2016-2017年天津市南开区九年级上学期期中数学试卷及答案
天津市南开区2016-2017年九年级数学上周测试卷及答案
第 18 题图 第 19 题图 第 20 题图 19.如图,木工师傅
中正确的是( )
5
A.将抛物线 C 向右平移 个单位 B.将抛物线 C 向右平移 3 个单位
2
C.将抛物线 C 向右平移 5 个单位 D.将抛物线 C 向右平移 6 个单位
x
15.二次函数 y=x2﹣2x+6 的最小值是
16.在平面直角坐标系中,将解析式为 y=2x2 的图象沿着 x 轴方向向左平移 4 个单位,再沿着 y 轴方向向下平移 3
第 1 页 共 8 页
k
7.如图,已知双曲线 y= (k<0)经过直角三角形 OAB 斜边 OA 的中点 D,且与直角边 AB 相交于点 C.若点 A 的
6.函数 y=ax+1 与 y=ax2+bx+1(a≠0)的图象可能是( )
A. :
A.1.5 m B.1.625 m C.1.66 m D.1.67 m
12.已知二次函数 y=ax2+bx+c(a≠0,a、b、c 为常数)的图象如图所示.下列 5 个结论:①abc<0;②b<a+c;
3
的取值范围).
k
14.如图,A 是反比例函数 y 的图像上一点,已知 Rt△AOB 的面积为 3,则 k= .
从一块边长为 60cm 的正三角形木板上锯出一块正六边形木板,那么这块正六边形木板的边长 为 cm.
20.如图,四边形 ABCD 是☉O 的内接四边形,∠ABC=2∠D,连接 OA、OB、OC、AC,OB 与 AC 相交于点 E.若∠COB=3
始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至 30 ℃,饮水机关机.饮水机关机后即刻
2015-2016年天津市南开区九年级上学期期中数学试卷及参考答案
2015-2016学年天津市南开区九年级(上)期中数学试卷一.选择题(共36分)1.(3分)方程x(x+)=0的根是()A.x1=0,x2=B.x1=0,x2=﹣C.x1=0,x2=﹣2 D.x1=0,x2=22.(3分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠04.(3分)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l 上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)5.(3分)如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定6.(3分)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°7.(3分)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=(x﹣2)2+2 D.y=(x﹣2)2﹣2 8.(3分)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是﹣3≤x≤1.其中正确的有()A.1个 B.2个 C.3个 D.4个9.(3分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1),将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()A.(2,1) B.(2,3) C.(4,1) D.(0,2)10.(3分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.11.(3分)如图,若正△A1B1C1内接于正△ABC的内切圆,则△A1B1C1与△ABC 的面积的比值为()A.B.C.D.12.(3分)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC 的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4﹣C.4 D.6﹣2二.填空题:共18分.13.(3分)坐标平面内的点P(m,2)与点Q(3,﹣2)关于原点对称,则m=.14.(3分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为15.(3分)请写出一个二次函数,使其满足以下条件:①图象过点(2,﹣2);②当x<0时,y随x增大而增大;它的解析式可以是16.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10cm、深约为2cm 的小坑,则该铅球的直径约为cm.17.(3分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:.18.(3分)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc >0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)三.解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或证明过程.19.(8分)(1)x(x﹣2)+x﹣2=0(适当方法)(2)2x2+1=3x(配方法)20.(8分)二次函数中y=ax2+bx﹣3的x、y满足表:(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.21.(10分)如图,在圆O中,AB是直径,CD是弦,AB⊥CD,AB=12cm,∠CFD=60°.(1)求∠COB的度数;(2)求CD的长.22.(10分)如图,已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上,点D在⊙O上,连接CD,且CD=OA,OC=2.求证:CD是⊙O的切线.23.(10分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为28m,求建成的饲养室总面积的最大值(墙体厚度忽略不计).24.(10分)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)25.(10分)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A,B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在求出P的坐标,不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB面积为S,求S 的最大(小)值.2015-2016学年天津市南开区九年级(上)期中数学试卷参考答案与试题解析一.选择题(共36分)1.(3分)方程x(x+)=0的根是()A.x1=0,x2=B.x1=0,x2=﹣C.x1=0,x2=﹣2 D.x1=0,x2=2【解答】解:方程x(x+)=0,可得x=0或x+=0,解得:x1=0,x2=﹣.故选:B.2.(3分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.3.(3分)关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠0【解答】解:依题意列方程组,解得k<1且k≠0.故选:D.4.(3分)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l 上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)【解答】解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选:B.5.(3分)如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【解答】解:∵∠ACB与∠AOB所对的弧是同一段弧,且∠AOB=90°,∴∠ACB=∠AOB=90°,故选:B.6.(3分)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选:A.7.(3分)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=(x﹣2)2+2 D.y=(x﹣2)2﹣2【解答】解:抛物线y=x2+1的顶点坐标为(0,1),把点(0,1)先向左平移2个单位,再向下平移3个单位得到的对应点的坐标为(﹣2,﹣2),所以所得抛物线的函数关系式y=(x+2)2﹣2.故选:B.8.(3分)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是﹣3≤x≤1.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵二次函数的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,故①正确;②∵当x=2时,y<0,∴4a+2b+c<0,故②正确;③∵抛物线与x轴的交点分别是(﹣3,0),(1,0),∴一元二次方程ax2+bx+c=0的两根之和=﹣3+1=﹣2,故③正确;④由函数图象可知,当y≤3时,x≥0或x≤﹣2,故④错误.故选:C.9.(3分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1),将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()A.(2,1) B.(2,3) C.(4,1) D.(0,2)【解答】解:如图所示:结合图形可得点B′的坐标为(2,1).故选:A.10.(3分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【解答】解:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b﹣1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个正实数根.∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选:A.11.(3分)如图,若正△A1B1C1内接于正△ABC的内切圆,则△A1B1C1与△ABC 的面积的比值为()A.B.C.D.【解答】解:设圆心为O,AB与圆相切于点D,连接AO,DO,∵△A1B1C1和△ABC都是正三角形,∴它们的内心与外心重合;如图:设圆的半径为R;Rt△OAD中,∠OAD=30°,OD=R;AO=OD•=R,即AB=2R;同理可求得:A1B1=R,∴==,则△A1B1C1与△ABC的面积的比值为:()2=.故选:C.12.(3分)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC 的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3 B.4﹣C.4 D.6﹣2【解答】解:如图,当点E旋转至y轴上时DE最小;∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC∵AB=BC=2∴AD=AB•sin∠B=,∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,6)∴OA=6∴DE′=OA﹣AD﹣OE′=4﹣故选:B.二.填空题:共18分.13.(3分)坐标平面内的点P(m,2)与点Q(3,﹣2)关于原点对称,则m=﹣3.【解答】解:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),所以m=﹣3.14.(3分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为m>0【解答】解:∵抛物线y=(x﹣m)2+(m+1),∴顶点坐标为(m,m+1),∵顶点在第一象限,∴m>0,m+1>0,∴m的取值范围为m>0.故答案为:m>0.15.(3分)请写出一个二次函数,使其满足以下条件:①图象过点(2,﹣2);②当x<0时,y随x增大而增大;它的解析式可以是y=﹣2x2+6【解答】解:∵当x<0时,y随x的增大而增大,∴设解析式为:y=﹣2x2+b,∵图象经过点(2,﹣2),∴﹣2=﹣2×22+b,解得:b=6.∴解析式为:y=﹣2x2+6(答案不唯一).故答案为:y=﹣2x2+6(答案不唯一).16.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10cm、深约为2cm 的小坑,则该铅球的直径约为14.5cm.【解答】解:根据题意,画出图形如图所示,由题意知,AB=10,CD=2,OD是半径,且OC⊥AB,∴AC=CB=5,设铅球的半径为r,则OC=r﹣2,在Rt△AOC中,根据勾股定理,OC2+AC2=OA2,即(r﹣2)2+52=r2,解得:r=7.25,所以铅球的直径为:2×7.25=14.5 cm.17.(3分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:2(1+x)+2(1+x)2=8.【解答】解:∵去年对实验器材的投资为2万元,该校这两年在实验器材投资上的平均增长率为x,∴今年的投资总额为2(1+x);明年的投资总额为2(1+x)2;∵预计今明两年的投资总额为8万元,∴2(1+x)+2(1+x)2=8.18.(3分)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc >0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.三.解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或证明过程.19.(8分)(1)x(x﹣2)+x﹣2=0(适当方法)(2)2x2+1=3x(配方法)【解答】解:(1)分解因式得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1;(2)方程整理得:x2﹣x=﹣,配方得:x2﹣x+=,即(x﹣)2=,开方得:x﹣=±,解得:x1=1,x2=.20.(8分)二次函数中y=ax2+bx﹣3的x、y满足表:(1)求该二次函数的解析式;(2)求m的值并直接写出对称轴及顶点坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把(﹣1,0),(0,﹣3),(1,﹣4)代入得,解得a=1,b=﹣2,c=﹣3,所以抛物线解析式为y=x2﹣2x﹣3;(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,所以抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4).21.(10分)如图,在圆O中,AB是直径,CD是弦,AB⊥CD,AB=12cm,∠CFD=60°.(1)求∠COB的度数;(2)求CD的长.【解答】解:(1)连接OD,∵AB是直径,CD是弦,AB⊥CD,∴,∴∠COB=∠DOB=∠COD,∴∠CFD=∠COB=60°;(2)Rt△COE中,OC=6cm,∠COE=∠CFD=60°;∴CE=OC•sin60°=3cm;∴CD=2CE=6cm.22.(10分)如图,已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上,点D在⊙O上,连接CD,且CD=OA,OC=2.求证:CD是⊙O的切线.【解答】证明:连接OD,如图,CD=OD=OA=AB=2,OC=2,∵22+22=(2)2,∴OD2+CD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴OD⊥CD,又∵点D在⊙O上,∴CD是⊙O的切线.23.(10分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为28m,求建成的饲养室总面积的最大值(墙体厚度忽略不计).【解答】解:设中间隔开的墙EF的长为x米,建成的饲养室总面积为S平方米,根据题意得AD﹣2+3x=28,解得AD=30﹣3x,则S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故当中间隔开的墙长为5米时,饲养室有最大面积75平方米.24.(10分)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于2,线段CE1的长等于2;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)【解答】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1==2,E1C==2;故答案为:2,2;(2)证明:当α=135°时,如图2,∵Rt△AD1E是由Rt△ADE绕点A逆时针旋转135°得到,∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中∵,∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BFA=∠CFP,∴∠CPF=∠FAB=90°,∴BD1⊥CE1;(3)解:如图3,作PG⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=2,则BD1==2,故∠ABP=30°,则PB=2+2,故点P到AB所在直线的距离的最大值为:PG=1+.25.(10分)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A,B两点.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在求出P的坐标,不存在说明理由;(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB面积为S,求S 的最大(小)值.【解答】解:(1)如答图1,连接CB.∵BC=2,OC=1∴OB===∴B(0,)将A(3,0),B(0,)代入二次函数的表达式得:,解得:,∴y=﹣x2+x+;(2)存在.如答图2,作线段OB的垂直平分线l,与抛物线的交点即为点P1,P2.∵B(0,),O(0,0),∴直线l的表达式为y=,代入抛物线的表达式,得﹣x2+x+=,解得x1=1+或x2=1﹣,∴P1(1﹣,)或P2(1+,);(3)如答图3,作MH⊥x轴于点H,设M(x m,y m),则S=S梯形MBOH+S△MHA﹣S△OAB△MAB=(MH+OB)•OH+HA•MH﹣OA•OB=(y m+)x m+(3﹣x m)y m﹣×3×=x m+y m﹣,∵y m=﹣x m2+x m+,=x m+(﹣x m2+x m+)﹣∴S△MAB=﹣x m2+x m=﹣(x m﹣)2+,∴当x m=时,S△MAB取得最大值,最大值为.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
2016-2017学年上学期九年级期中考试数学参考答案
∴易求得 A(k-2,k2-2k),B(k+2,k2+2k)……..……9 分 直线 x=1 上有一点 P,可设 P(1,m) ∵△PAB 是一个以 AB 为斜边的等腰直角三角形 ∴AM=PN,PM=BN
图2 y
x=1
∴k2-2k-m=k+2-1,1-(k-2)=k2+2k-m……..……11 分
∴ k 1 , m 17 ……..……12 分
3
9
B
O
A
M
PN
图3
x x
3
三角形,且∠AEC=90°.
………………………………4 分
所以 CD= DE2 CE2 62 52 61 .所以 BC 的长是 2 61 .………………6 分
设点 A 到 BC 的距离为 h,由面积公式得
1 2
BC
h
SABC
,
1 2
2
61h 1 125 2
解得 h= 30 61 . 61
………………8 分
在△DCE 和△DAF 中,∵CD=AD,∠C=∠DAF,CE=AF ∴△DCE≌△DAF(SAS)……7 分 ∴DE=DF.……8 分 19、解:(1)∵原方程有两个不相等的实数根,
∴ (2k 1)2 4(k 2 1) 4k 3 0 ,……3 分
解得: k 3 . 4
……………………4 分
1
20、(1)如下图:
………………………………2 分 [来源:学*科*网Z*X*X*K]
(2)①2(2.1 到 1.7 之间都正确)
………………………………5 分
②该函数有最大值 4(其他正确性质都可以,比如从增减性的角度). ……8 分
20.(1)作出△CDE;
天津市南开区2016-2017学年九年级上期中数学试卷含答案解析
22.10 分)如图,△ABC 中,AB=AC,以 AB 为直径作⊙O,与 BC 交于点 D,过 D 作 AC 的垂线,垂足为 E. 证明:(1)BD=DC;(2)DE 是⊙O 切线.
23.(10 分)如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用 50m 长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为 x(篱笆墙的厚度忽略不计). (1)如果用 50m 长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为 x(篱笆墙的厚 度忽略不计). (1)要使鸡场面积最大,鸡场的长度应为多少米? (2)如果中间有 n(n 是大于 1 的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多 少米?比较(1)(2)的结果,要使鸡场面积最大,鸡场长度与中间隔离墙的道数有怎样 的关系?
