三角函数试题
三角函数及解三角形测试题(含答案)
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
三角函数试题含答案
三角函数试题含答案第三章三角函数、解三角形(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合M,{x|x,sinnπnπ,n?Z},N,{x|x,cos,n?N},则M?N等于( ) 32A.{,1,0,1}B.{0,1}C.{0}D.?解析:?M,{x|x,sinnπ333,n?Z},{2,0,2,N,{,1,0,1},MN,{0}.答案:C2.已知α?π2π),sinα,35,则tan(α,π4等于17 B.7 C.,17 D.,7解析:由α?(π2π),sinα,33π1,tanα15,得tanα,,4,tan(α,4)1,tanα7.答案:A3.若函数f(x),(1,3tanx)cosx,0?xπ2则f(x)的最大值为A.1B.2C.3,1D.3,2解析:f(x),(1,3tanx)cosx,cosx,3sinx ,2sin(x,π6,0x,π2f(x)max,2.答案:B4.(2010?温州模拟)函数f(x),2sin(2x,π 6)在[,π2π2上对称轴的条数为A.1B.2C.3 D .0解析:?当,ππ2x?25π62x,π6?76,函数的对称轴为:2x,πππ62,2,x,,π3xπ6 ( ) ( ) ( )答案:Bπ5.要得到y,sin(2x,的图象,只要将y,sin2x的图象( ) 3ππA. B. 33ππC. D.向右平移 66ππ解析:?y,sin(2x,,sin2(x,, 36ππ?只要将y,sin2x的图象向右平移y,sin(2x,的图象. 63答案:Dπ6.使奇函数f(x),sin(2x,θ),3cos(2x,θ)在[0]上为减函数的θ 值为( ) 4ππ5π2πA., B., C. D. 36632sin(2x,θ,, 3 π解析:由已知得:f(x),ππ由于函数为奇函数,故有θ,kπ?θ,kπ,(k?Z),可淘汰B、C选项,然后分别将330]上递减,2ππA和D选项代入检验,易知当θ,时,f(x ),,2sin2x其在区间[,故34选D.答案:D3π7.给定函数?y,xcos(x),?y,1,sin2(π,x), 2π?y,cos(cos(,x))中,偶函数的个数是( ) 2A.3B.2C.1D.03解析:对于?y,xcos(π,x),xsinx,是偶函数,故?正确;对于?y,1,sin2(π,x),2πsin2x,1,是偶函数,故?正确;对于?y,cos(cos(,x)) 2,cos(,sinx),cos(sinx),f(,x),cos(sin(,x)),cos(,sinx),cos(sinx),f(x),函数是偶函数,故?正确.答案:A8.在?ABC中,若sin2A,sin2B,sinAsinB,sin2C,且满足ab,4,则该三角形的面积为( )A.1B.2C.2 3解析:?sin2A,sin2B,sinAsinB,sin2C,a2,b2,c21?a,b,ab,c,?cosC,, 2ab2222113?C,60?,?S?ABC,sinC,×3. 222答案:Dπ9.有一种波,其波形为函数y,sin()的图象,若在区间[0,t]上至少有2个波峰(图象的最2高点),则正整数t的最小值是( )A.3B.4C.5D.62π2π解析:由T,4,可知此波形的函数周期为4,显然当0?x?1时函数单调递增,ωπ2x,0时y,0,x,1时y,1,因此自0开始向右的第一个波峰所对的x值为1,第二个波峰对应的x值为5,所以要区间[0,t]上至少两个波峰,则t至少为5.答案:C10.设集合M,{平面)πππA.π B. C. D. 324π解析:f(x),cos2x3sin2x,2sin(2x,),则最小正周期为π. 6答案:Aππ11.函数y,sin(2x,)在区间[,π]上的简图是 () 32ππ解析:当x,,y,sin(,π,) 23π3,sin,0,排除B、D, 32πππ当x,y,sin(),sin0,0,排除C. 633答案:Aππ2π12.设函数f(x),Asin(ωx,φ),(A?0,ω,0,,,φ,)的图象关于直线x,对称,它的223周期是π,则( )15π2πA.f(x)的图象过点(0,) B.f(x)的图象在,]上递减 21235πC.f(x)的最大值为A D.f(x)的一个对称中心是点(,0) 122π解析:T,π,?ω,2.?图象关于直线x,对称, 32π?,φ),?1, 32ππ即×2,φ,,kπ,k?Z 32πππ又?,φ<,?φ, 226π?f(x),Asin(2x,再用检验法. 6答案:D二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知扇形 .解析:如图,设内切圆半径为r,则扇形的半径为3r,计算可π得扇形中心角为 31π故S内切圆?S扇形,πr2??3r(3r),2?3. 23答案:2?37π14.已知函数f(x),2sin(ωx,φ)的图象如下图所示,则f(),. 123解析:由图象知,函数的周期为×T,π, 22π?T,3π?f(,0, 47πππ?f(,f(,) 1243πTπ,f(),,f(,0. 424答案:03tanA15.设?ABC的 .33解析:由acosB,bcosA,及正弦定理可得sinAcosB,sinBcosA,sinC,即sinAcosB553,sinBcosA,A,B),即5(sinAcosB,sinBcosA),3(sinAcosB,sinBcosA),即sinAcosB5tanA,4sinBcosA,因此tanA,4tanB,所以4. tanB答案:416.下面有五个命题:函数y,sin4x,cos4x的最小正周期是π;kπ?终边在y轴上的角的集合是{α|α,,k?Z}; 2在同一坐标系中,函数y,sinx的图象和函数y,x的图象有三个公共点;ππ?把函数y,3sin(2x,)的图象向右平移y,3sin2x的图象; 36π?函数y,sin(x,在[0,π]上是减函数. 2其中真命题的序号是 .解析:?y,sin2x,cos2x,,cos2x,故最小正周期为π,?正确;k,0时,α,0,则角α终边在x轴上,故?错;由y,sinx在(0,0)处切线为y,x,所以y,sinx与y,x的图象只有一个交点,故?错;ππ?y,3sin(2x,)的图象向右平移 36ππy,3sin[2(x,,],3sin2x,故?正确; 63π?y,sin(x,),,cosx在[0,π]上为增函数,故?错. 2综上,??为真命题.答案:??三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)本小题满分12分)已知AC,sinsin,BC,(cos,sin222222,求f(x)的最小正周期和单调递减区间; (1)设f(x),AC ?,且f(x1),f(x2),1,求x1,x2的值. (2)设有不相等的两个实数x1,x2?解:(1)由f(x),AC?BC得xxxxxxf(x),(cos,sin)?(cossin,(,222222xxxx,cos2,sin22sincos 2222,cosx,sinx π,2cos(x,, 4所以f(x)的最小正周期T,2π.π又由2kπ?x,?π,2kπ,k?Z, 42kπ?x?2kπ,k?Z. 44 π3π得,π3π故f(x)的单调递减区间是[,,2kπ,,2kπ](k?Z). 44ππ2(2)由f(x),1得2cos(x,),1,故cos(x,),. 442,于是有x,,,得x1,0,x2,,,又x? πππ3ππ,π所以x1,x2,,2118.(本小题满分12分)在?ABC中,角A、B、C所对的边分别是a、b、c,tanA,cosB2310,10(1)求角C;(2)若?ABC的最短边长是5,求最长边的长.1解:(1)?tanA,, 2255?A为锐角,则cosA,sinA,5531010又cosB,B为锐角,则sinB, 1010cosC,,cos(A,B),,cosAcosB,sinAsinB 253105102,,51051023又C?(0,π),?C,π. 4(2)?sinA,sinB, 510A,B,即a,b,b最小,c最大,bc, sinBsinC22sinC得c,b,5,5. sinB101019.(本小题满分12分)在?ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且sinA,510,sinB,. 510(1)求A,B的值;(2)若a,b,1,求a、b、c的值.解:(1)?A、B为锐角,sinA?cosA,1,sinA,25, 5510,sinB,, 51010cosB1,sinB, 10cos(A,B),cosAcosB,sinAsinB,253105102,. 5105102π?0<A,B<π,?A,B,43π2(2)由(1)知C,sinC. 42由正弦定理αbc得 sin Asin BsinC5a,10b,2c,即a,2b,c5b, ?a,b,2,12b,b,2,1,?b,1,a2,c,5.20.(本小题满分12分)如图,点A,B是单位圆上的两点,A,B点分别在第一、二象限,34点C是圆与x轴正半轴的交点,?AOB是正三角形,若点A的坐标为(),记?COA55,α.(1)求1,sin2α 1,cos2α(2)求|BC|2的值.(1)?A的坐标为),根据三角函数的定义可知, 55 34解:43sinα,cosα,, 551,sin2α1,2sinαcosα49,,. 2cosα181,cos2αAOB为正三角形,??AOB,60?. (2)??cosCOB,cos(α,60),cosαcos60,sinαsin6031433,3,,, 525210|BC|2,|OC|2,|OB|2,2|OC|?|OB|cos?COB3,437,43,1,1,,10521((本小题满分12分)已知函数f(x),Asin(ωx,φ),B(A,0,ω,0)的一系列对应值如下表:1 5π4π11π7π 66333 1 -1 1 17π 63 y-1(1)根据表格提供的数据求函数f(x)的一个解析式;2ππ(2)根据(1)的结果,若函数y,f(kx)(k,0)周期为,当x?[0时,方程f(kx),m恰有33两个不同的解,求实数m的取值范围;解:(1)设f(x)的最小正周期为T,得11ππT, ,(,,2π, 662π由T,ω,1.ω又5ππ5ππ令ω,φ,,即,φ 6262π解得φ,,, 3π?f(x),2sin(x,),解得π2π(2)?函数y,f(kx),2sin(kx,,1的周期为, 33又k,0,?k,3.π令t,3x 3π?x?[0, 3π2π?t?[,33π2π3如图sint,s在[,上有两个不同的解的充要条件是s?,1), 332 π?方程f(kx),m在x?[0时恰好有两个不同的解的充要条件是m?[3,1,3),3,1,3)( 即实数m的取值范围是322((本小题满分14分)(2010?长沙模拟)长沙市某棚户区改造建筑用地平面示意图如图所示(经规划调研确定,棚改规划建筑用地区域近似地为半径是R的圆面(该圆面的地APCD的面积最大,并求最大值(解:(1)因为四边形ABCD内接于圆,所以?ABC,?ADC,180?,连接AC,由余弦定理:AC2,42,62,2×4×6×cos?ABC,42,22,2×2×4cos?ADC.1所以cos?ABC,,??ABC?(0,π), 2. 故?ABC,6011S四边形ABCD,×4×6×sin60?,×2×4×sin120? 22,3(万平方米)(在?ABC中,由余弦定理:AC2,AB2,BC2,2AB?BC?cos?ABC1,16,36,2×4×6. 2AC,27.由正弦定理ab,,2R, sinAsinBAC721?2R,,,, 3sin?ABC32221?R,(万米)( 3(2)?S四边形APCD,S?ADC,S?APC,1又S?ADCAD?CD?sin120?,23, 2设AP,x,CP,y.13则S?APC,?sin60?xy. 24又由余弦定理AC2,x2,y2,2xycos60? ,x2,y2,xy,28.x2,y2,xy?2xy,xy,xy.xy28,当且仅当x,y时取等号 ?S四边形APCD,2333xy?3,×28,93,44?最大面积为3万平方米(。
