高考三角函数分类练习题

合集下载

专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)

三角函数高考题及练习题(含答案)1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________.答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在⎣⎡⎦⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎫12,32,求f(θ)的值;(2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,∴ 当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx +φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=7210,sin β=1-cos 2β=55, 因此tan α=7,tan β=12.(1) tan (α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2 函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0)的部分图象如图所示. (1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵ T 4=7π12-π3=π4,∴ ω=2.又2×7π12+φ=2k π+3π2,∴ φ=2k π+π3(k ∈Z ),∴ f(0)=2sin ⎝⎛⎭⎫2k π+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎫2x +π3.因为0≤x ≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx +φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx +Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎡⎦⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A 2+B 2sin (ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k ∈Z ),即φ=2k π+π6(k ∈Z ),所以f(x)=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6(k ∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎫πx +π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f(x)的对称轴,其方程为x =163. 题型三 三角函数的性质与图象的移动问题例3 把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x ∈⎝⎛⎭⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x+2=2cos ⎝⎛⎭⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎡⎦⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称,所以2⎝⎛⎭⎫17π8+m +π4=k π,即m =(2k -9)4π(k ∈Z ). 因为m>0,所以m 的最小值为π4.(2) 证明:因为x ∈⎝⎛⎭⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝⎛⎭⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝⎛⎭⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x 1)-f (x 2)x 1-x 2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎫2x +π4=-22.因为x ∈(0,π),所以2x +π4∈⎝⎛⎭⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎡⎦⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎨⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝⎛⎭⎫x +π6+1=2sin ⎝⎛⎭⎫2x +π3+1,g(x)=0sin ⎝⎛⎭⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝⎛⎭⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,所以对x ∈R ,f(-x)=f(x)恒成立,因此sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6,即-sin ωxcos ⎝⎛⎭⎫φ-π6+cos ωxsin ⎝⎛⎭⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎫φ-π6=0.因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,所以g(x)=f ⎝⎛⎭⎫x -π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=2cos ⎝⎛⎭⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3) 当x ∈⎣⎡⎦⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝⎛⎭⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝⎛⎭⎫2x +2t -π3.令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ),又t ∈(0,π),故t =π3或5π6. (3) 当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,∴ f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3, ∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx +φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x ∈⎣⎡⎦⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝⎛⎭⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴ φ=π3,∴ f(x)=3sin ⎝⎛⎭⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴ 函数f(x)的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z.(3) 由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根.∵ x ∈⎣⎡⎦⎤-π3,π6,∴ 2x +π3∈⎣⎡⎦⎤-π3,2π3.∴ m -16∈⎣⎡⎦⎤-32,1,∴ m ∈[1-33,7).1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a ,则实数a 的取值范围是________.答案:a ≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f(x)|≤2,所以a ≥2.2. (2013·天津卷)函数f(x)=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6知,函数f(x)的对称中心为⎝⎛⎭⎫π3,0,函数f(x)的对称轴为直线x =12⎝⎛⎭⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T ≥2π3,所以7π12-π3=T 4,解得T =π. 5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22.所以f(α)=22⎝⎛⎭⎫22+22-12=12.(2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝⎛⎭⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎫4α+π4=1.因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4,所以4α+π4=5π2,故α=9π16.(本题模拟高考评分标准,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎡⎦⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎡⎦⎤0,π2,求t 的取值范围,并把f(x)表示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎫x +π4.∵ x ∈⎣⎡⎦⎤0,π2,∴ x +π4∈⎣⎡⎦⎤π4,3π4,∴ 22≤sin ⎝⎛⎭⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分)(另解:∵ x ∈⎣⎡⎦⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x ∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t 2-12,(5分)∴ m(t)=a·t 2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:① 当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2; (10分)② 当1a ≥1+22,即0<a ≤2(2-1)时,G(A)=m(1)=- 2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a ≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t ∈(1,+∞),y =2t 41-t 2,y ′(t)=-4t 3(t +2)(t -2)(1-t 2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝⎛⎭⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝⎛⎭⎫2π3+A =1+cos2A 2+1+cos2⎝⎛⎭⎫2π3+A 2=1+cos2A 2+12⎝⎛⎭⎫cos 4π3cos2A -sin 4π3sin2A=1+12⎝⎛⎭⎫12cos2A +32sin2A =1+12cos ⎝⎛⎭⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴ -1≤cos ⎝⎛⎭⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4,x ∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3=(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3.(2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1.列表如下: Z ] Z 由此可见,g(t)在区间⎝⎭⎫-1,-12和⎝⎭12,1上单调增,在区间⎝⎭⎫-12,12上单调减,极小值为g ⎝⎛⎭⎫12=2,极大值为g ⎝⎛⎭⎫-12=4.。

2023-2024学年高考数学三角函数专项练习题(附答案)

2023-2024学年高考数学三角函数专项练习题(附答案)

2023-2024学年高考数学三角函数小专题一、单选题1.函数的最小正周期为( )()2sin 222sin 4f x x xπ⎛⎫=-- ⎪⎝⎭A .B .C .D .π2ππ42π2.若,则等于( )sin tan 0x x ⋅<1cos2x +A .B .C .D .2cos x 2cos x -2sin x 2sin x-3.已知,均为锐角,则( )251cos ,tan()53ααβ=-=-,αββ=A .B .C .D .5π12π3π4π64.将函数的图象平移后所得的图象对应的函数为,则进行的平移πsin 23y x ⎛⎫=+ ⎪⎝⎭cos 2y x =是( )A .向左平移个单位B .向右平移个单位C .向右平移个单位π12π6π12D .向左平移个单位π65.若,则( )1cos 63πα⎛⎫-=⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭A .B .C .D .42979429-79-6.设函数,其图象的一条对称轴在区间内,且的()3sin cos (0)f x x x ωωω=+>ππ,63⎡⎤⎢⎥⎣⎦()f x 最小正周期大于,则的取值范围为( )πωA .B .C .D .1,12⎛⎫⎪⎝⎭()0,2[)1,2()1,27.已知,且,求( )π4sin 45α⎛⎫+= ⎪⎝⎭π3π44<<αcos α=A .B .C .D .2106222610A .函数的图像可由()f xB .函数在区间()f xC .函数的图像关于直线()f xC .D .o o2sin15sin 75o oo otan 30tan151tan 30tan15+-11.已知函数的图像关于直线对称,函数关于点对称,则下列说(21)f x +1x =(1)f x +(1,0)法不正确的是( )A .B .4为的周期(1)(1)f x f x -=+()f x C .D .(1)0f =()32f x f x ⎛⎫=- ⎪⎝⎭12.已知函数的图象关于直线对称,则( )ππ()sin(3)()22f x x ϕϕ=+-<<π4x =A .函数为奇函数π()12f x +B .函数在上单调递增()f x ππ[,]126C .若,则的最小值为12|()()|2f x f x -=12||x x -2π3D .将函数图象上所有点的横坐标缩小为原来的,得到函数的图象()f x 13sin()y x ϕ=+三、填空题13.计算:=.tan 73tan1933tan 73tan13︒︒︒︒--14.已知,,则 .1sin cos 5αα+=-()0,πα∈tan α=15.已知函数的最小正周期为,则.π()2sin()(0)3f x x ωω=+>4πω=16.已知函数,则函数的对称轴的方程为22()2cos 43sin cos 2sin f x x x x x =+-()f x .答案:1.B【分析】把函数化成的形式,利用公式求函数的最小正周期.()sin y A x ωϕ=+2πT ω=【详解】因为()2sin 222sin 4f x x x π⎛⎫=-- ⎪⎝⎭()22sin 2cos 221cos 222x x x =---.22sin 2cos 2222x x =+-πsin 224x ⎛⎫=+- ⎪⎝⎭所以,函数的最小正周期为.2ππ2T ==故选:B 2.B【分析】先由已知条件判断的符号,然后对配凑升幂公式即可.cos x 1cos2x +【详解】由题知:2sin sin tan 00cos 0cos xx x x x ⋅<⇒<⇒<.21cos21cos222cos 2cos 2cos 2xx x x x++=⨯===-故选:B.3.C【分析】由两角差的正切公式求解即可.【详解】因为,,,π02α<<25cos 5α=25sin 1cos 5αα=-=,sin 1tan cos 2ααα==,()()()11tan tan 23tan tan 1111tan tan 123ααββααβααβ⎛⎫-- ⎪--⎝⎭⎡⎤=--===⎣⎦+-⎛⎫+⋅- ⎪⎝⎭所以.π4β=故选:C.4.A【分析】分析各选项平移后的函数解析式,由此作出判断即可.【详解】对于A :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,符合;πππsin 2sin 2cos 21232y x x x⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于B :向右平移个单位可得到,不πsin 23y x ⎛⎫=+ ⎪⎝⎭π6ππsin 2sin 2cos 263y x x x ⎡⎤⎛⎫=-+=≠ ⎪⎢⎥⎝⎭⎣⎦符合;对于C :向右平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,不符合;πππsin 2sin 2cos 21236y x x x⎡⎤⎛⎫⎛⎫=-+=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于D :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π6,不符合;ππ2πsin 2sin 2cos 2633y x x x⎡⎤⎛⎫⎛⎫=++=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:A.5.D【分析】利用二倍角公式和诱导公式解题.【详解】因为2217cos(2)=cos22cos 121cos(2)366393ππππαααα⎛⎫⎛⎫⎛⎫--=--=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以.7sin 2sin 2cos 262339ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=--=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:D 6.C【分析】根据题意,得到,取得对称轴的方程,由的()π2sin()6f x x ω=+ππ,Z 3k x k ωω=+∈k 取值,结合题意,即可求解.【详解】由函数,()π3sin cos 2sin()6f x x x x ωωω=+=+令,可得,πππ,Z 62x k k ω+=+∈ππ,Z3k x k ωω=+∈因为图象的一条对称轴在区间内,可得,可得,ππ,63⎡⎤⎢⎥⎣⎦ππππ633k ωω≤+≤131231k k ωω⎧≤+⎪⎨⎪≥+⎩又因为的最小正周期大于,可得,解得,()f x π2ππω>2ω<当且仅当时,解得.0k =ω1≤<2综上可得,实数的取值范围为.ω[1,2)故选:C.7.A【分析】利用平方关系和两角差的余弦公式计算.【详解】因为,所以,,π3π44<<απππ24α<+<2ππ3cos()1sin ()445αα+=--+=-,ππππππ3422cos cos ()cos()cos sin()sin ()44444455210αααα⎡⎤=+-=+++=-+⨯=⎢⎥⎣⎦故选:A.8.B【分析】根据给定的函数图象,结合“五点法”作图求出函数解析式,再根据正弦函数的单调性、对称性,结合三角函数图象的平移变换,逐项判断作答.【详解】由图象可知,,2A =由图,因为,所以,,()10=1sin =2f ϕ⇒π02ϕ<<π=6ϕ()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭由图,则,5π012f ⎛⎫= ⎪⎝⎭5ππ122π,=,12655k k k k ωω⨯+=∈⇒-∈Z Z由图可知,所以,所以,1π5π12002125T ωω=>-⇒<<=2ω()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭对于A ,的图像向左平移个单位得到的sin =2sin2y A x x ω=π6ππ2sin2+=2sin 2+63y x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭图象,选项A 不正确;对于B ,由,可得,πππ2π22π,262k x k k -+≤+≤+∈Z ππππ,36k x k k -+≤≤+∈Z则函数的单调递增区间为,则在区间上单调递增,()f x πππ,π,36k k k ⎡⎤-++∈⎢⎥⎣⎦Z ()f x ππ,36⎡⎤-⎢⎥⎣⎦所以在区间上单调递增,选项B 正确;()f x ππ,312⎡⎤-⎢⎥⎣⎦对于C ,由于,则直线不是函数图象的对称轴,选项π2ππ2sin 12336f ⎛⎫⎛⎫=+=≠± ⎪ ⎪⎝⎭⎝⎭π3x =()f x C 不正确;对于D ,由,可得,则函数的图象关于点π2π,6x k k +=∈Zππ,122k x k =-+∈Z ()f x 对称,选项D 不正确.ππ,0,122k k ⎛⎫-+∈ ⎪⎝⎭Z 故选:B .9.ABD【分析】令,求得,可判定A 不正确;令,求得5π12x =5π3()122f =π8x =-可判定B 不正确;由时,可得,可判定C 正π5π()sin()812f -=-π22π,π,0,π6x -=--()0f x =确;由,结合正弦函数的性质,可判定D 不正确.π7ππ2(,)666x -∈--【详解】对于函数,()sin 26πf x x ⎛⎫=- ⎪⎝⎭对于A 中,令,可得,5π12x =5π5ππ2π3()sin(2)sin 1212632f =⨯-==所以函数的图象不关于点中心对称,所以A 不正确;()f x 5π,012⎛⎫⎪⎝⎭对于B 中,令,可得不是最值,π8x =-πππ5π()sin(2)sin()88612f -=-⨯-=-所以函数的图象不关于直线对称,所以B 不正确;()f x π8x =-对于C 中,由,可得,()π,πx ∈-π13π11π2,666x ⎛⎫-∈- ⎪⎝⎭当时,可得,π22π,π,0,π6x -=--()0f x =所以在上有4个零点,所以C 正确;()f x ()π,π-对于D 中,由,可得,π[,0]2x ∈-π7ππ2(,)666x -∈--根据正弦函数的性质,此时先减后增,所以D 不正确.()f x故选:ABD.10.BC【分析】由诱导公式先求出的值,然后用三角恒等公式逐一验证即可.11sin(6-π)【详解】由题意有,11ππ1sin sin 662⎛⎫-== ⎪⎝⎭对于A 选项:因为,故A 选项不符合题意;2o o 312cos 151cos3022-==≠对于B 选项:因为,故B 选项符合()o o o o o o o 1cos18cos 42sin18sin 42cos 1842cos 602-=+==题意;对于C 选项:因为,故()()o o o o o o o o 12sin15sin 75cos 7515cos 7515cos 60cos902=--+=-=C 选项符合题意;对于D 选项:因为,故D 选项不符合题意;()o o o o o o otan 30tan151tan 3015tan 4511tan 30tan152+=+==≠-故选:BC.11.CD【分析】根据题意结合函数的对称性可推出函数的周期以及对称轴,从而判断A ,B ;举特例符合题意,验证C ,D 选项,即得答案.【详解】由函数的图像关于直线对称,可得,(21)f x +1x =(2(1)1)(2(1)1)f x f x ++=-+即,即,(32)(32)f x f x +=-(3)(3)f x f x +=-以代换x ,则;1x +(4)(2)f x f x +=-由函数关于点对称,可得,(1)f x +(1,0)(2)(2)0f x f x ++-=结合可得,(4)(2)f x f x +=-(4)(2)f x f x +=-+即,则,即4为的一个周期,B 正确;(2)()f x f x +=-(4)()f x f x +=()f x 又,结合,(2)(2)f x f x +=--(2)()f x f x +=-可得,故,A 正确;(2)()f x f x -=(1)(1)f x f x -=+由以上分析可知函数关于直线对称,且关于点成中心对称,()f x 1x =(2,0)其周期为4,则满足题意,π()sin2f x x=但是,故C 错误;π(1)sin 12f ==说明函数图象关于直线对称,3()2f x f x ⎛⎫=- ⎪⎝⎭34x =而,即直线不是对称轴,D 错误,33π()sin 148f =≠±34x =π()sin 2f x x =故选:CD 12.AB【分析】利用三角函数的图象与性质结合图象变换一一判定即可.【详解】由题意可知,又,()πππ3πZ π424k k k ϕϕ⨯+=+∈⇒=-+ππ22ϕ-<<故,()ππ,sin 344f x x ϕ⎛⎫=-=- ⎪⎝⎭对于A 项,,由诱导公式知,即函πππsin 3sin 312124f x x x⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 3sin 3x x -=-数为奇函数,故A 正确;π()12f x +对于B 项,,由正弦函数的图象及性质可知函数在上ππππ[,]30,12644x x ⎡⎤∈⇒-∈⎢⎥⎣⎦()f x ππ[,]126单调递增,故B 正确;对于C 项,易知,若,则与一个取得最大值,一个()max 1f x =12|()()|2f x f x -=()1f x ()2f x 取得最小值,即与相隔最近为半个周期,即的最小值为,故C 错误;1x 2x 12||x x -π23T =对于D 项,由三角函数的伸缩变换可知,函数图象上所有点的横坐标缩小为原来的,()f x 13得到函数的图象,故D 错误.sin(9)y x ϕ=+故选:AB.13.3【分析】由题意由两角差的正切公式即可得解.【详解】由题意.()()tan 73tan133tan 73tan13tan 73131tan 73tan133tan 73tan133︒︒︒︒︒︒︒︒︒︒--=-+-=故.314./34-0.75-【分析】根据同角平方和关系可得,进而根据齐次式即可求解.12sin cos 25αα-=【详解】由可得,故,1sin cos 5αα+=-112sin cos 25αα+=12sin cos 25αα-=又,解得或,222sin cos tan 12sin cos sin cos tan 125αααααααα-===++3tan 4α=-4tan 3α=-由于,,故,12sin cos 025αα-=<()0,πα∈sin 0,cos 0αα><又,故,因此,1sin cos 05αα+=-<sin cos αα<tan 1α<故,3tan 4α=-故34-15./120.5【分析】利用正弦函数的周期公式即可得解.【详解】因为的最小正周期为,π()2sin()(0)3f x x ωω=+>4π所以,则.2π2π4πT ωω===ω=12故答案为.1216.ππ(Z)62kx k =+∈【分析】先利用三角函数恒等变换公式对函数化简变形,然后由可求得ππ2π(Z)62x k k +=+∈答案.【详解】22()2cos 43sin cos 2sin 1cos 223sin 2cos 21f x x x x x x x x =+-=+++-,π23sin 22cos 24sin 26x x x ⎛⎫=+=+ ⎪⎝⎭令,解得:.ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈故ππ(Z)62kx k =+∈。