2016-2017 学年天津市南开区九年级(上)期中数学试卷
一、选择题:本大题共 12 小题,每小题 3 分,共 36 分,在每小题给出的四个选项中,只 有一项是符合题目的要求的. 1.一元二次方程 x(x+5)=0 的根是( ) A.x1=0,x2=5 B.x1=0,x2=﹣ 5 C.1x =0,2x = D.x1=0,x2=﹣ 2.下列四个图形中属于中心对称图形的是( )
A.
B.
C.
D.
3.已知二次函数 y=3x2+c 与正比例函数 y=4x Βιβλιοθήκη 图象只有一个交点,则 c 的值为( )
天津市南开区2016-2017学年九年级上期中数学模拟试卷含解析
A.(1,1) B.(1,2) C.(1,3) D.(1,4)
20.(8 分)小李想用篱笆围成一个周长为 60 米的矩形场地,矩形面积 S(单位:平方 米)随矩形一边长 x(单位:米)的变化而变化. (1)求 S 与 x 之间的函数关系式,并写出自变量 x 的取值范围; (2)当 x 是多少时,矩形场地面积 S 最大,最大面积是多少? 21.(10 分)如图,已知抛物线的顶点为 A(1,4),抛物线与 y 轴交于点 B(0,3), 与 x 轴交于 C、D 两点.点 P 是 x 轴上的一个动点. (1)求此抛物线的解析式; (2)求 C、D 两点坐标及△BCD 的面积; (3)若点 P 在 x 轴上方的抛物线上,满足 S△PCD= S△BCD,求点 P 的坐标.
A.30° B.40° C.50° D.60° 3.如图,已知⊙O 的半径为 5cm,弦 AB=8cm,则圆心 O 到弦 AB 的距离是( )
A.1cm B.2cm C.3cm D.4cm 4.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.ac>0 B.当 x>1 时,y 随 x 的增大而增大 C.2a+b=1 D.方程 ax2+bx+c=0 有一个根是 x=3 5.已知二次函数 y= (x﹣ 1)2+4,若 y 随 x 的增大而减小,则 x 的取值范围是( ) A.x<﹣ 1 B.x>4 C.x<1 D.x>1 6.二次函数 y=﹣ 2x2+4x+1 的图象如何平移可得到 y=﹣ 2x2 的图象( ) A.向左平移 1 个单位,向上平移 3 个单位 B.向右平移 1 个单位,向上平移 3 个单位 C.向左平移 1 个单位,向下平移 3 个单位 D.向右平移 1 个单位,向下平移 3 个单位 7.若(2,5)、(4,5)是抛物线 y=ax2+bx+c 上的两个点,则它的对称轴是( ) A.x=﹣ B.x=1 C.x=2 D.x=3 8.如图,将△AOB 绕点 O 按逆时针方向旋转 45°后得到△A′OB′,若∠AOB=15°,则∠ AOB′的度数是( )
初中数学天津市南开区九年级上册数学期中考模拟试卷及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:一元二次方程x(x+5)=0的根是( )A.x1=0,x2=5B.x1=0,x2=-5C.x1=0,x2=D.x1=0,x2=-试题2:下列四个图形中属于中心对称图形的是( )试题3:已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为( )A. B.C.3D.4 试题4:抛物线y=-3x2+12x-7的顶点坐标为( )评卷人得分A.(2,5)B.(2,-19)C.(-2,5)D.(-2,-43)试题5:由二次函数y=2(x-3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=-3C.其最大值为1D.当x<3时,y随x的增大而减小试题6:如图中∠BOD的度数是( )A.1500B.1250C.1100D.550试题7:如图,点E在y轴上,圆E与x轴交于点A,B,与y轴交于点C,D,若C(0,9),D(0,-1),则线段AB的长度为( )A.3B.4C.6D.8试题8:如图,AB是圆O的直径,C、D是圆O上的点,且OC//BD,AD分别与BC、OC相交于点E、F.则下列结论:①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立的是( )A.①③⑤B.②③④C.②④⑤ D.①③④⑤试题9:《九章算术》中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少步”( )A.3步B.5步C.6步 D.8步试题10:如图,在△ABC中,∠CAB=650.将△ABC在平面内绕点A逆时针旋转到△AB/C/的位置,使CC///AB,则旋转角度数为( )A.350B.400C.500D.650试题11:以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A. B. C.D.试题12:如图,正方形ABCD中,AB=8cm,对角线AC、BD相交于点O,点E、F分别从B、C两点同时出发,以1cm/s的速度沿BC、CD运动,到点C、D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )试题13:点P(2,-1)关于原点的对称点坐标为P/(m,1),则m= .试题14:如图,在平面直角坐标系中,已知点A(3,4),将OA绕坐标原点O逆时针转900至OA/,则点A/的坐标是 .试题15:关于x的二次函数y=x2-kx+k-2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数解析式:。
南开区2016-2017学年度第一学期期末质量检测九年级数学试卷
南开区2016-2017学年度第一学期期末质量检测九年级数学试卷一选择题:每小题3分,共36分。
1.下列事件中是不可能事件的是()(A)降雨时水位上升 (B)在南极点找到东西方向(C)体育运动时消耗卡路里 (D)体育运动中肌肉拉伤2.下列图形既是轴对称图形又是中心对称图形的是( )3.若关于x的一元二次x2+2x+k=0无实数根,则k值可以是( )A.3B.1C.0D.-54.如图,在正方形网格上有两个相似三角形△ABC和△EDF,则∠BAC的度数为( )A.135°°5.如图,在⊙°,则这个圆的直径为( )A.5226.在平面直角坐标系中,反比例函数x aa y222+ -=图象的两个分支分别在( ) A.第一、二象限 B.第三、四象限 C.第一、三象限 D.第二、四象限班级作业智能管理 用点知APP7.点(-1,y 1)、(-2,y 2)、(3,y 3)均在xy 6-=的图象上,则y 1、y 2、y 3的大小关系是( ) A.y 1<y 2<y 3 B. y 2<y 3<y 1 C.y 3<y 2<y 1 D.y 3<y 1<y 28.将抛物线y=(x-1)2+3向左平移1个单位,得到的抛物线与y 轴的交点坐标是( )A.(0,2)B.(0,3)C.(0,4)D.(0,7)9.如图,AC 是⊙0的直径,∠ACB=60°,连接AB ,过A ,B 两点分别作⊙O 的切线,两切线交于点P.若已知 ⊙0半径为1,则△PAB 的周长为( ) A.33 B. 233 C. 3D.310.如图,以点O 为位似中心,将△ABC 缩小后得到△A /B /C /,已知OB=3OB /,则△A /B /C /与△ABC 的面积 比为( )A.1:3B.1:4C.1:5D.1:911.如图,在ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP//DF ,且与AD 相交于点P , 则图中相似三角形的组数为( )A.3B.4C.5D.612.如图在平面直角坐标系中,抛物线y=x 2+bx+c 与x 轴只有一个交点M,与平行于x 轴的直线l 交于A,B 两点. 若AB=3,则点M 到直线l 的距离为( ) A.25 B.49 C.2 D.47第II 卷(非选择题共84分)二 填空题:每小题3分,共18分。
2016-2017年天津市南开区九年级上学期期中数学模拟试卷及参考答案
2016-2017学年天津市南开区九年级(上)期中数学模拟试卷一、选择题:每天3分,共12分,共计36分.1.(3分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.2.(3分)如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°3.(3分)如图,已知⊙O的半径为5cm,弦AB=8cm,则圆心O到弦AB的距离是()A.1cm B.2cm C.3cm D.4cm4.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而增大C.2a+b=1D.方程ax2+bx+c=0有一个根是x=35.(3分)已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是()A.x<﹣1 B.x>4 C.x<1 D.x>16.(3分)二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A.向左平移1个单位,向上平移3个单位B.向右平移1个单位,向上平移3个单位C.向左平移1个单位,向下平移3个单位D.向右平移1个单位,向下平移3个单位7.(3分)若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=38.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°9.(3分)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1) B.(1,2) C.(1,3) D.(1,4)10.(3分)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2) D.(,﹣1)11.(3分)已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是()A.B.且k≠0 C.D.且k≠012.(3分)如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题:每题3分,共6小题,共计18分.13.(3分)如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是.14.(3分)将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=.15.(3分)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=20°,则∠C的度数是.16.(3分)如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为.17.(3分)初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.18.(3分)如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=.三、解答题:共8小题,共计66分.19.(8分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在☉O上.(1)若∠AOD=54°,求∠DEB的度数;(2)若OC=3,OA=5,求弦AB的长.20.(8分)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大,最大面积是多少?21.(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)求C、D两点坐标及△BCD的面积;(3)若点P在x轴上方的抛物线上,满足S=S△BCD,求点P的坐标.△PCD22.设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.23.(10分)如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.求证:DB=DC.24.(10分)某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?25.(10分)正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是,∠AFB=∠(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.26.(10分)如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B (﹣1,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移7个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k 与图象C始终有3个交点,求满足条件的k的取值范围.2016-2017学年天津市南开区九年级(上)期中数学模拟试卷参考答案与试题解析一、选择题:每天3分,共12分,共计36分.1.(3分)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.【解答】解:A、最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==180°;D、最小旋转角度==72°;综上可得:顺时针旋转120°后,能与原图形完全重合的是A.故选:A.2.(3分)如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选:C.3.(3分)如图,已知⊙O的半径为5cm,弦AB=8cm,则圆心O到弦AB的距离是()A.1cm B.2cm C.3cm D.4cm【解答】解:过点D作OD⊥AB于点D.∵AB=8cm,∴AD=AB=4cm,∴OD===3cm.故选:C.4.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而增大C.2a+b=1D.方程ax2+bx+c=0有一个根是x=3【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴ac<0,故A选项错误;∵对称轴x=1,∴当x>1时,y随x的增大而减小;故B选项错误;∵x=﹣=1,∴b=﹣2a,∴2a+b=0,故C选项错误;∵对称轴x=1,一个交点是(﹣1,0),∴另一个交点是(3,0)∴方程ax2+bx+c=0另一个根是x=3,故D选项正确.故选:D.5.(3分)已知二次函数y=(x﹣1)2+4,若y随x的增大而减小,则x的取值范围是()A.x<﹣1 B.x>4 C.x<1 D.x>1【解答】解:y=(x﹣1)2+4,a=,当x<1时y随x的增大而减小.故选:C.6.(3分)二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A.向左平移1个单位,向上平移3个单位B.向右平移1个单位,向上平移3个单位C.向左平移1个单位,向下平移3个单位D.向右平移1个单位,向下平移3个单位【解答】解:二次函数y=﹣2x2+4x+1的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),只需将函数y=﹣2x2+4x+1的图象向左移动1个单位,向下移动3个单位即可.故选:C.7.(3分)若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣B.x=1 C.x=2 D.x=3【解答】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选:D.8.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.9.(3分)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1) B.(1,2) C.(1,3) D.(1,4)【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P(1,2),∴旋转中心的坐标为(1,2).故选:B.10.(3分)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2) D.(,﹣1)【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB==,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,﹣);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB ﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,﹣)或(﹣2,0);故选:B.11.(3分)已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是()A.B.且k≠0 C.D.且k≠0【解答】解:∵二次函数y=kx2﹣5x﹣5的图象与x轴有交点,∴△=b2﹣4ac=25+20k≥0,k≠0,解得:k≥﹣,且k≠0.故选:B.12.(3分)如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B. C. D.【解答】解:∵AB=4,AC=x,∴BC==,=BC•AC=x,∴S△ABC∵此函数不是二次函数,也不是一次函数,∴排除A、C,∵AB为定值,当OC⊥AB时,△ABC面积最大,此时AC=2,即x=2时,y最大,故排除D,选B.故选:B.二、填空题:每题3分,共6小题,共计18分.13.(3分)如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是(2,0).【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0).14.(3分)将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=(x﹣2)2+1.【解答】解:y=x2﹣4x+5,y=x2﹣4x+4﹣4+5,y=x2﹣4x+4+1,y=(x﹣2)2+1.故答案为:y=(x﹣2)2+1.15.(3分)如图,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=20°,则∠C的度数是65°.【解答】解:∵△ABC是直角三角形,∴∠BAC=90°,∵Rt△ABC绕直角顶点A顺时针旋转90°,∴AB=AB′,∠BAB′=90°,∠C=∠AC′B′,∴∠AB′B=45°,∵∠1=20°,∴∠AB′C′=45°﹣20°=25°,∴∠AC′B′=90°﹣25°=65°,∴∠C=65°,故答案为:65°.16.(3分)如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为65°.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.故答案为:65°.17.(3分)初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=﹣5.【解答】解:∵点(0,﹣3.5)、(2,﹣3.5)在二次函数y=ax2+bx+c的图象上,∴二次函数图象的对称轴为x==1,∵1×2﹣3=﹣1,且点(﹣1,﹣5)在二次函数y=ax2+bx+c的图象上,∴当x=3时,二次函数y=ax2+bx+c中y=﹣5.故答案为:﹣5.18.(3分)如图,P是抛物线y=2(x﹣2)2对称轴上的一个动点,直线x=t平行y轴,分别与y=x、抛物线交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=或1或3.【解答】解:∵y=2(x﹣2)2∴y=2x2﹣8x+8,∵直线x=t分别与直线y=x、抛物线y=2x2﹣8x+8交于点A、B两点,∴设A(t,t),B(t,2t2﹣8t+8),AB=|t﹣(2t2﹣8t+8)|=|2t2﹣9t+8|,①当△ABP是以点A为直角顶点的等腰直角三角形时,∠PAB=90°,此时PA=AB=|t ﹣2|,即|2t2﹣9t+8|=|t﹣2|,∴2t2﹣9t+8=t﹣2,或2t2﹣9t+8=2﹣t,解得t=或1或3;②当△ABP是以点B为直角顶点的等腰直角三角形时,则∠PBA=90°,此时PB=AB=|t﹣2|,结果同上.故答案为:或1或3.三、解答题:共8小题,共计66分.19.