2020高考数学专项复习《三角函数10道大题》(带答案)
4 2 ) 三角函数1.已知函数 f (x ) = 4 c os x s in(x +(Ⅰ)求 f (x ) 的最小正周期;) -1.6(Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值.6 42、已知函数 f (x ) = sin(2x + ) 3+ sin(2x - 3 + 2 cos 2 x - 1, x ∈ R .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值.4 43、已知函数 f (x ) = tan(2x +),4(Ⅰ)求 f (x ) 的定义域与最小正周期;⎛ ⎫(II )设∈ 0, ⎪ ,若 f ( ) = 2 cos 2, 求的大小⎝ ⎭4、已知函数 f (x ) =(sin x - cos x ) sin 2x.sin x(1) 求 f (x ) 的定义域及最小正周期;(2) 求 f (x ) 的单调递减区间.5、 设函数 f (x ) = cos(2x + + sin 2x .24(I )求函数 f (x ) 的最小正周期;( II ) 设 函 数 1g (x ) 对 任 意 x ∈ R , 有g (x + 2 = g (x ) , 且 当x ∈[0, ] 时 , 2g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式.22 ) )3 + = 6、函数 f (x ) = A sin(x -称轴之间的距离为 ,2) +1(A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6(1)求函数 f (x ) 的解析式;(2)设∈(0, ) ,则 f ( ) = 2 ,求的值.2 27、设 f ( x ) = 4cos( ωx -π)sin ωx + cos 2ωx ,其中> 0.6(Ⅰ)求函数 y = f ( x ) 的值域(Ⅱ)若 y = f ( x ) 在区间⎡- 3π ,π⎤上为增函数,求 的最大值.⎣⎢ 2 2 ⎥⎦8、函数 f (x ) = 6 cos 2x + 23 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且∆ABC 为正三角形.(Ⅰ)求的值及函数 f (x ) 的值域;8 3 (Ⅱ)若 f (x 0 ) 5,且 x 0 ∈(- 10 2, ) ,求 f (x 0 1) 的值.3 39、已知 a , b , c 分别为∆ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0(1)求 A ;(2)若 a = 2 , ∆ABC 的面积为 ;求b , c .10、在 ∆ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C .= 2,sin B = 53(Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求∆ ABC 的面积.3 2 2 ) max+ = - (x )答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为 f (x ) = 4 cos x sin(x + 1) -1 = 4 cos x ( sin x + cos x ) -1622= 3 sin 2x + 2 cos 2 x -1 = 3 sin 2x + cos 2x = 2 s in(2x +,所以 f (x ) 的最小正周期为.62(Ⅱ)因为- ≤ x ≤ 6 4 ,所以- ≤ 2x + ≤ 6 6 3 .于是,当2x + = 6 2 ,即 x =6时, f (x ) 取得最大值 2;当2x + = - 6 6 ,即 x = - 时, f (x ) 取得最小值-1.62、【解析】 (1)2f (x )= sin (2x + )+sin(2x - )+2cos x -1 = 2 s in 2x cos + cos 2x = 2 sin(2x + )3 3 3 42函数 f (x ) 的最小正周期为T = =23 (2) - ≤ x ≤ ⇒ - ≤ 2x + ≤ ⇒ - ≤ sin(2x +4 4 4 4 4 2 4) ≤ 1 ⇔ -1 ≤ f (x ) ≤当 2x + = (x = ) 时 , 4 2 8 f (x )min = -1f (x ) = , 当 2x = - 时 , 4 4 4【点评】该试题关键在于将已知的函数表达式化为 y =A sin (x +) 的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.k【精讲精析】(I)【解析】由2x +≠ + k , k ∈ Z , 得 x ≠ + , k ∈ Z . 4 2 8 2k为 .2所以 f (x ) 的定义域为{x ∈ R | x ≠ + 8 2, k ∈ Z } , f (x ) 的最小正周期(II)【解析】由 f ( ) = 2 cos 2, 得tan(+2) = 2 cos 2,42) ) )1 sin(+ 4 = 2(cos2 - s in 2 ), cos(+整理得4 sin + coscos - sin= 2(cos + sin )(cos - sin ). 21 1 因为∈(0, ) ,所以sin + cos ≠ 0.因此(cos - s in ) 4= ,即sin 2= .2 2由∈(0, ) ,得2∈(0, ) .所以2= ,即= .4 2 6 124、解(1): sin x ≠ 0 ⇔ x ≠ k(k ∈ Z ) 得:函数 f (x ) 的定义域为{x x ≠ k , k ∈ Z }f (x ) =(sin x - cos x ) sin 2x= (sin x - cos x ) ⨯ 2 cos xsin x= sin 2x - (1+ cos 2x ) = 2 sin(2x --14 2得: f (x ) 的最小正周期为T = = ;2(2)函数 y = sin x 的单调递增区间为[2k - , 2k + 2 2](k ∈ Z )3则2k - ≤ 2x - ≤ 2k + ⇔ k - ≤ x ≤ k +2 4 2 8 8得: f (x ) 的单调递增区间为[k - , k ),(k , k + 3](k ∈ Z )8 85、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【 解 析 】1 1f (x ) = cos(2x + + sin 2 x = 1 cos 2x - 1 sin 2x + 1 (1- cos 2x )2 4 2 2 2= - sin 2x , 2 22(I )函数 f (x ) 的最小正周期T = =21 1(II )当 x ∈[0, ] 时, g (x ) = - f (x ) = sin 2x2 当 x ∈[-2 21 1 sin 2x 当 x ∈[-, - ) 时, (x +) ∈[0, )2 2 g (x ) = g (x +) = sin 2(x +) = 2 2sin 2x⎧- 1 sin 2x (x ≤ 0) - ≤ ⎪ 22 得函数 g (x ) 在[-, 0] 上的解析式为 g (x ) = ⎨ .⎪ sin 2x (-≤ x <⎩⎪ 2 22 ) ) , 0] 时, (x + ) ∈[0, ] g (x ) = g (x + ) = 1 sin 2(x + ) = - 1 2 2 2 2 2 2 23 ⎢ ⎥ 6、【解析】(1)∵函数 f ( x ) 的最大值是 3,∴ A +1 = 3,即 A = 2 .∵函数图像的相邻两条对称轴之间的距离为 ,∴最小正周期T =,∴= 2 .2故函数 f ( x ) 的解析式为 f (x ) = 2 s in(2x -) +1.61(2)∵ f ( ) = 2 s in(- 2) +1 = 2 ,即sin(- 6 ) = ,6 2∵ 0 << ,∴ - <- < ,∴- = ,故= .2 6 63 6 6 3⎛ 3 1⎫ 7、解:(1) f ( x ) = 4 2 cos x + 2 sin x ⎪⎪s in x + cos 2x ⎝ ⎭= 2 3 sin x cos x + 2 sin 2 x + cos 2 x - sin 2 x =3 sin 2x +1因-1 ≤ sin 2x ≤ 1,所以函数 y = f ( x ) 的值域为⎡1- 3,1+ 3⎤⎣⎦⎡ ⎤(2)因 y = sin x 在每个闭区间 ⎢⎣2k - 2 , 2k + 2 ⎥⎦ (k ∈ Z ) 上为增函数,故 f ( x ) = 3 sin 2x +1 (> 0) 在每个闭区间⎡ k - 4 , k + ⎤(k ∈ Z ) 上 4为增函数.⎡ 3 ⎤⎡ kk ⎤⎣⎦依题意知⎢- , ⎥ ⊆ ⎢ -, + ⎥ 对某个 k ∈ Z 成立,此时必有 k = 0 ,于是 ⎣ 2 2 ⎦ ⎣ 4 4⎦⎧- 3≥ -⎪ 2 41 1⎨⎪ ≤⎩ 2 4,解得≤ ,故的最大值为 . 6 6 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得: f (x ) = 6 cos2x+ 23 cos x - 3(> 0)=3cosωx+ 3 sin x = 2 3 s in(x + )3又由于正三角形 ABC 的高为 2 ,则 BC=42 所以,函数 f (x )的周期T = 4 ⨯ 2 = 8,即= 8,得= 4所以,函数 f (x )的值域为[-2 3,2 3] .......................... 6 分 (Ⅱ)因为 f (x 0 ) =853,由(Ⅰ)有1 - ( 4)2 57 6 53 1 c os 2A5 561f (x ) = x 08 3x 0 42 3sin( 4 + ) =3 , 即sin( 54 + ) = 35 由 x 0∈(- 10 2x 0 + ∈ (-,),得( ) , )3 34 3 2 2所以,即 x 0 3 cos( 4 + ) = =3 5 故 f (x + 1) = x 0= x 0 + + 02 3sin( = 4 x 0 + + ) 2 4 33sin[( ) ] 4 3 4x 0 2 3[sin( 4 + ) cos 3 4 + cos( 4 + ) s in3 4 = 2 3( 4⨯ 2 + 3 ⨯ 2 )5 2 5 2=12 分9..解:(1)由正弦定理得:a cos C + 3a sin C -b -c = 0 ⇔ sin A c os C - 3 sin A sin C = sin B + sin C⇔ sin A cos C + 3 sin A sin C = sin(a + C ) + sin C⇔ 3 sin A - cos A = 1 ⇔ sin( A - 30︒ ) = 12⇔ A - 30︒ = 30︒ ⇔ A = 60︒(2) S = bc sin A = ⇔ bc = 4 , 2a 2 =b 2 +c 2 - 2bc cos A ⇔ b + c = 410. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A 2 0,∴sin A = ,= >33又2 sin C .35 cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5 cos C +3整理得:tan C = 5 .(Ⅱ) 由图辅助三角形知: sin C =. 又由正弦定理知:a sin A c ,sin C故c 3 . (1)b 2c 2 a 2 2对角 A 运用余弦定理:cos A =2bc . (2) 3 解(1) (2)得: b 3 or b = 3 (舍去). ∴∆ ABC 的面积为:S = 5. 3 2。
