫积分变量 . f ( x)dx叫被积表达式 .
高等数学第五章定积分第一节 定积分的概念
解:由定积分的几何意义知,该积分值等于
曲线y 1 x 2 , x轴,x 0及x 1所围
的面积(见下图)
y
面积值为圆的面积的 1
4
所以 1 1 x 2 dx
0
4
1 x
2020/2/13
19
五 定积分的性质
对定积分的补充规定:
(1)当a
a
b时, a
f
( x)dx
0;
(此性质可以推广到有限多个函数作和的情况)
性质3
b
a
f
( x)dx
c
a
f
( x)dx
b
c
f
( x)dx.
注意:不论 a,b,c的相对位置如何, 上式总成立.
2020/2/13
21
例 若 a b c,
c
a
f ( x)dx
b
a
f
(
x)dx
c
b
f ( x)dx
则
b
a
f
(
x)dx
a).
证 m f (x) M,
b
b
b
a mdx a f ( x)dx a Mdx,
b
m(b a) a f ( x)dx M(b a).
(此性质说明,由被积函数在积分区间上的 最值,可用于估计积分值的大致范围)
2020/2/13
26
性质7(定积分中值定理)
即 b a
f
( x)dx
b
a
f
( x)dx .
说明:| f ( x)|在区间[a,b]上的可积性
高等数学第五章第一节定积分的概念及性质课件.ppt
二、定积分定义
a x0 x1 x2 xn b ,
任一种分法 任取
总趋于确定的极限 I ,则称此极限 I 为函数
上的定积分,
记作
b
a
f
( x) dx
即
b a
f
(
x)
dx
lim
0
n
i1
f
(
i
)
xi
o
a x1
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
i
x xi1xi b
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
0 i1
f
(i ) xi
0
推论1. 若在 [a , b] 上
则
推论2.
(a b)
证: f (x) f (x) f (x)
b
b
b
a f (x) dx a f (x) dx a f (x) dx
即
b
b
a f (x) dx a f (x) dx
使
因此定理成立.
说明:
• 积分中值定理对
• 可把
b
a f (x) dx f ( )
ba
因
y f (x) y
oa bx
故它是有限个数的平均值概念的推广.
例4. 计算从 0 秒到 T 秒这段时间内自由落体的平均 速度.
解: 已知自由落体速度为
v gt
故所求平均速度
1 1 g T 2 gT
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质
高等数学第五章课后习题答案
班级姓名学号1 第五章定积分1.证明定积分性质:òò=b abadxx f kdx x kf )()((k 是常数). 证:òåòå=D =D ==®=®banii ban ii x kf x kf x f k x f k)()(lim )(lim )(1010x x l l 2.估计下列积分值:(1)dxx )sin 1(4542ò+p p解:令x x f 2sin 1)(+=,则02sin cos sin 2)(===x x x x f ‘得驻点:,,221p p==x x 由23)4(,23)4(,1)(,2)2(====p p p pf f f f ,得2)(max ,1)(min ==x f x f 由性质,得pp p p2)(454££òdx x f (2)ò333arctan xdxx 解:令x x x f arctan )(=,01arctan )(2>++=xxx x f ‘,所以)(x f 在]333[,上单调增加,p p33)(max ,36)(min ==\x f x f ,)()(33333arctan 33336333-££-\òp pxdx x ,即pp32a r c t a n 9333££òx d x x班级班级 姓名姓名 学号学号3.比较下列积分值的大小:.比较下列积分值的大小: (1)dx x ò12与dxx ò13解:当10££x 时,有23x x £,且23x x -不恒等于0,0312>-\òdx x x )(,即,即 dxx dxx òò>1212。
(2)ò6pxdx 与ò6sin pxdx解:当60p££x 时,有x x £sin ,且x x sin -不恒等于0,0sin 10>-\òdx x x )(,即,即 dx x dx x òò>1010sin 。
定积分-习题课
(cos
3
4
3 1 x 2 A)dx A, 4 2 2
16 ( 1 )
, f ( x ) cos
4
x
3 8 (1 )
.
例14 求 lim
n
1
x e
n
x x
0
1 e
dx
解 因为 x [0 , 1]时,0
0
1
x e 1 e
1
n
1 ln x 2 1 x
2
)
1
4 x
lim ln
x
2 2
1 x
0
lim f ( x) lim (
x 0 x 0
1 2
ln x
1 1 x
2 2
2
1 2
ln x)
1 4
lim ln(1 x )
2 x 0
lim
1 2
1 2
x 0
ln x(
x
1 x
)0
lim
定积分习题课
• 一、主要内容 • 二、典型例题
一、主要内容
问题1:
曲边梯形的面积
问题2:
变速直线运动的路程
存在定理
的定 性积 质分
定积分
广义积分
定 计积 算分 法的
牛顿-莱布尼茨公式
b
f ( x )dx F ( b ) F ( a )
a
二、典型例题
例1
求 2 1 sin 2 xdx .
