练习_分式的基本性质(2)

合集下载

2020—2021年浙教版七年级数学下册《分式的基本性质》同步练习题及答案解析精品试卷.docx

2020—2021年浙教版七年级数学下册《分式的基本性质》同步练习题及答案解析精品试卷.docx

浙教版七年级下册第5章5.2分式的基本性质同步练习一、单选题(共11题;共22分)1、下列各式中,正确的是()A、=B、=C、=D、=-2、若2x+y=0,则的值为()A、-B、-C、1D、无法确定3、若=,则a的取值范围是()A、a>0且a≠1B、a≤0C、a≠0且a≠1D、a<04、a,b,c均不为0,若,则P(ab,bc)不可能在()A、第一象限B、第二象限C、第三象限D、第四象限5、下列各式变形正确的是()A、=B、=C、=D、6、如果把分式中的x和y都扩大5倍,那么分式的值()A、扩大5倍B、扩大10倍C、不变D、缩小7、如果分式中的x、y都缩小到原来的倍,那么分式的值()A、扩大到原来的3倍B、扩大到原来的6倍C、不变D、缩小到原来的倍8、下列计算错误的是()A、=B、=a-bC、=D、9、如果把分式中的x、y的值都扩大5倍,那么分式的值()A、扩大5倍B、缩小5倍C、不变D、扩大25倍10、下列等式成立的是()A、(﹣)﹣2=B、=﹣C、0.00061=6.1×10﹣5D、=11、下列分式变形中,正确的是()A、=a+bB、=﹣1C、=n﹣mD、=二、填空题(共7题;共8分)12、已知,则=________13、已知a,b,c是不为0的实数,且,那么的值是________ .14、不改变分式的值,把分子分母的系数化为整数:=________ .15、不改变分式的值,把分子、分母中各项系数化为整数,结果是________ .16、若,则的值是________17、若分式的值为0,则x=________ ;分式=成立的条件是________ .18、分式的值是m,如果分式中x,y用它们的相反数代入,那么所得的值为n,则m,n的关系是________三、解答题(共6题;共30分)19、在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会如何变化.20、已知x>0,y>0,如果x、y都扩大原来的三倍,那么分式的值如何变化?21、问题探索:(1)已知一个正分数(m>n>0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数(m>n>0)中分子和分母同时增加2,3…k(整数k>0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.22、已知a,b,c,d都不等于0,并且,根据分式的基本性质、等式的基本性质及运算法则,探究下面各组中的两个分式之间有什么关系?然后选择其中一组进行具体说明.(1)和;(2)和;(3)和(a≠b,c≠d).23、附加题:若a=,b=,试不用将分数化小数的方法比较a、b的大小.观察a、b的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.24、在学完分式的基本性质后,小刚和小明两人对下面两个式子产生了激烈的争论:①=,②=.小刚说:“①②两式都对.”小明说:“①②两式都错.”你认为他们两人到底谁对谁错,为什么?答案解析部分一、单选题1、【答案】C【考点】分式的基本性质【解析】【解答】解;A、分式的分子分母都乘或除以同一个不为零的整式,故A错误;B、分子除以(a﹣2),分母除以(a+2),故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C正确;D、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D错误;故选;C.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.2、【答案】B【考点】分式的基本性质【解析】【解答】解:∵2x+y=0,∴y=﹣2x,∴===﹣,故选B.【分析】由2x+y=0,得y=﹣2x,将其代入分式中求解.3、【答案】D【考点】分式的基本性质【解析】【解答】解:∵=,∴==,∴a<0,故选:D.【分析】直接利用分式与绝对值的基本性质,结合化简后结果得出a的取值范围4、【答案】A【考点】分式的基本性质【解析】【解答】解:∵abc<0.∴a,b,c中至少有一个是负数,另两个同号,可知三个都是负数或两正数,一个是负数,当三个都是负数时:若=abc,则x﹣y=a2bc>0,即x>y,同理可得:y>z,z>x这三个式子不能同时成立,即a,b,c不能同时是负数.则P(ab,bc)不可能在第一象限.故选A.【分析】应根据abc<0,得到这三个字母可能的符号,推出不存在的结论,进而得到不可能在的象限.5、【答案】D【考点】分式的基本性质【解析】【解答】解:A、原式=,所以A选项错误;B、原式=,所以B选项错误;C、原式=,所以C选项错误;D、,所以D选项正确.故选D.【分析】根据分式的基本性质把分子分母都乘以﹣1可对A、D进行判断;根据分子与分母同乘(或除以)一个不等于0的整式,分式的值不变对B、C进行判断.6、【答案】C【考点】分式的基本性质【解析】【解答】解:依题意得:===原式,故选C.【分析】解此题时,可将分式中的x,y用5x,5y代替,用此方法即可解出此题.7、【答案】C【考点】分式的基本性质【解析】【解答】解:分式中的x、y都缩小到原来的倍,那么分式的值不变,故C符合题意;故选:C.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数或者整式,分式的值不变,可得答案.8、【答案】B【考点】分式的基本性质【解析】【解答】解:A、分子分母都除以a2b2,故A正确;B、分子除以(a﹣b),分母除以(b﹣a),故B错误;C、分子分母都乘以10,故C正确;D、同分母分式相加减,分母不变,分子相加减,故D正确;故选:B.