三角函数10道大题(带答案解析)
三角函数1.已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xxx x x f sin 2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()5f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos (sin cos )122x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x ,当2()444x x πππ+=-=-时,m i n ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;(2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co242f x x π=++11sin222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A=cos C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C =,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b=or b舍去).∴∆ABC的面积为:S.。
第四章《三角函数》基础测试题
第四章《三角函数》基础测试题学习攻关基础测试(一)选择题(每题3分,共30分)1.在下列各角中,第三象限角是( ).(A)-540°(B)-150°(C)-225°(D)510°【提示】第三象限角a 满足180°+k ·360°<a <270°+k·360°,k∈Z.【答案】(B).【点评】本题考查终边相同的角的概念.与-540°终边相同的角为180°,为轴线角,故排除(A);与-225°终边相同的角为135°,为第二象限角,故排除(C);与510°终边相同的角为150°,也是第二象限角,排除(D).2.若a 是第四象限角,则p -a 是 ( ).(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角【提示】由a 是第四象限角,得-a为第一象限角,p+(-a)为第三象限角.【答案】(C).【点评】本题考查象限角之间的关系.3.Sin 600°的值是( ).(A) (B)(C)(D)【提示】sin 600°=sin 240°=-sin 60°=-.【答案】(D).【点评】本题是1998年高考题,主要考查诱导公式及特殊角的三角函数值.利用诱导公式可以把求任意角的三角函数值的问题转化为求某锐角的三角函数值.4.若b>a>0,且tan a =,sin a =,则a 的集合是( ).(A){a 0<a <}(B){a +2k pap+2k p,k∈Z}(C){a 2k pap+2k p,k∈Z}(D){a +2k p<a<p+2k p,k∈Z【提示】由已知,tan a <0,sin a >0 ,且ab,即0,故a 是第二象限角.【答案】(D).【点评】本题考查由三角函数值的符号确定角所在的象限.5.函数y=tan(_+)的定义域是( ).(A){_∈R _k p+,k∈Z }(B){ _∈R _kp-,k∈Z }(C){ _∈R _2kp+,k∈Z }(D){ _∈R _2kp-,k∈Z }【答案】(A).【点评】本题考查正切函数定义域.6.在下列函数中,以为周期的函数是( ).(A)y=sin 2_+cos 4_(B)y=sin 2_ cos 4_(C)y=sin 2_+cos 2_(D)y=sin 2_ cos 2_【提示】可以根据周期函数的定义对四个选项逐个进行验证.【答案】(D).【点评】本小题考查三角函数的周期性.由于sin 2(_+)+cos 4(_+)=sin(2_+p)+cos(4_+2p)=-sin 2_+cos 4_sin 2_+cos 4_,排除(A);由于sin 2(_+)cos 4(_+)=-sin 2_ cos 4_sin 2_ cos 4_,排除(B);由于sin 2(_+)+cos 2(_+)=-sin 2_-cos 2_sin 2_+cos 2_,排除(C);而sin 2(_+)cos 2(_+)=sin 2_ cos 2_,故选(D).实际上y=sin 2_ cos 2_= sin 4_,其周期为.7.已知q 是第三象限角,且sin 4 q+cos 4 q =,那么sin 2q 等于( ).(A)(B)-(C)(D)-【提示】sin4 q+cos4 q =(sin2 q +cos2 q)2-2 sin2 q cos2 q =1- sin2 2q ,得sin2 2q =,再由q是第三象限角,判断sin 2q 大于0.【答案】(A).【点评】本题考查同角三角函数公式.二倍角公式及三角恒等变形的能力.8.函数y=-3 cos(-2 _+)的图象可由y=-3 cos(-2_)的图象( ).(A)向左平行移动个单位长度得到(B)向右平行移动个单位长度得到(C)向左平行移动个单位长度得到(D)向右平行移动个单位长度得到【提示】y=-3 cos[-2(_-)] =-3 cos(-2_+).【答案】(D).【点评】本题考查三角函数的图象和性质.9.的值等于( ).(A)2 (B)-2 (C)1(D)-1【提示】arcsin=,arcos()=,arctan(-)=-.【答案】(C).【点评】本题考查反正弦..反余弦.反正切的定义及特殊角的三角函数值.10.若q 三角形的一个内角,且函数y=_2 cos q -4_ sinq +6对于任意实数_均取正值,那么cosq 所在区间是( ).(A)(,1)(B)(0,) (C)(-2,) (D)(-1,)【提示】对于任意实数_,函数y均取正值必满足a>b,且判别式<0<p,有-1<cos q <1.由不等式组解得<cos q <1.【答案】(A).【点评】本题结合二次函数的性质考查三角函数的有关知识.(二)填空题(每题4分,共20分)1.终边在坐标轴上的角的集合是_________.【答案】{a a =,k∈Z }【点评】本题考查轴线角的概念.2.求的值等于___________.【提示】=cos(+)=-sin .【答案】-.【点评】本题考查诱导公式,二倍角公式以及特殊角的三角函数值.3.tan 20°+tan 40°+tan 20°tan 40°的值是___________.【提示】利用公式tan(a+b ) =的变形tan a+tan b=tan(a+b )(1-tan a tan b),得tan 20°+tan 40°+(tan 20°tan 40°)=tan(20°+40°)(1-tan 20°tan 40°)+tan 20°tan 40°=.【答案】.【点评】本题通过两角和的正切公式的逆向使用考查三角恒等式的变形及计算推理能力.4.若sin(+a)=,则cos 2a =__________.【提示】依题意,cos a =,则cos 2 a=2 cos2 a-1=-.【答案】-.【点评】本题考查诱导公式与二倍角余弦公式.5.函数y=2 sin _ cos _-2 sin2_+1的最小正周期T =__________.【提示】y=sin 2_+cos 2 _ = sin(2 _+).【答案】p.【点评】本题考查二倍角正弦余弦,两角和的三角函数及三角函数y=Asin(w_+j)的周期性.(三)解答题(每题10分,共50分)1.化简(-)(-).【提示】解求题的关键是设法去掉根号,将无理式化为有理式,如===.其它三个根式类似.【答案】原式=(-)(-)=.由题设,sin q cos q0,当sin q 与cos q 同号,即kp<q<kp+(k∈Z)时,原式=4;当sin q 与cos q 异号,即kp<q<kp+(k∈Z)时,原式=-4.【点评】本题考查三角函数值的符号.同角三角函数公式以及三角函数的恒等变形的能力.本题也可将结果进一步化为直接讨论sin 2q 符号.2.设a 是第二象限角,sin a =,求sin (-2a)的值.【提示】因为sin (-2a )=sin (6p+-2a )=sin (-2a),只要利用已知条件,算出sin 2a,cos 2a 就可以了.【答案】∵ a 是第二象限角,sin a =,∴ cos a =-,∴ sin 2a =2 sin a cos a=-,cos 2a =1-2 sin2 a =.sin (-2a )=sin (-2a )= sin cos 2a-cos sin 2a =.【点评】本题考查诱导公式,同角三角函数关系式,二倍角公式,两角和与差的正弦余弦,及计算能力.3.已知=k(<a<,试用k表示sin a -cos a 的值.【提示】先化简=2 sin acos a,再利用(sin a -cos a)2=1-2 sin a cos a 即可.【答案】∵===2 sin a cos a=sin 2a =k ≤1.而(sin a-cos a)2=1-sin 2a =1-k,又<a<,于是sin a-cos a >0,∴ sin a -cos a =.【点评】本题考查二倍角公式,同角三角函数关系及运算能力.5.求证=1+tan 2a +sin 2a.【提示一】通过将右边的式子作〝切化弦〞的变换.【提示二】通过化〝1〞进行变换,可以将sin2a +cos2a 化成1,也可以根据需要将1化成sin2a+cos2 a .【答案一】右边=1++sin2 a======左边【答案二】左边======+1+sin2 a=1+tan 2 a+sin 2 a=右边.【点评】本题考查三角恒等式的证明.【答案一】和【答案二】均采用了综合法,即从已知条件出发,将左边(或右边)进行恒等交换,逐步化成右边(或左边).本题也可以采用分析法,即从求证的等式出发,递推到已知.5.若函数f(_)=a+b cos _+c sin _的图象过(0,1)与(,1)两点,且_∈[0,]时, f(_)2,求a的取值范围.【提示】根据函数f(_)的图象经过两个已知点,可得到b.c关于a的表达式,代入f(_)的解析式中,得f(_)=a+(1-a)sin (_+),再利用 f(_)2,可得a的取值范围.【答案】∵函数f(_)的图象经过点(0,1)及(,1),∴即.从而b=c=1-a.∴ f(_)=a+(1-a)cos _+(1-a)sin _=a+(1-a)sin(_+).由于_∈[0,],得_+∈[,],∴ sin(_+)∈[,1].①当a1时,1-a0,f(_)∈[1,a+(1-a)],而 f(_)2,有1f(_)2.∴a+(1-a)2,即a∈[-,1].②当a>1时,1-a<0,f (_)∈[a+(1-a),1],因f (_)2,得-2f (_)1.∴-2 a+(1-a),即a∈.综上,-a4+即为所求.【点评】本题考查两角和的正弦公式,三角函数的值域以及综合运用函数.不等式等有关知识解决问题的能力.。
三角函数试卷及答案(全套)
目标测试题一 角的概念的推广一、选择题:1.下列角中终边与330°相同的角是( )Α.30° B.-30° C.630° D.-630°2.终边落在X 轴上的角的集合是( )Α.{ α|α=k ·360°,K ∈Z } B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }3.若α是第四象限角,则180°-α一定是( )Α.第一象限角 B. 第二象限角 C.第三象限角 D. 第四象限角4.下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是锐角C.不相等的角终边一定不相同D.{ α|α=k ·360°+·90°,k ∈Z }={ β|β=k ·180°+90°,k ∈z }5.若α是第二象限的角,则2α不可能在( )Α.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空题:6.若角α的终边为第二象限的角平分线,则α的集合为______________________.7.写出-720°到720°之间与-1080°终边相同的角的集合___________________.8.与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.9.若角α的终边经过点Α(-1,则角α=_____,其中最大的负角为____________.10.若角α、β的终边互为反向延长线,则α与β之间的关系是__________________.三、解答题:11.已知α是第二象限角,则2a 是第几象限的角?12.设集合Α={x|k ·360°+60°< x <k ·360°+300°,k ∈Z},B={y|k ·360°-210°< y <k ·360°,k ∈Z},求Α∩B,Α∪B.。