0
4
ln( 2 sin x cos x ) dx
0
4
4
(ln 2 ln sin x ln cos x ) dx
高等数学第五章习题课1定积分
第 五 章 定 级 分
解
原式 lim
2e
x2
0 e
2 x2
x t2
dt
x
e
0
lim
2 e dt e
x2
x t2
x
lim
2e
x2
2
x 2 xe x
1 lim 0 x x
- 17 -
习题课(一)
3 解
第 五 章 定 级 分
tf ( x t )dt lim 0 ,
1 i 1 2 lim sin sinxdx n 0 n n i 1
n
-2-
习题课(一)
第 五 章 定 级 分
i 1 n i 1 lim sin lim sin n n n n 1 n n n i 1 i 1 1 2 sinxdx 0 2 原式 1 n1 n 2 n nn 3 lim n n n n
1 2 F ( x )dx 0
存在一点 , 使得 F ( ) 0, 即 f ( ) f ( )
-9-
习题课(一)
第 五 章 定 级 分
设在 [0,1] 上 f ( x ) 0, 证明: 1 1 2 0 f ( x )dx f ( 3 ) 证 由于 y f ( x ) 在区间 [0,1] 是上凸的, 所以曲线 1 1 y f ( x ) 在过 ( , f ( )) 处的切线下方,即 3 3 1 1 1 f ( x ) f ( ) f ( )( x ) 3 3 3 1 1 2 1 2 f ( x ) f ( ) f ( )( x ) 3 3 3
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第五章 定积分【圣才出品】
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
中国人民大学出版社(第四版)高等数学一第5章课后习题详解
高等数学一第5章课后习题详解课后习题全解习题5-1★★1.利用定积分的定义计算由抛物线21y x =+,直线x a =,x b =()b a >及横轴所围成的图形的面积知识点:定积分的定义及几何意义 思路:根据求定积分的三步骤做 解:将[],a b 分成n 等分,取(1,2,)i i n ξ=为第i 个小区间1[(),()]i ia b a a b a n n-+-+-的右端点,则,i b a x n λ-=∆=,i b aa i nξ-=+ 显然, 0,n λ→⇔→∞于是根据定积分的几何意义,该图形面积lim ()nbi i ai A ydx y x λξ→===∆∑⎰ 21lim [()1]nn i b a b aa in n→∞=--=++∑ 22221()lim [12]n n i b a b a b a a ai i n n n→∞=---=+++∑222211()lim [(1)2]nnn i i b a b a b a n a a i in n n →∞==---=+++∑∑22232()(1)()1lim{()[1(1)(21)]}26n a b a n n b a b a a n n n n n →∞-+-=-+++++221()11()lim[1()(1)(1)(2)]6n b a b a a a b a n n n→∞-=-++-++++ 222()()[1]3b a b a a ab a -=-++-+33().3b a b a -=+- ★★2.利用定积分的定义计算下列积分:知识点:定积分的定义 思路:根据求定积分的三步骤做(1)baxdx ⎰()a b <.解:易见函数[](),f x x C a b =∈,从而可积,将[],a b 分成n 等分,则,i b ax nλ-=∆=于是0,n λ→⇔→∞;取(1,2,)i i n ξ=为第i 个小区间的右端点,则,0,1,2,,1,ib aa ii n nξ-=+=-所以110lim ()lim ()n n bi i an i i b a b axdx f x a in nλξ--→→∞==--=∆=+∑∑⎰1()lim{[(0121)]}n b ab a na n n n→∞-=-+++++-2(1)()lim[]2n b a n n b a a n →∞--=-+1()lim[(1)]2n b a b a a n→∞-=-+-221()()().22b a b a a b a -=-+=-(2)1ln exdx ⎰解:用分点(0,1,,)i ni x e i n ==划分区间[]1,e :11,1,2,,i i nni i i x x x e e i n --∆=-=-=, 取i ξ是区间右端点,则 ,()ln()ln ,i i nnii i i i x e f e nξξξ=====作和,并取极限得:111ln lim ()lim ()i i nnenn i i n n i i i xdx f x e e nξ-→∞→∞===∆=-∑∑⎰111111lim{[()]}i i i nn n n nn i i i i e e e n n n --→∞==-=-+∑∑11111(1)lim lim (1)i nn n n i n e e e e n n e -→∞→∞=-=-=--∑111(1)lim ()1n n e e n e →∞=--- 记()1xx g x e =-,则当0x →时,()g x 是0型的,由洛必达法则, 有 001lim lim 11x xx x x e e →→==---从而,当n →+∞时,有111lim 11n nne →+∞=--,故1ln (1) 1.exdx e e =+-=⎰★3.