高三数学三角函数练习大题经典22套

高三数学三角函数练习大题经典22套

三角函数(三)1、在△ABC 中,AC=3,sinC=2sinA.(1)求AB 的值。

(2)求sin(2A -4π)的值。

2、设△ABC 的内角A 、B 、C 所以的边长分别为a,b,c ,3cos cos 5a Bb A C -=,(1)tan cot A B 的值。

(2)tan()A B -的最大值。

3、在△ABC中,5cos13B=-,4cos5C=.(I)sin A的值;(II)设△ABC的面积S△ABC=332,求BC的长。

4、设△ABC的内角A、B、C的对边分别为,,a b c,且A=60°,c=3b。

求(I)ac的值;(II)cot cotB C+的值.三角函数(四)1、在△ABC 中ambmc 分别为角A 、B 、C 的对的边长,a = ,tantan 422A B C++=,2sin sin cos 2AB C =。

求A 、B 及a 、c .2、在△ABC 中,内角A 、B 、C 对边的边长分别为,,a b c ,已知2,3c C π==(I )若S △ABC ,a b .(II )若sin sin()2sin 2C B A A +-=,求△ABC 的面积。

3、设锐角△ABC的内角A、B、C的对边分别为,,a b c,2sina b A=.(I)求角B的大小;(II)求cos sinA C+的取值范围。

4、在△ABC中,1tan4A=,3tan5B=,(I)求角C的大小;(II)若△ABC三角函数(五)1、已知△ABC的内角A、B及其对边,a b满足cot cot,a b a A b B+=+求内角C.2、△ABC中,D为BC上的一点,BD=33,5sin13B=,3cos5ADC∠=,求AD.3、在△ABC 中,角A 、B 、C 所对的边分别为,,a b c ,已知1cos 24C =-. (I )求sin C 的值;(2)当2,2sin sin a A C ==时,求b c 及的长。

