26小学五年级奥数整除练习题
小学五年级奥数题数的整除问题
2019年小学五年级奥数题数的整除问题做奥数题有助于我们能力的提升,不仅在数学方面,其他方面也是很有帮助的,主要是让我们多动脑思考。
下面是查字典数学网为大家分享的五年级奥数题数的整除问题,希望对大家有帮助!奥数题数的整除问题从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。
分析:第一次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的学生最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号.解:第一次报数后留下的同学最初编号都是11倍数;第二次报数后留下的同学最初编号都是121的倍数;第三次报数后留下的同学最初编号都是1331的倍数;所以最后留下的只有一位同学,他的最初编号是1331;其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
答:从左边数第一个人的最初编号是1331号.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
小学数学思维能力(奥数)《整除》练习题
小学数学思维能力(奥数)《整除》练习题1、三个数的和是555,这三个数分别能被3、5、7整除,而且商都相同,求这三个数及相同的商。
2、在1~13中任意取两个不同的数相乘,可以得到许多不相等的乘积,在所有这些不同的乘积中有多少个能被6整除?3、小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辩认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。
你能帮助小马虎找出不明数字吗?4、小明买了六支铅笔、两支圆珠笔、三本笔记本和七块橡皮,总共用去二元九角钱。
已知圆珠笔三角九分一支,橡皮六分一块,售货员算错帐了吗?5、商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走了其中五箱。
已知一个顾客买的货物重量是另一个顾客的2倍。
问:商店剩下的一箱货物重多少千克?6、有一水果店进了六筐水果,分别装着香蕉和桔子,重量分别为8、9、16、20、22和27千克。
当天只卖出一筐桔子,在剩下的五筐中香蕉的重量是桔子重量的2倍。
问:这天水果店进了多少千克香蕉?7、减数、被减数与差三者之和除以被减数,商是多少?8、55个苹果分给甲、乙、丙三人,甲的苹果个数是乙的2倍,丙最少但也多于10个。
问:三人各得多少苹果?9、四名学生做加法练习:任写一个六位数,把它的个位数字(不等于0)拿到这个数最左边一位数字的左边得到一个新的六位数,然后与原六位数相加,他们的得数分别为172535、568741、620708、845267,结果只有一名同学做对了。
问:正确答案是几?10、五年级七个班都有同学参加了春游,一至七班参加的人数依次为4、6、7、8、9、12、17,其中有六个班的同学爬山和划船,爬山的人数是划船人数的4倍,另外一个班的同学去观赏植物。
问:观赏植物的是哪个班?11、证明:任意两个连续奇数的和一定是4的倍数。
12、证明:任意两个连续偶数的乘积是8的倍数。
13、证明:任意三个连续偶数的和一定是6的倍数。
整除练习题及答案
整除练习题及答案整除是数学中的一个基本概念,指的是一个整数除以另一个不是零的整数,得到的商是整数,而没有余数。
以下是一些整除练习题及答案,供同学们练习和参考。
练习题1:判断以下哪些数字可以整除10。
A. 2B. 5C. 3D. 7答案:B. 5解析:10除以5等于2,没有余数,所以5可以整除10。
练习题2:找出100以内能被3整除的所有整数。
答案:3, 6, 9, 12, ..., 99解析:从3开始,每次加3,得到的数都能被3整除。
练习题3:如果一个数能同时被2和3整除,那么这个数能被6整除吗?答案:是的。
解析:如果一个数能同时被2和3整除,那么这个数是6的倍数,因为6是2和3的最小公倍数。
练习题4:找出最小的能被7整除的三位数。
答案:105解析:从100开始,第一个能被7整除的数是105。
练习题5:如果一个整数的个位是偶数,那么这个数能被2整除吗?答案:是的。
解析:任何个位是偶数的整数都能被2整除,因为2的倍数的个位只能是0, 2, 4, 6, 或8。
练习题6:一个数如果能被9整除,那么它也能被3整除吗?答案:是的。
解析:如果一个数能被9整除,那么它也能被3整除,因为9是3的倍数。
练习题7:找出100以内能被11整除的所有整数。
答案:11, 22, 33, ..., 99解析:从11开始,每次加11,得到的数都能被11整除。
练习题8:如果一个数的各位数字之和能被3整除,那么这个数本身能被3整除吗?答案:是的。
解析:如果一个数的各位数字之和能被3整除,那么这个数本身也能被3整除,这是3的整除规则。
练习题9:找出最小的能被13整除的四位数。
答案:104解析:从1000开始,第一个能被13整除的数是104。
练习题10:如果一个数能被4整除,那么它的最后两位数能被4整除吗?答案:是的。
解析:如果一个数能被4整除,那么它的最后两位数也能被4整除,因为4的倍数的最后两位数必须是4, 8, 12, ..., 96, 100。
小学五年级奥数整除练习题
小学五年级奥数整除练习题6.能被11整除的数的特征是:这个数的奇数位上的数字之和与偶数位上数字之和的差(大减小)是11的倍数例:判断123456789这九位数能否被11整除解:这个数的奇数位上的数字之和三个是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20。