利用定积分的几何意义,说明下列等式:(1)121xdx =⎰.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积解:等式左边为直线2y x =与x 轴和1x =三条直线所围成的面积,该面积等于11212==等式右边. (2)sin 0xdx ππ-=⎰解: 等式左边为正弦曲线sin y x =与x 轴在x π=及x π=-之间所围成的面积,其左右两边面积互为相反数. 则sin ()0xdx A A ππ-=-+==⎰等式右边★★4.用定积分的几何意义求a⎰(0)b >的值.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积 解:=是以2a b +为圆心,2b a-为半径的上半圆,其面积为:2221()()2228b a b a S r πππ--===由定积分的几何意义知:2().8ab a π-=⎰★★★5.试将和式的极限112lim p p pp n n n +→∞+++(0)p >表示成定积分.知识点:定积分的定义思路:根据定积分的定义推导过程可知,求和的极限公式可表示为定积分解: 112112limlim [()()()]p p p p pp p n n n n n n n nn +→∞→∞+++=+++11lim ()n pn i i n n→∞==∑设()p f x x =,则用定义求解1()f x dx ⎰为:①、等分[0,1]为n 个小区间:11[,], 1,2,, i i ii n x n nn-=∆=②、求和:取区间1[,]i i n n -上的右端点为i ξ,即i in ξ=,作和:111()n ni i i i i f x nn ξ==∆=⨯∑∑③、求极限:011111lim()lim ()lim ()nnn p pi i n n i i i i i f x nn n n λξ→→∞→∞===∆=⨯=∑∑∑∴1101121lim lim ()p p p n pp p n n i n i x dx n n n+→∞→∞=+++==∑⎰ ★★★6.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下:试用梯形公式求此河横截面面积的近似值.知识点:定积分的几何意义思路:由定积分定义知:求定积分(曲边梯形面积)的第二步:用小矩形面积近似代替小曲边梯形面积,即1()()ii x i i x f x f x dx ξ-∆≈⎰,若用小梯形面积近似代替小曲边梯形面积则为:111[()()]()2i i x i i i x f x f x x f x dx --+∆≈⎰。
高等数学教案-定积分及其应用
第 5 章 定积分及其应用
授课序号 01
教学基本指标
教学课题 教学方法 教学重点
第 5 章 第 1 节 定积分的概念与性质 讲授、课堂提问、讨论、启发、自学 定积分的定义与性质
课的类型 教学手段 教学难点
新知识课 黑板多媒体结合 用定积分的定义求定积分
参考教材 同济七版《高等数学》
作业布置 课后习题
a
a
x
[a,b] 上的函数, 称为积分上限函数, 记作 ( x) f (t)dt , x [a,b] . a
x
2.定理:设函数 f (x) 在区间[a,b] 上连续,则积分上限函数 ( x) f (t)dt 在区间[a,b] 上可导,且 a
(x) ( x f (t)dt) f (x), x [a,b] . a
性质 6(定积分中值定理)设函数 f (x) 在区间[a,b] 上连续,则在区间[a,b] 上至少存在一点 ,使得
五.例题讲解
例 1.计算定积分 1 1 x2 dx . 0
b f (x)dx f ( )(b a) . a
2
例 2.用定义求定积分 1 x2dx . 0
例 3.不计算定积分的值,比较下列定积分的大小.
大纲要求 1、理解定积分的概念。
2、掌握定积分的性质及定积分中值定理.
教 学 基本内容
一.定积分的概念 1.两个实际问题 引例 1 曲边梯形的面积问题
设函数 y f (x) 在区间[a,b] 上非负连续,由曲线 y f (x) ,直线 x a , x b 以及 x 轴所围成图形称为曲 边梯形,求曲边梯形的面积 A .
b
f (x)dx ,
c
a a
b c
其中 c 是任意的常数, a 是小于 c 的任意数, b 是大于 c 的任意数.此广义积分 f (x)dx 只有当上述等式中
高等数学第五章定积分第四节 反常积分
例3
证明反常积分 a
1 xp
dx
当
p
1
时收敛,
当 p 1时发散.