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

上海市2024年高考二模分类汇编:三角函数

上海市2024年高考二模分类汇编:三角函数

三角函数汇编一、题型一:三角函数1.(2024·上海徐汇·二模)已知函数()y f x =,其中()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭,实数0ω>,下列选项中正确的是()A .若2ω=,函数()y f x =关于直线5π12x =对称B .若12ω=,函数()y f x =在[]0,π上是增函数C .若函数()y f x =在[]π,0-上最大值为1,则43ω≤D .若1ω=,则函数()y f x =的最小正周期是2π2.(2024·上海奉贤·二模)已知函数()y f x =,其中21y x =+,()y g x =,其中()4sin g x x =,则图象如图所示的函数可能是().A .()()g x y f x =B .()()f x yg x =C .()()1y f x g x =+-D .()()1y f x g x =--3.(2024·上海闵行·二模)已知()sin f x x =,集合[,]22D ππ=-,()()()Γ{,|20,,}x y f x f y x y D =+=∈,()()()Ω{,|20,,}x y f x f y x y D =+≥∈.关于下列两个命题的判断,说法正确的是()命题①:集合Γ表示的平面图形是中心对称图形;命题②:集合Ω表示的平面图形的面积不大于2512π.A .①真命题;②假命题B .①假命题;②真命题C .①真命题;②真命题D .①假命题;②假命题4.(2024·上海嘉定·二模)已知函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>,对于命题甲:函数()()()y f x g x x =+∈R 可能不是周期函数;命题乙:若函数()()()y f x g x x =+∈R 的最小正周期是3T ,则31T T ≥.下列选项正确的是()A .甲和乙均为真命题B .甲和乙均为假命题C .甲为真命题且乙为假命题D .甲为假命题且乙为真命题5.(2024·上海松江·二模)已知点A 的坐标为12⎛ ⎝⎭,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.6.(2024·上海崇明·二模)已知实数1212,,,x x y y 满足:2222112212121,1,1x y x y x y y x +=+=-=,则112222x y x y +-++-的最大值是.7.(2024·上海奉贤·二模)函数sin()y wx ϕ=+π0,2w ϕ⎛⎫>< ⎪⎝⎭的图像记为曲线F ,如图所示.A ,B ,C 是曲线F 与坐标轴相交的三个点,直线BC 与曲线F 的图像交于点M ,若直线AM 的斜率为1k ,直线BM 的斜率为2k ,212k k ≠,则直线AB 的斜率为.(用1k ,2k 表示)8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ∠ODF ∠均为直角.若1AB =百米,则此步道的最大长度为百米.9.(2024·上海闵行·二模)始边与x 轴的正半轴重合的角α的终边过点(3,4)-,则sin(π)α+=.10.(2024·上海虹口·二模)已知集合{}2|tan 0,0x A x x B x x ⎧⎫-=<=≤⎨⎬⎩⎭,则A B = .11.(2024·上海黄浦·二模)若(3cos ,sin )a θθ= ,(cos ,3sin )b θθ= ,其中R θ∈,则a b ⋅=.12.(2024·上海青浦·二模)已知向量()1,1a =- ,()3,4b = ,则,a b <>=.13.(2024·上海闵行·二模)已知定义在0+∞(,)上的函数()y f x =的表达式为()sin cos f x x x x =-,其所有的零点按从小到大的顺序组成数列{}n x (1,N n n ≥∈).(1)求函数()y f x =在区间()0,π上的值域;(2)求证:函数()y f x =在区间()()π,1πn n +(1,N n n ≥∈)上有且仅有一个零点;(3)求证:()11ππn n n x x n++<-<.14.(2024·上海金山·二模)已知函数()y f x =,记()()sin f x x ωϕ=+,0ω>,0πϕ<<,x ∈R .(1)若函数()y f x =的最小正周期为π,当(1π6f =时,求ω和ϕ的值;(2)若1ω=,π6ϕ=,函数2()2()y f x f x a =--有零点,求实数a 的取值范围.15.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.二、题型二:三角恒等变换16.(2024·上海虹口·二模)设()sin23cos2f x x x =,将函数()y f x =的图像沿x 轴向右平移π6个单位,得到函数()y g x =的图像,则()A .函数()y g x =是偶函数B .函数()y g x =的图像关于直线π2x =对称C .函数()y g x =在ππ,42⎡⎤⎢⎥⎣⎦上是严格增函数D .函数()y g x =在π2,6π3⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤-⎣⎦17.(2024·上海静安·二模)函数2sin cos (R)y x x x =-∈的最小正周期为()A .2πB .πC .3π2D .π218.(2024·上海长宁·二模)直线230x y --=与直线350x y --=的夹角大小为.19.(2024·上海嘉定·二模)已知()22sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭,则函数()y f x =的最小值为.20.(2024·上海崇明·二模)已知A 、B 、C 是半径为1的圆上的三个不同的点,且AB = ,则AB AC ⋅的最小值是.21.(2024·上海奉贤·二模)已知[]0,πα∈,且2cos 23cos 5αα-=,则α=.22.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.23.(2024·上海·二模)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程(e e )2xx ccc y -+=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x xx -+=,悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.类比三角函数的三种性质:①平方关系:22sin cos 1x x +=;②两角和公式:()cos cos cos sin sin x y x y x y +=-,③导数:(sin )cos ,(cos )sin ,x x x x =⎧⎨=-''⎩定义双曲正弦函数()e e sh 2x xx --=.(1)直接写出()sh x ,()ch x 具有的类似①、②、③的三种性质(不需要证明);(2)当0x >时,双曲正弦函数()y x =sh 的图像总在直线y kx =的上方,求直线斜率k 的取值范围;(3)无穷数列{}n a 满足1a a =,2121n n a a +=-,是否存在实数a ,使得202454a =?若存在,求出a 的值,若不存在,说明理由.24.(2024·上海长宁·二模)某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x f x x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;25.(2024·上海青浦·二模)对于函数()y f x =,其中()22sin cos f x x x x =+-x ∈R .(1)求函数()y f x =的单调增区间;(2)在锐角三角形ABC 中,若()1f A =,2AB AC ⋅=,求ABC 的面积.26.(2024·上海嘉定·二模)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,221cos sin 2B B -=-.(1)求角B ,并计算πsin 6B ⎛⎫+ ⎪⎝⎭的值;(2)若3b =ABC 是锐角三角形,求2a c +的最大值.27.(2024·上海静安·二模)在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3a =,5b =,7c =.(1)求角C 的大小;(2)求sin()A C +的值.28.(2024·上海闵行·二模)在锐角ABC 中,角、、A B C 所对边的边长分别为a b c 、、,且2sin 30b A a =.(1)求角B ;(2)求sin sin A C +的取值范围.29.(2024·上海松江·二模)设2()sin3sin(0)222f x x x x ωωωω=>,函数()y f x =图象的两条相邻对称轴之间的距离为π.(1)求函数()y f x =的解析式;(2)在ABC 中,设角A 、B 及C 所对边的边长分别为a 、b 及c ,若3a =2b =,3()2f A =,求角C .三、题型三:解三角形30.(2024·上海嘉定·二模)嘉定某学习小组开展测量太阳高度角的数学活动.太阳高度角是指某时刻太阳光线和地平面所成的角.测量时,假设太阳光线均为平行的直线,地面为水平平面.如图,两竖直墙面所成的二面角为120°,墙的高度均为3米.在时刻t ,实地测量得在太阳光线照射下的两面墙在地面的阴影宽度分别为1米、1.5米.在线查阅嘉定的天文资料,当天的太阳高度角和对应时间的部分数据如表所示,则时刻t 最可能为()太阳高度角时间太阳高度角时间43.13°08:3068.53°10:3049.53°09:0074.49°11:0055.93°09:3079.60°11:3062.29°10:0082.00°12:00A .09:00B .10:00C .11:00D .12:0031.(2024·上海嘉定·二模)已知()11,OA x y =,()22,OB x y =,且OA 、OB 不共线,则OAB 的面积为()A .121212x x y y -B .122112x y x y -C .121212x x y y +D .122112x y x y +32.(2024·上海虹口·二模)已知一个三角形的三边长分别为2,3,4,则这个三角形外接圆的直径为.33.(2024·上海徐汇·二模)如图所示,已知ABC 满足8,3BC AC AB ==,P 为ABC 所在平面内一点.定义点集13,3D P AP AB λλλ⎧⎫-==+∈⎨⎬⎩⎭R .若存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0||AP的最大值为.34.(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l 相交于点O ,一根长度为8的直杆AB 的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ⊥,则OAP △面积的取值范围是.35.(2024·上海徐汇·二模)在ABC 中,1AC =,2π3C ∠=,π6A ∠=,则ABC 的外接圆半径为.36.(2024·上海闵行·二模)双曲线22:16y x Γ-=的左右焦点分别为12F F 、,过坐标原点的直线与Γ相交于A B 、两点,若112F B F A =,则22F A F B ⋅=.37.(2024·上海虹口·二模)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,且60BAD ∠= .若12AB AA ==,点M 为棱1CC 的中点,点P 在1A B 上,则线段,PA PM 的长度和的最小值为.38.(2024·上海黄浦·二模)在ABC 中,3cos 5A =-,1AB =,5AC =,则BC =.39.(2024·上海金山·二模)某临海地区为保障游客安全修建了海上救生栈道,如图,线段BC 、CD 是救生栈道的一部分,其中300BC m =,800CD m =,B 在A 的北偏东30︒方向,C 在A 的正北方向,D 在A 的北偏西80︒方向,且90B Ð=°.若救生艇在A 处载上遇险游客需要尽快抵达救生栈道B C D --,则最短距离为m .(结果精确到1m)40.(23-24高三下·上海浦东新·期中)已知双曲线()222210,0x y a b a b-=>>的焦点分别为1F 、2F ,M 为双曲线上一点,若122π3F MF ∠=,213OM =,则双曲线的离心率为.41.(2024·上海普陀·二模)设函数()sin()f x x ωϕ=+,0ω>,0πϕ<<,它的最小正周期为π.(1)若函数π12y f x ⎛⎫=- ⎪⎝⎭是偶函数,求ϕ的值;(2)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2a =,π6A =,324B f c ϕ-⎛⎫= ⎪⎝⎭,求b 的值.42.(2024·上海杨浦·二模)已知()sin (0)f x x ωω=>.(1)若()y f x =的最小正周期为2π,判断函数)()()π(2F x f x f x =++的奇偶性,并说明理由;(2)已知2ω=,ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若π()03f A +=,2a =,3b =,求c 的值.参考答案一、题型一:三角函数1.(2024·上海徐汇·二模)已知函数()y f x =,其中()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭,实数0ω>,下列选项中正确的是()A .若2ω=,函数()y f x =关于直线5π12x =对称B .若12ω=,函数()y f x =在[]0,π上是增函数C .若函数()y f x =在[]π,0-上最大值为1,则43ω≤D .若1ω=,则函数()y f x =的最小正周期是2π2.(2024·上海奉贤·二模)已知函数()y f x =,其中21y x =+,()y g x =,其中()4sin g x x =,则图象如图所示的函数可能是().A .()()g x y f x =B .()()f x yg x =C .()()1y f x g x =+-D .()()1y f x g x =--【答案】A【分析】根据函数图象和()(),f x g x 的奇偶性判断.【详解】易知()21f x x =+是偶函数,()4sin g x x =是奇函数,给出的函数图象对应的是奇函数,A.()()()24sin 1g x xy h x f x x ==+=,定义域为R ,又()()()()224si 11n 4sin x xh x h x x x =+--+-=-=-,所以()h x 是奇函数,符合题意,故正确;B.()()24n 1si f x y g x x x+==,π,Z x k k ≠∈,不符合图象,故错误;C.()()()2214sin 14si1n y h x f x g x x x x x ++==+-=-=+,定义域为R ,但()()()(),h x h x h x h x -≠-≠-,故函数是非奇非偶函数,故错误;D.()()()2214sin 14si 1n y h x f x g x x xx x +-==--=-=-,定义域为R ,但()()()(),h x h x h x h x -≠-≠-,故函数是非奇非偶函数,故错误,故选:A3.(2024·上海闵行·二模)已知()sin f x x =,集合[,]22D =-,()()()Γ{,|20,,}x y f x f y x y D =+=∈,()()()Ω{,|20,,}x y f x f y x y D =+≥∈.关于下列两个命题的判断,说法正确的是()命题①:集合Γ表示的平面图形是中心对称图形;命题②:集合Ω表示的平面图形的面积不大于2512π.A .①真命题;②假命题B .①假命题;②真命题C .①真命题;②真命题D .①假命题;②假命题代入点,22ππ⎛⎫⎪⎝⎭可得2sin sin 2π+面积为正方形面积的一半,即集合故选:A.【点睛】方法点睛:确定不等式表示的区域范围第一步:得到等式对应的曲线;第二步:任选一个不在曲线上的点,若原点不在曲线上,一般选择原点,检验它的坐标是否符合不等式;第三步:如果符合,则该点所在的一侧区域即为不等式所表示的区域;若不符合,则另一侧区域为不等式所表示的区域.4.(2024·上海嘉定·二模)已知函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>,对于命题甲:函数()()()y f x g x x =+∈R 可能不是周期函数;命题乙:若函数()()()y f x g x x =+∈R 的最小正周期是3T ,则31T T ≥.下列选项正确的是()A .甲和乙均为真命题B .甲和乙均为假命题C .甲为真命题且乙为假命题D .甲为假命题且乙为真命题【答案】C【分析】利用三角函数的周期性,选用特殊函数验证两个命题.【详解】函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>当()sin f x x =时,12πT =,()sin πg x x =时,22T =,满足条件,但函数()()sin sin πy f x g x x x =+=+就不是周期函数,命题甲正确;当()cos 2cos3f x x x =+时,12πT =,()cos 2g x x =-时,2πT =,满足条件,函数()()cos3y f x g x x =+=,32π3T =,有31T T <,命题乙错误.故选:C5.(2024·上海松江·二模)已知点A 的坐标为1322⎛⎫ ⎪ ⎪⎝⎭,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.【答案】3,221⎛⎫- ⎪ ⎪⎝⎭【分析】由题意可求π3xOA ∠=,5π326ππxOP ∠=+=,利用任意角的三角函数的定义即可求解.【详解】因为点A 的坐标为13,22⎛⎫ ⎪⎪⎝⎭,可得π3xOA ∠=,6.(2024·上海崇明·二模)已知实数1212,,,x x y y 满足:2222112212121,1,1x y x y x y y x +=+=-=,则112222x y x y +-++-的最大值是.【答案】6【分析】根据已知条件及三角换元,利用三角方程的解法及三角函数的性质即可求解7.(2024·上海奉贤·二模)函数sin()y wx ϕ=+π0,2w ϕ⎛⎫>< ⎪⎝⎭的图像记为曲线F ,如图所示.A ,B ,C 是曲线F 与坐标轴相交的三个点,直线BC 与曲线F 的图像交于点M ,若直线AM 的斜率为1k ,直线BM 的斜率为2k ,212k k ≠,则直线AB 的斜率为.(用1k ,2k 表示)【答案】12122k k k k -【分析】根据正弦函数的图象与性质写出,,,A B C M 的坐标,求出12,,k k k ,然后确定它们的关系.【详解】由题意2π,Z C wx k k ϕ+=∈,2πC k x w ϕ-=,则2ππ,Z A wx k k ϕ+=+∈,2ππA k x wϕ+-=,(0,sin )B ϕ,由π2ϕ<得π02ϕ<<,则2(2π)(,sin )k M wϕϕ--,1sin 2ππw k k ϕϕ=-+,2sin 2πw k k ϕϕ=-,sin 2ππAB w k k ϕϕ=--,所以21211AB k k k -=,又212k k ≠,所以12122AB k k k k k =-,故答案为:12122k k k k -.8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ∠ODF ∠均为直角.若1AB =百米,则此步道的最大长度为百米.【答案】2π42+【分析】设半圆步道直径为x 百米,连接,AE BE ,借助相似三角形性质用x 表示CE ,结合对称性求出步道长度关于x 的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为x 百米,连接,AE BE ,显然90AEB ∠= ,由点O 为线段,AB CD 的中点,得两个半圆步道及直道,CE DF 都关于过点O 垂直于AB 的直线对称,则11,22AC x BC x =-=+,又CE AB ⊥,则Rt ACE ∽Rt ECB V ,有2CE AC BC =⋅,即有214DF CE x ==-,因此步道长221()2π14π4f x x x x x =-+=-+,102x <<,求导得24()π14x f x x '=-+-,由()0f x '=,得2π2π4x =+,29.(2024·上海闵行·二模)始边与x 轴的正半轴重合的角α的终边过点(3,4)-,则sin(π)α+=.【答案】45/0.8【分析】结合三角函数的诱导公式,以及任意角的三角函数的定义,即可求解.10.(2024·上海虹口·二模)已知集合{}2|tan 0,0x A x x B x x ⎧⎫-=<=≤⎨⎬⎩⎭,则A B = .故答案为:π22x x ⎧⎫<≤⎨⎬⎩⎭.11.(2024·上海黄浦·二模)若(3cos ,sin )a θθ=,(cos ,3sin )b θθ=,其中R θ∈,则a b ⋅=.【答案】3【分析】利用平面向量数量积的坐标表示公式,结合同角的三角函数关系式进行求解即可.【详解】223cos 3sin 3a b θθ⋅=+=,故答案为:312.(2024·上海青浦·二模)已知向量()1,1a =-,()3,4b = ,则,a b <>=.【答案】2arccos10【分析】由向量的数量积公式求两个向量的夹角即可.【详解】由向量的夹角公式得342cos ,1025a b a b a b⋅-+<>===⨯ ,又因为[],0,πa b <>∈ ,所以2,arccos 10a b <>= .故答案为:2arccos10.13.(2024·上海闵行·二模)已知定义在0+∞(,)上的函数()y f x =的表达式为()sin cos f x x x x =-,其所有的零点按从小到大的顺序组成数列{}n x (1,N n n ≥∈).(1)求函数()y f x =在区间()0,π上的值域;(2)求证:函数()y f x =在区间()()π,1πn n +(1,N n n ≥∈)上有且仅有一个零点;(3)求证:()11ππn n n x x n++<-<.【答案】(1)()0,π(2)证明见解析(3)证明见解析【分析】(1)求得()f x 的导数,判断()f x 的单调性,可得所求值域;(2)讨论n 为奇数,或偶数时,()f x 的单调性,结合函数零点存在定理,可得证明;(3)由(2)可知函数()f x 在()()π,1πn n +(1,N n n ≥∈)上且仅有一个零点n x ,再由零点存在定理、以②因为()()112222133ππ3π22tan π1π2πn n n n n n n x x x x x x x n n n +++--+=<<=<+⋅由(1)可知,当π0,2x ⎛⎫∈ ⎪⎝⎭时,有tan x x<故()()()11ππtan πn n n n x x x x n ++-+<-+<,所以1ππn n x x n+-<+;由①②可知()11ππn n n x x n++<-<.【点睛】关键点点睛:本题第三问,借助()f x 在()()π,1πn n +(1,N n n ≥∈)上且仅有一个零点n x ,利用正切函数的性质和不等式的性质求解.14.(2024·上海金山·二模)已知函数()y f x =,记()()sin f x x ωϕ=+,0ω>,0πϕ<<,x ∈R .(1)若函数()y f x =的最小正周期为π,当(1π6f =时,求ω和ϕ的值;(2)若1ω=,π6ϕ=,函数2()2()y f x f x a =--有零点,求实数a 的取值范围.