因为25-20=5,有因为11不能被5整除,所以123456789不能被11整除再例如:判断13574能否是11的倍数?解:这个数的奇数位上的数字之和与偶数位上的数字和的差是:(4+5+1)—(7+3)=0因为0是任何整数的倍数,所以11能被0整除。
因此13574是11的倍数。
7.能被7(11或13 )整除的数的特征:一个整数的末三位数与末三位以前的数字组成的数之差,(大减小)能被7(11或13 )整除例如:判断1059282是否是7的倍数?解:把1059282分成1059和282两个数,因为1059-282=777,由777能被7整除,所以1059282能被7整除,因此1059282是7的倍数再例如:判断3546725能否被3整除?解:把3546725分乘3456和725两个数。
因为3456—725=2821。
在把2821分成2和821两个数。
因为82—2=819,又819能被13整除,所以2819能被13整除,进而3546725能被13整除练习题1. 判断123456789这九位数能否被11整除?判断13574是否是11的倍数?判断1059282是否是7的倍数?判断3546725能否被13整除?2.已知451993x y 。
求所有满足条件的六位数1993x y 。
3.李老师为学校一共买了28支价格相同的钢笔,共付人民币9.2元。
已知处数字相同,请问每支钢笔多少元?4.已知整数12345a a a a a 能被11整除。
求所有满足这个条件的整数。
5.把三位数3ab 接连重复地写下去,共写1993个3ab ,所得的数19933333abab ab ab 个恰是91的倍数。
五年级奥数题:数的整除性
数的整除性一、填空题1. 四位数“ 3AA1”是9的倍数,那么A= _____ .2. 在“ 25口79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____ .3. 能同时被2、3、5 整除的最大三位数是_____.4. 能同时被2、5、7 整除的最大五位数是_____.5. 1 至1 00以内所有不能被3整除的数的和是____ .6. 所有能被3 整除的两位数的和是 _____ .7. 已知一个五位数口691 □能被55整除,所有符合题意的五位数是______ .8. 如果六位数1992口□能被105整除,那么它的最后两位数是_______ .9. 42 □ 28□是99的倍数,这个数除以99所得的商是 ______ .10. 从左向右编号为1 至1991 号的1991 名同学排成一行, 从左向右1 至11报数,报数为11 的同学原地不动,其余同学出列;然后留下的同学再从左向右 1 至11报数,报数为 1 1的留下,其余同学出列;留下的同学第三次从左向右1至11 报数,报到1 1的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_______________ 号.二、解答题11. 173 □是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12 .在1992 后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11 整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将1 00张黄油票换成1 00张香肠票,并且在整个交换过程中刚好出手了1 991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.1. 7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1 —定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771 9=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+口+9应等于12, □内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999 □ 0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+ ...+100)- (3+6+9+12+ (99)=(1+100) 2 100-(3+99) 2 33=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21, …,96, 99这一列数共30个数,其和为12+15+18+…+96+99=(12+99) 30 2=16657. 96910 或46915五位数A691B能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0时,A6910能被11整除,所以(A+9+0)-(6+1)= A+2能被11整除, 因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8. 90因为105=3 5 7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。
小学五年级数学奥数数的整除(附练习及详解)
一、基本概念和知识1.整除例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)7是63的约数。
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.②能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
③能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
④能被5整除的数的特征:个位是0或5。
⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是0或11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
练习及详解例题1. 四位数“3AA1”是9的倍数,那么A=_____。
(小五奥数)解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。
练习(1)在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。
数的整除问题奥数题及答案
数的整除问题奥数题及答案1 试问,能否将由1⾄100这100个⾃然数排列在圆周上,使得在任何5个相连的数中,都⾄少有两个数可被3整除?如果回答:“可以”,则只要举出⼀种排法;如果回答:“不能”,则需给出说明. 考点:数的整除特征. 分析:根据题意,可采⽤假设的⽅法进⾏分析,100个⾃然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都⾄少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1⾄100的⾃然数中只有33个是3倍数,所以不能. 解答:假设能够按照题⽬要求在圆周上排列所述的100个数, 按所排列顺序将它们每5个分为⼀组,可得20组, 其中每两组都没有共同的数,于是,在每⼀组的5个数中都⾄少有两个数是3的倍数. ⼩学五年级数的整除问题奥数题及答案:从⽽⼀共会有不少于40个数是3的倍数.但事实上在1⾄100的这100个⾃然数中只有33个数是3的倍数, 导致⽭盾,所以不能. 答:不能.数的整除问题奥数题及答案2 数的整除性规律 【能被2或5整除的数的特征】⼀个数的末位能被2或5整除,这个数就能被2或5整除 【能被3或9整除的数的特征】⼀个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。
例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24 3|24,则3|1248621。
⼜如,372681各位上的数字之和是3+7+2+6+8+1=27 9|27,则9|372681。
【能被4或25整除的数的特征】⼀个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。
例如, 173824的末两位数为24,4|24,则4|173824。
43586775的末两位数为75,25|75,则25|43586775。
【能被8或125整除的数的特征】⼀个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。
小学五年级奥数-整除问题
五年级思维第二讲基础知识: 1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷则称a 能被b 整除或者b 能整除a ,记做b a |,否则称为a 不能被b 整除或者b 不能整除a ,记做a b |. 性质1:如果a 、b 都能被c 整除,那么他们的和与差也能被c 整除.性质2:如果b 与c 的乘积能够整除a ,那么b 、c 都能整除a .性质3:如果b 、c 都能整除a ,并且b 、c 互质,那么b 、c 的乘积也能够整除a. 性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a .性质5:如果b 和c 的乘积能够被a 整除,并且a ,b 互质,那么c 能够被a 整除. ,2. 被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3. 被3,9整除特征:数字和被3,9整除.4. 被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.5. 被11整除特征:奇数位数字和与偶数位数字和之差能被11整除. (“奇偶位差法”).6. 被7、11、13整除特征:末三位与末三位之前的数之差能被7、11、13整除.7. 整除性质、特征的综合应用,末尾0的个数问题的处理,运用设未知量求解整除问题. 例题:~例1、如果六位数2012□□能够被105整除,那么后两位数是多少解:设六位数为2012aa,105=3×5×7,依次考虑被3,5,7整除得到3∣a+b -1,b=0或5, 7∣(10a+b-1),得到唯一解a=8,b =5.故后两位为85.例2、求所有的x ,y 满足32a5a 使得72∣32a5a .解:72=8×9,根据整除9性质易得x +y =8或17,根据整除4 的性质y =2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费□67.9□元,其中□处字迹已经模糊不清,请你补上□中的数字并且算出每只羽毛球的单价.解:设两个□处的数字分别是a 、b ,则有143∣a679a,根据11∣a679a,有a+b =8,再根据13∣a679a,所以13∣(100a +67-90-b ),再根据a+b =8得到13∣(10a -5)解得a =7 b =1所以方框处的数字是7和1,单价元.·例4、把若干个自然数1,2,3….乘到一起,如果已知这个乘积的最后14位都是0,那么最后的自然数至少是多少解:最后14位都是0说明这个乘积整除1014,由于1×2×3×…中因数2比因数5多得多,只需考虑其整除514,5的倍数但是不是25的倍数可以提供一个因数5,25的倍数但是不是125的倍数可以提供2个因数5…可得出至少需要60个数,即这个自然数至少是60.例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.