(8分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,OD交⊙O于点D,点E在☉O上.(1)若∠AOD=54°,求∠DEB的度数;(2)若OC=3,OA=5,求弦AB的长.【解答】解:(1)∵OD⊥AB,∴=,∴∠DEB=∠AOD=×54°=27°.(2)∵OC=3,OA=5,∴AC=4,∵OD⊥AB,∴弧AD=弧BD=弧AB,∴AC=BC=AB=4,∴AB=8.20.(8分)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大,最大面积是多少?【解答】解:(1)S=x(30﹣x)(2分)自变量x的取值范围为:0<x<30.(1分)(2)S=x(30﹣x)=﹣(x﹣15)2+225,(2分)∴当x=15时,S有最大值为225平方米.即当x是15时,矩形场地面积S最大,最大面积是225平方米.(1分)21.(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)求C、D两点坐标及△BCD的面积;(3)若点P在x轴上方的抛物线上,满足S=S△BCD,求点P的坐标.△PCD【解答】解:(1)∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;令y=0,则0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S=CD×|y B|=×4×3=6;△BCD(3)由(2)知,S=CD×|y B|=×4×3=6;CD=4,△BCD=S△BCD,∵S△PCD=CD×|y P|=×4×|y P|=3,∴S△PCD∴|y P|=,∵点P在x轴上方的抛物线上,∴y P>0,∴y P=,∵抛物线的解析式为y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).22.设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.【解答】解:(1)当△ABC为等腰直角三角形时,过C作CD⊥AB于D,则AB=2CD;∵抛物线与x轴有两个交点,∴△>0,∴|b2﹣4ac|=b2﹣4ac,∵AB=,又∵CD=(a≠0),∴=,即=,∴b2﹣4ac=,∵b2﹣4ac≠0,∴b2﹣4ac=4.(2)如图,当△ABC为等边三角形时,由(1)可知CE=AE=AB,∴=×,∵b2﹣4ac>0,∴=,∴b2﹣4ac=12.23.(10分)如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.求证:DB=DC.【解答】证明:∵∠DAC与∠DBC是同弧所对的圆周角,∴∠DAC=∠DBC.∵AD平分∠CAE,∴∠EAD=∠DAC,∴∠EAD=∠DBC.∵四边形ABCD内接于⊙O,∴∠EAD=∠BCD,∴∠DBC=∠DCB,∴DB=DC.24.(10分)某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;25.(10分)正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.【解答】解:(1)如图1,∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为:BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△APQ中∵,∴△APE≌△APQ(SAS),∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)如图3,∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK,得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.26.(10分)如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B (﹣1,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移7个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k 与图象C始终有3个交点,求满足条件的k的取值范围.【解答】解:(1)∵经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B (﹣1,0),∴,∴,∴抛物线解析式为y=x2﹣x﹣4,(2)由(1)知,抛物线解析式为y=x2﹣x﹣4=(x2﹣7x)﹣4=(x﹣)2﹣,∴此抛物线向上平移个单位长度的抛物线的解析式为y=(x﹣)2﹣,再向左平移m(m>0)个单位长度,得到新抛物线y=(x+m﹣)2﹣,∴抛物线的顶点P(﹣m+,﹣),对于抛物线y=x2﹣x﹣4,令y=0,x2﹣x﹣4=0,解得x=﹣1或8,∴C(8,0),∵A(0,﹣4),B(﹣1,0),∴直线AB的解析式为y=﹣4x﹣4,直线AC的解析式为y=x﹣4,当顶点P在AB上时,﹣=﹣4×(﹣m+)﹣4,解得m=,当顶点P在AC上时,﹣=(﹣m+)﹣4,解得m=,∴当点P在△ABC内时<m<.(3)翻折后所得新图象如图所示.平移直线y=x+k知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点B(﹣1,0),∴0=﹣1+k,即k=1.②∵当直线位于l2时,此时l2与函数y=﹣x2+x+4(﹣1≤x≤8)的图象有一个公共点∴方程x+k=﹣x2+x+4,即x2﹣5x﹣8+2k=0有两个相等实根.∴△=25﹣4(2k﹣8)=0,即k=.综上所述,k的值为1或.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
【5套打包】天津市初三九年级数学上期中考试测试卷及答案
新人教版九年级第一学期期中模拟数学试卷(答案)一、选择题(共30分,每小题3分)1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定4.右面的三视图对应的物体是()A.B.C.D.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y26.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.547.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.208.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.69.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.二、填空题(共12分,每小题3分)11.方程x2=x的根是.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案一、选择题1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.【点评】本题主要考查了方程的解的定义,正确理解定义是关键.4.右面的三视图对应的物体是()A.B.C.D.【分析】因为主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.所以可按以上定义逐项分析即可.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选:D.【点评】本题主要考查学生对图形的三视图的了解及学生的空间想象能力.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.6.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【分析】由△ABC∽△DEF,S△ABC:S△DEF=9,根据相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF的相似比,又由相似三角形的周长的比等于相似比,即可求得△ABC与△DEF的周长比为:3:1,又由△ABC的周长为18厘米,即可求得△DEF 的周长.解:∵△ABC∽△DEF,S△ABC:S△DEF=9,∴△ABC与△DEF的相似比为:3:1,∴△ABC与△DEF的周长比为:3:1,∵△ABC的周长为18厘米,∴,∴△DEF的周长为6厘米.故选:C.【点评】此题考查了相似三角形的性质.解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形的周长的比等于相似比定理的应用.7.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【分析】由矩形的性质和已知条件可求出∠AFE=∠AEF,进而推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,A B=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.【点评】本题考查了矩形性质,勾股定理的运用,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行是解题的关键.9.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE =CE,FC=BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选:C.【点评】此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.【分析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.【点评】本题考查了勾股定理,利用勾股定理求出三角形的边长,再构造相似三角形是解题的关键.二、填空题(共12分,每小题3分)11.方程x2=x的根是x 1=0,x2=.【分析】方程整理后,利用因式分解法求出解即可.解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x 1=0,x2=.故答案为:x 1=0,x2=【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为 4 .【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设BE=a,则AB=2a,由题意2a×a=8,推出a2=,可得k=a2=4.解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设BE=a,则AB=2a,OE=a,由题意2a×a=8,∴a2=,∴k=a2=4,故答案为4.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= 3 .【分析】首先证明△ACB∽△AMN,可得AC:CB=AM:MN,代入数值求解即可.解:∵∠C=∠AMN=90°,∠A为△ACB和△AMN的公共角,∴△ACB∽△AMN,∴AC:CB=AM:MN,在直角△ABC中,由勾股定理得AB2=AC2+BC2,即AB=10;又∵AC=8,CB=6,AM=AB﹣6=4,∴=,即MN=3.【点评】本题主要考查相似三角形的判定和性质,涉及到勾股定理的运用.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是3+.【分析】作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.利用勾股定理求出PQ″即可解决问题;解:作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.在Rt△PHQ″中,PQ″==,∴PM+MN+NQ的最小值=3+.故答案为3+.【点评】本题考查轴对称﹣最短问题,矩形的性质等知识,解题的关键是正确寻找PM+MN+NQ最小时点M的位置,属于中考常考题型.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.【点评】公式法和配方法适用于任何一元二次方程,解题时要细心.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.【分析】直接利用已知路灯的影子得出灯的位置,进而得出EF的影长.解:如图所示:【点评】此题主要考查了中心投影,正确得出灯的位置是解题关键.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.【分析】(1)利用位似图形的性质得出C,D两点坐标在A,B坐标的基础上,同乘以﹣2,进而得出坐标画出图形即可;(2)利用位似图形的性质得出C,D点坐标.解:(1)如图所示:;(2)如图所示:D(﹣4,2),C(﹣6,﹣2).【点评】此题主要考查了位似变换,得出对应点坐标是解题关键.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.【分析】由二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图,作FH⊥BC交BC的延长线于H.在Rt△BFH中,根据勾股定理计算即可.(1)证明:∵AF∥CD,∴∠EAF=∠ECD,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四边形AFCD是平行四边形,∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四边形AFCD是菱形.(2)解:如图,作FH⊥BC交BC的延长线于H.∵四边形AFCD是菱形,∴AC⊥DF,EF=DE=BC=,∴∠H=∠ECH=∠CEF=90°,∴四边形FHCE是矩形,∴FH=EC=2,EF=CH=,BH=CH+BC=,在Rt△BHF中,BF==.【点评】本题考查菱形的判定和性质、三角形的中位线定理、直角三角形斜边中线的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC=HG,推出=,列出方程求出CA=106(米),由=,可得=,由此即可解决问题.解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:舍利塔的高度AB为55米.【点评】本题考查解直角三角形的应用、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=14求出即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=14,解得:x1=1,x2=4.因为要且尽可能地减少成本,所以x2=4舍去,x+3=4.答:每盆植4株时,每盆的盈利14元.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)延长DP交OA于点E,由点D为线段BC的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论.解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),∴点B(6,4).(2)延长DP交OA于点E,如图②所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S△AOP=EP•(y A﹣y O)=××(4﹣0)=3.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式、平行四边形的性质,解题的关键是:根据反比例函数图象上点的坐标特征求出反比例函数解析式.23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.【分析】(1)列举出所有情况,看白色衬衫配米色裙子的总数即可得出答案;(2)列举出青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数占所有情况数的多少即可.解:(1)共有8种情况,白色衬衫米色裙子的情况数有1种,所以他最喜欢的搭配的概率为;(2)青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数有2种,所以他最不喜欢的搭配的概率为,故她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会不相等.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.【分析】(1)只要证明△FAD∽△DAB,可得=,延长即可解决问题;(2)只要证明△CAD≌△EBD,可得AC=BE,再证明△EBD∽△CBA,可得=,由BD=AD,AC=BE,可得AD•BE=DE•AB;证明:(1)∵∠BAC=2∠B,∠DAB=∠DAC,∴∠B=∠DAB,∵DF∥AB,∴∠ADF=∠BAD,∴∠FAD=∠FDA=∠B=∠BAD,∴△FAD∽△DAB,∴=,∴AD2=AF•AB.(2)∵∠B=∠DAB,∴DA=DB,∵∠E=∠C,∠CAD=∠B,∴△CAD≌△EBD,∴AC=BE,∵∠E=∠C,∠B=∠B,∴△EBD∽△CBA,∴=,∵BD=AD,AC=BE,∴AD•BE=DE•AB.【点评】本题考查相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形或全等三角形解决问题,属于中考常考题型.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.【分析】(1)根据三角形的中位线的性质和平行四边形的判定定理可证明.(2)当DP=CP时,四边形PMEN是菱形,P是AB的中点,所以可求出AP的值.(3)四边形PMEN是矩形的话,∠DPC必需为90°,判断一下△DPC是不是直角三角形就行.解:(1)∵M、N、E分别是PD、PC、CD的中点,∴ME是PC的中位线,NE是PD的中位线,∴ME∥PC,EN∥PD,∴四边形PMEN是平行四边形;(2)当AP=5时,在Rt△PAD和Rt△PBC中,,∴△PAD≌△PBC,∴PD=PC,∵M、N、E分别是PD、PC、CD的中点,∴NE=PM=PD,ME=PN=PC,∴PM=ME=EN=PN,∴四边形PMEN是菱形;(3)四边形PMEN可能是矩形.若四边形PMEN是矩形,则∠DPC=90°设PA=x,PB=10﹣x,DP=,CP=.DP2+CP2=DC216+x2+16+(10﹣x)2=102x2﹣10x+16=0x=2或x=8.故当AP=2或AP=8时,四边形PMEN是矩形.【点评】本题考查平行四边形的判定,菱形的判定定理,以及矩形的判定定理和性质,知道矩形的四个角都是直角,对边相等等性质.新人教版九年级(上)期中模拟数学试卷(答案)一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是()A. B. C. D.2.观察下列汽车标志,其中是中心对称图形的是()A. B.C. D.3.x=2不是下列哪一个方程的解()A. B. C. D.4.已知一元二次方程3x2-2x+a=0有实数根,则a的取值范围是()A. B. C. D.5.若一元二次方程x2=m有解,则m的取值为()A. 正数B. 非负数C. 一切实数D. 零6.函数y=(m+2)x+2x+1是二次函数,则m的值为()A. B. 0 C. 或1 D. 17.函数y=ax2与函数y=ax+a,在同一直角坐标系中的图象大致是图中的()A. B.C. D.8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A. 抛物线开口向上B. 抛物线的对称轴是C. 当时,y的最大值为4D. 抛物线与x轴的交点为,9.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 13B. 16C. 12或13D. 11或1610.如图,△ABC绕点O旋转180°得到△DEF,下列说法错误的是()A. 点B和点E关于点O对称B.C. △ ≌△D. △与△关于点B中心对称11.如图所示,△ABC绕着点A旋转能够与△ADE完全重合,则下列结论成立的有()①AE=AC;②∠EAC=∠BAD;⑧BC∥AD;④若连接BD,则△ABD为等腰三角形A. 1个B. 2个C. 3个D. 4个12.