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.9、【答案】A【考点】分式的基本性质【解析】【解答】解:如果把分式中的x、y的值都扩大5倍,那么分式的值扩大5倍,故选;A.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.10、【答案】D【考点】分式的基本性质【解析】【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误;B、=﹣,故B错误;C、0.00061=6.1×10﹣4,故C错误;D、分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,故D正确;故选:D.【分析】根据负整数指数幂与正整数指数幂互为倒数,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变;科学记数法表示小数,可得答案.11、【答案】C【考点】分式的基本性质【解析】【解答】就饿:A、分子分母除以不同的整式,故A错误;B、分子分母除以不同的整式,故B错误;C、分子分母都除以(n﹣m)2,故C正确;D、m=0时无意义,故D错误.故选:C.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,可得答案.二、填空题12、【答案】【考点】分式的基本性质【解析】【解答】解:设=k,则x=2k,y=3k,z=4k,则===.故答案为.【分析】首先设恒等式等于某一常数,然后得到x、y、z与这一常数的关系式,将各关系式代入求值.13、【答案】【考点】分式的基本性质【解析】【解答】解:∵=,∴=3,即+=3①;同理可得+=4②,+=5③;∴①+②+③得:2(++)=3+4+5;++=6;又∵的倒数为,即为++=6,则原数为.故答案为.14、【答案】【考点】分式的基本性质【解析】【解答】解:不改变分式的值,把分子分母的系数化为整数:=,故答案为:.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.15、【答案】【考点】分式的基本性质【解析】【解答】解:分子分母都乘以6,得.故答案为:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,可得答案.16、【答案】6【考点】分式的基本性质【解析】【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.【分析】若,可以得到:a﹣b=﹣4ab.代入所求的式子化简就得到所求式子的值.17、【答案】﹣2 ;x≠﹣2【考点】分式的基本性质【解析】解:∵分式的值为0,∴x2﹣4=0且x﹣2≠0,解得:x=﹣2,分式=成立的条件是x+2≠0,即x≠﹣2,故答案为:﹣2,x≠﹣2.【分析】根据分式值为0得出x2﹣4=0且x﹣2≠0,求出即可;分式有意义的条件得出x+2≠0,求出即可.18、【答案】m+n=0【考点】分式的基本性质【解析】【解答】解:∴m+n=0.【分析】把分式中的分子,分母中的x,y都同时变成﹣x,﹣y看得到的式子与原式子的关系.三、解答题19、【答案】解:中,字母m,n,p的值分别扩大为原来的2倍,得=×,在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会缩小为原来的.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.20、【答案】解:x>0,y>0,如果x、y都扩大原来的三倍,那么分式的值扩大为原来的3倍,答:式的值扩大为原来的3倍.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.21、【答案】解:(1)<(m>n>0)证明:∵﹣=,又∵m>n>0,∴<0,∴<.(2)根据(1)的方法,将1换为k,有<(m>n>0,k>0).(3)设原来的地板面积和窗户面积分别为x、y,增加面积为a,由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;则可得:>,所以住宅的采光条件变好了.【考点】分式的基本性质【解析】【分析】(1)使用作差法,对两个分式求差,有﹣=,由差的符号来判断两个分式的大小.(2)由(1)的结论,将1换为k,易得答案,(3)由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;结合实际情况判断,可得结论.22、【答案】解:例如:取a=1,b=2,c=3,d=6,有,则(1);(2);(3)观察发现各组中的两个分式相等.现选择第(2)组进行说明证明.已知a,b,c,d都不等于0,并且,所以有:,所以有:=.【考点】分式的基本性质【解析】【分析】先利用具体的数计算,然后发现各组中的两个分式相等;再对(2)进行证明:等式两边加上1,通分即可.23、【答案】解:a、b的特征是分母比分子大1;∵a==1﹣,b==1﹣,∴a<b,∴当分子比分母小1时,分子(或分母)越大的数越大.【考点】分式的基本性质【解析】【分析】当分子比分母小1时,分子(或分母)越大的数越大.24、【答案】解:都错了①=分子分母都除以a,故①正确;②=,a=0时,分子分母都乘以a无意义,故②错误;∴两人的说法都错误.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案.。