解:168=3⨯7⨯8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776.当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求. 因此唯一符合题目要求的数是768768.例6、 要使六位数10aaa6能够被63整除,那么商最小是多少}解:63=7⨯9. 考虑10aaa6能被7整除,于是有7∣(100b+10c+6-100-a ),整理得 7∣(2b+3c-a +4),再考虑该数能被9整除,有a+b+c =2或11或20. 由于要求最小的商也就是最小的被除数,先希望a =0. 此时,易验证b =0, b =1无解,而在b =2时,有解c =9,所以最小的被除数是100296,最小的商是1592.例7、 所有五位数中,能够同时被7,8,9,10整除的有多少解:7,8,9,10的最小公倍数是2520,五位数最小是10000,最大99999,共有90000个数,180035252090000 =÷,24403252010000 =÷,所以共有36个.例8、用1、2、3组成的四位数(可重复)中能够被11整除的数有多少个解:这样的四位数被11整除,一定有奇数位数字之和等于偶数位数字之和. 在1,2,3,4中1+1=1+1,1+2=1+2,1+3=1+3, 1+3=2+2 ,2+2=2+2,2+3=2+3,3+3=3+3七种情况,其中1+1=1+1、2+2=2+2、3+3=3+3分别只能得到1个4位数,1+2=1+2,1+3=1+3,2+3=2+3情况相同可以得到4个4位数,1+3=2+2也能得到4个4位数,所以一共有19个.~例9、已知4aa4aa …4aa (重复99次)能够被91整除,求aa .解:根据7和13的整除判断方法7(13)∣4aa4aa …4aa(重复99次)有7(13)∣4aa4aa …4aa000(重复98次),因为(91,1000)=1,所以7(13)∣4aa4aa …4aa(重复98次),以此类推,就有7(13)∣4aa aa ,所以aa =55.例10、已知11个连续两位数的乘积的末四位都是0,而且是343的倍数,那么这11个数中最小的是多少解:因为连续11个数是343的倍数,而33437=,但是11个数中之多有两个是7的倍数,所以这11个数中有49或者98,而11个数之多有3个是5的倍数,但却是10000的倍数,所以这11个数中又有25或者50或者75,并且以5的倍数开头和结尾,又要保证有2个7的倍数,所以只能是40到50这11个数.所以最小的数是40.(数学万花筒——趣题欣赏:1. 鬼谷子问题:传说在春秋战国时期,鬼谷子随意从2-99中选取了两个数。
五年级(奥数) 数的整除
五年级数的整除
1、有三根铁丝,分别长12厘米、18厘米、54厘米。
要把它们都截成同样长的小段不许剩余,每段最长是多少厘米?一共能截多少段?
2、五年级三个班分别有24人、36人、42人参加体育锻炼,要把它们分成人数相等的小组,但各班同学不能打乱。
最多每组多少人?每班各分多少组?
3、一张长方形纸长112厘米,宽80厘米,把它剪成若干个同样大小的正方形,使边长是
整厘米且不能有剩余,最少能剪多少个?
4、用长16厘米,宽14厘米的长方形木板来拼成一个正方形,最少需要用这样的木板多
少块?
5、张妮有若干张画片,7张一数还余4张,5张一数又少3张,3张一数正好。
问:张妮
至少有多少张画片?
6、五年级两个班的学生一起排队去做操,如果9人排一队,多出一人;如果10人排一队,同样多出一个人。
这两个班最少共有多少人?
7、有一篮鸡蛋,每按4个一堆分多一个;按5个一堆分多1个;按每6个一堆分也多1个。
这篮鸡蛋至少有多少个?
8、一个四位数9□2□既有约数2,又是3的倍数,同时又能被5整除。
这个四位数最大是什么?
9、六位数“568□□□”能同时被2、3、5整除。
求这样的六位数中最小的一个是多少?。
小学五年级奥数-整除问题
小学五年级奥数-整除问题work Information Technology Company.2020YEAR五年级思维第二讲基础知识:1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷则称a 能被b 整除或者b 能整除a ,记做b a |,否则称为a 不能被b 整除或者b 不能整除a ,记做a b |.性质1:如果a 、b 都能被c 整除,那么他们的和与差也能被c 整除.性质2:如果b 与c 的乘积能够整除a ,那么b 、c 都能整除a .性质3:如果b 、c 都能整除a ,并且b 、c 互质,那么b 、c 的乘积也能够整除a. 性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a .性质5:如果b 和c 的乘积能够被a 整除,并且a ,b 互质,那么c 能够被a 整除.2. 被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3. 被3,9整除特征:数字和被3,9整除.4. 被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.5. 被11整除特征:奇数位数字和与偶数位数字和之差能被11整除. (“奇偶位差法”).6. 被7、11、13整除特征:末三位与末三位之前的数之差能被7、11、13整除.7. 整除性质、特征的综合应用,末尾0的个数问题的处理,运用设未知量求解整除问题.例题:例1、如果六位数2012□□能够被105整除,那么后两位数是多少?解:设六位数为2012ab ,105=3×5×7,依次考虑被3,5,7整除得到3∣a+b -1,b=0或5, 7∣(10a+b-1),得到唯一解a=8,b =5.故后两位为85.例2、求所有的x ,y 满足32x5y 使得72∣32x5y .