二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c>0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.已知一元二次方程2x2+x+m=0的一个根是1,则m的值是______.14.在直角坐标系中,点(-3,6)关于原点的对称点是______.15.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.16.若抛物线y=-x2-8x+c的顶点在x轴上,则c的取值是______.17.把二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位,得到的函数图象对应的解析式为______.18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=______度.三、计算题(本大题共2小题,共20.0分)19.已知抛物线y=ax2+bx-1的图象经过点(-1,2),其对称轴为x=-1.求抛物线的解析式.20.如图,A(-1,0)、B(2,-3)两点在一次函数y2=-x+m与二次函数y1=ax2+bx-3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y2>y1时,自变量x的取值范围.四、解答题(本大题共5小题,共46.0分)21.用适当的方法解下列方程(1)(y+3)2-81=0(2)2x(3-x)=4(x-3)(3)x2+10x+16=0(4)x2-x-=022.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?23.已知:关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.24.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.答案和解析1.【答案】C【解析】解:A、2x-y=1,是二元一次方程,故此选项错误;B、x+3xy+y2=2,是二元二次方程,故此选项错误;C、=,是一元二次方程,正确;D、x2+=3,含有分式,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握方程定义是解题关键.2.【答案】C【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.结合中心对称图形的概念求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A,当x=2时,方程的左边=3×(2-2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22-3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22-2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.把x=2分别代入各个方程的两边,根据方程的解的定义判断即可.本题考查的是一元二次方程的解的定义,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.4.【答案】A【解析】解:∵一元二次方程3x2-2x+a=0有实数根,∴△≥0,即22-4×3×a≥0,解得a≤.故选:A.根据△的意义得到△≥0,即22-4×3×a≥0,解不等式即可得a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】B【解析】解:当m≥0时,一元二次方程x2=m有解.故选:B.利用平方根的定义可确定m的范围.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6.【答案】D【解析】解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,解得:m=1.故选:D.直接利用二次函数的定义分析得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.7.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A、D错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:把(0,-3)代入y=x2-2x+c中得c=-3,。
天津市南开区九年级数学上学期期中模拟试卷
天津市南开区九年级数学上学期期中模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.方程x2﹣4x﹣12=0的解为()A.x1=2,x2=6 B.x1=2,x2=﹣6C.x1=﹣2,x2=6 D.x1=﹣2,x2=﹣62.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°)C.Q(3,600°)D.Q(3,﹣500°)3.用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2=B.(x+)2=C.(x﹣)2=0 D.(x﹣)2=4.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.45.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A .68°B .20°C .28°D .22°6.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是( ) A .①B .②C .③D .④7.如图,函数y=ax 2﹣2x+1和y=ax ﹣a (a 是常数,且a ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.如图,四边形ABCD 内接于⊙O ,已知∠BCE=70°,则∠A 的度数是( )A .110°B .70°C .55°D .35°9.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=﹣1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2﹣4ac >0;③ab <0;④a 2﹣ab+ac <0,其中正确的结论有( )个.A.1个B.2个C.3个D.4个10.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是()A.B.5C.D.311.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒B点P位于点C的位置,……,则第2017秒点P所在位置的坐标为()A.(,)B.()C.(0,﹣1)D.()12.二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≤0时,x<0或x>4;③函数解析式为y=﹣x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有()A.①②③④B.①②③C.②③④D.①③④二.填空题(共6小题,满分18分,每小题3分)13.直线与圆在同一平面上做相对运动时,其位置关系有种,它们分别是.14.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.15.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为.16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽m.17.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为.18.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是的中点,若扇形的半径为2,则图中阴影部分的面积等于.三.解答题(共7小题,满分66分)19.(8分)关于x的方程(k﹣1)x2﹣4x﹣1=0有两个不相等的实数根,求k的取值范围.20.(8分)已知一次函数y1=6x,二次函数y2=3x2+3,是否存在二次函数y3=x2+bx+c,其图象经过点(﹣4,1),且对于任意实数x的同一个值,这三个函数对应的函数值y1,y2,y3都有y1≤y2≤y3成立?若存在,求出函数y3的解析式;若不存在,请说明理由.21.(10分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.22.(10分)如图,点A、B、C均在⊙O上,过点C作⊙O的切线交AB的延长线于点D,∠ACB=45°,∠AOC=150°.(1)求证:CD=CB;(2)⊙O的半径为,求AC的长.23.(10分)某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?24.(10分)如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)25.(10分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:x2﹣4x﹣12=0,分解因式得:(x+2)(x﹣6)=0,可得x+2=0或x﹣6=0,解得:x1=﹣2,x2=6,故选:C.2.【解答】解:∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),故选:D.3.【解答】解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.故选:D.4.【解答】解:①∵a=﹣2<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选:C.5.【解答】解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.6.【解答】解:①不共线的三点确定一个圆,故①表述不正确;①在同圆或等圆中,相等的圆心角所对的弧相等,故②表述不正确;②平分弦(不是直径)的直径垂直于弦,故③表述不正确;⑤圆内接四边形对角互补,故④表述正确.故选:D.7.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.8.【解答】解:∵四边形ABCD内接于⊙O,∴∠A=∠BCE=70°,故选:B.9.【解答】解:∵抛物线的对称轴为直线x=﹣1,点B的坐标为(1,0),∴A(﹣3,0),∴AB=1﹣(﹣3)=4,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵抛物线开口向下,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∴ab>0,所以③错误;∵x=﹣1时,y<0,∴a﹣b+c<0,而a>0,∴a(a﹣b+c)<0,所以④正确.故选:C.10.【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′==5,∴MN最大=.故选:A.11.【解答】解:2017÷8=252…1,即第2017秒点P所在位置如图:过P作PM⊥x轴于M,则∠PMO=90°,∵OP=1,∠POM=45°,∴PM=OM=1×sin45°=,即此时P点的坐标是(,),故选:A.12.【解答】解:由图象得抛物线的对称轴为直线x=2,所以①正确;当y≤0时,x≤0或y≥4,所以②错误;抛物线经过点(0,0),(4,0),(2,4),所以抛物线解析式为y=ax(x﹣4),把(2,4)代入得a•2(2﹣4)=4,解得a=﹣1,则抛物线解析式为y=﹣x(x﹣4),即y=﹣x2+4x,所以③正确;当x≤0时,y随x的增大而增大,所以④正确.故选:D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:如图所示:当直线与圆没有公共点时,直线与圆相离,如直线a;当直线与圆有一个公共点A时,直线与圆相切,如直线b;当直线与圆有2个公共点B、C时,直线与圆相交,如直线c.故答案为:3,相离,相切,相交.14.【解答】解:根据关于原点对称的点的坐标的特点,∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故答案为:(﹣1,2).15.【解答】解:过B1作B1C⊥y轴于C,∵把△ABO绕点O逆时针旋转120°后得到△A1B1O,∴∠BOB1=120°,OB1=OB=,∵∠BOC=90°,∴∠COB1=30°,∴B1C=OB1=,OC=,∴B1(﹣,).故答案为:(﹣,).16.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,故答案为:4.17.【解答】解:分别过点M、N作x轴的垂线,过点A作AB⊥MN,连接AN 设⊙A的半径为r.则AN=OA=r,AB=2,∵AB⊥MN,∴BM=BN,∴BN=4﹣r;则在Rt△ABN中,根据勾股定理,得AB2+BN2=AN2,即:22+(4﹣r)2=r2,解得r=2.5,则N到y轴的距离为1,又∵点N在第三象限,∴N的坐标为(﹣1,﹣2);∴MN=3;故答案为:3.18.【解答】解:两扇形的面积和为: =2π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为:×2×2=2,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=2π﹣4.故答案为:2π﹣4.三.解答题(共7小题,满分66分)19.【解答】解:∵关于x的方程(k﹣1)x2﹣4x﹣1=0有两个不相等的实数根,∴,解得:k>﹣3且k≠1.20.【解答】解:不存在这样的实数.设该实数是a.则y1≤y2,即6a≤3a2+3,解得(a﹣1)2≥0,∴a是任意实数,且当a=1时取“=”;当a=1时,y=6,即点(1,6)满足y1≤y2≤y3,将点(1,6)代入二次函数y3=x2+bx+c,得6=1+b+c,①又∵二次函数y3=x2+bx+c,其图象经过点(﹣4,1),∴1=16﹣4b+c,②由①②解得,∴函数y3的解析式为:y=x2+4x+1;∴3a2+3≤a2+4a+1,解得,(a﹣1)2≤0,显而易见,这是错误的,所以点a不适合.所以,不存在这样的任意实数a,使y1≤y2≤y3成立.21.【解答】解:如图所示,△ABC为所求作22.【解答】证明:延长AO交⊙O于E点,连接CE∵AE是直径∴∠ACE=90°∵∠ACB=45°∴∠BCE=135°∵AO=OC=EO,∠AOC=150°∴∠OAC=∠OCA=15°,∠OEC=∠OCE=75°∵四边形ABCE是圆内接四边形∴∠EAB+∠ECB=180°,∠E+∠ABC=180°∴∠EAB=45°,∠ABC=105°,∴∠CAD=30°,∠CBD=75°∵CD是⊙O切线,∵∠OCA=15°,∠ACB=45°∴∠C BD=30°∵∠D+∠CBD+∠BCD=180°∴∠D=75°∴∠D=∠CBD∴CD=CB(2)连接OB,过点B作BF⊥AC于点F,∵OA=OB∴∠OAB=∠OBA=45°∴∠AOB=90°∴AB==2∵∠CAD=30°,BF⊥AC∴BF=1,AF=BF=∵∠ACB=45°,BF⊥AC∴∠ACB=∠CBF=45°∴CF=BF=1∴AC=+123.【解答】解:(1)由已知饲养场的长为57﹣2a﹣(a﹣1)+2=60﹣3a;故答案为:60﹣3a;(2)由(1)饲养场面积为a(60﹣3a)=288,解得a=12或a=8;当a=8时,60﹣3a=60﹣24=36>27,故a=8舍去,则a=12;(3)设饲养场面积为y,则y=a(60﹣3a)=﹣3a2+60a=﹣3(a﹣10)2+300,∵2<60﹣3a≤27,∴11≤a<,∴当a=11时,y最大=297.24.【解答】解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设AG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.25.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t, t2﹣t﹣1),E(t, t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。
九年级天津期中数学试卷【含答案】
九年级天津期中数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪个是增函数?()A. y = -x²B. y = x³C. y = 2-xD. y = 1/x3. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 19B. 20C. 21D. 225. 下列立体图形中,表面积最大的是()A. 正方体B. 球体C. 圆柱体D. 圆锥体二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在三角形中,若一个角的余弦值为0,则这个角是直角。
()8. 两个函数如果它们的图像关于y轴对称,则这两个函数互为反函数。
()9. 任何有理数都可以表示为有限小数或无限循环小数。
()10. 一元二次方程的判别式大于0时,方程有两个不相等的实数根。
()三、填空题(每题1分,共5分)11. 平行四边形的对边相等,所以若平行四边形的一边长为8cm,那么它的对边长为____cm。
12. 若一个等差数列的第5项是15,公差为3,则首项是____。
13. 函数y = 3x + 2的图像是一条____。
14. 在直角坐标系中,点(1, 2)到原点的距离是____。
15. 若一个圆的半径为r,则它的面积是____。
四、简答题(每题2分,共10分)16. 简述勾股定理的内容。
17. 什么是等差数列?给出一个等差数列的例子。
18. 什么是函数的单调性?举例说明。
19. 如何计算一个三角形的面积?20. 简述一元二次方程的求根公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,若长方形的周长是24cm,求长方形的长和宽。
【初三数学】天津市九年级数学上期中考试测试卷(含答案解析)