分式的基本性质(第二讲

分式的基本性质(第二讲

(2)看分子如何变化,想分母如何变化;
练习1:
1、下列等式的右边是怎样从左边得到的?
1) b by ( y 0) 2) ax a
2x 2xy
bx b
2、下列运算正确的是( )
A) x x 2 ; y y2
C) x x(x 2) ; y y( y 2)
B) a a 3 b b3
D)
约分:如果分式不是最简分式,把 分子分母的所有公因式都约去的过程 叫约分。
分式的基本性质(第二讲
例1:约分
(1) 4a2bc3 , (2) 2a2 (x y)2
16abc5
a( y x)3
x2 9 (3) x2 6x 9
巩固新知
二、化简
(1)6m2n3 3mn
(a(y x)
(C)扩大9倍 (D)缩小
下列各式中,正确的是( )
(A)
a b
m m
a b
(B)
a a
b b
1
(C)
ab ac
1 1
b c
1 1
(D)
2x 4x2
y y2
1 2x
y
(3)在代数式中 x y、5
2a
、6xy、53
y
、2ab2c3中,
5
分式的个数有_______
(4)当X=______时,分式
怎样找几个分式的最简公分母?
例4 确定下列分式的最简公分母?
1
1
1
8x2 y , 2x3 y2 , 4xy4 z .
8x3 y4z
例5 通分:
(1)
3 2a 2b

a b ab 2 c
(2) 2 x 与 3x x5 x5

分式的基本性质2

分式的基本性质2

例4 通分 1
1
(1)
a
2b(2)

xy x y
1
1
(3) x2 y 2 , x2 xy
通分:把几个异分母的分式分别化为与原 来的分式相等的同分母的分式叫通分。
通分的关键:确定几个分式的公分母。 各分母的所有因式的最高次幂
可以对分式进行约分和通分.
例3 约分 (1)16 x2 y3
20 xy4
(2) x2 4
x2 4x 4
约分的依据:分式的基本性质。
约分的方法:分子和分母同除以它们的公因 式。因此,约分的关键是要首先找到它们的 公因式,分子分母是多项式的要分解因式。
最简分式:分子与分母没有公因式的分式叫 最简分式。
复习:
1、什么是分式?
2、使分式有意义要有什么条件?
两个整式A、B相除时,可以表示为 A的形 式。如果B中含有字母,那么 A 叫做B分式。
分母B≠0时分式 A 有意义 B B
5 53,9 93 , 8 8 3 24 24 3
分数基本性质是:分数的分子与分母都乘以 (或除以)同一个不等于零的数,分数的值 不变。