【答案】(1)2ω=,π6ϕ=(2)[1,3]a ∈-【分析】(1)利用三角函数的周期公式求得ω,再利用三角函数的值域与周期性求得ϕ,从而得解;(2)根据题意,利用换元法将问题转化为220t t a --=在[1,1]x ∈-有解,从而利用参变分离法或二次函数根的布分即可得解.【详解】(1)因为函数()y f x =的最小正周期2ππω=,所以2ω=,则当π6x =时,sin 13πϕ⎫⎛+= ⎪⎝⎭,所以ππ2π(Z)32k k ϕ+=+∈,得π2π(Z)6k k ϕ=+∈,因为0πϕ<<,所以取0k =得π6ϕ=,(2)解法一:当1ω=,π6ϕ=时,()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,x ∈R ,设()πsin [1,1]6t f x x ⎛⎫==+∈- ⎪⎝⎭,由题意得,220t t a --=在[1,1]x ∈-有解,化简得22a t t =-,又()22()211g t t t t =-=--在[1,1]t ∈-上单调递减,15.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.所以当()1πZ a k k =∈时,{}n a 是周期为1的周期数列,②当()1πZ a k k ≠∈时,记()sin f x x x =+,则1()n n a f a +=,()1cos 0f x x '=+≥,当且仅当()()1121πZ x k k =+∈时等号成立,即()1cos 0f x x =+>',所以()f x 在R 上严格增,若12a a <,则12()()f a f a <,即23a a <,进而可得1234a a a a <<<< ,即{}n a 是严格增数列,不是周期数列;同理,若12a a >,可得{}n a 是严格减数列,不是周期数列.综上,当1π()a k k =∈Z 时,{}n a 是周期为1的周期数列;当1π()a k k ≠∈Z 时,{}n a 不是周期数列.(3)必要性:若存在1a ,使得{}n a 是周期数列,设{}n a 的周期为0T ,则00011sin sin n T n T n T n n n b a a a a b +++++=-=-=,所以{}n b 是周期为0T 的周期数列,充分性:若{}n b 是周期数列,设它的周期为T ,记1a x =,则10()a f x x==211()sin a f x b x ==+,是关于x 的连续函数;3221()sin ()a f x b f x ==+,是关于x 的连续函数;…1()T T a f x -=,是关于x 的连续函数;11sin ()T T T a b f x +-=+,令1()sin ()T T g x x b f x -=--,则()g x 是连续函数,且1(2)2sin ()0T T g b f x -+=->,1(2)2sin ()0T T g b f x --=--<,所以()g x 存在零点c ,于是1sin ()0T T c b f c ---=,取1a c =,则111sin ()T T T a b f c c a +-=+==,从而211112sin sin T T T a b a b a a +++=+=+=,322223sin sin T T T a b a b a a +++=+=+=,……一般地,n T n a a +=对任何正整数n 都成立,即{}n a 是周期为T 的周期数列.(说明:关于函数连续性的说明不作要求)【点睛】方法点晴:对于数列的新定义问题,解决问题的关键在于准确理解定义,并结合定义进行判断或转化条件.二、题型二:三角恒等变换16.(2024·上海虹口·二模)设()sin2f x x x =,将函数()y f x =的图像沿x 轴向右平移π6个单位,得到函数()y g x =的图像,则()A .函数()y g x =是偶函数B .函数()y g x =的图像关于直线π2x =对称C .函数()y g x =在ππ,42⎡⎤⎢⎥⎣⎦上是严格增函数D .函数()y g x =在π2,6π3⎡⎤⎢⎥上的值域为⎡⎤⎣⎦则()3,2g x ⎡⎤∈-⎣⎦,即函数()y g x =在π2,6π3⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤-⎣⎦,故D 正确.故选:D17.(2024·上海静安·二模)函数2sin cos (R)y x x x =-∈的最小正周期为()A .2πB .πC .3π2D .π2【答案】A【分析】利用辅助角公式将函数化成()sin y A ωx φ=+的形式,代入周期公式可得结论.【详解】易知()2sin cos 5sin y x x x ϕ=-=+,其中1tan 2ϕ=-,由周期公式可得其最小正周期为2π2πT ω==.故选:A18.(2024·上海长宁·二模)直线230x y --=与直线350x y --=的夹角大小为.【答案】4π/45︒【分析】先由斜率的定义求出两直线的倾斜角,然后再利用两角差的正切展开式计算出夹角的正切值,最后求出结果.【详解】设直线230x y --=与直线350x y --=的倾斜角分别为,αβ,则1tan 2,tan 3αβ==,且[),0,παβ∈,所以αβ>,因为()12tan tan 3tan 121tan tan 13αβαβαβ---===++,所以π4αβ-=,即两条直线的夹角为π4,故答案为:π4.19.(2024·上海嘉定·二模)已知()sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪,则函数()y f x =的最小值为.【答案】42【分析】令πsin cos 2sin()4t x x x =+=+,可求t 的范围,利用同角的基本关系对已知函数化简计算,结合函数的单调性即可求解.【详解】由题意知,222(sin cos )()sin cos sin cos x x f x x x x x+=+=,20.(2024·上海崇明·二模)已知A、B、C是半径为1的圆上的三个不同的点,且AB=,则AB AC⋅的最小值是.所以πcos 32sin cos 3AB AC bc A A A⎛⎫⋅==⨯-⨯ ⎪⎝⎭3123cos sin cos 22A A A ⎛⎫=⨯- ⎪ ⎪⎝⎭23cos 3sin cos A A A=-()31cos 23sin 222A A+=-π33sin 232A ⎛⎫=--+ ⎪⎝⎭,π0,3A ⎛⎫∈ ⎪⎝⎭,则πππ2,333A ⎛⎫-∈- ⎪⎝⎭,则AB AC ⋅无最值;综上所述,AB AC ⋅ 的最小值是332-故答案为:332-21.(2024·上海奉贤·二模)已知[]0,πα∈,且2cos 23cos 5αα-=,则α=.【答案】π【分析】由倍角公式化简方程,解出cos α,得α的值.【详解】已知2cos 23cos 5αα-=,由倍角公式得()()24cos 3cos 74cos 7cos 10αααα--=-+=,由[]0,πα∈,[]cos 1,1α∈-,解得cos 1α=-,则πα=.故答案为:π.22.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.【答案】1(arccos ,π)8【分析】设等差数列,,a b c 的公差为m ,根据给定条件,结合三角恒等变换化简得tan 3tan 2mb =,由正切函数性质可得m 随b 增大而增大,再由c 的临界值点得π2ab =+,代入利用二倍角的余弦求解即得.【详解】设等差数列,,a b c 的公差为m ,,a b m c b m =-=+,依题意,cos cos cos cos a b c a -=-,于是cos()cos cos()cos()b m b b m b m --=+--,整理得22sin sin 2sin sin 22b m mb m ---=-,即sin()sin sin sin 2sin sin cos 2222m m m m b b m b -==,因此sin cos cos sin 2sin cos 222m m mb b b -=,即有tan3tan 2mb =,则m 随b 增大而增大,而0m >当(0,π)a ∈,3(π,π)2b ∈时,c 到达2π时是临界值点,此时π2ab =+,23.(2024·上海·二模)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程(e e )2xx ccc y -+=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x xx -+=,悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.类比三角函数的三种性质:①平方关系:22sin cos 1x x +=;②两角和公式:()cos cos cos sin sin x y x y x y +=-,③导数:(sin )cos ,(cos )sin ,x x x x =⎧⎨=-''⎩定义双曲正弦函数()e e sh 2x xx --=.(1)直接写出()sh x ,()ch x 具有的类似①、②、③的三种性质(不需要证明);(2)当0x >时,双曲正弦函数()y x =sh 的图像总在直线y kx =的上方,求直线斜率k 的取值范围;(3)无穷数列{}n a 满足1a a =,2121n n a a +=-,是否存在实数a ,使得202454a =?若存在,求出a 的值,若不存在,说明理由.【详解】(1)平方关系:()()22chsh 1x x -=;和角公式:()()()()()ch ch ch sh sh x y x y x y +=+;导数:()()sh()ch()ch()sh()x x x x ''⎧=⎪⎨=⎪⎩.理由如下:平方关系,()()2222e e e e ch sh 22x x x x x x --⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭2222e e e e 12244x x x x --++=--=+;和角公式:()e e ch 2x y x yx y +--++=,()()()()e e e e e e e e ch ch sh sh 2222x x y y x yy x x y x y ----++--+=⋅+⋅e e e e e e e e 44x y x y x y x y x y x y x y x y+--+--+--+--+++--+=+e e 2x y x y+--+=故()()()()()ch ch ch sh sh x y x y x y +=+;导数:()()e e ee sh()ch 22x xxx x x ----+'===,()e e ch()sh 2x x x x --'==;(2)构造函数()()sh F x x kx =-,[)0,x ∈+∞,由(1)可知()()ch F x x k '=-,①当1k ≤时,由e e ch()e e 12x xx x x --+=≥⋅=,又因为0x >,故e e x x -≠,等号不成立,所以()()ch 0F x x k '=->,故()F x 为严格增函数,此时()(0)0F x F >=,故对任意0x >,()x kx >sh 恒成立,满足题意;②当1k >时,令()()(),0,G x F x x '=∈+∞,则()()sh 0G x x =>',可知()G x 是严格增函数,由(0)10G k =-<与1(ln 2)04G k k=>可知,存在唯一0(0,ln 2)x k ∈,使得0()0G x =,故当0(0,)x x ∈时,0()()()0F x G x G x =<=',则()F x 在0(0,)x 上为严格减函数,故对任意0(0,)x x ∈,()()00F F x <=,即()x kx >sh ,矛盾;(2)利用好定义所给的表达式以及相关的条件(3)含有参数是要注意分类讨论的思想.24.(2024·上海长宁·二模)某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x f x x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;【答案】(1)补充表格见解析,()πsin 26f x x ⎛⎫=+ ⎪⎝⎭(2)210,2⎡⎤+⎢⎥⎢⎥⎣⎦【分析】(1)由表得ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解方程组即可得,ωϕ,进一步可据此完成表格;(2)由题意结合二倍角公式、诱导公式以及辅助角公式先化简()g x 的表达式,进一步通过整体换元法即可求解.【详解】(1)由题意ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解得π2,6ωϕ==,所以函数()y f x =的解析式为()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令π206x +=时,解得π12x =-,当5π12x =时,ππ2π,sin 2066x x ⎛⎫+=+= ⎪⎝⎭,将表中Δ处的数据补充完整如下表:x ωϕ+0π2π3π22πxπ12-π65π122π311π12()sin x ωϕ+011-025.(2024·上海青浦·二模)对于函数()y f x =,其中()22sin cos f x x x x =+-x ∈R .(1)求函数()y f x =的单调增区间;(2)在锐角三角形ABC 中,若()1f A =,AB AC ⋅=,求ABC 的面积.所以函数()f x 的单调增区间是()5πππ,π+,Z 1212k k k ⎡⎤-∈⎢⎥⎣⎦.(2)(2)由已知π()2sin 213f A A ⎛⎫=+= ⎪⎝⎭,所以π1sin 232A ⎛⎫+= ⎪⎝⎭,因为π02A <<,所以ππ4π2333A <+<,即π5π236A +=,所以π4A =,又cos 2AB AC AB AC A ⋅=⋅=,所以2AB AC ⋅=,所以ABC 的面积1122sin 22222S AB AC A =⋅=⨯⨯=.26.(2024·上海嘉定·二模)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,221cos sin 2B B -=-.(1)求角B ,并计算πsin 6B ⎛⎫+ ⎪⎝⎭的值;(2)若3b =ABC 是锐角三角形,求2a c +的最大值.【答案】(1)π3或2π3;当π3B =时,πsin 16B ⎛⎫+= ⎪⎝⎭;当2π3B =时,π1sin 62B ⎛⎫+= ⎪⎝⎭(2)27【分析】(1)由题意,根据同角的平方关系可得cos 21B =±,求出B ,进而求出πsin()6B +即可;(2)由题意可得π3B =,求出C 的范围,根据正弦定理可得2sin ,2sin a A c C ==,利用三角恒等变换化简计算得227sin()a c C ϕ+=+(3tan 5ϕ=),结合ϕ的范围和正弦函数的性质即可求解.【详解】(1)由2222cos sin 11cos sin 2B B B B ⎧+=⎪⎨-=-⎪⎩,得21cos 4B =,则cos 21B =±,又0πB <<,所以π3B =或2π3.当π3B =时,ππsin()sin 162B +==;当2π3B =时,π5π1sin()sin 662B +==.(2)若ABC 为锐角三角形,则π3B =,有π022ππ032C A C ⎧<<⎪⎪⎨⎪<=-<⎪⎩,解得ππ62C <<.由正弦定理,得32sin sin sin 32a c bA C B====,则2sin ,2sin a A c C ==,27.(2024·上海静安·二模)在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3a =,5b =,7c =.(1)求角C 的大小;(2)求sin()A C +的值.28.(2024·上海闵行·二模)在锐角ABC 中,角、、A B C 所对边的边长分别为a b c 、、,且2sin 0b A =.(1)求角B ;(2)求sin sin A C +的取值范围.【答案】(1)π3(2)3(,3]2.【分析】(1)由已知结合正弦定理可得结果;(2)根据ABC 为锐角三角形求出ππ(,)62A ∈,利用两角差的正弦公式及辅助角公式化简2πsin sin sin sin()3A C A A +=+-,根据正弦函数性质可得结果.【详解】(1)2sin 30b A a -= ,2sin sin 3sin 0A B A ∴-=,又 π0,,sin 02A A ⎛⎫∈∴≠ ⎪⎝⎭,3πsin ,0,22B B ⎛⎫∴=∈ ⎪⎝⎭,∴π3B =.(2)由(1)可知,π3B =,且ABC 为锐角三角形,所以π022ππ032A C A ⎧<<⎪⎪⎨⎪<=-<⎪⎩,A ∴ππ(,)62∈,则2πsin sin sin sin()3A C A A +=+-33sin cos 22A A =+π3sin()6A =+,因为ππ2π363A <+<,sin sin A C ∴+3(,3]2∈.29.(2024·上海松江·二模)设2()sin 3sin (0)222f x x x x ωωωω=>,函数()y f x =图象的两条相邻对称轴之间的距离为π.(1)求函数()y f x =的解析式;(2)在ABC 中,设角A 、B 及C 所对边的边长分别为a 、b 及c ,若3a =2b =,3()2f A =,求角C .【答案】(1)π1()sin()62f x x =-+(2)π12【分析】(1)根据降幂公式,二倍角公式及辅助角公式化简()f x ,再根据()y f x =图象的两条相邻对称轴三、题型三:解三角形30.(2024·上海嘉定·二模)嘉定某学习小组开展测量太阳高度角的数学活动.太阳高度角是指某时刻太阳光线和地平面所成的角.测量时,假设太阳光线均为平行的直线,地面为水平平面.如图,两竖直墙面所成的二面角为120°,墙的高度均为3米.在时刻t,实地测量得在太阳光线照射下的两面墙在地面的阴影宽度分别为1米、1.5米.在线查阅嘉定的天文资料,当天的太阳高度角和对应时间的部分数据如表所示,则时刻t最可能为()太阳高度角时间太阳高度角时间43.13°08:3068.53°10:3049.53°09:0074.49°11:0055.93°09:3079.60°11:3062.29°10:0082.00°12:00A .09:00B .10:00C .11:00D .12:00【答案】B【分析】作出示意图形,在四边形ABCD 中利用正弦定理与余弦定理,算出四边形ABCD 的外接圆直径大小,然后在Rt BDE △中利用锐角三角函数定义,算出DBE ∠的大小,即可得到本题的答案.【详解】如图所示,设两竖直墙面的交线为DE ,点E 被太阳光照射在地面上的影子为点B ,点,A C 分别是点B 在两条墙脚线上的射影,连接AC ,BD ,BE ,由题意可知DBE ∠就是太阳高度角.∵四边形ABCD 中,90BAD BCD ∠=∠=o ,120ADC ∠= ,∴()36060ABC BAD BCD ADC ∠=-∠+∠+∠= ,∴ABC 中,2222212cos60 1.5121.51 1.752AC AB BC AB BC =+-⋅=+-⨯⨯⨯= ,可得 1.75 1.32AC =≈,∵四边形ABCD 是圆内接四边形,BD 是其外接圆直径,31.(2024·上海嘉定·二模)已知()11,OA x y =,()22,OB x y =,且OA 、OB 不共线,则OAB 的面积为()A .121212x x y y -B .122112x y x y -C .121212x x y y +D .122112x y x y +32.(2024·上海虹口·二模)已知一个三角形的三边长分别为2,3,4,则这个三角形外接圆的直径为.即这个三角形外接圆的直径为161515.故答案为:16151533.(2024·上海徐汇·二模)如图所示,已知ABC 满足8,3BC AC AB ==,P 为ABC 所在平面内一点.定义点集13,3D P AP AB λλλ⎧⎫-==+∈⎨⎬⎩⎭R .若存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0||AP 的最大值为.【答案】3【分析】延长AB 到M 满足3AM AB = ,取AC 的靠近A 的三等分点N ,连接MN ,由向量共线定理得,,P M N 三点共线,从而0AP 表示AMN 的边MN 上的高,利用正弦定理求得AMN 的面积的最大值,从而可得结论.【详解】延长AB 到M 满足3AM AB = ,取AC 的靠近A 的三等分点N ,连接MN ,如图,3(1)133(1)3AC AP AB AC AB AM AN λλλλλλ=⋅+-++--== ,所以,,P M N 三点共线,又存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0AP 的长表示A 到直线MN 的距离,即AMN 的边MN 上的高,设0AP h =,由3AC AB =得AC AM =,AB AN =,A ∠公用,因此ABC ANM ≅ ,所以8MN BC ==,AMN 中,设ANM θ∠=,由正弦定理得sin sin sin AM AN MN M Aθ==,MAN ∠记为角A ,所以sin 3sin M θ=,8sin sin AM A θ=,8sin sin M AN A =,所以2132sin sin 96sin sin 2sin sin()ABC AMN M M S S AM AN A A M θθ====+ 2296sin 96sin sin cos cos sin sin cos 3cos sin M M M M M M M θθθ==++96sin cos 3cos M Mθ=+,若θ不是钝角,则222296sin 96sin 1sin 31sin 19sin 99sin ABC MMS M M M θ==-+--+-!,【点睛】方法点睛:本题考查向量的线性运算,考查三角形的面积,解题方法其一是根据向量共线定理得出P点在一条直线,问题转化为求三角形高的最大值,从而求三角形面积的最大值,解题方法其二是利用正弦定理求三角形的面积,本题中注意在用平方关系转化时,34.(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l相交于点O,一根长度为8的直杆AB的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ⊥,则OAP △面积的取值范围是.【答案】(0,63]【分析】令π(0)2OAB x x ∠=<<,利用直角三角形边角关系及三角形面积公式求出OAP △的面积函数,再利用导数求出值域即得.【详解】依题意,设π(0)2OAB x x ∠=<<,则2cos 8cos ,cos 8cos OA AB x x AP OA x x ====,因此OAP △的面积31()sin 32sin cos 2f x OA AP x x x =⋅=,π02x <<,求导得42242()32(cos 3sin cos )32cos (13tan )f x x x x x x '=-=-,当π06x <<时,()0f x '>,当ππ62x <<时,()0f x '<,即函数()f x 在(0,)6π上递增,在ππ(,)62上递减,因此3max π31()()32()63622f x f ==⨯⨯=,而π(0)()02f f ==,则0()63f x <≤,所以OAP △面积的取值范围是(0,63].故答案为:(0,63]35.(2024·上海徐汇·二模)在ABC 中,1AC =,2π3C ∠=,π6A ∠=,则ABC 的外接圆半径为.【答案】1【分析】由正弦定理求解.【详解】由已知π6B ∠=,设三角形外接圆半径为R ,则122πsin sin 6AC R B ===,所以1R =.故答案为:1.36.(2024·上海闵行·二模)双曲线2:16x Γ-=的左右焦点分别为12F F 、,过坐标原点的直线与Γ相交于A B 、两点,若112F B F A =,则22F A F B ⋅= .【答案】4。