新九年级(上)数学期中考试题(答案)一、选择题(每小题4分,共30分)1.下列二次根式中,最简二次根式为()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数中不含能开得尽方的因数或因式,故B正确;C、被开方数中含能开得尽方的因数或因式,故C错误;D、被开方数中含能开得尽方的因数或因式,故D错误;故选:B.【点评】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.被开方数不含分母;被开方数中不含能开得尽方的因数或因式.2.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=【分析】根据等式的性质,可得答案.解:A、两边都除以2y,得=,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得=,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选:A.【点评】本题考查了等式的性质,利用等式的性质是解题关键.3.下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【分析】根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.【点评】本题主要考查了相似三角形的判定与网格结构的知识,根据网格结构分别求出各三角形的三条边的长,并求出三边之比是解题的关键.5.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】首先求出一元二次方程x2﹣4x+5=0根的判别式,然后结合选项进行判断即可.解:∵一元二次方程x2﹣4x+5=0,∴△=(﹣4)2﹣4×5=16﹣20=﹣4<0,即△<0,∴一元二次方程x2﹣4x+5=0无实数根,故选:A.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,此题难度不大.6.用配方法解方程x2﹣2x﹣8=0,下列配方结果正确的是()A.(x+1)2=9B.(x+1)2=7C.(x﹣1)2=9D.(x﹣1)2=7【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边写成完全平方的形式即可.解:x2﹣2x=8,x2﹣2x+1=9,(x﹣1)2=9.故选:C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.如果代数式+有意义,那么直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知a、b的取值范围,再根据直角坐标系内各象限点的特征确定所在象限.解:∵代数式+有意义,∴a≥0且ab>0,解得a>0且b>0.∴直角坐标系中点A(a,b)的位置在第一象限.故选:A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.同时考查了直角坐标系内各象限点的特征.8.如图,在△ABC中,AB=12,AC=13,sin B=,则边BC的长为()A.7B.8C.12D.17【分析】过点A作AD⊥BC,垂足为D.在Rt△ABD中,利用锐角三角函数求出AD的长,利用勾股定理再分别求出BD和CD的长即得结果.解:过点A作AD⊥BC,垂足为D.∵sin B=,即=,∴AD=12.在Rt△ABD中,BD==12.在Rt△ACD中,CD===5.∴BC=BD+CD=12+5=17.故选:D.【点评】本题考查了解直角三角形,题目难度不大.构造直角三角形,充分利用∠B的正弦、AB、AC的长是解决本题的关键.9.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:9【分析】本题主要考查了位似变换的定义及作图,位似变换就是特殊的相似,且位似图形上任意一对对应点到位似中心的距离之比等于相似比,因而周长的比等于相似比,面积的比等于相似比的平方.解:∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选:B.【点评】本题主要考查了位似的定义及性质:周长的比等于相似比,面积的比等于相似比的平方.10.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A .﹣3B .﹣4C .﹣D .﹣2【分析】过A 作AE ⊥x 轴,过B 作BF ⊥x 轴,由OA 与OB 垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF 中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF 与三角形OEA 相似,在直角三角形AOB 中,由锐角三角函数定义,根据cos ∠BAO 的值,设出AB 与OA ,利用勾股定理表示出OB ,求出OB 与OA 的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A 在反比例函数y =上,利用反比例函数比例系数的几何意义求出三角形AOE 的面积,进而确定出BOF 的面积,再利用k 的集合意义即可求出k 的值.解:过A 作AE ⊥x 轴,过B 作BF ⊥x 轴,∵OA ⊥OB ,∴∠AOB =90°,∴∠BOF +∠EOA =90°,∵∠BOF +∠FBO =90°,∴∠EOA =∠FBO ,∵∠BFO =∠OEA =90°,∴△BFO ∽△OEA ,在Rt △AOB 中,cos ∠BAO ==, 设AB =,则OA =1,根据勾股定理得:BO =, ∴OB :OA =:1, ∴S △BFO :S △OEA =2:1,∵A 在反比例函数y =上,∴S △OEA =1,∴S △BFO =2,则k =﹣4.故选:B .【点评】此题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.二、填空题(每题4分,共24分)11.在Rt△ABC中,sin A=,则∠A等于30°.【分析】根据sin30°=解答.解:在Rt△ABC中,sin A=,∴∠A=30°,故答案为:30.【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.12.某服装原价为100元,连续两次涨价a%,售价为121元,则a的值为10.【分析】根据该服装的原价及经两次涨价后的价格,即可得出关于a的一元二次方程,解之取其正值即可得出结论.解:根据题意得:100(1+a%)2=121,解得:a1=10,a2=﹣210(舍去).故答案为:10.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则OD:OB=1:2.【分析】依据BD,CE分别是边AC,AB上的中线,可得DE是△ABC的中位线,即可得到DE∥BC,DE=BC,再根据△DOE∽△BOC,即可得到OD:OB的值.解:∵BD,CE分别是边AC,AB上的中线,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△DOE∽△BOC,∴==,故答案为:1:2.【点评】本题主要考查了三角形的重心,三角形中位线定理以及相似三角形的性质的运用,解题时注意:相似三角形的对应边成比例.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:0【点评】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.16.如图,点B、C是线段AD上的点,△ABE、△BCF、△CDG都是等边三角形,且AB=4,BC=6,已知△ABE与△CDG的相似比为2:5.则①CD=10;②图中阴影部分面积为.【分析】①利用相似三角形对应边成比例列式计算即可得解;②设AG与CF、BF分别相交于点M、N,根据等边对等角求出∠CAG=∠CGA,再利用三角形的一个外角等于与它不相邻的两个内角的和求出∠CGA=30°,然后求出AG⊥GD,再根据相似三角形对应边成比例求出CM,从而得到MF,然后求出MN,再利用三角形的面积公式列式计算即可得解.①解:∵△ABE、△CDG都是等边三角形,∴△ABE∽△CDG,∴=,即=,解得CD=10;②解:如图,设AG与CF、BF分别相交于点M、N,∵AC=AB+BC=4+6=10,∴AC=CG,∴∠CAG=∠CGA,又∵∠CAG+∠CGA=∠DCG=60°,∴∠CGA=30°,∴∠AGD=∠CGA+∠CGD=30°+60°=90°,∴AG⊥GD,∵∠BCF=∠D=60°,∴CF∥DG,∴△ACM∽△ADG,∴MN⊥CF,=,即=,解得CM=5,所以,MF=CF﹣CM=6﹣5=1,∵∠F=60°,∴MN=MF=,=MF•MN=×1×=,∴S△MNF即阴影部分面积为.故答案为:10;.【点评】本题考查了相似三角线的判定与性质等边三角形的性质,主要利用了相似三角形对应边成比例的性质,难点在于②判断出直角三角形.三、解答题(共86分)17.(8分)计算:÷+×﹣tan60°【分析】先利用二次根式的乘除法则和特殊角的三角函数值进行计算,然后合并即可.解:原式=+﹣×=4+﹣=4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(1)(x﹣3)2﹣49=0(2)5x2+2x﹣1=0【分析】(1)先变形为(x﹣3)2=49,然后利用直接开平方法解方程;(2)利用求根公式法解方程.解:(1)(x﹣3)2=49,x﹣3=±7,所以x1=10,x2=﹣4;(2)△=22﹣5×5×(﹣1)=29,x=所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.也考查了直接开平方法解一元二次方程.19.(8分)如图,在6×8的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′与△ABC位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)(2)若点C坐标为(2,4),则点A'的坐标为(﹣1,0),点C′的坐标为(1,2),周长比C△A′B′C′:C△ABC=1:2.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形得出对应点坐标.解:(1)如图所示:△A′B′C′即为所求;(2)若点C坐标为(2,4),则点A'的坐标为(﹣1,0),点C′的坐标为(1,2),周长比C△A′B′C′:C△ABC=1:2.故答案为:(﹣1,0),(1,2),1:2.【点评】此题主要考查了位似变换,正确得出对应点位置是解题关键.20.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.(9分)如图,小王在长江边某瞭望台D处测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为多少米?(结果精确到0.1,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i=,可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP=,结合AB=AP﹣BQ﹣PQ 可得答案.解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2(米),CQ=PE,∵i=,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8(米),BQ=6(米),∴DP=DE+PE=11(米),在Rt△ADP中,∵AP=≈13.1(米),∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1(米).【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.22.(10分)已知:如图,在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S=5,BC=10,求DE的长.△FCD【分析】(1)利用D是BC边上的中点,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定,就可以证明题目结论;(2)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式就求出了DE的长.(1)证明:∵AD=AC,∴∠ADC=∠ACD.∵D是BC边上的中点,DE⊥BC,∴EB=EC,∴∠EBC=∠ECB.∴△ABC∽△FCD;(2)解:过A作AM⊥CD,垂足为M.∵△ABC∽△FCD,BC=2CD,∴=.=5,∵S△FCD∴S=20.△ABC又∵S=×BC×AM,BC=10,△ABC∴AM=4.又DM=CM=CD,DE∥AM,∴DE:AM=BD:BM=,∴DE=.【点评】此题主要考查了相似三角形的性质与判定,也利用了三角形的面积公式求线段的长.23.(9分)已知在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实根,且3c=a+3b(1)试判断△ABC的形状;(2)求sin A+sin B的值.【分析】(1)先把方程整理为一般式,再根据判别式的意义得到△=4b2﹣4(c﹣a)(a+c)=0,则a2+b2=c2,然后根据勾股定理的逆定理判断三角形形状;(2)由于a2+b2=c2,3c=a+3b,消去a得(3c﹣3b)2+b2=c2,变形为(4c﹣5b)(c﹣b)=0,则b=c,a=c,根据正弦的定义得sin A=,sin B=,所以sin A+sin B=,然后把b=c,a=c代入计算即可.解:(1)方程整理为(c﹣a)x2+2bx+a+c=0,根据题意得△=4b2﹣4(c﹣a)(a+c)=0,∴a2+b2=c2,∴△ABC为直角三角形;(2)∵a2+b2=c2,3c=a+3b∴(3c﹣3b)2+b2=c2,∴(4c﹣5b)(c﹣b)=0,∴4c=5b,即b=c,∴a=3c﹣3b=c∵sin A=,sin B=,∴sin A+sin B===.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了勾股定理的逆定理和锐角三角函数的定义.24.(12分)综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.【分析】(1)根据全等三角形的判定和性质得出AD=CE=3,BE=DC=2,进而利用勾股定理解答即可;(2)过点E作横线的垂线,交l1,l2于点M,N,根据相似三角形的判定和性质解答即可;(3)利用梯形的面积公式解答即可.解:(1)如图1,∵∠DAC+∠ACD=90°,∠ACD+∠ECB=90°,∴∠DAC=∠ECB,在△ADC与△BCE中,,∴△ADC≌△BCE,∴AD=CE=3,BE=DC=2,∴,∴AB==;故答案为:(2)过点E作横线的垂线,交l1,l2于点M,N,∴∠DME=∠EDF=90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF,∴,∵EF=2DE,∴,∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,,(3)根据(2)可得:,即,解得:EG=2.5.【点评】此题考查三角形综合题,关键是根据全等三角形的判定和性质、相似三角形的判定和性质进行解答.25.(14分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.先推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,∠DCE=∠EDC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①先表示出DN,BM,再判断出△BMD∽△DNE,即可得出结论;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:∵OA=2,OC=2,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2,0),∴直线AC的解析式为y=﹣x+2,设D(a,﹣a+2),∴DN=﹣a+2,BM=2﹣a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD∽△DNE,∴==.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,学会构建二次函数解决问题,属于中考压轴题.新九年级(上)数学期中考试题(答案)一、选择题(每小题4分,共30分)1.下列二次根式中,最简二次根式为()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数中不含能开得尽方的因数或因式,故B正确;C、被开方数中含能开得尽方的因数或因式,故C错误;D、被开方数中含能开得尽方的因数或因式,故D错误;故选:B.【点评】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.被开方数不含分母;被开方数中不含能开得尽方的因数或因式.2.已知2x=3y(y≠0),则下面结论成立的是()A.=B.=C.=D.=【分析】根据等式的性质,可得答案.解:A、两边都除以2y,得=,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得=,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选:A.【点评】本题考查了等式的性质,利用等式的性质是解题关键.3.下列事件中,是必然事件的是()A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.掷一枚质地均匀的硬币,一定正面向上【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:A、将油滴入水中,油会浮在水面上是必然事件,故A符合题意;B、车辆随机到达一个路口,遇到红灯是随机事件,故B不符合题意;C、如果a2=b2,那么a=b是随机事件,D、掷一枚质地均匀的硬币,一定正面向上是随机事件,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【分析】根据勾股定理求出△ABC的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.【点评】本题主要考查了相似三角形的判定与网格结构的知识,根据网格结构分别求出各三角形的三条边的长,并求出三边之比是解题的关键.5.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】首先求出一元二次方程x2﹣4x+5=0根的判别式,然后结合选项进行判断即可.解:∵一元二次方程x2﹣4x+5=0,∴△=(﹣4)2﹣4×5=16﹣20=﹣4<0,即△<0,∴一元二次方程x2﹣4x+5=0无实数根,故选:A.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,此题难度不大.6.用配方法解方程x2﹣2x﹣8=0,下列配方结果正确的是()A.(x+1)2=9B.(x+1)2=7C.(x﹣1)2=9D.(x﹣1)2=7【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边写成完全平方的形式即可.解:x2﹣2x=8,x2﹣2x+1=9,(x﹣1)2=9.故选:C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.如果代数式+有意义,那么直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知a、b的取值范围,再根据直角坐标系内各象限点的特征确定所在象限.解:∵代数式+有意义,∴a≥0且ab>0,解得a>0且b>0.∴直角坐标系中点A(a,b)的位置在第一象限.故选:A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.同时考查了直角坐标系内各象限点的特征.8.如图,在△ABC中,AB=12,AC=13,sin B=,则边BC的长为()A.7B.8C.12D.17【分析】过点A作AD⊥BC,垂足为D.在Rt△ABD中,利用锐角三角函数求出AD的长,利用勾股定理再分别求出BD和CD的长即得结果.解:过点A作AD⊥BC,垂足为D.∵sin B=,即=,∴AD=12.在Rt△ABD中,BD==12.在Rt△ACD中,CD===5.∴BC=BD+CD=12+5=17.故选:D.【点评】本题考查了解直角三角形,题目难度不大.构造直角三角形,充分利用∠B的正弦、AB、AC的长是解决本题的关键.9.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:9【分析】本题主要考查了位似变换的定义及作图,位似变换就是特殊的相似,且位似图形上任意一对对应点到位似中心的距离之比等于相似比,因而周长的比等于相似比,面积的比等于相似比的平方.解:∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选:B.【点评】本题主要考查了位似的定义及性质:周长的比等于相似比,面积的比等于相似比的平方.10.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A.﹣3B.﹣4C.﹣D.﹣2【分析】过A作AE⊥x轴,过B作BF⊥x轴,由OA与OB垂直,再利用邻补角定义得到一对角互余,再由直角三角形BOF中的两锐角互余,利用同角的余角相等得到一对角相等,又一对直角相等,利用两对对应角相等的三角形相似得到三角形BOF与三角形OEA相似,在直角三角形AOB中,由锐角三角函数定义,根据cos∠BAO的值,设出AB与OA,利用勾股定理表示出OB,求出OB与OA的比值,即为相似比,根据面积之比等于相似比的平方,求出两三角形面积之比,由A在反比例函数y=上,利用反比例函数比例系数的几何意义求出三角形AOE的面积,进而确定出BOF的面积,再利用k的集合意义即可求出k的值.解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,。
2016 2017天津市南开区九年级上期中数学试卷 优质