证
(1)
p 1,
a
1 xp
dx
a
1 x
dx
ln
x
a
,
(2)
p
1,
a
1 xp
dx
x1 p 1 pa
,
a1 p p1
,
p1 p1
1
0
1 dx x
ln
x
1 0
,
(2) q 1,
1
0
1 xq
dx
x1q 1 1 q0
, 1 1 q
,
q q
1 1
因此当q 1时反常积分收敛,其值 1 ;
1q
当q 1时反常积分发散.
2020/2/13
14
可以按照如下简单方法进行计算
例6
计算广义积分
1
x
1 dx x1
解
1
1
x
dx x1
2t
x 1 t 0
t(t 2 1) dx
2arctan t 0
2(lim arctan t arctan 0) t
2( 0) 2
2020/2/13
15
例7
计算广义积分
1 x 1 s
1 ex
1 x 1 s
,
而 1 s 1, 根据比较审敛法2, I1 收敛.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
x
∴ ∵
∴
Q( x ) ≡ c , Q ( 0) = 0 ,
Q( x ) ≡ 0 . 证毕 .
d x f (t)(x −t)dt 0 d x∫ = f (x) (x − x) =0?
13
例 6 . 设 f ( x ) 在 [ a , b ] 上连续且 f ( x ) > 0 ,
F ( x ) = ∫ f ( t ) dt + ∫
(1) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 ∫ f ( x ) dx = 0 ,
a
b
则在 [ a , b ] 上 f ( x ) ≡ 0 .
( 2) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 f ( x ) ≡ 0 , /
则 ∫ f ( x ) dx > 0 .
由于 f ( x ) 连续 ,
2h
h
对于 ε = h , ∃δ > 0 , 当 x − c < δ 时 ,
f ( x ) − f (c ) < ε
b
c −δ
a
b
(
c
)
f (c ) − ε < f ( x ) < f (c ) + ε 成立 ,
即 h < f ( x ) < 3h .
∫a f ( x ) dx = ∫a
∫a f = ∫a f + ∫c f ∫a
b b c b b b
b
5 . 在[a , b]上
f ( x) ≥ 0 f ( x) ≤ 0
⇒ ⇒
f ( x ) ≥ g( x ) ⇒
∫a f ≥ 0 b ∫a f ≤ 0 b b ∫a f ≥ ∫a g
1
b
dx = b − a
∫a f
b
≤∫ f
a
b
6 . 在 [ a , b ] 上 , m ≤ f ( x) ≤ M
重复应用罗彼塔法则可 知上面最后一个等号成 立 .
16
例9. 求 ∫
2
−2
x ln x + x 2 + 1 dx .
(
)
解 . 被积函数是奇函数 :
− x ln − x + ( − x ) 2 + 1
=
(− x + x ln
(
(
)
( − x )2 + 1 + x + x 2 + 1 + x + x2 +1
4
换 同 换 ! 元 时 限
六. 分部积分法
∫a u( x ) dv( x ) =
b
b u( x )v ( x ) a
− ∫ v ( x ) du( x )
a
b
条件 : u( x ) , v ( x ) 有一阶连续导数 .
注意列表计算方法 :
−D
D −1
ϕ ( x)
⋮ ⋮ ⋮
ψ ( x)
⋮
⋮ ⋮ ⋮
f +∫
c +δ
c −δ
f +∫
b
c +δ
f ≥∫
c +δ
c −δ
f
>∫
c +δ
c −δ
h = 2δ h > 0 .
此题的结论可以应用 注意条件中 f ( x ) 的连续性
(1) 是 ( 2) 的逆否命题 .
(3) . 设 q( x ) = g ( x ) − f ( x ) .
对 q( x ) 应用 (1) 的结论 , 则有 (3) .
a b
(3) . 若在 [ a , b ] 上 , f ( x ) ≤ g ( x ) , 且 ∫ f ( x ) dx = ∫ g ( x ) dx ,
a a b b
则在 [ a , b ] 上 f ( x ) ≡ g ( x ) .
9
证 . ( 2) . 设 f ( c ) = 2 h > 0 , c ∈ ( a , b ) ,
b a
a
b
dt =− b dt <0, ∫a f ( t ) f (t )
F (b) = ∫ f ( t ) dt + 0 > 0 ,
∴
F ( x ) = 0 在 ( a , b ) 内有且仅有一个根 .