高考三角函数专题(含答案)

高考三角函数专题(含答案)

高考三角函数专题(含答案)高考专题复习三角函数专题模块一 ——选择题一、选择题:(将正确答案的代号填在题后的括号内.)1.(2010·天津)下图是函数y =A sin(ωx +φ)(x ∈R)在区间⎣⎢⎢⎡⎦⎥⎥⎤-π6,5π6上的图象,为了得到这个函数的图象,只要将y =sin x (x ∈R)的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变解析:观察图象可知,函数y =A sin(ωx +φ)中A =1,2πω=π,故ω=2,ω×⎝⎛⎭⎪⎪⎫-π6+φ=0,得φ=π3,所以函数y =sin ⎝⎛⎭⎪⎪⎫2x +π3,故只要把y =sin x 的图象向左平移π3个单位,再把各点的横坐标缩短到原来的12即可.答案:A2.(2010·全国Ⅱ)为了得到函数y =sin ⎝⎛⎭⎪⎪⎫2x -π3的图象,只需把函数y =sin ⎝⎛⎭⎪⎪⎫2x +π6的图象( )A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位 解析:由y =sin ⎝⎛⎭⎪⎪⎫2x +π6――→x →x +φy =sin ⎣⎢⎢⎡⎦⎥⎥⎤2(x +φ)+π6=sin ⎝⎛⎭⎪⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个长度单位.故选B.答案:B3.(2010·重庆)已知函数y =sin(ωx +φ)⎝⎛⎭⎪⎪⎫ω>0,|φ|<π2的部分图象如图所示,则( )A .ω=1,φ=π6B .ω=1,φ=-π6 C .ω=2,φ=π6 D .ω=2,φ=-π6解析:依题意得T =2πω=4⎝ ⎛⎭⎪⎪⎫7π12-π3=π,ω=2,sin ⎝⎛⎭⎪⎪⎫2×π3+φ=1.又|φ|<π2,所以2π3+φ=π2,φ=-π6,选D.答案:D4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]上的图象如图所示,那么ω=( )A .1B .2 C.12 D.13解析:由函数的图象可知该函数的周期为π,所以2πω=π,解得ω=2.答案:B5.已知函数y =sin ⎝⎛⎭⎪⎪⎫x -π12cos ⎝ ⎛⎭⎪⎪⎫x -π12,则下列判断正确的是( )A .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π12,0 B .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π12,0C .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π6,0D .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎪⎪⎫π6,0解析:∵y =sin ⎝⎛⎭⎪⎪⎫x -π12·cos ⎝ ⎛⎭⎪⎪⎫x -π12=12sin ⎝ ⎛⎭⎪⎪⎫2x -π6,∴T =2π2=π,且当x =π12时,y =0.答案:B6.如果函数y =sin2x +a cos2x 的图象关于直线x =-π8对称,则实数a 的值为( ) A.2 B .- 2 C .1 D .-1分析:函数f (x )在x =-π8时取得最值;或考虑有f ⎝⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x 对一切x ∈R 恒成立. 解析:解法一:设f (x )=sin2x +a cos2x ,因为函数的图象关于直线x =-π8对称,所以f ⎝ ⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x对一切实数x 都成立,即sin2⎝⎛⎭⎪⎪⎫-π8+x +a cos2⎝ ⎛⎭⎪⎪⎫-π8+x=sin2⎝⎛⎭⎪⎪⎫-π8-x +a cos2⎝ ⎛⎭⎪⎪⎫-π8-x即sin ⎝⎛⎭⎪⎪⎫-π4+2x +sin ⎝ ⎛⎭⎪⎪⎫π4+2x=a ⎣⎢⎢⎡⎦⎥⎥⎤cos ⎝⎛⎭⎪⎪⎫π4+2x -cos ⎝ ⎛⎭⎪⎪⎫-π4+2x ,∴2sin2x ·cos π4=-2a sin2x ·sin π4,即(a +1)·sin2x =0对一切实数x 恒成立,而sin2x 不能恒为0,∴a +1=0,即a =-1,故选D.解法二:∵f (x )=sin2x +a cos2x 关于直线x =-π8对称.∴有f ⎝⎛⎭⎪⎪⎫-π8+x =f ⎝ ⎛⎭⎪⎪⎫-π8-x 对一切x ∈R 恒成立. 特别,对于x =π8应该成立.将x =π8代入上式,得f (0)=f ⎝ ⎛⎭⎪⎪⎫-π4,∴sin0+a cos0=sin ⎝⎛⎭⎪⎪⎫-π2+a cos ⎝ ⎛⎭⎪⎪⎫-π2∴0+a =-1+a ×0. ∴a =-1.故选D.解法三:y =sin2x +a cos2x =1+a 2sin(2x +φ),其中角φ的终边经过点(1,a ).其图象的对称轴方程为2x +φ=k π+π2(k ∈Z),即x =k π2+π4-φ2(k ∈Z).令k π2+π4-φ2=-π8(k ∈Z).得φ=k π+3π4(k ∈Z).但角φ的终边经过点(1,a ),故k 为奇数,角φ的终边与-π2角的终边相同,∴a =-1.解法四:y =sin2x +a cos2x =1+a 2sin(2x +φ),其中角φ满足tan φ=a .因为f (x )的对称轴为y =-π8,∴当x =-π8时函数y =f (x )有最大值或最小值,所以1+a 2=f ⎝⎛⎭⎪⎪⎫-π8或-1+a 2=f ⎝⎛⎭⎪⎪⎫-π8, 即1+a 2=sin ⎝⎛⎭⎪⎪⎫-π4+a cos ⎝⎛⎭⎪⎪⎫-π4, 或-1+a 2=sin ⎝⎛⎭⎪⎪⎫-π4+a cos ⎝⎛⎭⎪⎪⎫-π4. 解之得a =-1.故选D. 答案:D评析:本题给出了四种不同的解法,充分利用函数图象的对称性的特征来解题.解法一是运用了方程思想或恒等式思想求解.解法二是利用了数形结合的思想求解,抓住f (m +x )=f (m -x )的图象关于直线x =m 对称的性质,取特殊值来求出待定系数a 的值.解法三利用函数y =A sin(ωx +φ)的对称轴是方程ωx +φ=k π+π2(k ∈Z)的解x =k π+π2-φω(k ∈Z),然后将x =-π8代入求出相应的φ值,再求a 的值.解法四利用对称轴的特殊性质,在此处函数f (x )取最大值或最小值.于是有f ⎝⎛⎭⎪⎪⎫-π8=[f (x )]max或f ⎝⎛⎭⎪⎪⎫-π8=[f (x )]min .从而转化为解方程问题,体现了方程思想.由此可见,本题体现了丰富的数学思想方法,要从多种解法中悟出其实质东西.模块二——填空题二、填空题:(把正确答案填在题后的横线上.) 7.(2010·福建)已知函数f (x )=3sin ⎝⎛⎭⎪⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,则f (x )的取值范围是________.解析:∵f (x )与g (x )的图象的对称轴完全相同,∴f (x )与g (x )的最小正周期相等,∵ω>0,∴ω=2,∴f (x )=3sin ⎝⎛⎭⎪⎪⎫2x -π6,∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin ⎝⎛⎭⎪⎪⎫2x -π6≤1,∴-32≤3sin ⎝ ⎛⎭⎪⎪⎫2x -π6≤3,即f (x )的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤-32,3.答案:⎣⎢⎢⎡⎦⎥⎥⎤-32,38.设函数y =cos 12πx 的图象位于y 轴右侧所有的对称中心从左依次为A 1,A 2,…,A n ,….则A 50的坐标是________.解析:对称中心横坐标为x =2k +1,k ≥0且k ∈N ,令k =49即可得.答案:(99,0)9.把函数y =cos ⎝⎛⎭⎪⎪⎫x +π3的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m 的最小值是________.解析:由y =cos(x +π3+m )的图象关于y 轴对称,所以π3+m =k π,k ∈Z ,m =k π-π3,当k =1时,m 最小为2 3π.答案:2 3π10.定义集合A,B的积A×B={(x,y)|x∈A,y∈B}.已知集合M={x|0≤x≤2π},N={y|cos x≤y≤1},则M×N所对应的图形的面积为________.解析:如图所示阴影面积可分割补形为ABCD的面积即BC×CD=π·2=2π.答案:2π模块三——解答题三、解答题:(写出证明过程或推演步骤.)11.若方程3sin x+cos x=a在[0,2π]上有两个不同的实数解x1、x2,求a的取值范围,并求x1+x2的值.分析:设函数y 1=3sin x +cos x ,y 2=a ,在同一平面直角坐标系中作出这两个函数的图象,应用数形结合解答即可.解:设f (x )=3sin x +cos x =2sin ⎝⎛⎭⎪⎪⎫x +π6,x ∈[0,2π].令x +π6=t ,则f (t )=2sin t ,且t ∈⎣⎢⎢⎡⎦⎥⎥⎤π6,13π6.在同一平面直角坐标系中作出y =2sin t 及y =a 的图象,从图中可以看出当1<a <2和-2<a <1时,两图象有两个交点,即方程3sin x +cos x =a 在[0,2π]上有两个不同的实数解.当1<a <2时,t 1+t 2=π, 即x 1+π6+x 2+π6=π,∴x 1+x 2=2π3;当-2<a <1时,t 1+t 2=3π, 即x 1+π6+x 2+π6=3π,∴x 1+x 2=8π3.综上可得,a 的取值范围是(1,2)∪(-2,1). 当a ∈(1,2)时,x 1+x 2=2π3;当a ∈(-2,1)时,x 1+x 2=8π3.评析:本题从方程的角度考查了三角函数的图象和对称性,运用的主要思想方法有:函数与方程的思想、数形结合的思想及换元法.解答本题常见的错误是在换元时忽略新变量t 的取值范围,仍把t 当成在[0,2π]中处理,从而出错.12.(2010·山东)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎢⎡⎦⎥⎥⎤0,π4上的最大值和最小值.解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝⎛⎭⎪⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ=12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ), 又函数图象过点⎝⎛⎭⎪⎪⎫π6,12, 所以12=12cos ⎝ ⎛⎭⎪⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎪⎫π3-φ=1,又0<φ<π,所以φ=π3.(2)由(1)知f (x )=12cos ⎝ ⎛⎭⎪⎪⎫2x -π3,将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,可知g (x )=f (2x )=12cos ⎝⎛⎭⎪⎪⎫4x -π3, 因为x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π4,所以4x ∈⎣⎢⎡⎦⎥⎤0,π, 因此4x -π3∈⎣⎢⎢⎡⎦⎥⎥⎤-π3,2π3,故-12≤cos ⎝ ⎛⎭⎪⎪⎫4x -π3≤1.所以y =g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值分别为12和-14.13.(2009天津卷理)在⊿ABC 中,BC=5,AC=3,sinC=2sinA (I) 求AB 的值:(II) 求sin 24A π⎛⎫- ⎪⎝⎭的值 本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系、二倍角的正弦与余弦、两角差的正弦等基础知识,考查基本运算能力。

三角函数练习及高考题(带答案)

三角函数练习及高考题(带答案)

三角函数练习及高考题(带答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN三角函数练习及高考题1.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位 2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B )A .1BCD .23.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x4.若02,sin απαα≤≤>,则α的取值范围是:( C )(A),32ππ⎛⎫ ⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫⎪⎝⎭(D)3,32ππ⎛⎫ ⎪⎝⎭5.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是C(A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈6.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则D(A )c b a << (B )a c b << (C )a c b << (D )b a c << 7.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π- B .(,0)6π-C .(,0)12πD .(,0)6π8.已知cos (α-6π)+sin α=的值是则)67sin(,354πα-(A )-532 (B )532 (C)-54 (D) 54 9.(湖北)将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是AA.π125 B. π125- C. π1211 D. 1112π-10.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C )A.1B.12C.3211.函数f(x)02x π≤≤) 的值域是B(A )] (B)[-1,0] (C )] (D )[-]12.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为AA.2π B.π C.-πD.-2π13.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是C(A )0 (B )1 (C )2 (D )414.若,5sin 2cos -=+a a 则a tan =B (A )21 (B )2 (C )21- (D )2- 15.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1 B. 2 C. 1/2D. 1/316.0203sin 702cos 10--=( C )A.12B.22C. 2D.3217.函数f (x )=3sin x +sin(π2+x )的最大值是 218.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. 19.()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= .1020.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .π21.已知()sin (0)363f x x ff ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________.14322.设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.23.在ABC △中,5cos 13B =-,4cos 5C =.(Ⅰ)求sin A 的值; (Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 解:(Ⅰ)由5cos 13B =-,得12sin 13B =,由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ········· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ························ 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ···················· 10分24.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()sin 222x f x x ωω-=+11sin 2cos 2222x x ωω=-+ π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.25.求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)题目1:已知三角形ABC,角A的补角是30度,角B的补角是60度,求角C的度数。

答案:90度。

题目2:已知sin(60°)的值等于√3/2,求cos(30°)的值。

答案:√3/2。

题目3:已知cos(30°)的值等于0.866,求sin(60°)的值。

答案:0.866。

题目4:已知tan(45°)的值等于1,求cot(45°)的值。

答案:1。

题目5:已知cot(60°)的值等于√3/3,求tan(30°)的值。

答案:√3。

题目6:已知cos(45°)的值等于0.707,求sin(45°)的值。

答案:0.707。

题目7:已知sin(45°)的值等于0.707,求cot(45°)的值。

答案:1.题目8:已知sin(30°)的值等于0.5,求cos(60°)的值。

答案:0.5.题目9:已知cot(30°)的值等于√3,求tan(60°)的值。

答案:√3.题目10:已知cos(60°)的值等于0.5,求sin(30°)的值。

答案:0.5.题目11:已知sin(90°)的值等于1,求cos(0°)的值。

答案:1.题目12:已知sin(0°)的值等于0,求cos(90°)的值。

答案:0.题目13:已知cos(90°)的值等于0,求sin(0°)的值。

答案:1.题目14:已知cos(0°)的值等于1,求sin(90°)的值。

答案:0.题目15:已知cot(45°)的值等于1,求tan(45°)的值。

答案:1.题目16:已知tan(60°)的值等于√3,求cot(60°)的值。

答案:√3.题目17:已知cot(30°)的值等于√3/3,求tan(30°)的值。

三角函数--2023高考真题分类汇编完整版

三角函数--2023高考真题分类汇编完整版

三角函数--高考真题汇编第一节三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023北京卷13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=;β=.【分析】根据正切函数单调性以及任意角的定义分析求解.【解析】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02αβ<<<,则00tan tan αβ<,取1020122π,2π,,k k k k ααββ=+=+∈Z ,则()()100200tan tan 2πtan ,tan tan 2πtan k k αααβββ=+==+=,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k αβαβαβ-=+-+=-+-,因为()1200π2π2π,02k k αβ-≥-<-<,则()()12003π2π02k k αβαβ-=-+->>,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k αβ====,即9ππ,43αβ==满足题意.故答案为:9ππ;43.第二节三角恒等变换1.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =,BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,15sin 2sincos 2224ααα==⨯.故选B.2.(2023新高考I 卷8)已知()1sin 3αβ-=,1cos sin 6αβ=,则()cos 22αβ+=()A.79B.19 C.19-D.79-【解析】()1sin sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,所以1sin cos 2αβ=,所以()112sin sin cos cos sin 263αβαβαβ+=+=+=,()()()2221cos 22cos 212sin 1239αβαβαβ⎛⎫+=+=-+=-⨯= ⎪⎝⎭.故选B.3.(2023新高考II 卷7)已知α为锐角,1cos 4α+=,则sin 2α=()A.38- B.18-+ C.34- D.14-+【解析】21cos 12sin 24αα+=-=,所以2231sin 284α⎫-==⎪⎪⎝⎭,则1sin24α-=或1sin 24α=.因为α为锐角,所以sin02α>,15sin24α-=舍去,得51sin 24α-=.故选D.第三节三角函数的图像与性质1.(2023新高考II 卷16)已知函数()()sin f x x ωϕ=+,如图所示,A ,B 是直线12y =与曲线()y f x =的两个交点,若π=6AB ,则()πf =_______.【解析】sin y x =的图象与直线12y =两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36ω⋅=,解得4ω=,所以()()sin 4f x x ϕ=+.再将2π,03⎛⎫⎪⎝⎭代入()()sin 4f x x ϕ=+得ϕ的一个值为2π3-,即()2πsin 43f x x ⎛⎫=- ⎪⎝⎭.所以()2π3πsin 4π32f ⎛⎫=-=- ⎪⎝⎭.2.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.3.(2023全国乙卷理科6,文科10)已知函数()()sin f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条对称轴,则512f π⎛⎫-= ⎪⎝⎭()A. B.12-C.12【解析】2222362T T ωωππππ=-=⇒=π=⇒=,所以()()sin 2.f x x ϕ=+又222,32k k ϕππ⋅+=+π∈Z ,则52,6k k ϕπ=-+π∈Z .所以5555sin 22sin 121263f k π⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=⋅--+π=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列{}n a 的公差为23π,集合{}*cos n S a n =∈N ,若{},S a b =,则ab =()A.1- B.12-C.0D.12【解析】解法一(利用三角函数图像与性质)因为公差为23π,所以只考虑123,,a a a ,即一个周期内的情形即可.依题意,{}{}cos ,n S a a b ==,即S 中只有2个元素,则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a =时,且2123a a π-=,所以图像上点的位置必为如图1所示,12,A A 关于x =π对称,且1223A A π=,则1233a ππ=π-=,2433a ππ=π+=,32a =π.所以11122ab ⎛⎫=-⨯=- ⎪⎝⎭.②当13cos cos a a =时,3143a a π-=,所以图像上点的位置必为如图2所示,13,A A 关于x =π对称,且1343A A π=,则133a 2ππ=π-=,3533a 2ππ=π+=,2a =π.所以()11122ab =⨯-=-.综上所述,12ab =-.故选B.解法二(代数法)()()11113n a a n d a n 2π=+-=+-,21cos cos 3a a 2π⎛⎫=+ ⎪⎝⎭,31cos cos 3a a 4π⎛⎫=+ ⎪⎝⎭,由于{}{}*cos ,n S a n a b =∈=N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a 2π⎛⎫==+=-- ⎪⎝⎭,即113cos 22a a =-,解得11cos 2a =或11cos 2a =-.若11cos 2a =,则1sin a =,3111113cos cos cos 132244a a a a 4π⎛⎫=+=-+=--=- ⎪⎝⎭,若11cos 2a =-,则1sin a =,3111113cos cos cos 13244a a a a 4π⎛⎫=+=-=+= ⎪⎝⎭,故131cos cos 2a a ab ==-.②若131111cos cos cos cos sin 322a a a a a 4π⎛⎫==+=-+ ⎪⎝⎭,得113cos 2a a =,解得11cos 2a =或11cos 2a =-.当11cos 2a =时,1sin a =,21111313cos cos cos 132244a a a a 2π⎛⎫=+=--=--=- ⎪⎝⎭,当11cos 2a =-时,1sin a =213cos 144a =+=,故121cos cos 2a a ab ==-.③若23cos cos a a =,与①类似有121cos cos 2a a ab ==-.综上,故选B.5.(2023北京卷17)已知函数()sin cos cos sin ,0,2f x x x ωϕωϕωϕπ=+><.(1)若()0f =,求ϕ的值;(2)若()f x 在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且213f π⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:3f π⎛⎫= ⎪⎝⎭;条件②:13f π⎛⎫-=- ⎪⎝⎭;条件③:()f x 在,23ππ⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【解析】(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()3(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,32k k ϕ-+=-+∈Z ,所以π2π,6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.第四节解三角形1.(2023全国甲卷理科16)在ABC △中,2AB =,60BAC ∠=︒,BC =D 为BC 上一点,AD 平分BAC ∠,则AD =.【解析】如图所示,记,,,AB c AC b BC a ===由余弦定理可得22222cos606b b +-⨯⨯⨯︒=,解得1b =(负值舍去).由ABC ABD ACD S S S =+△△△可得,1112sin602sin30sin30222b AD AD b ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得1212bAD b +===+.2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc .(2)若cos cos 1cos cos a B b A ba Bb A c--=,求ABC △面积.3.(2023全国乙卷理科18)在ABC △中,120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【解析】(1)利用余弦定理可得2222cos 14212cos120527BC AC AB AC AB BAC =+-⋅∠=+-⨯⨯⨯︒=+=.故BC =.又由正弦定理可知sin sin BC ACBAC ABC=∠∠.故sin sin14AC BAC ABC BC ⋅∠∠====.(2)由(1)可知tan ABC ∠=在Rt BAD △中,tan 2AD AB ABC =⋅∠=⨯=故1122255ABD S AB AD =⨯⨯=⨯⨯=△,又11sin 21sin120222ABC S AB AC BAC =⨯⨯⨯∠=⨯⨯⨯︒=△,所以2510ADC ABC ABD S S S =-=-=△△△.5.(2023新高考I 卷17)已知在ABC △中,3A B C +=,()2sin sin A C B -=.(1)求sin A ;(2)设=5AB ,求AB 边上的高.【解析】(1)解法一因为3A B C +=,所以4A B C C ++==π,所以4C π=,2sin()sin()A C A C -=+2sin cos 2cos sin sin cos cos sin A C A C A C A C⇒-=+sin cos 3cos sin A C A C ⇒=tan 3tan 3sin A C A ⇒==⇒=解法二因为3A B C +=,所以4A B C C ++==π,所以4C π=,所以4A B 3π+=,所以4B A 3π=-,故2sin()sin()4AC A 3π-=-,即2sin cos 2cos sin sin cos cos sin 4444A A A A ππ3π3π-=-,得sin 3cos A A =.又22sin cos 1A A +=,()0,A ∈π,得310sin 10A =.(2)若||5AB =.如图所示,设AC 边上的高为BG ,AB 边上的高为CH ,||CH h =,由(1)可得10cos 10A =,||||cos ||102AG AB A AB =⋅==,||||2BG CG ===,所以||AC =,||||2||6||5AC BG CH AB ===.6.(2023新高考II 卷17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △的面,D 为BC 的中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .【解析】(1)依题意,122ADC ABC S S ==△△,133sin 242ADC S AD DC ADC =⋅⋅∠==△,解得2DC =,2BD =.如图所示,过点A 作AE BC ⊥于点E .因为60ADC ∠= ,所以12DE =,32AE =,则15222BE =+=,所以3tan 5AE B BE ==.(2)设AB = c ,AC = b ,由极化恒等式得2214AB AC AD BC ⋅- =,即2114⋅--b c =b c ,化简得()22244⋅-+=-b c =b c ,即cos cos 2BAC bc BAC ⋅⋅∠=∠=-b c =b c ①,又1sin 2ABC S bc BAC =∠=△,即sin bc BAC ∠=.②①得tan BAC ∠=0πBAC <∠<得2π3BAC ∠=,代入①得4bc =,与228b c +=联立可得2b c ==.7.(2023北京卷7)在ABC △中,()()()sin sin sin sin a c A C b A B +-=-,则C ∠=()A.6π B.3π C.32π D.65π【分析】利用正弦定理的边角变换与余弦定理即可得解.【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选B.。