三角函数综合测试题(含答案)
三角函数综合测试题一、选择题(每小题5分,共70分)1. sin2100 =A .23 B . -23 C .21 D . -21 2.α是第四象限角,5tan 12α=-,则sin α= A .15 B .15- C .513 D .513-3. )12sin12(cos ππ- )12sin12(cosππ+=A .-23 B .-21 C . 21 D .234. 已知sinθ=53,sin2θ<0,则tanθ等于A .-43 B .43 C .-43或43 D .545.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π=-C .1sin()26y x π=-D .sin(2)6y x π=-6. ()2tan cot cos x x x +=A .tan xB . sin xC . cos xD . cot x7.函数y =x x sin sin -的值域是A. { 0 }B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ]αcos 81=α,且)2,0(πα∈,则sin α+cos α的值为A.25 B. -25 C. ±25 D. 239. 2(sin cos )1y x x =--是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4(ππππ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2πB .ω=21,θ=2π C .ω=21,θ=4π D .ω=2,θ=4π12. 设5sin7a π=,2cos 7b π=,2tan 7c π=,则 A .a b c << B .a c b << C .b c a << D .b a c <<13.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是A .2π B .4π- C .4π D .34π14. 函数f (x )=xxcos 2cos 1-A .在⎪⎭⎫⎢⎣⎡20π, 、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递减 B .在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递减C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减 (每小题5分,共20分,)15. 已知⎪⎭⎫⎝⎛-∈2,2ππα,求使sin α=32成立的α=16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图,则函数表达式为18.已知βα,为锐角,且cos α=71 cos )(βα+= 1411-, 则cos β=_________ 19.给出下列命题:(1)存在实数α,使1cos sin =αα (2)存在实数α,使23cos sin =+αα (3)函数)23sin(x y +=π是偶函数 (4)若βα、是第一象限的角,且βα>,则βαsin sin >.其中正确命题的序号是________________________________三.解答题(每小题12分,共60分,) 20.已知函数y =3sin )421(π-x (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.21.已知)cos(2-)sin(πθπθk k +=+Z k ∈ 求:(1)θθθθsin 3cos 5cos 2sin 4+-; (2)θθ22cos 52sin 41+22.设0≥a ,若b x a x y +-=sin cos 2的最大值为0,最小值为-4,试求a 与b 的值,并求y 的最大、最小值及相应的x 值.23.已知21)tan(=-βα,71tan -=β,且),0(,πβα∈,求βα-2的值.24.设函数a x x x x f ++=ωωωcos sin cos 3)(2(其中ω>0,R a ∈),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[ππ-的最小值为3,求a 的值.测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin32 1 y=)48sin(4-ππ+x 21(3) 三、解答题:20.已知函数y=3sin )421(π-x(1)用五点法作出函数的图象; (2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心. 解 (1)列表:x2π π23 π25 π27 π29421π-x 02π ππ232π 3sin )421(π-x 03 0 -3 0描点、连线,如图所示:…………………………………………………………………………………………5 (2)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π. ………………………………………………………….8 (3)令421π-x =2π+k π(k ∈Z ), 得x=2k π+23π(k ∈Z ),此为对称轴方程. 令21x-4π=k π(k ∈Z )得x=2π+2k π(k ∈Z ). 对称中心为)0,22(ππ+k(k ∈Z )…………………………………………………………………………..12 21.已知sin(θ+k π)=-2cos(θ+k π) (k ∈Z ). 求:(1)θθθθsin 3cos 5cos 2sin 4+-;(2)41sin 2θ+52cos 2θ.解:由已知得cos(θ+k π)≠0, ∴tan(θ+k π)=-2(k ∈Z ),即tan θ=-2..................................................................................................2 (1)10tan 352tan 4sin 3cos 5cos 2sin 4=+-=+-θθθθθθ (7)(2)41sin 2θ+52cos 2θ=θθθθ2222cos sin cos 52sin 41++=2571tan 52tan 4122=++θθ (12)22.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值. 解:原函数变形为y =-41)2(sin 22a b a x ++++………………………………………2 ∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时 y max =1+b +42a =0 ①当sinx =1时,y min =-41)21(22a b a ++++=-a +b =-4 ②联立①②式解得a =2,b =-2…………………………………………………………7 y 取得最大、小值时的x 值分别为: x =2kπ-2π(k ∈Z),x =2kπ+2π(k ∈Z)若a >2时,2a ∈(1,+∞)∴y max =-b a a b a +=+++-41)21(22=0 ③y min =-441)21(22-=+-=++++b a a b a ④ 由③④得a =2时,而2a =1 (1,+∞)舍去.............................................11 故只有一组解a =2,b =-2.. (12)23.已知tan(α-β)=21,tan β=-71,且α、β∈(0,π),求2α-β的值. 解:由tanβ=-71 β∈(0,π) 得β∈(2π, π) ① (2)由tanα=tan[(α-β)+β]=31 α∈(0,π) ∴ 0<α<2π (6)∴ 0<2α<π由tan2α=43>0 ∴知0<2α<2π ②∵tan(2α-β)=βαβαtan 2tan 1tan 2tan +-=1 (10)由①②知 2α-β∈(-π,0)∴2α-β=-43π (12)24.设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[xπ-的最小值为3,求a 的值.解:(1) f(x)=23cos2ωx +21sin2ωx +23+a (2)=sin(2ωx +3π)+23+a …………………………………………………..4 依题意得2ω·6π+3π=2π解得ω=21………………………………….6 (2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦⎤⎢⎣⎡67,0π…………………………………8 故-21≤sin(x +3π)≤1……………………………………………..10 从而f(x)在⎥⎦⎤⎢⎣⎡-65,3ππ上取得最小值-21+23+a 因此,由题设知-21+23+a =3故a =213+ (12)三角函数综合练习题1.已知α是第二象限角,且3sin()5πα+=- ,则tan 2α的值为 ( )A .45B .237-C .247-D .83-)2(cos 2π+=x y 的单调增区间是( )(A )π(π,π)2k k + k ∈Z (B )π(π, ππ)2k k ++ k ∈Z(C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Zx x y cos sin +=的图像,只需把x x y cos sin -=的图象上所有的点( ) (A )向左平移4π个单位长度(B )向右平移4π个单位长度(C )向左平移2π个单位长度(D )向右平移2π个单位长度4. 已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为( )(A )51-(B )57 (C )57- (D )435.已知函数()sin y x =ω+ϕ(0,0)2πω><ϕ≤的部分图象如图所示,则点P (),ωϕ的坐标为( ) (A )(2,)3π(B )(2,)6π (C )1(,)23π (D )1(,)26π①x x y cos sin +=,②x x y cos sin 22=,则下列结论正确的是( )(A )两个函数的图象均关于点(,0)4π-成中心对称 (B )两个函数的图象均关于直线4x π=-成中心对称(C )两个函数在区间(,)44ππ-上都是单调递增函数 (D )两个函数的最小正周期相同7. 已知函数()x x x f cos sin 3-=,R x ∈,若()1≥x f ,则x 的取值范围为( ) A. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,3ππππ B . ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,232ππππC. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,656ππππ D. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ8.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 Ay(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 9.如右上图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=__________. 10.在ABC 中,若5b =,4B π∠=,tan 2A =,则sin A =_______,a =______.11.已知,2)4tan(=+πx 则xx2tan tan 的值为__________.12.设sin1+=43πθ(),则sin 2θ=_________. 13.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=______.14.在ABC 中,60,3B AC ==2AB BC +的最大值为 。