x
3y
(2)a b
3ab

2a2+2ab
6a2b

解:(1)∵x≠0

x2 x2 x x 3xy 3xy x 3y
即填3y
(1)∵a≠0

ab 3ab

a b 2a
3ab 2a

2a2 2ab 6a 2b
即填2a2+2ab
与分数类似,根据分式的基本性质,
;

人觉得微笑很困难,以为是一个如何掌控面容的技术性问题,其实不然。不

分式的基本性质2(201911整理)

分式的基本性质2(201911整理)

例1 下列等式的右边是怎样从左边得到的?
(1) a ac
(2) x 3 x 2
(c 0)

2b 2bc
xy y
解:(1)∵c≠0
∴ a a c ac 2b 2b c 2bc
解:(2)∵x≠0,
∴ x3 x3 x x2 xy xy x y
例2 填空:
(1)3xx2y
x x2
y y2

(___1__) x y
练习3
不改变分式的值,使下列分式的 分子与分母都不含“-”号。
1 a 2 3x
2b
2y
3 x2
2a
练习4
用分式表示下列各式的商,并约分:
1 4a2b 6ab2 2 4m3n2 2m3nl 33x2 x x2 x 4 x 2 9 2x 2 6x
例4 通分 1
1
(1)
a
2b

ab
2
11
(2)

xy x y
1
1
(3) x2 y 2 , x2 xy
通分:把几个异分母的分式分别化为与原 来的分式相等的同分母的分式叫通分。
通分的关键:确定几个分式的公分母。 各分母的所有因式的最高次幂
的积。(最简公分母)

(1)
1 a2b

1 ab2
x
1
y

1(x y) =
(x y)( x y)
x y x2 y2
练习: 课本 第5页 练习1,2
补充练习
练习1:下列等式的右边是怎样从左 边得到的?
b by ( y 0) 2x 2xy