2016-2017学年天津市南开区九年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目的要求的.1.(3分)一元二次方程x(x+5)=0的根是()﹣x=D.x=0C﹣5 .x=0,x,= =0A.x,x=5B.x=0,x=212111222.(3分)下列四个图形中属于中心对称图形的是().CAD.B..23.(3分)已知二次函数y=3x+c与正比例函数y=4x的图象只有一个交点,则c的值为().C.3DA..B424.(3分)抛物线y=﹣3x+12x﹣7的顶点坐标为()A.(2,5)B.(2,﹣19)C.(﹣2,5)D.(﹣2,﹣43)25.(3分)由二次函数y=2(x﹣3)+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1 D.当x<3时,y随x的增大而减小6.(3分)如图中∠BOD的度数是()°55°°D.125 B.°C.110A.150,0,若C(CB,与y轴交于点、Dx37.(分)如图,点E在y轴上,⊙E与轴交于点A、)),﹣1,则线段AB的长度为(9),D(0A.3 B.4 C.6 D.88.(3分)如图,AB是圆O的直径,C、D是圆O上的点,且OC∥BD,AD分别与BC、OC 相交于点E、F.则下列结论:①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.)其中一定成立的是(.A.①③⑤B.②③④C.②④⑤D.①③④⑤9.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步10.(3分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°11.(3分)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()..CAD.B.12.(3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运22)的函数关系可用图象表示t)与(scms)(的面积为,△st动时间为()OEFscm,则(为().AB..D .C二.填空题:本大题共6小题,每小题3分,共18分,请将答案直接天灾答题纸中对应横线上. 13.(3分)点P(2,﹣1)关于原点的对称点坐标为P′(m,1),则m.14.(3分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.215.(3分)关于x的二次函数y=x﹣kx+k﹣2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数的表达式:.2,1对称轴为直线x=﹣1,0),Ay=ax(3分)如图,抛物线+bx+c与x轴的一个交点是(16.2. +bx+c=0的解是则一元二次方程ax17.(3分)某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出x个小分支,则可得方程为.18.(3分)如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E、F分别是AC、BC的中点,直线EF与⊙O交于点G、H.若⊙O的半径为2,则GE+FH的最大值为.三.解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)按要求解一元二次方程:(1)x(x+4)=8x+12(适当方法)2(2)3x﹣6x+2=0(配方法)20.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.21.(10分)如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的度数;CD=4,AE=2,求圆)若O的半径.(222.(10分)如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC 的垂线,垂足为E.证明:(1)BD=DC;(2)DE是⊙O切线.23.(10分)如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计).)要使鸡场面积最大,鸡场的长度应为多少米?1(.(2)如果中间有n(n是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,要使鸡场面积最大,鸡场长度与中间隔离墙的道数有怎样的关系?24.(10分)如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.25.(10分)如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;=SS,使得、x轴于DE两点,在抛物线上是否存在点P)中的抛物线交)设((32PDE△?若存在,请求出点P的坐标;若不存在,请说明理由.ABC△2016-2017学年天津市南开区九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目的要求的.1.(3分)(2016秋?南开区期中)一元二次方程x(x+5)=0的根是()﹣,x== D.x.x=0,x=﹣5 Cx=0,x=0,A.x=0x=5B.21112122【分析】利用分解因式法即可求解.【解答】解:∵x(x+5)=0,∴x=0或x+5=0,解得:x=0,x=﹣5,21故选:B.【点评】此题主要考查了利用因式分解的方法解一元二次方程,解题的关键是熟练进行分解因式.2.(3分)(2016秋?南开区期中)下列四个图形中属于中心对称图形的是().D .. B .AC【分析】根据中心对称图形的定义即可作出判断.【解答】解:A、是中心对称图形,故选项正确;B、不是中心对称图形,故选项错误;C、不是中心对称图形,故选项错误;D、不是中心对称图形,故选项错误.故选:A.【点评】本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.2的图象只有一与正比例函数y=4x南开区期中)已知二次函数y=3x+c33.(分)(2016秋?)c的值为(个交点,则 4.3D.C.AB.22由,消去y得到3x﹣4x+c=0,因为二次函数y=3x【分析】+c与正比例函数y=4x的图象只有一个交点,所以△=0,列出方程即可解决问题.,解:由【解答】.2,4x+c=0消去y得到3x﹣2的图象只有一个交点,与正比例函数y=4x∵二次函数y=3x+c ,∴△=0 ,﹣12c=0∴16.c=∴A故选本题考查二次函数性质,二元二次方程组,根的判别式等知识,解题的关键是学会【点评】的思想思考问题,所以中考常考题型.元转化2)﹣7的顶点坐标为(2016秋?南开区期中)抛物线y=﹣3x+12x4.(3分)()(﹣2,﹣43(﹣2,5)D..(2,5)B.(2,﹣19)C.A 把抛物线解析式化为顶点式即可求得答案.【分析】解:【解答】22,)+57=﹣3(x﹣2∵y=﹣3x+12x﹣,,5)∴顶点坐标为(2 .故选Ax即在y=a(本题主要考查二次函数的性质,【点评】掌握二次函数的顶点式是解题的关键,2 k).k 中,对称轴为x=h,顶点坐标为(h,﹣h)+2)+1可知(南开区期中)由二次函数(2016秋?y=2(x﹣3).5(3分)3 ﹣A.其图象的开口向下B.其图象的对称轴为x= x时,y随的增大而减小C.其最大值为1 D.当x<3 【分析】根据二次函数的解析式进行逐项判断即可.【解答】解:2 1,+∵y=2(x﹣3)),∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1 的增大而减小,<3时,y随xx∴函数有最小值1,当.故选Dx即在【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,y=a(2.k)k﹣h)+中,对称轴为x=h,顶点坐标为(h,秋?南开区期中)如图中∠BOD的度数是()分)6.(3(2016°°D.55 C.150 B125°.110°.A CED∠即可解决问题.COD=2BACBOC=2OC 【分析】连接根据∠∠,∠.OC解:如图,连接【解答】.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【点评】本题考查圆周角定理,解题的关键是学会添加常用辅助线,属于中考常考题型.7.(3分)(2015秋?玄武区期末)如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,9),D(0,﹣1),则线段AB的长度为()A.3B.4C.6D.8EB=ED=CD=5,OE=4,,OC=9,∴CD=10,得出OD=1【分析】连接EB,由题意得出AO=BO=AB,由勾股定理求出OB由垂径定理得出,即可得出结果.【解答】解:连接EB,如图所示:∵C(0,9),D(0,﹣1),∴OD=1,OC=9,∴CD=10,EB=ED=CD=5,OE=5∴﹣1=4,∵AB⊥CD,==3,AO=BO=AB,OB= ∴;AB=2OB=6∴故选:.C【点评】本题考查了垂径定理、坐标与图形性质、勾股定理;熟练掌握垂径定理,由勾股定理求出OB是解决问题的关键.8.(3分)(2016秋?南开区期中)如图,AB是圆O的直径,C、D是圆O上的点,且OC∥BD,AD分别与BC、OC相交于点E、F.则下列结论:①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立的是()A.①③⑤B.②③④C.②④⑤D.①③④⑤【分析】①由直径所对圆周角是直角进行判断;②根据圆周角定理进行判断;③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论.【解答】解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,正确②∠AOC=2∠ABC,错误;③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,正确的有①③④⑤,故选D.【点评】本题主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.9.(3分)(2016?德州)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.解:根据勾股定理得:斜边为=17,【解答】=3(步),即直径为则该直角三角形能容纳的圆形(内切圆)半径6r=步,故选C【点评】此题考查了三角形的内切圆与内心,Rt△ABC,三边长为a,b,c(斜边),其内r=.切圆半径10.(3分)(2015?德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.【点评】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.11.(3分)(2016秋?南开区期中)以半径为2的圆的内接正三角形、正方形、正六边形的)边心距为三边作三角形,则该三角形的面积是(..DC A.. B .【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,=;°∴OE=2×sin45 3,如图∵OA=2,=,×cos30°∴OD=2,,,则该三角形的三边分别为:1222(),)∵(1+)(= ∴该三角形是直角边,=×,×1∴该三角形的面积是×故选:D.【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.12.(3分)(2013?临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止22运动,设运动时间为t(s),△OEF的面积为s(cm),则s(cm)与t(s)的函数关系可用图象表示为().B.A.CD.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S=S,这样S=S=16,于是S=S﹣S OECFOCFOECFOBCOBE△△四边形△四边形△2S=(t﹣4)+8(0≤t≤8),最后利用解析式和二次,然后配方得到=16t﹣(8﹣)?t CEF函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S=S ,OCFOBE△△.2 =16,=×∴S=S8OBCOECF△四边形22),(0≤t≤4t+816=(t﹣4)+﹣∴S=SS=168﹣(8﹣t)?﹣t=t CEFOECF△四边形2.0≤t≤8cm)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为∴s(.故选:B先根据几何性质得到与动点有关的两变量之间的本题考查了动点问题的函数图象:【点评】函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.分,请将答案直接天灾答题纸中对应横线6小题,每小题3分,共18二.填空题:本大题共上.,m,1))关于原点的对称点坐标为南开区期中)点P(2,﹣1P′(13.(3分)(2016秋?﹣2.则m=【分析】根据两个点关于原点对称时,它们的坐标符号相反可直接得到答案.,1)m2,﹣1)关于原点的对称点坐标为P′(,【解答】解:∵点P(,﹣2∴m= .故答案为:﹣2 此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.【点评】绕坐,将OAAxOy中,已知点(3,4)14.(3分)(2014?邵阳)如图,在平面直角坐标系.(﹣4,3)′标原点O逆时针旋转90°至OA,则点A′的坐标是【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3)..)3,4(﹣故答案为:【点评】本题考查了坐标与图形变化﹣旋转,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点.2轴的交点y2的图象与﹣kx+k﹣3分)(2014秋?丰台区期末)关于x的二次函数y=x15.(2.答案不唯一y=x﹣3x+1在x轴的上方,请写出一个满足条件的二次函数的表达式:,据此求解.轴的上方即常数项大于0与y轴的交点在x【分析】2 x轴的上方,2的图象与y 轴的交点在x的二次函数y=x﹣kx+k﹣【解答】解:∵关于,﹣2>0∴k ,解得:k>22答案不唯一.﹣3x+1∴答案为:y=x轴的上方即常数x本题考查了二次函数的性质,解题的关键是了解与y轴的交点在【点评】.项大于02,,0)与x轴的一个交点是A(1抛物线(3分)(2016秋?南开区期中)如图,y=ax+bx+c16.2.,x=﹣3=1x=﹣1,则一元二次方程ax+bx+c=0的解是x对称轴为直线212轴的一个交xc与直接利用抛物线的对称性以及结合对称轴以及抛物线【分析】y=ax+bx+轴的交点,进而得出答案.,得出另一个与x(1,0)点是A2,,对称轴为直线x=﹣11与x轴的一个交点是A(,0)bx【解答】解:∵抛物线y=ax++c2,,0)c+bx+与x轴的另一个交点是(﹣3∴抛物线y=ax2﹣3.的解是:x=1,x=c=0∴一元二次方程ax+bx+21 3.=1x,x=﹣故答案为:21轴的交点坐标是解题关正确得出抛物线与x【点评】此题主要考查了抛物线与x轴的交点,键.南开区期中)某种植物的主干长出若干数目的支干又长出同样数目的?(2016秋317.(分).设每个支干长出x个小分支,则可得方程为小分支,主干、支干和小分支的总数是912.+xx+1=912个xx个小分支,每个小分支又长出x个分支,则又长出【分析】由题意设每个支干长出2 1个分支,即可列方程.x分支,则共有x++个小分支,【解答】解:设每个支干长出x2.1=91+x+x根据题意列方程得:2 1=91.x+x+故答案为支干、小【点评】此题考查了由实际问题抽象出一元二次方程,要根据题意分别表示主干、分支的数目,找到关键描述语,找到等量关系是解决问题的关键.,ACB=45°是⊙O上一动点且∠O?玄武区期末)如图,AB是⊙的一条弦,C18.(3分)(2015秋FHGE+的半径为2,则交于点G、H.若⊙O的中点,直线E、F分别是AC、BCEF与⊙O.4﹣的最大值为【分析】接OA,OB,根据圆周角定理可得出∠AOB=90°,故△AOB是等腰直角三角形.由分别是AC、BC的中点,根据三角形中位线定理得出、FEF=AB=点E为定值,则GE+FH=GH﹣EF=GH﹣,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值,问题得解.【解答】解:连接OA,OB,∵∠ACB=45°,∴∠AOB=90°.∵OA=OB,∴△AOB是等腰直角三角形,∴AB=2,当GH为⊙O的直径时,GE+FH有最大值.∵点E、F分别为AC、BC的中点,∴EF=AB=,,∴GE+FH=GH﹣EF=4﹣故答案为:4﹣.【点评】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.三.解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)(2016秋?南开区期中)按要求解一元二次方程:(1)x(x+4)=8x+12(适当方法)2(配方法)2=0+6x﹣3x)2(.【分析】(1)整理成一般式后利用因式分解法求解可得;(2)配方法求解即可.2【解答】解:(1)原方程整理可得:x﹣4x﹣12=0,因式分解可得(x+2)(x﹣6)=0,∴x+2=0或x﹣6=0,解得:x=﹣2或x=6;2 2=0,﹣6x+2()3x2 2,﹣6x=﹣3x2 2x=,﹣x﹣22 x﹣,即(﹣1)x﹣2x+1=1=±,x﹣1=∴x=1,±∴==,x∴x.21【点评】本题主要考查解一元二次方程的能力,不同的方程选择适合的方法求解是解题的关键.20.(8分)(2007?上海)在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.【分析】(1)有顶点就用顶点式来求二次函数的解析式;(2)由于是向右平移,可让二次函数的y的值为0,得到相应的两个x值,算出负值相对于原点的距离,而后让较大的值也加上距离即可.【解答】解:(1)∵二次函数图象的顶点为A(1,﹣4),2,﹣4(y=ax﹣1)∴设二次函数解析式为)代入二次函数解析式,得:,0把点B(3 a=1,0=4a ﹣4,解得22;2x﹣3)1﹣4,即y=x﹣(∴二次函数解析式为y=x﹣2 1.==3﹣2x3=0,解方程,得x,x﹣﹣,得)令(2y=0x21,)0,1)和(﹣0,3轴的两个交点坐标分别为(x∴二次函数图象与∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).【点评】考查用待定系数法来求函数解析式、坐标系里点的平移的特点.21.(10分)(2016秋?南开区期中)如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的度数;CD=4,AE=2,求圆)若O的半径.(2【分析】(1)首先求出∠ADE的度数,再根据圆周角定理求出∠AOC的度数,最后求出∠OCE 的度数;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.【解答】解:(1)∵CD⊥AB,∠A=48°,∴∠ADE=42°.∴∠AOC=2∠ADE=84°,∴∠OCE=90°﹣84°=6°;=2,4CE= CE=×是圆2)解:因为ABO的直径,且CD⊥AB于点E,所以(222在Rt△OCE中,OC=CE+OE,2222)+(r﹣22﹣,所以r=(),r设圆O的半径为,则OC=r,OE=OA﹣AE=r解得:r=3.所以圆O的半径为3.【点评】此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.22.(10分)(2011?桂林模拟)如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:(1)BD=DC;(2)DE是⊙O切线.【分析】(1)连接AD,由于AB是直径,那么∠ADB=90°,而AB=AC,根据等腰三角形三线合一定理可知BD=CD;(2)连接OD,由于∠BAC=2∠BAD,∠BOD=2∠BAD,那么∠BAC=∠BOD,可得OD∥AC,而DE⊥AC,易证∠ODB=90°,从而可证DE是⊙O切线.证明:如右图所示,【解答】.(1)连接AD,∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD;(2)连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODB=∠AED=90°,∴DE是⊙O的切线.【点评】本题考查了等腰三角形三线合一定理、平行线的判定和性质、圆周角定理、切线的判定.解题的关键是连接OD、AD,并证明OD∥AC.23.(10分)(2016秋?南开区期中)如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计).