第一章三角函数测试题 (含详细答案)
必修四第一章三角函数单元测试 一、选择题1.设A ={小于90°的角},B ={第一象限的角},则A ∩B 等于( ). A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{α|k ·360°<α<k ·360°+90°(k ∈Z ,k ≤0)} 2.终边在直线y =-x 上的角的集合是( ). A .{α|α=45°+k ·180°(k ∈Z )} B .{α|α=135°+k ·180°(k ∈Z )} C .{α|α=45°+k ·360°(k ∈Z )}D .{α|α=-45°+k ·360°(k ∈Z )}3. 已知sin α=54,α∈(0,π),则tan α等于( ). A .34B .43 C .34±D .43±4.已知角 α 的终边经过点P (4,-3),则2sin α+cos α的值等于( ). A .-53 B .54 C .52 D .-52 5.已知sin α=-22,2π<α<23π,则角 α 等于( ). A .3πB .32πC .34πD .45π6.已知tan 14°≈41,则tan 7°约等于( ). A .17+4B .17-4C .17+2D .17-27.α是三角形的内角,则函数y =cos 2α-3cos α+6的最值情况是( ). A .既有最大值,又有最小值 B .既有最大值10,又有最小值831 C .只有最大值10 D .只有最小值831 8.若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ). A .sin xB .cos xC .sin 2xD .cos 2x9.设4π<α<2π,sin α=a ,cos α=b ,tan α=c 则a ,b ,c 的大小关系为( ). A .a <b <cB .a >b >cC .b >a >cD .b <a <c10.已知sin α>sin β,那么下列命题成立的是( ). A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β 二、填空题11.已知扇形的半径是1,周长为π,则扇形的面积是 . 12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4}, 求A ∩B = .13.已知点P (tan α,cos α)在第三象限,则角 α 的终边在第 象限. 14.已知cos (π+α)=-53,sin αcos α<0,则sin (α-7π)的值为 . 15.函数y =x sin log 21的定义域是 .16.函数y =a +b sin x 的最大值是23,最小值是-21,则a = ,b = . 三、解答题17.设 α 是第二象限的角,sin α=53,求sin (637π-2α)的值.18.求下列函数的周期: (1)y =cos 2(πx +2),x ∈R ; (2)y =cos 4x -sin 4x ,x ∈R ; (3)y =sin x ·cos x +3cos 2x -23,x ∈R .19.已知x ∈[-3π,4π],f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出相应的x 值.20.求函数y =1tan tan 1tan tan 22+++-x x x x 的值域.第一章 三角函数参考答案一、选择题 1.D解析:A 集合中包含小于90°的正角,还有零角和负角,而B 集合表示终边落在第一象限的角.二者的交集不是A ,B ,C 三个选项.2.B解析:先在0°~360°内找终边在直线y =-x 上的角分别为135°或315°,所以终边在直线y =-x 上的所有角为k ·360°+135°,或k ·360°+315°,k ∈Z .k ·360°+135°=2k ·180°+135°,k ·360°+315°=(2k +1)180°+135°,由此得答案为B . 3.C解析:∵sin α=54,α∈(0,π),∴cos α=±53,∴tan α=±34. 4.D解析:∵r =22)3(4-+=5,∴sin α=ry =-53,cos α=r x =54.∴2sin α+cos α=2×(-53)+54=-52. 5.D 解析:∵sin 45π=sin (π+4π)=-sin 4π=-22,且2π<45π<23π,∴α=45π. 6.B解析:设tan 7°=x ,则tan 14°=2-12xx ≈41. 解得x ≈-4±17(负值舍去), ∴x ≈17-4. 7.D解析:∵y =cos 2α-3cos α+6=2cos 2α-3cos α+5=2(cos α-43)2+831,又 α 是三角形的内角,∴-1<cos α<1. 当cos α=43时,y 有最小值831.8.B解析:取f (x )=cos x ,则f (x )·sin x =21sin 2x 为奇函数,且T =π. 9.D解析:在单位圆中做出角 α 的正弦线、余弦线、正切线得b <a <c . 10.D解析:若α,β是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β的终边,故选D .二、填空题 11.答案:12-π. 12.答案:A ∩B ={α|-4≤α≤-π 或0≤α≤π }.解析:在集合A 中取k =…,-1,0,1,…得到无穷个区间…,[-2π,-π],[0,π],[2π,3π],…将这些区间和集合B 所表示的区间在数轴上表示如图:由图可知A ∩B ={α|-4≤α≤-π 或0≤α≤π }. 13.答案:二.解析:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧ ,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以 α 为第二象限角.即角 α 的终边在第二象限.14.答案:54. 解析:∵cos (π+α)=-cos α=-53,∴cos α=53. 又∵sin αcos α<0,∴sin α<0,α为第四象限角,∴sin α=-54=-cos 12α-,∴sin (α-7π)=sin (α+π-8π)=sin (π+α)=-sin α=54. 15.答案:(2k π,2k π+π)(k ∈Z ).解析:由x sin log 21≥0,得0<sin x ≤1,∴2k π<x <2k π+π(k ∈Z ).tan α<0cos α<0(第12题)(第10题`)16.答案:21,±1. 解析:当b >0时,得方程组⎪⎩⎪⎨⎧21=--23=+b a b a 解得⎪⎩⎪⎨⎧1=21=b a 当b <0时,得方程组⎪⎩⎪⎨⎧21=-+23=-b a b a 解得⎪⎩⎪⎨⎧1=-21=b a 三、解答题 17.答案:32512+507. 解:∵sin α=53,α是第二象限角, ∴cos α=-54,sin 2α=2sin αcos α=-2524, ∴cos 2α=1-2sin 2α=257, 故sin (637π-2α)=sin (6π-2 α)=21×257-23(-2524)=32512507+.18.答案:(1)1;(2)π;(3)π. 解:(1)y =cos 2(πx +2)=21[1+cos (2πx +4)] =21cos (2πx +4)+21. ∴T =ππ22=1. (2)y =cos 4x -sin 4x=(cos 2x +sin 2x )(cos 2x -sin 2x ) =cos 2x -sin 2x =cos 2x . ∴T =22π=π. (3)y =sin x ·cos x +3cos 2x -23 =21sin 2x +3·22cos +1x-23=21sin 2x +23cos 2x=sin (2x +3π).∴T =22π=π. 19.答案:x =-4π时y min =1,x =4π时y max =5.解析:f (x )=tan 2x +2tan x +2=(tan x +1)2+1.∵x ∈[-3π,4π],∴tan x ∈[-3,1]. ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1;当tan x =1,即x =4π时,y 有最大值,y max =5.20.答案: [31,3].解析:将原函数去分母并整理得(y -1)tan 2x +(y +1)tan x +y -1=0. 当y ≠1时,∵tan x ∈R ,∴方程是关于tan x 的一元二次方程,有实根. ∴判别式△=(y +1)2-4(y -1)2≥0, 即3y 2-10y +3≤0.解之31≤y ≤3.而tan x =0时,y =1,故函数的值域为[31,3].。
三角函数练习题附答案
三角函数练习题附答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.4.已知单位向量1e ,2e 与非零向量a 满足12322e e +≤()120a e e ⋅-≤,则()1232a e e a⋅+的最大值是______.5.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =BD 长度的最大值为______.6.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.7.在ABC 中,AB BC ≠,O 为ABC 的外心,且有23AB BC AC +=,sin (cos 3)cos sin 0C A A A +=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.8.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______9.关于函数()()33cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).10.已知O 为△ABC 外接圆的圆心,D 为BC 边的中点,且4BC =,6AO AD ⋅=,则△ABC 面积的最大值为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .3⎡⎫⎪⎢⎪⎣⎭B .3⎛ ⎝⎦C .122⎛ ⎝⎦D .2⎡⎫⎪⎢⎪⎣⎭13.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭14.已知ABC 的内角分别为,,A B C ,23cos 1sin 26A A =-,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.设函数()211f x x =-,()122x f e x --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I << D .213I I I <<16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A .132B .2C .31+D .2317.