苏科版八年级下《10.2分式的基本性质》同步练习含详细答案

苏科版八年级下《10.2分式的基本性质》同步练习含详细答案

10.2 分式的基本性质一.选择题1.化简的结果是()A.﹣1 B.1 C.D.2.下列分式中,最简分式是()A.B.C.D.3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍4.下列分式运算中正确的是()A.B.C.D.5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.二.填空题6.若,则=.7.化简=.8.约分=.9.分式,﹣,的最简公分母是.10.若,则的值是.11.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)假分式可化为带分式的形式;(3)如果分式的值为整数,那么x的整数值为.12.下列4个分式:①;②;③;④,中最简分式有个.三.解答题13.约分:(1);(2);(3)•.14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?参考答案1.(2016•台州)化简的结果是()A.﹣1 B.1 C.D.【分析】根据完全平方公式把分子进行因式分解,再约分即可.【解答】解:==;故选D.【点评】此题考查了约分,用到的知识点是完全平方公式,关键是把要求的式子进行因式分解.2.(2016•滨州)下列分式中,最简分式是()A.B.C.D.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.3.如果把中的x和y都扩大到5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍【分析】把中的x和y都扩大到5倍,就是用5x代替x,用5y代替y,代入后看所得到的式子与原式有什么关系.【解答】解:,即分式的值不变.故选B.【点评】本题主要考查对分式的基本性质,是考试中经常出现的基础题.4.下列分式运算中正确的是()A.B.C.D.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:∵==,∴A是正确的,B、C、D是错误的.故选:A.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.5.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.【分析】分式的分子、分母中含有分数系数,不改变分式的值,使分式分子、分母的各项系数化为整数要乘以2与3的最小公倍数6.【解答】解:分式的分子和分母乘以6,原式=.故选D.【点评】易错选A选项,因为在分子和分母都乘以6时,原本系数是整数的项容易漏乘,应特别注意.6.若,则=.【分析】由,得a=,代入所求的式子化简即可.【解答】解:由,得a=,∴=.故答案为:.【点评】解题关键是用到了整体代入的思想.7.化简=.【分析】首先把分子分母分解因式,再约去分子分母的公因式即可.【解答】解:原式==,故答案为:.【点评】此题主要考查了分式的约分,关键是正确把分子分母分解因式,找出公因式.8.约分=.【分析】由系数与系数约分,同底数的幂与同底数的幂约分求解即可.【解答】解:=.故答案为:.【点评】此题考查了约分的知识.题目非常简单,解题时要注意细心.9.分式,﹣,的最简公分母是12x2y3.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,﹣,的分母分别是x、3x2y、12y3,故最简公分母是12x2y3;故答案为12x2y3.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.10.若,则的值是6.【分析】若,可以得到:a﹣b=﹣4ab.代入所求的式子化简就得到所求式子的值.【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.【点评】正确对式子进行变形,用已知式子把所求的式子表示出来,是代数式求值的基本思考方法.11.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为带分数,如:==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:==1﹣;再如:===x+1+.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)假分式可化为带分式1﹣的形式;(3)如果分式的值为整数,那么x的整数值为0,﹣2,2,﹣4.【分析】(1)依据定义进行判断即可;(2)将原式变形为的形式,然后再进行变形即可;(3)首先将原式变形为2﹣,然后依据x+1能够被3整数列方程求解即可.【解答】解:(1)分式是真分式;(2)假分式=1﹣;(3)==2﹣.所以当x+1=3或﹣3或1或﹣1时,分式的值为整数.解得x=2或x=﹣4或x=0或x=﹣2.故答案为:(1)真;(2)1﹣;(3)0,﹣2,2,﹣4.【点评】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.12.下列4个分式:①;②;③;④,中最简分式有2个.【分析】根据确定最简分式的标准即分子,分母中不含有公因式,不能再约分,即可得出答案.【解答】解:①是最简分式;②==,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故答案为:2.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.13.约分:(1);(2);(3)•.【分析】(1)把分子与分母进行约分即可;(2)根据平方差公式和完全平方公式先把分子与分母进行因式分解,然后约分即可;(3)先把分母进行因式分解,然后通分,即可得出答案.【解答】解:(1)=﹣;(2)==;(3)•=•=.【点评】此题考查了约分与通分,用到的知识点是平方差公式和完全平方公式,注意先把分母因式分解,再进行约分和通分.14.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?【分析】(1)根据分式的性质:分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案;(2)根据分式的分子、分母、分式改变其中任意两个的符号,分式的值不变,可得答案;(3)根据解分式方程,可得答案;根据解不等式,可得答案.【解答】解:(1)原式=;(2)原式=﹣。

八年级数学人教版上册同步练习分式的基本性质(解析版)

八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。

2020年人教版八年级数学上册 分层练习作业本 《分式的基本性质》(含答案)

2020年人教版八年级数学上册 分层练习作业本 《分式的基本性质》(含答案)