解:72=8×9,根据整除9性质易得x +y =8或17,根据整除4 的性质y =2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费□67.9□元,其中□处字迹已经模糊不清,请你补上□中的数字并且算出每只羽毛球的单价. 解:设两个□处的数字分别是a 、b ,则有143∣a679b ,根据11∣a679b ,有a+b =8,再根据13∣a679b ,所以13∣(100a +67-90-b ),再根据a+b =8得到13∣(10a -5)解得a =7 b =1所以方框处的数字是7和1,单价5.37元.例4、把若干个自然数1,2,3….乘到一起,如果已知这个乘积的最后14位都是0,那么最后的自然数至少是多少?解:最后14位都是0说明这个乘积整除1014,由于1×2×3×…中因数2比因数5多得多,只需考虑其整除514,5的倍数但是不是25的倍数可以提供一个因数5,25的倍数但是不是125的倍数可以提供2个因数5…可得出至少需要60个数,即这个自然数至少是60.例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.解:168=3⨯7⨯8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776.当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求. 因此唯一符合题目要求的数是768768.例6、 要使六位数10abc6能够被63整除,那么商最小是多少?解:63=7⨯9. 考虑10abc6能被7整除,于是有7∣(100b+10c+6-100-a ),整理得7∣(2b+3c-a +4),再考虑该数能被9整除,有a+b+c =2或11或20. 由于要求最小的商也就是最小的被除数,先希望a =0. 此时,易验证b =0, b =1无解,而在b =2时,有解c =9,所以最小的被除数是100296,最小的商是1592.例7、 所有五位数中,能够同时被7,8,9,10整除的有多少?解:7,8,9,10的最小公倍数是2520,五位数最小是10000,最大99999,共有90000个数,180035252090000 =÷,24403252010000 =÷,所以共有36个.例8、用1、2、3组成的四位数(可重复)中能够被11整除的数有多少个?解:这样的四位数被11整除,一定有奇数位数字之和等于偶数位数字之和. 在1,2,3,4中1+1=1+1,1+2=1+2,1+3=1+3, 1+3=2+2 ,2+2=2+2,2+3=2+3,3+3=3+3七种情况,其中1+1=1+1、2+2=2+2、3+3=3+3分别只能得到1个4位数,1+2=1+2,1+3=1+3,2+3=2+3情况相同可以得到4个4位数,1+3=2+2也能得到4个4位数,所以一共有19个.例9、已知4ab4ab …4ab (重复99次)能够被91整除,求ab .解:根据7和13的整除判断方法7(13)∣4ab4ab…4ab(重复99次)有7(13)∣4ab4ab…4ab000(重复98次),因为(91,1000)=1,所以7(13)∣4ab4ab…4ab(重复98次),以此类推,就有7(13)∣4ab,得到4ab=455,所以ab=55.例10、已知11个连续两位数的乘积的末四位都是0,而且是343的倍数,那么这11个数中最小的是多少?解:因为连续11个数是343的倍数,而3,但是11个数中之多有两个3437是7的倍数,所以这11个数中有49或者98,而11个数之多有3个是5的倍数,但却是10000的倍数,所以这11个数中又有25或者50或者75,并且以5的倍数开头和结尾,又要保证有2个7的倍数,所以只能是40到50这11个数.所以最小的数是40.数学万花筒——趣题欣赏:1.鬼谷子问题:传说在春秋战国时期,鬼谷子随意从2-99中选取了两个数。
人教版五年级奥数精讲精练(一)数的整除
人教版五年级奥数精讲精练(一)数的整除姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、填空题1 . 在能被7整除的两位数中,最小的一个两位数是.2 . 一个数,如果用(2)(3)5去除,正好都能被整除,这个数最小是(),如果这个数是两位数,它最大是()。
3 . 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.4 . 在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数是______.5 . 两个数的和是363,用较大的数除以较小的数,得商16余6,则这两个数中较大的数是_____.6 . 已知六位数19□88□能被35整除,空格中的数字依次是_______.7 . 在947后面添上三个不同的数字,组成一个被2、3、5同时整除的最小的六位数,这个数是_________。
8 . 与的和被11除,商等于______与______的和。
二、解答题9 . 某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果老师与学生每人种树一样多,共种了1073棵,那么平均每人种了棵树?10 . 试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.11 . 在568后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数尽可能小。
12 . 今天是星期日,再过23天是星期几?参考答案一、填空题1、2、3、4、5、6、7、8、二、解答题1、2、3、4、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级奥数整除练习题
1.能被2整除的书的特征:个位上的数字是0.