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-18.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( ) A .6B .62C .12D .12219.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间. 23.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.24.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间;(2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?26.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S . 29.已知函数2133()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.982.473.28π 4535616.32⎝⎭7.4333-8.09.②③10.2二、单选题 11.A 12.A 13.A 14.A 15.D 16.C 17.A 18.C19.B 20.C 三、解答题21.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+ ⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.23.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tanα.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ 在△OPQ 中,OQOP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π.故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f ′(θ)令f ′(θ)=0,得sinθθ0满足0sin θ则0cos θ=,即()02f θ===列表如下:由(1)可知tanα=f (θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭, tanα单调递增则当tanα取最大值2时,α也取得最大值. 故游客在观赏亭P 处的观赏效果最佳时,sinθ 【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 24.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题. 25.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题26.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅,即222m n mn =++.所以22222()3()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值. 【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==, 所以集合3{2S =-,0,3}2. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数2133()sin 24f x x x =131cos 23sin 242x x +=131sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力. 30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
三角函数的试题及答案
三角函数的试题及答案题目:三角函数的试题及答案一、选择题(每题2分,共10题)1. 在三角函数中,sin^2(x) + cos^2(x) = ?A. 0B. 1C. 2D. -12. 以下哪个选项表示sin(π/6)的值?A. √2/2B. √3/2C. 1/2D. 13. 若tan(x) = √3,则x的取值范围是?A. (-∞, -π/3) ∪ (π/3, +∞)B. (-∞, -π/4) ∪ (π/4, +∞)C. (-∞, -π/6) ∪ (π/6, +∞)D. (-∞, -π/2) ∪ (π/2, +∞)4. 若sin(x) = -1/2,且x > 0,则x的值是?A. 3π/2B. π/6C. 7π/6D. π/25. 若cot(x) = 0,且x > 0,则x的值是?A. π/4B. π/2C. πD. 3π/26. 以下哪个选项表示cos^2(x) = 1 - sin^2(x) 的恒等式?A. sin(2x)B. 1/cos(x)C. tan^2(x)D. sec(x)7. 若cos(x) = -√2/2,且x > 0,则x的值是?A. π/4B. π/6C. 5π/4D. π/38. 若sec(x) = 2,且x > 0,则x的值是?A. π/6B. 5π/6C. 6πD. 09. 若sin(2x) = 1/2,且x > 0,则x的值是?A. π/12B. π/6C. π/3D. π/410. 若cot(x) + tan(x) = 1,且x ≠ kπ,其中k为整数,则x的值是?A. 0B. π/4C. π/6D. π/2二、解答题1. 解方程 2sin^2(x) - 3sin(x) + 1 = 0,其中0 ≤ x ≤ 2π。
解答:设sin(x) = t,则方程化简为 2t^2 - 3t + 1 = 0。
解这个二次方程,可以得到 t = 1 或 t = 1/2。
三角函数试题及答案
三角函数试题及答案本文将针对三角函数进行试题及答案的探讨,通过一系列问题来帮助读者深入理解与掌握三角函数的相关知识。
以下是一些试题及相应的答案。
I. 选择题1. 以下哪个是三角函数的定义?A. sin(x) = a/c, cos(x) = b/cB. sin(x) = b/c, cos(x) = a/cC. sin(x) = a/b, cos(x) = c/bD. sin(x) = c/a, cos(x) = b/a答案:B2. sin(π/2) 的值是多少?A. 0B. 1C. -1D. 无定义答案:B3. 以下哪个等式成立?A. sin(x) = cos(x)B. sin(x) = tan(x)C. cos(x) = tan(x)D. sin^2(x) + cos^2(x) = 1答案:DII. 填空题1. sin(0) =答案:02. cos(π/3) =答案:1/23. tan(π/4) =答案:1III. 解答题1. 求解方程 sin(x) = 1/2 的所有解。
解答:根据三角函数的定义,当 sin(x) = 1/2 时,可以得到x = π/6 + 2kπ 或x = 5π/6 + 2kπ,其中 k 是整数。
2. 求解方程 tan(x) + 1 = 0 的所有解。
解答:将 tan(x) + 1 = 0 移项得 tan(x) = -1。
在单位圆上,我们知道tan(x) 的值等于对应点的 y 坐标除以 x 坐标。
因此,我们可以找到tan(x) = -1 对应的两个点,它们是 (-√2/2, -1/2) 和(√2/2, 1/2)。
根据三角函数的性质,我们可以得到 x = -3π/4 + kπ 或x = π/4 + kπ,其中 k 是整数。
通过以上试题和答案,相信读者能够更好地理解和掌握三角函数的相关知识。
不断练习三角函数的运用和求解,将有助于读者在数学学习中取得更好的成绩。
希望本文能为读者提供帮助。
直角三角形的三角函数试题
直角三角形的三角函数试题1.已知一个直角三角形,其中一条直角边长为3,斜边长为5。
求另一条直角边长度以及三个基本三角函数的值。
解析:根据勾股定理,设另一条直角边长为x,则有 x^2 + 3^2 =5^2。
解方程可得x=4。
然后可以求出三角函数的值:正弦、余弦和正切。
正弦函数:sinθ = 对边/斜边 = 3/5。
余弦函数:cosθ = 邻边/斜边 = 4/5。
正切函数:tanθ = 对边/邻边 = 3/4。
答案:另一条直角边长为4,正弦函数值为3/5,余弦函数值为4/5,正切函数值为3/4。
2.已知一个直角三角形,其中一条直角边长为6,另一条直角边长度为8。
求斜边长度以及三个基本三角函数的值。
解析:根据勾股定理,设斜边长为y,则有 6^2 + 8^2 = y^2。
解方程可得y=10。
然后可以求出三角函数的值:正弦、余弦和正切。
正弦函数:sinθ = 对边/斜边 = 8/10 = 4/5。
余弦函数:cosθ = 邻边/斜边 = 6/10 = 3/5。
正切函数:tanθ = 对边/邻边 = 8/6 = 4/3。
答案:斜边长度为10,正弦函数值为4/5,余弦函数值为3/5,正切函数值为4/3。
3.已知一个直角三角形,其中一条直角边长为5,另一条直角边长度为12。
求斜边长度以及三个基本三角函数的值。
解析:根据勾股定理,设斜边长为z,则有 5^2 + 12^2 = z^2。
解方程可得z=13。
然后可以求出三角函数的值:正弦、余弦和正切。
正弦函数:sinθ = 对边/斜边 = 12/13。
余弦函数:cosθ = 邻边/斜边 = 5/13。
正切函数:tanθ = 对边/邻边 = 12/5。
答案:斜边长度为13,正弦函数值为12/13,余弦函数值为5/13,正切函数值为12/5。
4.已知一个直角三角形,其中一条直角边长为9,另一条直角边长度为40。
求斜边长度以及三个基本三角函数的值。
解析:根据勾股定理,设斜边长为w,则有 9^2 + 40^2 = w^2。
三角函数10道大题(带答案)
三角函数大题转练三角函数大题转练1.已知函数()4cos sin()16f x x x p =+-.(Ⅰ)求(Ⅰ)求 ()f x 的最小正周期;的最小正周期;(Ⅱ)求()f x 在区间[,]64p p-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f Î-+-++=p p(Ⅰ)求函数)(x f 的最小正周期;的最小正周期;(Ⅱ)求函数)(x f 在区间]4,4[pp -上的最大值和最小值. 3、已知函数()tan(2),4f x x =+p(Ⅰ)求()f x 的定义域与最小正周期;的定义域与最小正周期;(II II)设)设0,4æöÎç÷èøpa ,若()2cos 2,2f =a a 求a 的大小的大小4、已知函数x x x x x f sin2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期;的定义域及最小正周期; (2)求)(x f 的单调递减区间. 5、 设函数22()cos(2)sin 24f x x x p=++. (I )求函数()f x 的最小正周期;的最小正周期;(II )设函数()g x 对任意x R Î,有()()2g x g x p +=,且当[0,]2x pÎ时,1()()2g x f x =-,求函数()g x 在[,0]p -上的解析式. 6、函数()sin()16f x A x pw =-+(0,0A w >>)的最大值为3, 其图像相邻两条对称轴之间的距离为2p ,(1)求函数()f x 的解析式;的解析式;(2)设(0,)2pa Î,则()22f a =,求a 的值. 7、设426f (x )cos(x )sin x cos x p =w -w +w ,其中.0>w(Ⅰ)求函数y f (x )= 的值域的值域(Ⅱ)若y f (x )=在区间322,p p éù-êúëû上为增函数,求上为增函数,求 w 的最大值. 8、函数2()6cos3cos 3(0)2xf x x w w w =+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC D 为正三角形. (Ⅰ)求w 的值及函数()f x 的值域;的值域;(Ⅱ)若083()5f x =,且0102(,)33x Î-,求0(1)f x +的值. 9、已知,,a b c 分别为ABC D 三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--=(1)求A ; (2)若2a =,ABC D 的面积为3;求,b c . 