14
1 sin x 0 ≤ x ≤π 2 例 7 . 设 f ( x) = 0 x < 0或 x >π
求 Φ ( x ) = ∫ f ( t ) dt 在 ( − ∞ , + ∞ ) 内的表达式 .
0 x
解 . 当 x < 0时 ,
Φ ( x ) = ∫ 0 dt = 0 ,
0
x
0
π
当 0 ≤ x ≤ π 时 , Φ ( x ) = ∫ 1 sin t d t = 1 − cos x ,
x
当 x >π 时,
x
x t
= x ∫ f ( t ) dt − ∫ t f ( t ) dt − ∫ ∫ f ( u) du d t 0 0 0 0
x x
x t
Q′( x ) = ∫ f ( t ) dt + x f ( x ) − x f ( x ) − ∫ f ( u) du ≡ 0 ,
0 0
x +a n
x +a
ln n t dt . t+2
常数 a > 0 , n 为自然数
ln n ξ a ln n ξ ln t dt = ( x + a − x) = t+2 ξ +2 ξ +2
x +a n
x <ξ < x +a
lim ⌠ x → +∞ ⌡ x
a ln n ξ a ln n ξ ln t dt = lim = lim =0. t+2 x → +∞ ξ + 2 ξ → +∞ ξ + 2
11
例 4 . 设 f ( x ) 在 [ a , b ] 连续 , 在 ( a , b ) 可导 , 且 f ′( x ) ≤ 0 , x 1 F ( x) = f ( t ) dt x − a ∫a a ξη x b 证明 : 在 ( a , b ) 内 F ′( x ) ≤ 0 . x 1 ⋅ f ( x) − 1 证 . F ′( x ) = 2 ∫a f ( t ) dt 积分中值定理 x −a ( x − a)
⇒ m (b − a ) ≤ ∫ f ≤ M (b − a )
a
b
分 值 理 7 . (积 中 定 )
f ( x ) 在 [ a , b ] 上连续
⇒ 在 [ a , b ] 上至少存在一点 ξ , 使
∫a f (x)dx = f (ξ)∫adx = f (ξ)(b−a)
* 8 . 改变被积函数在有限多 个点上的函数值 ,
b b
β
f ( x ) ≡ g (ϕ ( x ))ϕ ′ ( x ) , α = ϕ (a ) , β = ϕ (b ) .
2
∫a f ( x ) dx ====== ∫α f (ϕ (t ))ϕ ′ (t ) dt
b
x =ϕ ( t )
β
ϕ ( t ) 单调 , 可导 .
= ϕ −1 (a ) , β = ϕ −1 (b ) . α
a a
x
x
Φ 3 ( x ) = ∫ x f ( t ) dt ,
a
x
求 Φ′i ( x ) . ′ 解 . Φ1 ( x ) = Φ′2 ( x ) = x f ( x ) ,
x ⋅ x f ( t ) dt ′ = x f ( t ) dt + x f ( x ) . Φ′ ( x ) = ∫ ∫a 3 a
5
七 . 反常积分
1 . 无穷区间上反常积分
∫a
+∞
f ( x ) dx = F ( x ) a
+∞
F(+∞ = lim F(x) )
x→ +∞
反常积分收敛与发散的 概念 .
2 . 无界函数的反常积分 (瑕积分)
x = b 是 f ( x ) 的无穷间断点
∫a
b
f ( x ) dx = F ( x ) a
0 0
( n − 1) ( n − 3) ⋯ 4 ⋅ 2 n ( n − 2) ⋯ 5 ⋅ 3 = ( n − 1) ( n − 3) ⋯ 3 ⋅1 ⋅ π n ( n − 2) ⋯ 4 ⋅ 2 2
n 为奇数 n 为偶数
7
3.
1 (收 ) 敛 = p −1 +∞ ⌠ dx = ( p积 ) 分 p ⌡ x 1 = + ∞ (发 ) 散
P233−810?
d 1 − cos 2 x − cos 2 x −t 2 ⋅ (cos x )′ = e ⋅ sin x . 例 2. ∫cos x e dt = − e dx
例 3 . 设 Φ1 ( x ) = ∫ x f ( x ) dx , Φ 2 ( x ) = ∫ t f ( t ) dt ,
x 0
0
2
2
Φ ( x ) = ∫ f ( t ) d t = ∫0
0 1 − cos x ∴ Φ ( x) = 2 1
π
1 sin t d t + x 0 d t = 1 . ∫π 2
x<0
0 ≤ x ≤π
x >π
15
例 8 . 求 lim ⌠ x → +∞ ⌡ x 解. ⌠ ⌡x