高考数学三角函数练习与答案

高考数学三角函数练习与答案

D. α-β=π6
【练习 2】若锐角φ满足 sinφ-cosφ= 2,则函数
2
=cos2(x+φ)的单调递减区间为
A.[2kπ-5π ,2kπ + π ](k∈Z)
12
12
B.[kπ-5π
12
,kπ
+
π ](k∈Z)
12
C.[2kπ+ π
12
,2kπ
+
7π](k∈Z)
12
D.[kπ+ π ,kπ + 7π](k∈Z)
∵N(2, 2 )是函数 y=Asin(ωx+φ)的图象的一个最高点 ∴A= 2 . ∵N 到相邻最低点的图象曲线与 x 轴相交于 A、 B,B 点坐标为( 6,0)
∴ 7 =|x B-xN|=4,∴T=16.
4
又∵T=
2
,∴ω=
2 T
=
8
∵xN= xA xB
2
∴xA=2xN-xB=-2 ∴A(-2,0) ∴y= 2 sin (x+2)
3 【练习 1】若 cosa= 3 且为第四象限角,tana 则的值等于( )
【练习 2】
二、看图求解析式
【练习 1】函数 f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分
图象如图所示,则函数 f(x)的解析式为( )
A. ㌳䁠 ꀀ sin㌳䁠
B. ㌳䁠 ꀀ sin㌳ 䁠
C. ㌳䁠 ꀀ sin㌳䁠 h
四、三角函数的三角恋
【练习 1】设 sin 2α=-sin α,α∈ π ,π ,则 tan 2α的值是
.
【练习 2】若
[ , ],sin 2 42

高考数学真题分类汇编三角函数专题(综合题)

高考数学真题分类汇编三角函数专题(综合题)

高考数学真题分类汇编三角函数专题(综合题)1.在中,内角所对的边分别为a,b,c,已知.(Ⅰ)求B;(Ⅱ)若,求sinC的值.2.钝角ΔABC中,角A,B,C所对的边分别为a,b,c, .(1)求角C的大小;(2)若ΔABC的BC边上中线AD的长为,求ΔABC的周长.3.已知函数,将函数的图像上每个点的纵坐标扩大到原来的2倍,再将图像上每个点的横坐标缩短到原来的,然后向左平移个单位,再向上平移个单位,得到的图像.(1)当时,求的值域;(2)已知锐角△的内角、、的对边分别为、、,若,,,求△的面积.4.在△ABC中,AB=2,且sinA(1-2cosB)+sinB(1-2cosA)=0.以AB所在直线为x轴,AB中点为坐标原点建立平面直角坐标系.(I)求动点C的轨迹E的方程;(II)已知定点P(4,0),不垂直于AB的动直线l与轨迹E相交于M、N两点,若直线MP、NP关于直线AB对称,求△PMN面积的取值范围。

5.在中,内角A,B,C的对边分别为a,b,c,若.(1)求A的大小;(2)若,,求的面积.6.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=,( ,).(1)当cos =时,求小路AC的长度;(2)当草坪ABCD的面积最大时,求此时小路BD的长度.7.的内角的对边分别为,已知.(1)求角;(2)若,,求.8.在锐角中, 分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的值.答案1. 解:(Ⅰ)在中,由,可得,又由,得,所以,得;(Ⅱ)由,可得,则.2.(1)解:由正弦定理可得,故,又,或.若,则,三角形为直角三角形,舍去;若,则,符合,故.(2)解:法1:由余弦定理可得即,故,,又,故,所以周长为.法2:因为,所以,故,因,故即,,所以周长为3. (1)解:,将函数的图像上每个点的纵坐标扩大到原来的2倍,得;再将图像上每个点的横坐标缩短到原来的,得到;然后向左平移个单位,得到;再向上平移个单位,得到,当,,,(2)解:或(由题意三角形为锐角三角形,故舍去),,①,②又,,代入①②得bc=3,则4. 解:(Ⅰ)由,得,根据正弦定理,所以轨迹是以为焦点的椭圆(除轴上的点),由于,所以轨迹的方程为;(Ⅱ)由题,设的方程为, 将直线的方程代入的方程得: .所以又直线与轨迹相交于不同的两点,所以,即,直线关于轴对称,可以得到,化简得,,得,那么直线过点, ,所以三角形面积:设,,在上单调递减,5. (1)解:,根据正弦定理,将上式中的a,b,c替换为,得:,而,,,,,又,(2)解:由余弦定理可得,,,,,6. (1)解:在中,由,得,又,∴.∵∴由得:,解得:,∵是以为直角顶点的等腰直角三角形∴且∴在中,,解得:(2)解:由(1)得:,,此时,,且当时,四边形的面积最大,即,此时,∴,即答:当时,小路的长度为百米;草坪的面积最大时,小路的长度为百米.7.(1)解:由正弦定理,得,在三角形中,得因为所以;(2)解:,,。

高考真题——三角函数及解三角形真题(加答案)

高考真题——三角函数及解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。

高中三角函数专题练习题(及答案)

高中三角函数专题练习题(及答案)

高中三角函数专题练习题(及答案)一、填空题1.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________2.已知函数23tan ,,,2332()2,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________.3.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.4.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,b =sin BAD ∠=,cos 4BAC ∠=,则AD =__________. 5.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.6.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan θ________.7.意大利著名画家、数学家、物理学家达芬奇在他创作《抱银貂的女子》时思考过这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,连接重庆和湖南的世界第一悬索桥——矮寨大桥就采用了这种方式设计.经过计算,悬链线的函数方程为()e e cos 2x xh x -+=,并称其为双曲余弦函数.若()()cos sin cos cos sin cos h h m θθθθ+≥-对0,2πθ⎡⎤∀∈⎢⎥⎣⎦恒成立,则实数m 的取值范围为______.8.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .9.已知函数()()sin 3cos 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b c a <<D .b a c <<12.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A 2B 7C 7D .3413.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )14.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是( )A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .,215.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27π B .25π C .2π D .23π16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .17.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-18.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④19.将方程2sin cos x x x =的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A .B .C .D .20.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]55三、解答题21.如图,四边形ABCD 是某市中心一边长为4百米的正方形地块的平面示意图. 现计划在该地块上划分四个完全相同的直角三角形(即Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE ),且在这四个直角三角形区域内进行绿化,中间的小正方形修建成市民健身广场,为了方便市民到达健身广场,拟修建4条路,AE ,BF ,CG DH . 已知在直角三角形内进行绿化每1万平方米的费用为10a 元,中间小正方形修建广场每1万平方米的费用为13a 元,修路每1百米的费用为a 元,其中a 为正常数.设FAB θ∠=,0,4πθ⎛⎫∈ ⎪⎝⎭.(1)用θ表示该工程的总造价S ;(2)当cos θ为何值时,该工程的总造价最低? 22.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移3y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 23.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 25.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间; (2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.26.如图,长方体1111ABCD A B C D -中,2AB AD ==,14AA =,点P 为面11ADD A 的对角线1AD 上的动点(不包括端点).PM ⊥平面ABCD 交AD 于点M ,MN BD ⊥于点N .(1)设AP x =,将PN 长表示为x 的函数;(2)当PN 最小时,求异面直线PN 与11A C 所成角的大小.(结果用反三角函数值表示) 27.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ; (2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围. 28.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.29.设函数2()cos sin 2f x x a x a =-+++(a ∈R ). (1)求函数()f x 在R 上的最小值;(2)若不等式()0f x <在[0,]2π上恒成立,求a 的取值范围;(3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.30.已知函数())233sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心【参考答案】一、填空题1.12(,)369- 2.47,912ππ⎧⎫⎨⎬⎩⎭ 3.()135,2164.45.28π 6.2rr h-+ 7.12,1⎡⎤⎣⎦89.②③10.⎡⎢⎣⎦二、单选题 11.D 12.C 13.D 14.A 15.A 16.C 17.C 18.B 19.C 20.B 三、解答题21.(1)()16(13sin 6sin cos )S a θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭;(2)当3cos 4θ=时,()16()S af θθ=取得最小值 【解析】(1)根据题意可知4sin BF θ=,4cos AF θ=,进而求得Rt ABFS 与EFGH S 正方形再求得总造价S 即可.(2)由(1)有()16(13sin 6sin cos )S a θθθθ=+-,再求导分析函数的单调性与最值即可.【详解】(1)在Rt ABF 中,FAB θ∠=,4AB =,所以4sin BF θ=,4cos AF θ=. 由于Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE 是四个完全相同的直角三角形,所以4sin AE BF CG DH θ====,4(cos sin )EF FG GH HE θθ====-,所以Rt114cos 4sin 8sin cos 22ABFS AF BF θθθθ=⋅⋅=⨯⨯=, 2224(cos sin )16(12sin cos )EFGH S EF θθθθ==-=-正方形.所以()48sin cos 1016(12sin cos )1344sin S a a a θθθθθθ=⨯⨯+-⨯+⨯⨯16[20sin cos (12sin cos )13sin ]a θθθθθ=+-⨯+ 16(13sin 6sin cos )a θθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)记()13sin 6sin cos f θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭.则22232()cos 6(cos sin )12cos cos 612(cos )(cos )43f θθθθθθθθ'=--=-++=--+. 令()0f θ'=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以3cos 4θ=或2cos 3θ=-(舍).记03cos 4θ=,所以当0(0,)θθ∈时,()0f θ'<,()f θ单调递减;当0(,)4πθθ∈时,()0f θ'>,()f θ单调递增. 所以当3cos 4θ=时,()f θ取得极小值,也是最小值, 又0a >,所以当3cos 4θ=时,()16()S af θθ=取得最小值. 【点睛】本题主要考查了三角函数在几何中的运用,同时也考查了求导分析函数最值的方法,属于难题.22.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x x ωωωωωω⎛⎫== ⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+sin 23x πω⎛⎫=+ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时3()sin 232f x x π⎛⎫=++ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 243262y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 62y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点 所以332sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.23.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 2124x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.24.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.25.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题.26.(1) PN ,(0,x ∈;(2) . 【解析】 【分析】(1)求出PM ,AM ,运用余弦定理,求得PN ;(2)求出PN 的最小值,由于//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,通过解直角三角形PMN ,即可得到. 【详解】(1)在APM ∆中,PM =AM =;其中0x <<在MND ∆中,22MN x ⎫=⎪⎪⎝⎭,在PMN ∆中,PN =(0,x ∈;(2)当(0,x 时,PN 最小,此时43PN =.因为在底面ABCD 中,MN BD ⊥,AC BD ⊥,所以//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,在PMN ∆中,PMN ∠为直角,tan PNM ∠=所以PNM ∠=异面直线PN 与11A C 所成角的大小 【点睛】本题主要考查了异面直线及其所成的角;函数解析式的求解及常用方法等.属于难题. 27.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++⎪⎝⎭. 02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x在7,6ππ⎛⎫⎪⎝⎭是单调函数,∴2622ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩,∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.28.(1)OA、OB都为50m;(2)8sin64sin cosSθθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m+.【解析】【分析】对于(1),设OA m=,OB n=,m,n(0,200)∈,在△OAB中,利用余弦定理可得22222cos3AB OA OB OA OBπ=+-⋅⋅,整理得222m n mn=++,结合基本不等式即可得出结论;对于(2),当△AOB的周长最大时,梯形ACBD为等腰梯形,过O作OF⊥CD交CD于F,交AB于E,则E、F分别为AB,CD的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin64sin cosSθθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin64sin cosfθθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S的最大值.【详解】解:(1)设OA m=,OB n=,m,n(0,200)∈,在OAB∆中,22222cos3AB OA OB OA OBπ=+-⋅⋅,即222m n mn=++.所以22222()3()()()44m nm n mn m n m n+=+-+-=+.所以m n100+,当且仅当m n50==时,m n+取得最大值,此时OAB∆周长取得最大值.答:当OA、OB都为50m时,OAB∆的周长最大.(2)当AOB∆的周长最大时,梯形ABCD为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.29.(1)2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩(2)(,1)a ∈-∞-(3)12a -<<-【解析】 【分析】(1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值; (2)恒成立需要保证max ()0f x <即可,对二次函数进行分析,根据取到最大值时的情况得到a 的范围;(3)通过条件将问题转化为二次函数在给定区间上有两个零点求a 的范围,这里将所有满足条件的不等式列出来,求解出a 的范围. 【详解】解:(1)令sin x t =,[1,1]t ∈-,则2()()1f x g t t at a ==+++,对称轴为2a t =-. ①12a -<-,即2a >,min ()(1)2f x g =-=. ②112a -≤-≤,即22a -≤≤,2min ()()124a a f x g a =-=-++.③12a->,即2a <-,min ()(1)22f x g a ==+. 综上可知,2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩ (2)由题意可知,max ()0f x <,2()()1f xg t t at a ==+++,[0,1]t ∈的图象是开口向上的抛物线,最大值一定在端点处取得,所以有(0)10,(1)220,g a g a =+<⎧⎨=+<⎩故(,1)a ∈-∞-. (3)令sin x t =,(0,)x π∈.由题意可知,当01t <<时,sin x t =有两个不等实数解,所以原题可转化为2()10g t t at a =+++=在(0,1)内有两个不等实数根.所以有201,24(1)0,12(0)10,(1)220,a a a a g a g a ⎧<-<⎪⎪⎪∆=-+>⇒-<<-⎨⎪=+>⎪=+>⎪⎩【点睛】(1)三角函数中,形如2()sin sin f x a x b x c =++或者2()cos cos f x a x b x c =++都可以采用换元法求解函数最值;(2)讨论二次函数的零点的分布,最好可以采用数形结合的方法解决问题,这样很大程度上减少了遗漏条件的可能.30.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.。