2.4.6.8的整数,“特征”包含两方面的意义:一方面,个位数字是偶数,包括0的整数,必能被2整除;另一方面:能被2整除的数,其个位上的数字只能是偶数。
2.能被5整除的数的特征是:个位是0或5
3.能被3或9整除的数的特征是:各个数位数字之和能被3或9整除
4.能被4或25整除的数的特征是:末两位数能被4或25整除
例:1864=1800+64 因为100是4与25的倍数,所以1800是4和25的倍数。
又因为64能被4整除,数以1864能被4整除。
但因为64不能被25整除,所以1864不能被25整除。
5.能被8或125整除的数的特征是:末三位数能被8整除。
例:29375=29000+375,因为1000是8与125的倍数,所以29000是8和125的倍数。
又因为375能被125整除,所以29375能被125整除。
但因为375不能被8整除,所以8不能被29375整除。
6.能被11整除的数的特征是:这个数的奇数位上的数字之和与偶数位上数字之和的差(大减小)是11的倍数
例:判断123456789这九位数能否被11整除
解:这个数的奇数位上的数字之和三个是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20。
因为25-20=5,有因为11不能被5整除,所以123456789不能被11整除
再例如:判断13574能否是11的倍数?
解:这个数的奇数位上的数字之和与偶数位上的数字和的差是:(4+5+1)—(7+3)=0因为0是任何整数的倍数,所以11能被0整除。
因此13574是11的倍数。
成的数之差,(大减小)能被7(11或13 )整除
例如:判断1059282是否是7的倍数?
解:把1059282分成1059和282两个数,因为1059-282=777,由777能被7整除,所以1059282能被7整除,因此1059282是7的倍数
再例如:判断3546725能否被3整除?
解:把3546725分乘3456和725两个数。
因为3456—725=2821。
在把2821分成2和821两个数。
因为82—2=819,又819能被13整除,所以2819能被13整除,进而3546725能被13整除
练习题
1. 判断123456789这九位数能否被11整除?
判断13574是否是11的倍数?
判断1059282是否是7的倍数?
判断3546725能否被13整除?
2.已知451993
x y。
x y。
求所有满足条件的六位数1993
3.李老师为学校一共买了28支价格相同的钢笔,共付人民币9.2元。
已知处数字相同,请问每支钢笔多少元?
4.已知整数12345a a a a a 能被11整除。
求所有满足这个条件的整数。
5.把三位数3ab 接连重复地写下去,共写1993个3ab ,所得的数19933333ab
ab ab ab 个恰是91的倍数。
试求ab =?
6.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
7.求能被26整除的六位数1991x y 。
8.已知72931x y ,求满足条件的五位数。
9.已知五位数154xy 能被8和9整除,求x y 的值。
10.若五位数325x y 能同时被2、3、5整除,试求满足条件的所有这样的五位数。
11.将自然数1、2、3、4、5、6、7、8、9依次重复写下去组成一个1993位数,试问:这个数能否被3整除?
12.一本陈年老账上记着:72只桶,共67.9元。
这里处字迹已不清。
请把处数字补上,并求桶的单价。
13.证明:任意一个三位数连着写两次得到一个六位数,这个六位数一定能同时被7、11、13整除。
14.如果四位数68能被73整除,那么商是多少?
15.求出能被11整除,首位数字是4,其余各位数字均不相同的最大和最小的六位数。
****能被11整除,问:*代表数码几?
17.已知自然数23451
A是24的倍数,A最大是几?
18.四位数752
⨯⨯⨯⨯能否被9009整除?
19.12315
A和275B相乘,要使它们的乘积能被72整除,求A和B。
20两个四位数275
21.小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:11.4元(表示不明数字)。
你能帮助小马虎找出不明数字么?
22.商店里有六箱货物,分别中15,16,18,19,20,31千克,两个顾客买走了其中五箱。
已知一个顾客买的货物重量是另一个顾客的2倍。
问:商店剩下的一箱货物重多少千克?
23.有一水果店进了六筐水果,分别装着香蕉和桔子,重量分别为8,9,16,20,22,和27千克。
当天只卖出一筐桔子,在剩下的五筐中香蕉的重量是桔子重量的2倍。
问:这天水果店进了多少千克香蕉?
24、55个苹果分给甲、乙、丙三人,甲的苹果个数是乙的2倍,丙最少但也多于10
25、证明:任意两个连续奇数的和一定是4的倍数。