15.1.2 分式的基本性质 第1课时 分式的基本性质1.下列分式从左到右变形正确的是( ) A.x y =x 2y 2 B.x y =x 2xy C.x y =x +a y +a D.x y =xc yc(c≠0) 2.若分式2a a +b中a ,b 的值同时扩大到原来的10倍,则此分式的值( ) A .是原来的20倍 B .是原来的10倍 C .是原来的110D .不变 3.与分式-a -a +b的值相等的是( ) A.a a +b B .-a a +b C.a a -b D .-a a -b 4.填空:=( 4b )2ab 2; =10x 5x +5y ;( a 2+a )ab= .5.不改变分式的值,使下列分式的分子、分母都不含“-”号:-(x +1)5x +3= ,-3x -5y = ,a -4b= . 6.如果3(2a -1)5(2a -1)=35成立,则a 的取值范围是 . 7.不改变分式的值,使下列分式中分子和分母的最高次项的系数为正数:(1)7x -x 2+102-x2;(2)1-x 23+2x +5x2;(3)-m 3-m 2-m 2+m.8.已知x 2-3x -4=0,则代数式x x 2-x -4的值是( ) A .3 B .2 C.13 D.129.不改变分式的值,把下列各式的分子、分母中各项的系数化为整数.(1)a +13b 25a -2b ; (2)0.03a -0.2b 0.08a +0.5b .10. 某市的生产总值从2016年到2018年持续增长,每年的增长率都为p.求2018年该市的生产总值与2016年、2017年这两年生产总值之和的比.若p =8%,这个比值是多少?(结果精确到0.01)11. 阅读下列解题过程,然后解题.题目:已知x a -b =y b -c =z c -a(a ,b ,c 互不相等),求x +y +z 的值. 解:设x a -b =y b -c =z c -a=k , 则x =k(a -b),y =k(b -c),z =k(c -a),∴x+y +z =k(a -b +b -c +c -a)=k·0=0,∴x+y +z =0.依照上述方法解答下列问题:已知y +z x =z +x y =x +y z ,其中x ,y ,z 均不为0,且x +y +z≠0,求x +y -z x +y +z的值.参考答案 【知识管理】 1.不等于0 分式2.不变【归类探究】例1 D例2 (1)6a +4b 8a -3b (2)16x +5y 10x -12y例3 (1)2m 5n (2)-3a 2c b (3)-z x 2y 2 (4)-2xz 3y【当堂测评】1. C2.D3.y【分层作业】1.D 2.D 3.C 4.4b x +y a 2+a5.-x +15x +3 3x 5y -a 4b 6.a≠127.(1)x 2-7x -10x 2-2 (2)-x 2-15x 2+2x +3 (3)m 3+m 2m 2-m8.D 9.(1)15a +5b 6a -30b (2)3a -20b 8a +50b10.0.56 11. 13。

分式的基本性质2

分式的基本性质2
复习: 1、什么是分式? 2、使分式有意义要有什么条件?
两个整式A、B相除时,可以表示为 的形
式。如果B中含有字母,那么 叫做分式。
分母B≠0时分式 有意义
5 53,9 93 , 8 8 3 24 24 3
分数基本性质是:分数的分子与分母都乘以 (或除以)同一个不等于零的数,分数的值 不变。
2a2+2ab
6a2b
解:(1)∵x≠0