(1)要使鸡场面积最大,鸡场的长度应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,要使鸡场面积最大,鸡场长度与中间隔离墙的道数有怎样的关系?【分析】(1)根据题意可以得到鸡场的面积与鸡场的长度的函数关系式,从而可以解答本题;(2)根据题意可以求得当中间有n(n是大于1的整数)道篱笆墙,鸡场的最大面积,从而可以解答本题.【解答】解:(1)设鸡场的面积为y平方米,=,﹣y=x=()∴x=25时,鸡场的面积最大,即要使鸡场面积最大,鸡场的长度应为25米;平方米,y)设鸡场的面积为2(.=,﹣()= y=x∴x=25时,鸡场的面积最大,即要使鸡场面积最大,鸡场的长度应为25米;由(1)(2)可知,无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25m.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.24.(10分)(2016秋?南开区期中)如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.【分析】(1)可通过全等三角形来得出简单的线段相等,证明AN=BM,只要求出三角形ACN 和MCB全等即可,这两个三角形中,已知的条件有AC=MC,NC=CB,只要证明这两组对应边的夹角相等即可,我们发现∠ACN和∠MCB都是等边三角形的外角,因此它们都是120°,这样就能得出两三角形全等了.也就证出了AN=BM.(2)我们不难发现∠ECF=180﹣60﹣60=60°,因此只要我们再证得两条边相等即可得出三角形ECF是等边三角形,可从EC,CF入手,由(1)的全等三角形我们知道,∠MAC=∠BMC,又知道了AC=MC,∠MCF=∠ACE=60°,那么此时三角形AEC≌三角形MCF,可得出CF=CE,于是我们再根据∠ECF=60°,便可得出三角形ECF是等边三角形的结论.(3)判定结论1是否正确,也是通过证明三角形ACN和BCM来求得.这两个三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此两三角形就全等,AN=BM,结论1正确.如图,当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形.【解答】证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,在△CAN和△MCB中,,∴△CAN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△MCB,∴∠CAN=∠CMB,,°=60°60﹣°60﹣°NCB=180﹣∠ACM﹣∠°MCF=180又∵∠.∴∠MCF=∠ACE,在△CAE和△CMF中,,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.(3)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB(SAS),∴AN=MB.当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,即结论1成立,结论2不成立.【点评】本题主要考查了等边三角形的性质,全等三角形的性质和判定等知识点,利用全等三角形来得出角和边相等是解题的关键.25.(10分)(2016秋?南开区期中)如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;=S,使得E两点,在抛物线上是否存在点PS、轴于)中的抛物线交)设((32xD PDE△的坐标;若不存在,请说明理由.P?若存在,请求出点ABC△.【分析】(1)利用待定系数法可求出直线AB的解析式;(2)先利用勾股定理计算出AB=10,再根据圆周角定理得到AB为⊙M的直径,则点M为AB 的中点,M(﹣4,﹣3),则可确定C(﹣4,2),然后利用顶点式求出抛物线解析式;2S+S=S2,0),利用得到D(﹣6,0),E(3(﹣)通过解方程﹣(x+4)+2=0ACMABC△△22?|20=|,﹣t﹣4t﹣6﹣t﹣4t﹣6),(所以?﹣2+6)P,可求出S=10,设(t,?ABCBCM△△然后解绝对值方程求出t即可得到P点坐标.【解答】解:(1)设直线AB的函数解析式为y=kx+b,,解得,6 )代入得0),B(0,﹣把A(﹣8,﹣x﹣6;所以直线AB的解析式为y=AB==10中,,(2)在Rt△AOB∵∠AOB=90°,∴AB为⊙M的直径,∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),2设抛物线的解析式为y=a(x+4)+2,﹣,6,解得a=+0,﹣6)代入得16a2=﹣把B(22﹣6y=;﹣x﹣4x∴抛物线的解析式为y=+﹣(x4)+2,即3)存在.(2﹣4,=x+2=0,解得=﹣2,x)当y=0(时,﹣x+421,,E (﹣20),6∴D(﹣,0),CM=20S=SS+=?8?BCMABCACM△△△2,)6﹣4t﹣t,﹣t(P设=SS,∵ABCPDE△△2=?20,4t﹣6|?(﹣2+6)?|t﹣﹣∴2,|=1即|6﹣t﹣4t﹣2 +,1点坐标为(﹣4=﹣﹣﹣当﹣t4t﹣6=1,解得t=44+)或(﹣﹣,此时P,t210,4)﹣2+,﹣41)或﹣4﹣=4﹣+;此时P点坐标为(﹣=,t,解得﹣当﹣t ﹣4t6=﹣1t21(﹣4,﹣0)﹣,)或(﹣,﹣14)或(﹣,14,﹣点坐标为(﹣综上所述,P4+0)或(﹣4+S0)时,使得.= S ABCPDE△△【点评】本题考查了圆的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和圆周角定理;会利用待定系数法求函数解析式;会解一元二次方程;记住三角形面积公式.。
初中数学天津市南开区九年级(上)期中数学模拟考试卷.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:方程x2﹣4x﹣12=0的解为()A.x1=2,x2=6 B.x1=2,x2=﹣6C.x1=﹣2,x2=6 D.x1=﹣2,x2=﹣6试题2:在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°) B.Q(3,﹣120°) C.Q(3,600°) D.Q(3,﹣500°)试题3:用配方法解方程x2﹣x﹣1=0时,应将其变形为()评卷人得分A.(x﹣)2= B.(x+)2=C.(x﹣)2=0 D.(x﹣)2=试题4:对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2C.3 D.4试题5:如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68° B.20° C.28°D.22°试题6:下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是()A.① B.② C.③D.④试题7:如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A. B.C. D.试题8:如图,四边形ABCD内接于⊙O,已知∠BCE=70°,则∠A的度数是()A.110° B.70° C.55°D.35°试题9:如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有()个.A.1个 B.2个 C.3个 D.4个试题10:如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是()A. B.5C. D.3试题11:如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒B点P位于点C的位置,……,则第2017秒点P所在位置的坐标为()A.(,) B.() C.(0,﹣1) D.()试题12:二次函数y=﹣x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≤0时,x<0或x>4;③函数解析式为y=﹣x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有()A.①②③④ B.①②③ C.②③④ D.①③④试题13:直线与圆在同一平面上做相对运动时,其位置关系有种,它们分别是.试题14:在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.试题15:如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为.试题16:如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽m.试题17:如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为.试题18:如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是的中点,若扇形的半径为2,则图中阴影部分的面积等于.试题19:关于x的方程(k﹣1)x2﹣4x﹣1=0有两个不相等的实数根,求k的取值范围.试题20:已知一次函数y1=6x,二次函数y2=3x2+3,是否存在二次函数y3=x2+bx+c,其图象经过点(﹣4,1),且对于任意实数x的同一个值,这三个函数对应的函数值y1,y2,y3都有y1≤y2≤y3成立?若存在,求出函数y3的解析式;若不存在,请说明理由.试题21:尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.试题22:如图,点A、B、C均在⊙O上,过点C作⊙O的切线交AB的延长线于点D,∠ACB=45°,∠AOC=150°.(1)求证:CD=CB;(2)⊙O的半径为,求AC的长.试题23:某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).(2)若饲养场的面积为288m2,求a的值.(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?试题24:如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)试题25:如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;[来源:学科网](2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.试题1答案:Ca解:x2﹣4x﹣12=0,分解因式得:(x+2)(x﹣6)=0,可得x+2=0或x﹣6=0,解得:x1=﹣2,x2=6,试题2答案:D解:∵P(3,60°)或P(3,﹣300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,﹣120°),(3,600°),试题3答案:D解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.试题4答案:C解:①∵a=﹣2<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.试题5答案:D解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.试题6答案:D解:①不共线的三点确定一个圆,故①表述不正确;①在同圆或等圆中,相等的圆心角所对的弧相等,故②表述不正确;②平分弦(不是直径)的直径垂直于弦,故③表述不正确;⑤圆内接四边形对角互补,故④表述正确.试题7答案:B解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x 轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.试题8答案:B解:∵四边形ABCD内接于⊙O,∴∠A=∠BCE=70°,试题9答案:C解:∵抛物线的对称轴为直线x=﹣1,点B的坐标为(1,0),∴A(﹣3,0),∴AB=1﹣(﹣3)=4,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵抛物线开口向下,∴a>0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a>0,∴ab>0,所以③错误;∵x=﹣1时,y<0,∴a﹣b+c<0,而a>0,∴a(a﹣b+c)<0,所以④正确.试题10答案:A解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′==5,∴MN最大=.试题11答案:A解:2017÷8=252…1,即第2017秒点P所在位置如图:过P作PM⊥x轴于M,则∠PMO=90°,∵OP=1,∠POM=45°,∴PM=OM=1×sin45°=,即此时P点的坐标是(,),试题12答案:D解:由图象得抛物线的对称轴为直线x=2,所以①正确;当y≤0时,x≤0或y≥4,所以②错误;抛物线经过点(0,0),(4,0),(2,4),所以抛物线解析式为y=ax(x﹣4),把(2,4)代入得a•2(2﹣4)=4,解得a=﹣1,则抛物线解析式为y=﹣x(x﹣4),即y=﹣x2+4x,所以③正确;当x≤0时,y随x的增大而增大,所以④正确.试题13答案:3,相离,相切,相交.解:如图所示:当直线与圆没有公共点时,直线与圆相离,如直线a;当直线与圆有一个公共点A时,直线与圆相切,如直线b;当直线与圆有2个公共点B、C时,直线与圆相交,如直线c.试题14答案:(﹣1,2).解:根据关于原点对称的点的坐标的特点,∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).试题15答案:(﹣,).解:过B1作B1C⊥y轴于C,∵把△ABO绕点O逆时针旋转120°后得到△A1B1O,∴∠BOB1=120°,OB1=OB=,∵∠BOC=90°,∴∠COB1=30°,∴B1C=OB1=,OC=,∴B1(﹣,).试题16答案:4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,试题17答案:3.解:分别过点M、N作x轴的垂线,过点A作AB⊥MN,连接AN设⊙A的半径为r.则AN=OA=r,AB=2,∵AB⊥MN,∴BM=BN,∴BN=4﹣r;则在Rt△ABN中,根据勾股定理,得AB2+BN2=AN2,即:22+(4﹣r)2=r2,解得r=2.5,则N到y轴的距离为1,又∵点N在第三象限,∴N的坐标为(﹣1,﹣2);∴MN=3;故答案为:试题18答案:2π﹣4解:两扇形的面积和为: =2π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为:×2×2=2,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=2π﹣4.故答案为:.试题19答案:解:∵关于x的方程(k﹣1)x2﹣4x﹣1=0有两个不相等的实数根,∴,解得:k>﹣3且k≠1.试题20答案:解:不存在这样的实数.设该实数是a.则y1≤y2,即6a≤3a2+3,解得(a﹣1)2≥0,∴a是任意实数,且当a=1时取“=”;当a=1时,y=6,即点(1,6)满足y1≤y2≤y3,将点(1,6)代入二次函数y3=x2+bx+c,得6=1+b+c,①又∵二次函数y3=x2+bx+c,其图象经过点(﹣4,1),∴1=16﹣4b+c,②由①②解得,b=4,c=1,∴函数y3的解析式为:y=x2+4x+1;∴3a2+3≤a2+4a+1,解得,(a﹣1)2≤0,显而易见,这是错误的,所以点a不适合.所以,不存在这样的任意实数a,使y1≤y2≤y3成立.试题21答案:解:如图所示,△ABC为所求作试题22答案:证明:延长AO交⊙O于E点,连接CE∴∠ACE=90°∵∠ACB=45°∴∠BCE=135°∵AO=OC=EO,∠AOC=150°∴∠OAC=∠OCA=15°,∠OEC=∠OCE=75°∵四边形ABCE是圆内接四边形[∴∠EAB+∠ECB=180°,∠E+∠ABC=180°∴∠EAB=45°,∠ABC=105°,∴∠CAD=30°,∠CBD=75°∵CD是⊙O切线,∴∠OCD=90°∵∠OCA=15°,∠ACB=45°∴∠CBD=30°∵∠D+∠CBD+∠BCD=180°∴∠D=75°∴∠D=∠CBD∴CD=CB[(2)连接OB,过点B作BF⊥AC于点F,∵OA=OB∴∠OAB=∠OBA=45°∴AB==2∵∠CAD=30°,BF⊥AC∴BF=1,AF=BF=∵∠ACB=45°,BF⊥AC∴∠ACB=∠CBF=45°∴CF=BF=1∴AC=+1试题23答案:解:(1)由已知饲养场的长为57﹣2a﹣(a﹣1)+2=60﹣3a;故答案为:60﹣3a;(2)由(1)饲养场面积为a(60﹣3a)=288,解得a=12或a=8;当a=8时,60﹣3a=60﹣24=36>27,故a=8舍去,则a=12;(3)设饲养场面积为y,则y=a(60﹣3a)=﹣3a2+60a=﹣3(a﹣10)2+300,∵2<60﹣3a≤27,∴11≤a<,∴当a=11时,y最大=297.试题24答案:解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设AG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.试题25答案:解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t, t2﹣t﹣1),E(t, t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。
南开区初三期中考试卷数学
一、选择题(每题4分,共40分)1. 若a > b,则下列不等式中正确的是()A. a² > b²B. a - b > 0C. a² < b²D. a + b < 02. 下列函数中,是反比例函数的是()A. y = x²B. y = 2x - 3C. y = 1/xD. y = 3x + 53. 已知等边三角形ABC的边长为a,则其内切圆半径r为()A. a/2B. a/3C. a/4D. a/54. 下列各组数中,成等差数列的是()A. 2, 5, 8, 11B. 1, 4, 7, 10C. 3, 6, 9, 12D. 5, 10, 15, 205. 已知一次函数y = kx + b(k ≠ 0)的图象经过点A(1, 2)和B(3, 6),则该函数的解析式为()A. y = 2x - 1B. y = 2x + 1C. y = 1x - 2D. y = 1x + 26. 在直角坐标系中,点P(2, 3)关于y轴的对称点为()A.(-2, 3)B.(2, -3)C.(-2, -3)D.(2, 3)7. 若等差数列{an}的首项为a1,公差为d,则第n项an为()A. a1 + (n - 1)dB. a1 - (n - 1)dC. a1 + ndD. a1 - nd8. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 矩形的对角线相等C. 等腰三角形的底边中点与顶点的连线垂直于底边D. 等边三角形的内角都是锐角9. 在△ABC中,若∠A = 60°,∠B = 30°,则∠C的度数为()A. 30°B. 60°C. 90°D. 120°10. 已知二次函数y = ax² + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(1, -2),则该函数的解析式为()A. y = x² - 2x - 1B. y = x² + 2x - 1C. y = -x² + 2x - 1D. y = -x² - 2x - 1二、填空题(每题5分,共20分)11. 若sin∠A = 1/2,则∠A的度数为______。
义务教育天津市南开区新课标人教版九年级上册数学期中试卷初三数学试题.doc
南开区2016-2017年九年级上册数学期中试卷选择题:本大题共12小题.每小题3分■共36分■在每小题给出的四个选项中,只有一项是符合题目的要求的。