高中三角函数专题练习题(附答案)

高中三角函数专题练习题(附答案)

高中三角函数专题练习题(附答案)一、填空题1.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()3cos 33f t f t t ⎛⎫⎛⎫≤-+- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________2.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.3.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.4.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 5.若函数()sin12xf x x π=+,则(1)(2)(3)(2021)f f f f +++⋯⋯+=__________6.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,23AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.7.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)8.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________9.已知平面四边形ABCD 的面积为364AB =,3AD =,5BC =,6CD =,则cos()A C +=___________.10.已知函数()2log ,0,0x x f x x x >⎧=⎨-≤⎩,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[]0,x π∈时,()sin .g x x =则函数()()y f x g x =-在区间[]4,4ππ-上零点的个数为__________个.二、单选题11.已知函数()()2212sin 2,2212,x a x a f x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦13.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④14.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是( ) A.⎝ B.32⎛ ⎝C.⎣ D.32⎡⎢⎣15.已知点1F ,2F 分别为椭圆()2222:10x yC a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12CD16.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5417.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .1B C .1D .218.已知直线1y x =+上有两点1122(,),(,)A a b B a b ,且12a a >.已知1122,,,a b a b 满足12122||a a b b +||AB =,则这样的点A 个数为( )A .1B .2C .3D .419.在锐角ABC 中,若cos cos sin sin 3sin A C B Ca c A+=cos 2C C +=,则a b +的取值范围是( )A .(B .(0,C .(D .(6,20.已知1sin ,sin ,sin ,222a x x b x ωωω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内有零点,则实数ω的取值可能是( )A .18B .14C .12D .34三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.23.将函数()sin 2g x x =向左平移4π个单位长度,得到函数()y f x =的图象,设函数()()()h x f x g x =+. (1)对函数()h x 的解析式;(2)若对任意,,2παβπ⎡⎤∈⎢⎥⎣⎦,不等式()()a h h b αβ≤-≤恒成立,求b a -的最小值;(3)若26x h t π⎛⎫-= ⎪⎝⎭在[)0,2π内有两个不同的解1x ,2x ,求()12cos x x -的值(用含t 的式子表示).24.如图,半圆的直径2AB =,O 为圆心,C ,D 为半圆上的点.(Ⅰ)请你为C 点确定位置,使ABC ∆的周长最大,并说明理由; (Ⅱ)已知AD DC =,设ABD θ∠=,当θ为何值时, (ⅰ)四边形ABCD 的周长最大,最大值是多少 (ⅱ)四边形ABCD 的面积最大,最大值是多少?25.已知函数()sin cos cos 63f x x x x a ππ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求常数a 的值;(2)求函数()f x 的单调递增区间; (3)求使()0f x <成立的实数x 的取值集合.26.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围. 27.已知函数()()22sin cos 2sin f x x x x =+- (1)求()f x 的最小正周期; (2)求()f x 的单调增区间; (3)若0,2x π⎡⎤∈⎢⎥⎣⎦求函数的值域.28.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且43sin sin B C +=,求ABC ∆的面积. 29.已知函数()()()2331?0f x cos x sin x cos x ωωωω=>,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值. 30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.π6∞⎛⎤- ⎥⎝⎦,21 3.1653845.30326.28π 7.8,83⎛⎫ ⎪⎝⎭8.②③④ 9.710##0.7 10.6二、单选题 11.D 12.A 13.B 14.A 15.C16.B 17.D 18.D 19.D 20.D 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-. 【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+ sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-. (2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u = 当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养.22.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x=-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()fx ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.23.(1)()2sin 23h x x π⎛⎫=+ ⎪⎝⎭(2)4;(3)()212cos 12tx x -=-【解析】(1)将()g x ⇒2y x =;再向左平移4π个单位长度⇒()24f x x π⎛⎫=+ ⎪⎝⎭,最后代入()h x ,得答案;(2)对()h x 在,2x ππ⎡⎤∈⎢⎥⎣⎦,由内到外求出值域,因为()()a h h b αβ≤-≤恒成立,所以max b m ≥,min a m ≤,整理得答案;(3)表示26x h π⎛⎫- ⎪⎝⎭并化简,由1x ,2x 是2sin x t =在[)0,2π内有两个不同的解,所以12x x π+=或123x x π+=,因需求()12cos x x -,所以分别表示12x x -并代入,利用诱导公式和二倍角公式化简,将式子中22sin x 换成t 得答案. 【详解】(1)将函数()sin 2g x x =得到函数2y x =的图象,再将2y x =的图象向左平移4π个单位长度得到函数()y f x =,所以()224f x x x π⎛⎫=+= ⎪⎝⎭,又()()()h x f x g x =+,所以()sin 222sin 23h x x x x π⎛⎫==+ ⎪⎝⎭;(2)当,2x ππ⎡⎤∈⎢⎥⎣⎦时,472,333x πππ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以sin 21,3x π⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,所以2sin 22,3x π⎛⎫⎡+∈- ⎪⎣⎝⎭, 令()()m h h αβ=-,因为()()a h h b αβ≤-≤恒成立,所以max 2b m ≥=,min 2a m ≤=-2a -≥所以4b a -≥即b a -的最小值为4;(3)法一:因为2sin 22sin 26263x x h x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以1x ,2x 是2sin x t =在[)0,2π内有两个不同的解, 所以12x x π+=或123x x π+=, 所以1222x x x π-=-或12232x x x π-=-所以()()22212221cos 2sin 12sin 1122t x x x x -=-=-=-;法二:①当t >0时,不妨设12x x <,则有1202x x ππ<<<<,所以21cos 14t x =-,22cos 14tx =-;②当0t <时,不妨设12x x <,则有1232x x πππ<<<<2,所以21cos 14t x =-,22cos 14tx =-;③当0=t 时,显然有10x =,2x π=,所以()2121212cos cos cos sin sin 12t x x x x x x -=+=-.【点睛】本题考查了由三角函数图像的伸缩平移变换表示解析式,给定定义域求三角函数值域,不等式恒成立问题,还考查了函数零点问题,充分体现了数学中转化与划归思想,属于难题. 24.(Ⅰ)点C 是半圆的中点,理由见解析; (Ⅱ)(ⅰ)6πθ=时,最大值5(ⅱ)6πθ=时,最大面积是334【解析】(Ⅰ)设BC a =,AC b =,AB c =,法一:依题意有222+=a b c ,再利用基本不等式求得2a b c +,从而得出结论;法二:由点C 在半圆上,AB 是直径,利用三角函数求出cos a c α=⋅,sin b c α=⋅,再利用三角函数的性质求出结论;(Ⅱ)(ⅰ)利用三角函数值表示四边形ABCD 的周长p ,再求p 的最大值;(ⅱ)利用三角函数值表示出四边形ABCD 的面积s ,再结合基本不等式求s 的最大值. 【详解】(Ⅰ)点C 在半圆中点位置时,ABC ∆周长最大.理由如下: 法一:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,显然a ,b ,c 均为正数,则222+=a b c , 因为222a b ab +≥,当且仅当a b =时等号成立,所以()()2222222a b a b ab a b +≥++=+,所以()2222a b a b c +≤+=, 所以ABC ∆的周长为()21222a b c c ++≤+=+,当且仅当a b =时等号成立,即ABC ∆为等腰直角三角形时,周长取得最大值,此时点C 是半圆的中点. 法二:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,02ABC παα⎛⎫∠=<< ⎪⎝⎭,则cos a c α=⋅,sin b c α=⋅,a b c ++cos sin c c c αα=⋅+⋅+()2cos sin 2αα=++22sin 24πα⎛⎫=++ ⎪⎝⎭, 因为02πα<<,所以3444πππα<+<, 所以当42ππα+=,即4πα=时, ABC ∆周长取得最大值222+,此时点C 是半圆的中点.(Ⅱ)(ⅰ)因为AD DC =,所以ABD DBC θ∠=∠=, 所以sin AD DC AB θ==⋅,cos2CB AB θ=⋅, 设四边形ABCD 的周长为p , 则p AD DC CB AB =+++2sin cos22AB AB θθ=++()2214sin 212sin 254sin 2θθθ⎛⎫=+-+=-- ⎪⎝⎭,显然0,4πθ⎛⎫∈ ⎪⎝⎭,所以当6πθ=时,p 取得最大值5;(ⅱ)过O 作OE BC ⊥于E ,设四边形ABCD 的面积为s ,四边形AOCD 的面积为1s ,BOC ∆的面积为2s ,则121122s s s AC OD BC OE =+=⋅+⋅ 11sin 21cos 2sin 222AB AB θθθ=⋅+⋅ sin 2cos2sin 2θθθ=+⋅()sin 21cos2θθ=+,所以()222sin 21cos2s θθ=+ ()()221cos 21cos 2θθ=-+ ()()31cos21cos2θθ=-+()()331cos 21cos 23θθ=-+()()()2231cos 21cos 211cos 232θθθ-++⎡⎤≤+⎢⎥⎣⎦ ()()()231cos 21cos 211cos 232θθθ-++⎡⎤=+⎢⎥⎣⎦()()()2231cos 21cos 21cos 21232θθθ⨯-++⎡⎤++⎢⎥≤⎢⎥⎢⎥⎢⎥⎣⎦ ()()()431cos 21cos 221cos 2134θθθ-++++⎡⎤=⎢⎥⎣⎦ 413273216⎛⎫== ⎪⎝⎭; 当且仅当()31cos21cos2θθ-=+,即1cos 22θ=时,等号成立, 显然04πθ⎛⎫∈ ⎪⎝⎭,,所以202πθ⎛⎫∈ ⎪⎝⎭,,所以此时6πθ=, 所以当6πθ=时,s =,即四边形ABCD【点睛】本题考查解三角形的应用问题,考查三角函数与基本不等式的应用,需要学生具备一定的计算分析能力,属于中档题. 25.(1)1a =-(2)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭【解析】(1)化简()f x ,求最大值,即可求解;(2)应用整体思想,结合正弦函数的递增区间,即可得出结论;(3)运用正弦函数图像,即可求解.【详解】 解:()sin cos cos sin cos cos sin sin cos 6633f x x x x x x a ππππ=-++++11cos cos cos 22x x x x x a =-+++cos x x a =++12cos 2x x a ⎫=++⎪⎪⎝⎭2sin 6x a π⎛⎫=++ ⎪⎝⎭. (1)函数()f x 的最大值为21a +=,所以1a =-.(2)由22,262k x k k Z πππππ-+≤+≤+∈, 解得222,33k x k k Z ππππ-+≤≤+∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭. 因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭. 所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以722,666k x k k Z πππππ-+<+<+∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭. 【点睛】本题考查三角函数恒等变换,化简解析式,考查三角函数的性质以及三角不等式,属于中档题.26.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ; (2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭ 2sin 216x π⎛⎫=+- ⎪⎝⎭, ∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭. 又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.27.(1)π;(2)3[],88k k k Z ππππ-+∈,;(3)[-. 【解析】【分析】(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式222,242k x k k Z πππππ-≤+≤+∈,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得1cos2()1sin 22sin 2cos2)24x f x x x x x π-=+-⋅=++, 所以函数的最小正周期为2=2ππ. (2)令222,242k x k k Z πππππ-≤+≤+∈, 所以3,88k x k k Z ππππ-≤≤+∈, 所以函数的单调增区间为3[],88k k k Z ππππ-+∈,. (3)50,02,2,2444x x x πππππ≤≤∴≤≤∴≤+≤sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以函数的值域为[-.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.28.(1)(;(2 【解析】【分析】(1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解.【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+-sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=, 所以()sin(2)3f x x π=-. 因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(.(2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc ,所以13=bc ,所以1sin 2ABC S bc A ∆== 【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.29.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2) 15. 【解析】【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果. 【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤, ∴32(2)113sin x πω-≤+-≤, ∴()f x 的最大值为1,最小值为3-.又()()121,3f x f x ==-,且12min 2x x π-=, ∴函数()f x 的最小正周期为22ππ⨯=,∴()2(2)13f x sin x π=+-. 由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, ∴4sin 35πβ⎛⎫-= ⎪⎝⎭. ∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭. ∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭, ∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响. (2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π. 【解析】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1(2)π(0,)2α∈,f (2α)=2 ∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。

高考数学三角函数与解三角真题训练100题含参考答案

高考数学三角函数与解三角真题训练100题含参考答案
(1)求 的解析式;
(2)求 在 上的单调增区间.
89.已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
90.已知向量 , , .
(1)求函数 的最小正周期及 取得最大值时对应的 的值;
(2)在锐角三角形 中,角 、 、 的对边为 、 、 ,若 , ,求三角形 面积的最大值并说明此时该三角形的形状.
A.90°B.60°C.45°D.30°
39.已知函数 的部分图像如图所示,将 图像上所有点的横坐标缩小到原来的 (纵坐标不变),所得图像对应的函数 解析式为()
A. B.
C. D.
40.函数 在 的图象大致为()
A. B.
C. D.
41.已知 , ,则 的值为
A. B. C. D.
42.已知 中,角 , , 所对的边分别为 , , .已知 , , 的面积 ,则 的外接圆的直径为()
19.如图,在扇形OAB中, ,半径OA=2,在 上取一点M,连接OM,过M点分别向线段OA,OB作垂线,垂足分别为E,F,得到一个四边形MEOF.设 ,则四边形MEOF的面积为()
A. B.
C. D.
20.设 , , 为同一平面内具有相同起点的任意三个非零向量,且满足 与 不共线,
, ,则 的值一定等于()
55.在 中, , , ,则 ________.
56.在锐角 中, , , 分别为角 , , 的对边,且 , ,则 面积的取值范围为______.
57.用列举法写出 __________.
58.在△ABC中,∠B=75°,∠C=60°,c=1,则最小边的边长为______________________ .