10、在D ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(Ⅰ)求tan C 的值;的值; (Ⅱ)若a =2,求D ABC的面积.的面积.答案答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值. 【精讲精析】(Ⅰ)因为()4cos sin()16f x x x p=+-314cos (sin cos )122x x x =+-23sin 22cos 1x x =+-3sin 2cos 22sin(2)6x x x p =+=+,所以()f x 的最小正周期为p .(Ⅱ)因为64x p p-££,所以22663x p pp-£+£.于是,当262x pp+=,即6x p=时,()f x 取得最大值2;当266x p p +=-,即6x p=-时,()f x 取得最小值-1. 2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x p p --2sin 2cos cos 22sin(2)34x x x p p =+=+ 函数()f x 的最小正周期为22T p p ==(2)322sin(2)11()24444424x x x f x p p p p p p -££Þ-£+£Þ-£+£Û-££当2()428x x p p p +==时,()2maxf x =,当2()444x x p p p +=-=-时,mi min n ()1f x =- 【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x w j 的数学模型,再根据此三角模型的图像与性质进行解题即可数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+¹+Îx k k Z p p p , 得,82¹+Îk x k Z p p .所以()f x 的定义域为{|,}82ι+Îkx R x k Z p p ,()f x 的最小正周期为.2p(II )【解析】由(())2cos 2,2f =a a 得tan()2cos 2,4+=pa a22sin()42(cos sin ),cos()4+=-+p a a a p a 整理得sin cos2(cos sin )(cos sin ).cos sin +=+--a a a a a a a a因为(0,)4Îp a ,所以sin cos 0.+¹a a 因此211(cos sin ),sin 2.22-==a a a 即 由(0,)4Îp a ,得2(0,)2Îp a .所以2,.612==p pa a 即4、解(1):s i n 0()x x k k Z p¹Û¹Î得:函数()f x 的定义域为{,}x x k k Z p ¹Î(sin cos )sin 2()(sin cos )2cos sin x x x f x x x xx-==-´sin 2(1cos 2)2sin(2)14x x x p=-+=--得:)(x f 的最小正周期为22T p p ==;(2)函数sin y x =的单调递增区间为[2,2]()22k k k Z p p p p -+Î 则322224288k x k k x k p p p p pp p p p -£-£+Û-££+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z p pp p p p -+Î5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】2211()co 242f x x xp=++11sin 222x =-, (I )函数()f x 的最小正周期22T p p ==(II )当[0,]2x p Î时,11()()sin 222g x f x x =-=当[,0]2x p Î-时,()[0,]22x p p +Î 11()()sin 2()sin 22222g x g x x x pp=+=+=- 当[,)2x p p Î--时,()[0,)2x p p +Î 11()()sin 2()sin 222g x g x x x p p =+=+=得函数()g x 在[,0]p -上的解析式为1sin 2(0)22()1sin 2()22x x g x x x p p p ì--££ïï=íï-£<ïî. 6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =. ∵函数图像的相邻两条对称轴之间的距离为2p ,∴最小正周期T p=,∴2w =. 故函数()f x 的解析式为()2sin(2)16f x x p=-+. (2)∵()2f a 2sin()126p a =-+=,即1sin()62p a -=, ∵02p a <<,∴663p p pa -<-<,∴66p p a -=,故3p a =. 7、解:(1)()314cos sin sin cos 222f x x x x x w w w w æö=++ç÷ç÷èø22223sin cos 2sin cos sin x x x x x w w w w w =++-3sin 21x w =+因1sin 21x w -££,所以函数()y f x =的值域为13,13éù-+ëû(2)因sin y x =在每个闭区间()2,222k k k Z p p p péù-+Îêúëû上为增函数, 故()3sin 21f x x w =+()0w >在每个闭区间(),44k k k Z p p p p w w w w éù-+Îêúëû上为增函数. 依题意知3,22p p éù-Íêúëû,44k k p p pp w w w w éù-+êúëû对某个k Z Î成立,此时必有0k =,于是32424p p w p pwì-³-ïïíï£ïî,解得16w £,故w 的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3cos 3(0)2xf x x w w w =+->=3cosωx+)3sin(32sin 3pw w +=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(p w wp ===´=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分 (Ⅱ)因为,由538)(0=x f (Ⅰ)有,538)34(sin 32)(00=+=p p x x f 54)34(s i n 0=+p p x 即 由x 0)2,2()34x (323100pp p p -Î+-Î),得,(所以,53)54(1)34(cos 20=-=+p p x 即故=+)1(0x f =++)344(sin 320p p p x ]4)34(sin[320p p p ++x )22532254(324sin)34cos(4cos )34([sin 3200´+´=+++=pp p p p p x x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos 3sin 0sin cos 3sin sin sin sin a C a C b c A C A C B C+--=Û-=+sin cos 3sin sin sin()sin 13sin cos 1sin(30)2303060A C A C a C CA A A A A °°°°Û+=++Û-=Û-=Û-=Û=(2)1sin 342S bc A bc ==Û=, 2222cos 4a b c bc A b c =+-Û+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点. (Ⅰ)∵cos A =23>0,∴sin A =251cos 3A -=,又5cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =53cos C +23sin C .整理得:tan C =5.(Ⅱ)由图辅助三角形知:sin C =56.又由正弦定理知:sin sin a c A C=, 故3c =. (1) 对角A运用余弦定理:cos A =222223b c abc +-=. (2) 解(1) (2)得:3b = or b =33(舍去). ∴D ABC 的面积为:S=52.。
三角函数测试题及答案
三角函数测试题及答案试题一:一、选择题1. 下列各三角函数式中,值为正数的是 ( )A. B. C. D.2. 若=,且为锐角,则的值等于 ( )A. B. C. D.3. 若=,,则的值为 ( )A. 1B. 2C.D.4. 已知,则 ( )A. B.C. D.5. a=,则成立的是 ( )A. ab>c C. a6. 函数的定义域是( )A. B.C. D.7. 下面三条结论:①存在实数,使成立;②存在实数,使成立;③若cosacosb=0,则其中正确结论的个数为( )A. 0B. 1C. 2D. 38. 函数的值域是 ( )A. [-2,2]B. [-1,2]C. [-1,1]D. [,2]9. 函数y=-x·cosx的部分图象是( )10. 函数f(x)=cos2x+sin(+x)是( )A. 非奇非偶函数B. 仅有最小值的奇函数C. 仅有最大值的偶函数D. 既有最大值又有最小值的偶函数二、填空题1、函数的最小值等于并使函数y 取最小值的x的集合为2、若函数的图象关于直线对称,则函数的值域为3、已知函数三、解答题1、已知,求的值2、在DABC中,已知三边满足,试判定三角形的形状。
试题二:1、若sinα=-5/13,且α为第四象限角,tanα=?(文.6)A.12/5B.-12/5C.5/12D.-5/12解析:主要考察基础知识。
α是第四象限角,所以cosα为正,tanα为负。
cos2α=1-sin2α,且cosα是正数,所以cosα=12/13,t anα=sinα/cosα=-5/12,选D。
2、已知函数f(x)=10√3sin(x/2)*cos(x/2)+10cos2(x/2)1)求f(x)的最小正周期2)将f(x)的函数图像向右平移π/6个单位长度,再向下平移a个单位长度后得到g(x)的函数图像,且函数g(x)的`最大值为2.i)求g(x)的解析式ii)证明存在无穷多互不相同个正整数x0,使得g(x0)>0.解析:1)函数的化简,可以看到两个式子都跟两倍角公式有关系,可以考虑先都变成两倍角。
(完整)三角函数习题及答案
第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。
则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sin cos 22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B)第二象限 (C)第三象限 (D )第四象限 二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角.7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。
8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。
9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。