1.一元二次方程X(X+5)二0的根是()A. Xi=0, X2=5B. XF O, X2二-5C. Xi=0, X2= —D. Xi二0, X2=~ —52.下列四个图形中属于中心对称图形的是()3.已知二次函数y二3x2+c与正比例函数y二4x的图象只有一个交点,则c的值为()A. 4B. 3C. 3D.43 44.抛物线y二-3x2+12x-7的顶点坐标为()A.⑵ 5)B. (2,-19)C. (-2, 5)D. (-2,43)5.由二次函数y二2(x-3)2+l可知()A.其图象的开口向下B.其图象的对称轴为x二-3C.其最大值为1D.当x〈3时,y随x的增大而减小6.如图中ZB0D的度数是()A. 150°B. 125°C. 110°D. 55°7 .如图,点E 在y 轴上,圆E 与x 轴交于点A, B,与y 轴交于点C, D,若C (0,9),D (0, -1),则 线段AB 的长度为( )8.如图,AB 是圆0的直径,C 、D 是圆0上的点,且OC//BD, AD 分别与BC 、0C 相交于点E 、F. 则下列结论:①AD 丄BD;②ZAOC=ZABC;③CB 平分ZABD;@AF=DF;@BD=20F.其中一定成立的是A.①③⑤B.②③④C.②④⑤D.①③④ ⑤9. 《九章算术》中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何? ”其意思是: "今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容 纳的圆形(内切圆)直径是多少步”( )A. 3 步B. 5 步C. 6 步 1).8 步10. 如图,在AABC 中,ZCAB=65°.将AABC 在平面内绕点A 逆时针旋转到△AB C 的位置,使B. 40°C. 50° I). 65°( ) CC7/AB,则旋转角度数为( )11.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()V34 12•如图,正方形ABCD 中,AB=8cm,对角线AC 、BD 相交于点0,点E 、F 分别从B 、C 两点同时 出发,以lcm/s 的速度沿BC 、CD 运动,到点C 、D 时停止运动,设运动时间为t (s), AOEF 的 面积为S (cm2),则S (cm2)与t (s)的函数关系可用图象表示为()二填空题:本大题共6小题,每小题3分,共18分,请将答案直接天灾答题纸 中对应横线上.13.点P(2, -1)关于原点的对称点坐标为P (m, 1),则 ______________ 14.如图,在平面直角坐标系中,已知点A(3, 4),将0A 绕坐标原点0逆时针转90°至0A ;则点A 的坐标是 _______ •15.关于x 的二次函数y 二x'-kx+k-2的图象与y 轴的交点在x 轴的上方,请写出一个满足条件 的二次函数解析式:16.如图,抛物线y=ax 2+bx+c 与x 轴的一个交点是A(l, 0),对成长后为直线x 二-1,则一元二次 方程ax'+bx+c 二0的解是 _______________.417.某种植物的主干长出若干数冃的支十又长出同样数目的小分支,主十、支干和小分支的总数是91.设每个支干长出x个小分支,则可得方程为_______________________ •1&如图,AB是圆0的一条弦,C是圆0上一动点RZACB=45°, E、F分别是AC、BC的中点,直线EF与圆0交于点G、若圆0的半径为2,则GE+FII的最大值为 ______________ .三解答题(本大题共7小题■共66分■解答应写出文字说明.演算步骤或推理过程)19 (本小题满分8分)按要求解一元二次方程:-6X+2=0 (配方法) (l)x(x+4)=8x+12(适当方法)(2) 3X220(本小题满分8分)在平面直角坐标系中,二次函数图象的顶点为A(l, -4),且过点B(3, 0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移儿个单位,可使平移后所得图象经过坐标原点?并请直接写岀平移后所得图象与x轴的另一个交点的坐标.21(本小题满分10分)如图,AB是圆0的直径,CD是圆0的一条弦,.ELCD丄AB于点E.⑴若ZA=48°,求Z0CE的度数;(2)若CD=4>/2 ,AE=2,求圆0的半径.22(本小题满分10分)如图,AABC中,AB二AC, — AB为直径作圆0,与BC交于点D,过D作AC的垂线,垂足为E.(1)求证:(1)BD二DC;⑵DE是圆0的切线.23(本小题满分10分)如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年天津市南开区九年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目的要求的.1.(3分)一元二次方程x(x+5)=0的根是()A.x1=0,x2=5 B.x1=0,x2=﹣5 C.x1=0,x2=D.x1=0,x2=﹣2.(3分)下列四个图形中属于中心对称图形的是()A.B.C.D.3.(3分)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c 的值为()A.B.C.3 D.44.(3分)抛物线y=﹣3x2+12x﹣7的顶点坐标为()A.(2,5) B.(2,﹣19)C.(﹣2,5)D.(﹣2,﹣43)5.(3分)由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1 D.当x<3时,y随x的增大而减小6.(3分)如图中∠BOD的度数是()A.150° B.125°C.110° D.55°7.(3分)如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,9),D(0,﹣1),则线段AB的长度为()A.3 B.4 C.6 D.88.(3分)如图,AB是圆O的直径,C、D是圆O上的点,且OC∥BD,AD分别与BC、OC相交于点E、F.则下列结论:①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立的是()A.①③⑤B.②③④C.②④⑤D.①③④⑤9.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步 B.5步 C.6步 D.8步10.(3分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°11.(3分)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.12.(3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二.填空题:本大题共6小题,每小题3分,共18分,请将答案直接天灾答题纸中对应横线上.13.(3分)点P(2,﹣1)关于原点的对称点坐标为P′(m,1),则m=.14.(3分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.15.(3分)关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数的表达式:.16.(3分)如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是.17.(3分)某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出x个小分支,则可得方程为.18.(3分)如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E、F分别是AC、BC的中点,直线EF与⊙O交于点G、H.若⊙O的半径为2,则GE+FH 的最大值为.三.解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)按要求解一元二次方程:(1)x(x+4)=8x+12(适当方法)(2)3x2﹣6x+2=0(配方法)20.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B (3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.21.(10分)如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的度数;(2)若CD=4,AE=2,求圆O的半径.22.(10分)如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:(1)BD=DC;(2)DE是⊙O切线.23.(10分)如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计).(1)要使鸡场面积最大,鸡场的长度应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,要使鸡场面积最大,鸡场长度与中间隔离墙的道数有怎样的关系?24.(10分)如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.25.(10分)如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.△PDE2016-2017学年天津市南开区九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目的要求的.1.(3分)一元二次方程x(x+5)=0的根是()A.x1=0,x2=5 B.x1=0,x2=﹣5 C.x1=0,x2=D.x1=0,x2=﹣【解答】解:∵x(x+5)=0,∴x=0或x+5=0,解得:x1=0,x2=﹣5,故选:B.2.(3分)下列四个图形中属于中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故选项正确;B、不是中心对称图形,故选项错误;C、不是中心对称图形,故选项错误;D、不是中心对称图形,故选项错误.故选:A.3.(3分)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c 的值为()A.B.C.3 D.4【解答】解:由,消去y得到3x2﹣4x+c=0,∵二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,∴△=0,∴16﹣12c=0,∴c=.故选:A.4.(3分)抛物线y=﹣3x2+12x﹣7的顶点坐标为()A.(2,5) B.(2,﹣19)C.(﹣2,5)D.(﹣2,﹣43)【解答】解:∵y=﹣3x2+12x﹣7=﹣3(x﹣2)2+5,∴顶点坐标为(2,5),故选:A.5.(3分)由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1 D.当x<3时,y随x的增大而减小【解答】解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.6.(3分)如图中∠BOD的度数是()A.150° B.125°C.110° D.55°【解答】解:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选:C.7.(3分)如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,9),D(0,﹣1),则线段AB的长度为()A.3 B.4 C.6 D.8【解答】解:连接EB,如图所示:∵C(0,9),D(0,﹣1),∴OD=1,OC=9,∴CD=10,∴EB=ED=CD=5,OE=5﹣1=4,∵AB⊥CD,∴AO=BO=AB,OB===3,∴AB=2OB=6;故选:C.8.(3分)如图,AB是圆O的直径,C、D是圆O上的点,且OC∥BD,AD分别与BC、OC相交于点E、F.则下列结论:①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立的是()A.①③⑤B.②③④C.②④⑤D.①③④⑤【解答】解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,正确②∠AOC=2∠ABC,错误;③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,正确的有①③④⑤,故选:D.9.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步 B.5步 C.6步 D.8步【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选:C.10.(3分)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选:C.11.(3分)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)2+()2=()2,∴该三角形是直角三角形,∴该三角形的面积是:×1×=.故选:A.12.(3分)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF ﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.二.填空题:本大题共6小题,每小题3分,共18分,请将答案直接天灾答题纸中对应横线上.13.(3分)点P(2,﹣1)关于原点的对称点坐标为P′(m,1),则m=﹣2.【解答】解:∵点P(2,﹣1)关于原点的对称点坐标为P′(m,1),∴m=﹣2,故答案为:﹣2.14.(3分)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(﹣4,3).【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).15.(3分)关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数的表达式:y=x2﹣3x+1答案不唯一.【解答】解:∵关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,∴k﹣2>0,解得:k>2,∴答案为:y=x2﹣3x+1答案不唯一.16.(3分)如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是x1=1,x2=﹣3.【解答】解:∵抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,∴抛物线y=ax2+bx+c与x轴的另一个交点是(﹣3,0),∴一元二次方程ax2+bx+c=0的解是:x1=1,x2=﹣3.故答案为:x1=1,x2=﹣3.17.(3分)某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出x个小分支,则可得方程为x2+x+1=91.【解答】解:设每个支干长出x个小分支,根据题意列方程得:x2+x+1=91.故答案为x2+x+1=91.18.(3分)如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E、F分别是AC、BC的中点,直线EF与⊙O交于点G、H.若⊙O的半径为2,则GE+FH 的最大值为4﹣.【解答】解:连接OA,OB,∵∠ACB=45°,∴∠AOB=90°.∵OA=OB,∴△AOB是等腰直角三角形,∴AB=2,当GH为⊙O的直径时,GE+FH有最大值.∵点E、F分别为AC、BC的中点,∴EF=AB=,∴GE+FH=GH﹣EF=4﹣,故答案为:4﹣.三.解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)按要求解一元二次方程:(1)x(x+4)=8x+12(适当方法)(2)3x2﹣6x+2=0(配方法)【解答】解:(1)原方程整理可得:x2﹣4x﹣12=0,因式分解可得(x+2)(x﹣6)=0,∴x+2=0或x﹣6=0,解得:x=﹣2或x=6;(2)3x2﹣6x+2=0,3x2﹣6x=﹣2,x2﹣2x=﹣,x2﹣2x+1=1﹣,即(x﹣1)2=∴x﹣1=±,∴x=1±,∴x1=,x2=.20.(8分)在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B (3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.【解答】解:(1)∵二次函数图象的顶点为A(1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).21.(10分)如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的度数;(2)若CD=4,AE=2,求圆O的半径.【解答】解:(1)∵CD⊥AB,∠A=48°,∴∠ADE=42°.∴∠AOC=2∠ADE=84°,∴∠OCE=90°﹣84°=6°;(2)解:因为AB是圆O的直径,且CD⊥AB于点E,所以CE=CE=×4=2,在Rt△OCE中,OC2=CE2+OE2,设圆O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,所以r2=(2)2+(r﹣2)2,解得:r=3.所以圆O的半径为3.22.(10分)如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:(1)BD=DC;(2)DE是⊙O切线.【解答】证明:如右图所示,(1)连接AD,∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD;(2)连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODB=∠AED=90°,∴DE是⊙O的切线.23.(10分)如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计).(1)要使鸡场面积最大,鸡场的长度应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,要使鸡场面积最大,鸡场长度与中间隔离墙的道数有怎样的关系?【解答】解:(1)设鸡场的面积为y平方米,y=x()=﹣=,∴x=25时,鸡场的面积最大,即要使鸡场面积最大,鸡场的长度应为25米;(2)设鸡场的面积为y平方米,y=x()=﹣=,∴x=25时,鸡场的面积最大,即要使鸡场面积最大,鸡场的长度应为25米;由(1)(2)可知,无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25m.24.(10分)如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.【解答】证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,在△CAN和△MCB中,,∴△CAN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△MCB,∴∠CAN=∠CMB,又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.(3)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB(SAS),∴AN=MB.当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,即结论1成立,结论2不成立.25.(10分)如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.△PDE【解答】解:(1)设直线AB的函数解析式为y=kx+b,把A(﹣8,0),B(0,﹣6)代入得,解得,所以直线AB的解析式为y=﹣x﹣6;(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),设抛物线的解析式为y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=﹣,∴抛物线的解析式为y=﹣(x+4)2+2,即y=﹣x2﹣4x﹣6;(3)存在.当y=0时,﹣(x+4)2+2=0,解得x1=﹣2,x2=﹣4,∴D(﹣6,0),E(﹣2,0),S△ABC=S△ACM+S△BCM=•8•CM=20,设P(t,﹣t2﹣4t﹣6),=S△ABC,∵S△PDE∴•(﹣2+6)•|﹣t2﹣4t﹣6|=•20,即|﹣t2﹣4t﹣6|=1,当﹣t2﹣4t﹣6=1,解得t1=﹣4+,t2=﹣4﹣,此时P点坐标为(﹣4+,1)或(﹣4﹣,1)当﹣t2﹣4t﹣6=﹣1,解得t1=﹣4+,t2=﹣4﹣;此时P点坐标为(﹣4+,﹣1)或(﹣4﹣,﹣1)综上所述,P点坐标为(﹣4+,1)或(﹣4﹣,1)或(﹣4+,﹣1)或=S△ABC.(﹣4﹣,﹣1)时,使得S△PDE。