三角函数 高考数学真题分类大全 专题06解析

三角函数  高考数学真题分类大全 专题06解析

专题6三角函数第一部分近3年高考真题一、选择题1.(2021·北京高考真题)函数()cos cos 2f x x x =-,试判断函数的奇偶性及最大值()A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98【答案】D【解析】由题意,()()()()cos cos 2cos cos 2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98.故选:D.2.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .65【答案】C【解析】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .3.(2021·全国高考真题(文))函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和2【答案】C【解析】由题,()34x f x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为2613T pp ==,最大值为.故选:C .4.(2021·全国高考真题(文))若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .1515B .55C .53D .153【答案】A【解析】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,15cos 4α∴==,sin 15tan cos 15ααα∴==.故选:A.5.(2021·全国高考真题(理))把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x x ⎛⎫-⎪⎝⎭B .sin 212x π⎛⎫+⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+⎪⎝⎭【答案】B【解析】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=-⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=-⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭;解法二:由已知的函数sin 4y x π⎛⎫=-⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.6.(2021·全国高考真题(文))22π5πcos cos 1212-=()A .12B .3C .2D .2【答案】D【解析】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos26π==.故选:D.7.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A【解析】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.8.(2020·天津高考真题)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是()A .①B .①③C .②③D .①②③【答案】B【解析】因为()sin(3f x x π=+,所以周期22T ππω==,故①正确;51()sin(sin 122362f ππππ=+==≠,故②不正确;将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象,故③正确.故选:B.9.(2020·北京高考真题)2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D .60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒,所以,单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒,303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选:A.10.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C11.如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S取最大值,此时∠BOP =∠AOP =π-β,面积S 的最大值为2222βππ⨯⨯+S △POB +S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖42sin 2sin 44sin βββββ=++=+⋅.故选B .12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④【答案】D【解析】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦,∵f (x )在[0,2]π有且仅有5个零点,∴5265πππωπ≤+<,∴1229510ω≤<,故④正确,由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时,令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确;因此由选项可知只需判断③是否正确即可得到答案,当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦,若f (x )在0,10π⎛⎫⎪⎝⎭单调递增,则(2)102ωππ+<,即<3ϖ,∵1229510ω≤<,故③正确.故选D .13.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭()A .2-B.CD .2【答案】C【解析】因为()f x 为奇函数,∴(0)sin 0=,0,f A k k ϕϕπ==∴=,0ϕ=;又12()sin ,2,122g x A x T πωπω=∴==2ω=,2A =,又(4g π=∴()2sin 2f x x =,3()8f π=故选C .14.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为()A.B.C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D .15.(2020·海南高考真题)下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A,当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈,解得:()223k k ϕπ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭故选:BC.二、填空题16.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___.【答案】512π(满足5,12k k Z πθπ=+∈即可)【解析】 (cos ,sin )P θθ与cos ,sin 66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称,即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈,则5,12k k Z πθπ=+∈,当0k =时,可取θ的一个值为512π.故答案为:512π(满足5,12k k Z πθπ=+∈即可).17.(2021·全国高考真题(文))已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【答案】【解析】由题意可得:31332,,241234T T Tπππππω=-=∴===,当1312x π=时,()131322,2126x k k k Z πωϕϕπϕππ+=⨯+=∴=-∈,令1k =可得:6πϕ=-,据此有:()52cos 2,2cos 22cos 62266f x x f πππππ⎛⎫⎛⎫⎛⎫=-=⨯-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:.18.(2021·全国高考真题(理))已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2【解析】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=-⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.19.(2020·浙江高考真题)已知圆锥的侧面积(单位:2cm )为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:120.(2020·海南高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥,即OAH △为等腰直角三角形;在直角OQD △中,252OQ r =-,272DQ r =-,因为3tan 5OQ ODC DQ ∠==,所以3252212522r r -=-,解得22r =等腰直角OAH △的面积为11222242S =⨯=;扇形AOB 的面积(221322324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+.故答案为:542π+.21.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.三、解答题22.(2021·浙江高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π;(2)212+.【解析】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝,所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin sin cos cos 22x x x x x x ⎛⎫=⋅+=+ ⎪ ⎪⎝⎭1cos 2222sin 22222242x x x x x π-⎛⎫=+=-+=-+⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值212+.23.(2020·浙江高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )313,22⎛⎤ ⎥ ⎝⎦【解析】(I )由2sin b A =结合正弦定理可得:32sin sin ,sin 2B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos sin 222A A A =-++311sin cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin ,132A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,1313sin ,2232A π⎛⎤+⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是313,22⎛⎤+ ⎥⎝⎦.24.(2020·全国高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【解析】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.第二部分模拟训练1.古希腊的数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分割率,黄金分割率的值也可以用2sin18︒表示.若实数n 满足224sin 184n ︒+=,则221sin188sin 18n ︒︒-=()A .14B .12C.4D.2【答案】A【解析】根据题中的条件可得()22222221sin181sin181sin181sin188sin 188sin 184cos 188sin 368sin 1844sin 18n -︒-︒-︒-︒===︒︒⨯︒︒︒-︒()1sin181sin1811cos 7241cos 72482-︒-==-︒︒︒=-⨯.故选:A .2.已知函数()()2sin f x x ωϕ=+,(0,2πωϕ><的部分图象如图所示,()f x 的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将()f x 的图象向左平移712π个单位得到()g x 的图象,则函数()g x 在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A.BC.D .1-【答案】A【解析】由图象知,5244T πππ=-=,∴2T π=,则1ω=,∴()()2sin f x x ϕ=+,将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭,将()f x 的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴()g x 在30,4π⎡⎤⎢⎣⎦上的最小值为32cos 4π=,故选:A3.如图所示,扇形OQP 的半径为2,圆心角为3π,C 是扇形弧上的动点,四边形ABCD 是扇形的内接矩形,则ABCD S 的最大值是()A .233B .CD .23【答案】A【解析】如图,记COP α∠=,在Rt OBC 中,2cos OB α=,2sin BC α=,在Rt OAD 中,3323sin 333OA DA BC α===,所以232cos sin 3AB OB OA αα=-=-,设矩形ABCD 的面积为S,2(2cos )2sin 34323234sin cos 2sin 2cos 2333sin(2)363S AB BC ααααααααπα=⋅=-⋅=-=+-=+-由03πα<<,所以当262ππα+=,即6πα=时,S 取最大值,为432323333-=,故选:A.4.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.图中的ABCD 为矩形,弧CED 为一段圆弧,其尺寸如图所示,则截面(图中阴影部分)的面积为()A.210cm 3π⎛+⎝B.28cm 3π⎛+⎝C.2(4π+D.2(2π+【答案】B 【解析】如图,由图可知,球半径2r cm =,设阴影部分面积为1S ,则截面面积为1ABCD S S S S =+-圆矩形截面,()224S r cm ππ==圆,)21233ABCD S cm =⨯=矩形,3AB CD cm ==,连接CD ,作OF CD ⊥于F 点,2OD OC r cm === ,F ∴为CD 中点,3,2F D D O =∴=,3cos 2DF ODF OD ∴∠==,故30ODF ︒∠=,60DOF ∴∠=︒,∴扇形ODC 的面积()22114242233S r cm ππα==⨯⨯⨯=扇形,)21131322ODC S DC OF cm =⋅=⨯= ,)21433ODC ODC S S S cm π∴=-=扇形)2484333333S cm πππ∴=+-+=+截面,故选:B5.定义在R 上的函数()f x 满足:()()ln 2f x f x =--,函数()()2sin cos xx x f x g π++=,若()()1ln2a g e a =∈R ,则()a g e -=______.【答案】2ln 2【解析】∵()()ln 2f x f x =--,∴()()ln 2f x f x +-=,故()()ln 2aaf e f e +-=;令()2sin cos xh x x π=+,则()()()g x f x h x =+,而()()2sin cos xx h x h x π-=+-=-,即()()0h x h x +-=,该函数是奇函数,故()()0a a h e h e +-=;故()()()()()()()()()a a a a a a aa a g e g e f e h e f e f e f e h e h e ⎡⎤⎡⎤+-=++-=+-++-⎣⎦⎣⎦ln 20ln 2=+=,又∵()1ln ln 22ag e==-,∴()()ln 2ln 22ln 2ag e -=--=.故答案为:2ln 2.6.已知函数()sin sin 2f x x x =⋅,[]0,2πx ∈.下列有关()f x 的说法中,正确的是______(填写你认为正确的序号).①不等式()0f x >的解集为π04x x ⎧<<⎨⎩或3ππ4x ⎫<<⎬⎭;②()f x 在区间[]0,2π上有四个零点;③()f x 的图象关于直线πx =对称;④()f x ;⑤()f x 的最小值为2;【答案】③④【解析】由()2sin sin 22sin cos f x x x x x =⋅=⋅①()0f x >,即cos 0x >,又[]0,2πx ∈,则02x π<<或322x ππ<<,故①不正确.②()0f x =,则sin 0x =或cos 0x =,又[]0,2πx ∈所以30,,,,222x ππππ=,共有5个零点,故②不正确.③()()()()2222sin 2cos 22sin cos f x x x x x f x πππ-=-⋅-=⋅=所以()2f x π-=()f x ,则()f x 的图象关于直线πx =对称,故③正确.④()()222sin cos 2cos 1cos f x x x x x =⋅=⋅-设[]cos 1,1x t =∈-,则322y t t =-+,则262y t '=-+由2620y t '=-+>解得3333t -<<-,由2620y t '=-+<解得313t -<<-或313t <<所以322y t t =-+在313⎡--⎢⎣⎦,上单调递减,在3333⎡-⎢⎣⎦,上单调递增,在313⎤⎥⎣⎦上单调递减.当33t =时,y =,当t 3=-时,y =,当1t =时,0y =,当1t =-时,0y =,所以当33t =时,函数322y t t =-+有最大值9所以当t 3=-时,函数322y t t =-+有最小值439-所以④正确,⑤不正确.故答案为:③④7.已知函数2()cos 222x x x f x =+-.(1)求函数()f x 在区间[]0,π上的值域;(2)若方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,求ω的取值范围.【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭.【解析】(1)2()cos 2222sin()4x x x f x x x x π=+=++-,令4U x π=+,[]0,x π∈ ,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦由sin y U =的图像知,2sin 2U ⎡⎤∈-⎢⎥⎣⎦,即sin ,142x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,2sin 24x π⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数()f x 的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>(f x ωQ2sin()4x πω∴+=,即3sin()=42x πω+[]0,x π∈ ,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,,且=2()43x k k ππωπ++∈Z 或2=2()43x k k ππωπ++∈Z由于方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考三角函数分类练习题一.求值1.(09北京文)若4sin ,tan 05θθ=->,则cos θ= . 2.α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+=3.(08北京)若角α的终边经过点(12)P -,,则αcos = tan 2α=4.(07重庆)下列各式中,值为23的是 ( ) (A )2sin15cos15︒︒ (B )︒-︒15sin 15cos 22(C )115sin 22-︒(D )︒+︒15cos 15sin 22 5.若02,sin 3cos απαα≤≤>,则α的取值范围是: ( )(A),32ππ⎛⎫ ⎪⎝⎭ (B),3ππ⎛⎫⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭二.最值1.(09福建)函数()sin cos f x x x =最小值是 。

2.(09江西)若函数()(13tan )cos f x x x =+,02x π≤<,则()f x 的最大值为3.(08海南)函数()cos 22sin f x x x =+的最小值为 最大值为 。

4.(06年福建)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于5.(08辽宁)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是A .6π7 B .3π C .6π D .2π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1B .2C .3D .28.函数2()sin 3sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是 ( ) A.1 B.132+ C.32D.1+3三.单调性1.(04天津)函数]),0[()26sin(2ππ∈-=x x y 为增函数的区间是 ( ).A. ]3,0[πB. ]127,12[ππC. ]65,3[ππ D. ],65[ππ 2.函数sin y x =的一个单调增区间是 ( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 3.函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是 ( ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 4.(07天津卷) 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间34ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数5.函数22cos y x =的一个单调增区间是 ( )A .(,)44ππ-B .(0,)2πC .3(,)44ππD .(,)2ππ6.若函数f (x)同时具有以下两个性质:①f (x)是偶函数,②对任意实数x ,都有f (x +4π)= f (x -4π),则f (x)的解析式可以是 ( )A .f (x)=cosxB .f (x)=cos(2x 2π+) C .f (x)=sin(4x 2π+) D .f (x) =cos6x四.周期性1.(07江苏卷)下列函数中,周期为2π的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x =2.(08江苏)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= 3.(04全国)函数|2sin |x y =的最小正周期是( ).4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 .(2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(1)函数()sin 2cos2f x x x =-的最小正周期是(2)(09江西文)函数()(13tan )cos f x x x =+的最小正周期为 (3). (08广东)函数()(sin cos )sin f x x x x =-的最小正周期是 .(4)(04年北京卷.理9)函数x x x x f cos sin 322cos )(-=的最小正周期是 . 6.(09年广东文)函数1)4(cos 22--=πx y 是 ( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数7.(浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 .8.函数21()cos (0)3f x x w w =->的周期与函数()tan 2xg x =的周期相等,则w 等于( )(A )2 (B )1 (C )12 ( D )14五.对称性1.(08安徽)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=2.下列函数中,图象关于直线3π=x 对称的是 ( )A )32sin(π-=x y B )62sin(π-=x y C )62sin(π+=x y D )62sin(π+=x y 3.(07福建)函数πsin 23y x ⎛⎫=+⎪⎝⎭的图象 ( ) A.关于点π03⎛⎫ ⎪⎝⎭,对称B.关于直线π4x =对称 C.关于点π04⎛⎫ ⎪⎝⎭,对称 D.关于直线π3x =对称 4.(09全国)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 ( ) (A)6π (B) 4π (C) 3π (D) 2π5.已知函数y=2sinwx 的图象与直线y+2=0的相邻两个公共点之间的距离为32π,则w 的值为( ) A .3B .23 C .32 D .31 六.图象平移与变换1.(08福建)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 2.(08天津)把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是3.(09山东)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是 4.(1)(07山东)要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向 平移 个单位 5.(2009天津卷文)已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,将)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是 ( )A2π B 83π C 4π D 8π6.将函数 y = 3 cos x -sin x 的图象向左平移 m (m > 0)个单位,所得到的图象关于 y 轴对称,则 m 的最小正值是 ( )A. π6B. π3 C. 2π3 D. 5π67.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为 ( )A.2πB.πC.-πD.-2π 8.将函数y=f (x )sinx 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y=1-2sin 2x 的图象,则 f (x )是 ( )A .cosxB .2cosxC .SinxD .2sinx 9.若函数()θ+=x y sin 2的图象按向量)2,6(π平移后,它的一条对称轴是4π=x ,则θ的一个可能的值是A .125π B .3π C .6π D .12π 七.图象1.(07宁夏、海南卷)函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣⎦,的简图是 ( )2(浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是yx11-2π-3π- O 6π πy x11-2π- 3π- O 6π π y x11-2π-3πO 6π- πyxπ 2π-6π- 1O1-3π A.B.C.D.(A )0 (B )1 (C )2 (D )43.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=A. 1B. 2C. 1/2D. 1/3 4.(2006年四川卷)下列函数中,图象的一部分如右图所示的是 ( )(A )sin 6y x π⎛⎫=+⎪⎝⎭ (B )sin 26y x π⎛⎫=- ⎪⎝⎭(C )cos 43y x π⎛⎫=- ⎪⎝⎭ (D )cos 26y x π⎛⎫=- ⎪⎝⎭6.(2010·全国Ⅱ)为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin ⎝⎛⎭⎫2x +π6的图象 ( ) A .向左平移π4个长度单位 B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位7.已知函数y =sin ⎝⎛⎭⎫x -π12cos ⎝⎛⎭⎫x -π12,则下列判断正确的是 ( ) A .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎫π12,0 B .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎫π12,0 C .此函数的最小正周期为2π,其图象的一个对称中心是⎝⎛⎭⎫π6,0 D .此函数的最小正周期为π,其图象的一个对称中心是⎝⎛⎭⎫π6,0 八..综合1. (04年天津)定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为 2.(04年广东)函数f(x)22sin sin 44f x x x ππ=+--()()()是 ( ) A .周期为π的偶函数 B .周期为π的奇函数C . 周期为2π的偶函数D ..周期为2π的奇函数3.( 09四川)已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 ( ) A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数 4.(07安徽卷) 函数)32sin(3)(π-=x x f 的图象为C , 如下结论中正确的是①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称;③函数125,12()(ππ-在区间x f )内是增函数;④由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C. 5.(08广东卷)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数6.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是C(A )0 (B )1 (C )2 (D )4 7.已知函数()2sin()f x x ωϕ=+对任意x 都有()()66f x f x ππ+=-,则()6f π等于 ( )A 、2或0B 、2-或2C 、0D 、2-或0九.解答题1.(06福建文)已知函数22()sin 3sin cos 2cos ,.f x x x x x x R =++∈(I )求函数()f x 的最小正周期和单调增区间;(II )函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?2.已知函数2π()sin 3sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.3.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 4.(2009陕西卷) 已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的周期为π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[0,]12x π∈,求()f x 的最值.。

相关文档
最新文档