三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。
11.已知Cos(α+β)+1=0, 求证:sin (2α+β)+sin β=0。
12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值. §4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A)0 (B )1- (C)2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D ±4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5.的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C)一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。
完整版)高中三角函数测试题及答案
完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
三角函数练习题及答案百度文库
三角函数练习题及答案百度文库精心选一选山岳得分1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都A、缩小2倍B、扩大2倍C、不变D、不能确定4,BC=4,sinA=52、在Rt△ABC中,∠C=90,则AC=A、3B、C、D、61sinA=3,则3、若∠A是锐角,且A、00 13sinA?tanA4、若cosA=3,则4sinA?2tanA=411A、 B、 C、D、05、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=2A、1:1:B、1:1:C、1:1:3D、1:1:26、在Rt△ABC中,∠C=900,则下列式子成立的是A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB.已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是2223A.sinB=B.cosB=C.tanB=D.tanB=28.点关于y轴对称的点的坐标是11113A.B.C.D.9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.?某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,?若这位同学的目高1.6米,则旗杆的高度约为A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60o方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地503m100 m150m m11、如图1,在高楼前D点测得楼顶的仰角为30?,向高楼前进60米到C点,又测得仰角为45?,则该高楼的高度大约为A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40o的方向行驶40海里到达B 地,再由B地向北偏西10o的方向行驶40海里到达C地,则A、C两地相距.30海里0海里 0海里 0海里细心填一填1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____..在△ABC中,若AC=3,则cosA=________.3.在△ABC中,AB=,B=30°,则∠BAC的度数是______.图14.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第4题图第5题图第6题图6.如图,机器人从A点,沿着西南方向,行了个2单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号)..求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=90,BC=13,AB=12,则tanB?_________..根据图中所给的数据,求得避雷针CD的长约为_______m..11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,?这时测得大树在地面上的影子约为10米,则大树的高约为________米。
(完整版)三角函数公式练习(答案)
三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。
(完整word版)三角函数图像与性质试题及配套答案
xO y1 2 3三角函数测试题一、选择题1、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 2、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 3、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin |x |C .y=-sin |x |D .y=-|sin x |4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的( ). A 。
)62sin(+=x y B.sin()26x y π=+ C.sin(2)6y x π=- D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕ可以取的一组值是( )。
A 。
,24ωϕππ== B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6。
要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象( ).A.向左平移4π个单位B.向右平移4π个单位C 。
向左平移8π个单位 D.向右平移8π个单位7。
设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3 B 。
13C 。
1D 。
1- 8。
A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B.23 C.23-D 。
2110.函数2cos 1y x =+的定义域是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的试题
生成时间:2013.07.14 11:24:56高中文数
1.(2012山东, 8, 5分) 函数y=2sin(0≤x≤9) 的最大值与最小值之和为()
A. 2-
B. 0
C. -1
D. -1-
2.(2012湖南, 8, 5分) 在△ABC中, AC=, BC=2, B=60°, 则BC边上的高等于()
A. B. C. D.
3.(2012广东, 6, 5分) 在△ABC中, 若∠A=60°, ∠B=45°, BC=3, 则AC=()
A. 4
B. 2
C.
D.
4.(2012上海, 17, 5分) 在△ABC中, 若sin2A+sin2B<sin2C, 则△ABC的形状是()
A. 钝角三角形
B. 直角三角形
C. 锐角三角形
D. 不能确定
5.(2012四川, 5, 5分) 如图, 正方形ABCD的边长为1, 延长BA至E, 使AE=1, 连结EC、ED, 则sin∠CED=()
A. B. C. D.
6.(2012重庆, 5, 5分) =()
A. -
B. -
C.
D.
7.(2012江西, 4, 5分) 若=, 则tan 2α=()
A. -
B.
C. -
D.
8.(2012辽宁, 6, 5分) 已知sin α-cos α=, α∈(0, π) , 则sin 2α=()
A. -1
B. -
C.
D. 1
9.(2012大纲全国, 4, 5分) 已知α为第二象限角, sin α=, 则sin 2α=()
A. -
B. -
C.
D.
10.(2012大纲全国, 15, 5分) 当函数y=sin x-cos x(0≤x<2π) 取得最大值时,
x=.
11.(2012重庆, 13, 5分) 设△ABC的内角A, B, C的对边分别为a, b, c, 且a=1, b=2, cos C=, 则sin B=.
12.(2012福建, 13, 4分) 在△ABC中, 已知∠BAC=60°, ∠ABC=45°, BC=, 则
AC=.
13.(2012陕西, 13, 5分) 在△ABC中, 角A, B, C所对边的长分别为a, b, c. 若a=2, B=, c=2, 则b=.
14.(2012北京, 11, 5分) 在△ABC中, 若a=3, b=, ∠A=, 则∠C的大小为.
15.(2007浙江, 12, 5分)若sin θ+cos θ=, 则sin 2θ的值是.
16. (2007江苏, 11, 5分)若cos(α+β)=, cos(α-β)=, 则tan α·tan β=.
17. (2009北京, 9, 5分)若sin θ=-, tan θ>0, 则cos θ=.
18. (2010全国Ⅱ, 13, 5分)已知α是第二象限的角, tan α=-, 则cos α=.
19. (2011重庆, 12, 5分)若cos α=-, 且α∈, 则tan α=.
20. (2011江西, 14, 5分)已知角θ的顶点为坐标原点, 始边为x轴的正半轴. 若P(4, y)是角θ终边上一点, 且sin θ=-, 则y=.
21. (2011全国, 14, 5分)已知α∈, tan α=2, 则cos α=.
22.(2011江苏, 7, 5分) 已知tan=2, 则的值为.
23.(2012大纲全国, 17, 10分) △ABC中, 内角A、B、C成等差数列, 其对边a、b、c满足2b2=3ac, 求A.
24.(2012湖南, 18, 12分) 已知函数f(x) =Asin(ωx+φ) 的部分图象如图所示.
(1) 求函数f(x) 的解析式;
(2) 求函数g(x) =f -f 的单调递增区间.
25.(2007宁夏, 17, 12分)如图, 测量河对岸的塔高AB时, 可以选与塔底B在同一水平面内的两个测点C与D. 现测得∠BCD=α, ∠BDC=β, CD=s, 并在点C测得塔顶A的仰角为θ, 求塔高AB.
26. (2008山东, 17, 12分)已知函数f(x)=sin(ωx+φ)-cos(ωx+φ)(0<φ<π, ω>0)为偶函
数, 且函数y=f(x)图象的两相邻对称轴间的距离为.
(Ⅰ)求f的值;
(Ⅱ)将函数y=f(x)的图象向右平移个单位后, 得到函数y=g(x)的图象, 求g(x)的单调递减区间.
27. (2008福建, 17, 12分)已知向量m=(sin A, cos A), n=(1, -2), 且m·n=0.
(Ⅰ)求tan A的值;
(Ⅱ)求函数f(x)=cos 2x+tan Asin x(x∈R)的值域.
28.(2008陕西, 17, 12分)已知函数f(x)=2sin cos+cos.
(Ⅰ)求函数f(x)的最小正周期及最值;
(Ⅱ)令g(x)=f, 判断函数g(x)的奇偶性, 并说明理由.
29.(2008四川, 17, 12分)求函数y=7-4sin xcos x+4cos2x-4cos4x的最大值与最小值.
30. (2009宁夏, 17, 12分)如图, 为了解某海域海底构造, 在海平面内一条直线上的A, B, C 三点进行测量, 已知AB=50 m, BC=120 m, 于A处测得水深AD=80 m, 于B处测得水深BE=200 m, 于C处测得水深CF=110 m, 求∠DEF的余弦值.
31.(2008江苏, 15, 14分)如图, 在平面直角坐标系xOy中, 以Ox轴为始边作两个锐角α、
β, 它们的终边分别与单位圆相交于A、B两点. 已知A、B的横坐标分别为. (Ⅰ)求tan(α+β)的值;
(Ⅱ)求α+2β的值.。