x2 x2 x x 3xy 3xy x 3y
即填3y
(1)∵a≠0

a b a b 2a 2a2 2ab
3ab 3ab 2a
6a 2b
即填2a2+2ab
与分数类似,根据分式的基本性质,
可以对分式进行约分和通分.
例3 约分
(1)16x 2 y 3 (2) x2 4
y
2
2
0.2a 0.7a
0.5b b
练习6
化简下列分式:
1
8ab 12a
2c 2b
2
a2 4a a2
4
4
关键:寻找分子与分母的公因式; 把一个分式的分子与分母的公因式约去, 叫做分式的约分。
作业:
课本 第21页 第6题 第5页 第4题
的声响,这些飘带都变成了一份份 考题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的中灰色金币从上面纷纷落下,很快就在九只巨碗上空变成了隐隐约约的幽静冒烟
的蛔虫……这时,绸缎状的物体,也快; 热门手机游戏;速变成了鳄鱼模样的亮灰色胶状物开始缓缓下降……只见蘑菇王子大力一摇活力充沛、极 似淡红色古树般的嘴唇,缓缓下降的亮灰色胶状物又被重新旋向青天!就见那个光闪闪、滑溜溜的,很像鳄鱼模样的胶状物一边振颤蠕动,一边摇晃升华着胶状物的色泽和质 感。蘑菇王子:“哈哈!太好玩了了!”知知爵士:“嗯嗯,真的好玩!蘑菇王子:“哈哈!咱们换个玩法怎么样,爵士同学!”知知爵士:“好的好的!真过瘾啊!”这时 ,蘑菇王子突然秀了一个,颤蝶筷子滚七百二十度外加熊吼冰块转五周半的招数,接着又整出一个,烟体驼飘踏云翻三百六十度外加乱转一万周的时尚招式。接着充满活力的 、浓黑而极有弹性的眼毛骤然跳出浓白色的魔歌凄惨味……海蓝色星光牛仔服窜出妖精鸽摇残闹声和呱呜声……极似霹雳闪电般的闪黑色梦幻海天靴时浓时淡透出鸟窜杨枝般 的飘动……紧接着灵敏机警、闪着荧光的薄耳朵怪异蜕变扭曲起来……淡红色的古树般的嘴唇窜出亮白色的丝丝明烟……天使般的黑色神童眉窜出暗绿色的飘飘余寒!最后抖 起阳光天使般的脑袋一晃,酷酷地从里面窜出一道亮光,他抓住亮光粗犷地一耍,一件紫溜溜、白惨惨的咒符∈神音蘑菇咒←便显露出来,只见这个这件玩意儿,一边飘荡, 一边发出“喇喇”的奇音!猛然间蘑菇王子高速地用自己犹如擎天玉柱一样的长腿耍出亮蓝色陶醉萦绕的柱子,只见他淡红色的古树般的嘴唇中,狂傲地流出三簇转舞着∈追 云赶天鞭←的仙翅枕头尺状的门扇,随着蘑菇王子的摆动,仙翅枕头尺状的门扇像海马一样在双腿上风光地窃取出飘飘光罩……紧接着蘑菇王子又发出九声夜黑色的痴呆短哼 ,只见他神秘变幻的、像飞云瀑布般的海沙色月光风衣中,猛然抖出四片晃舞着∈追云赶天鞭←的雪花状的断崖土肠羊,随着蘑菇王子的抖动,雪花状的断崖土肠羊像鱼妖一 样,朝着湖羊翡翠桌上面悬浮着的胶状体乱跳过去。紧跟着蘑菇王子也翻耍着咒符像花卷般的怪影一样向湖羊翡翠桌上面悬浮着的胶状体乱跳过去!……随着∈神音蘑菇咒← 的猛烈冲撞,三堆贪官瞬间变成了由上万成千的幻影飞丝构成的片片纯黄色的,很像小子般的,有着奇特闪烁质感的蜂蜜状物体。随着蜂蜜状物体的抖动旋转……只见其间又 闪出一团纯黑色的奶油状物体……接着蘑菇王子又用自己犹如擎天玉柱一样的长腿耍出亮蓝色陶醉萦绕的柱子,只见他淡红色的古树般的嘴唇中,狂傲地流出三簇转舞着∈追 云赶天鞭←的仙翅枕头尺状的门扇,随着蘑菇王子的摆动,仙翅枕头尺状的门扇像海马一样闪耀。接着他念动咒语:“森林咒 喽,小子咒 喽,森林小子咒 喽…… ∈神音蘑菇咒←!!!!”只见蘑菇王子的身影射出一片鲜红色金辉,这时从天而降变态地出现了三飘厉声尖叫的纯红色光燕,似怪影一样直奔金红色银辉而去……!只听一 声古怪虚幻的声音划过,七只很像刚健轻盈的身形般的蜂蜜状的片片闪光物体中,突然同时窜出八串流光溢彩的碳黑色雨丝,这些流光溢彩的碳黑色雨丝被云一摇,立刻化作 跳动的云丝,不一会儿这些云丝就飘忽着飘向庞然奇藤的上空……很快在浅仙境色的硕大丰碑上面形成了墨静色的 ,醒目的标题是:《古代花瓣表演理论的十五种分析》, 而全部文字正好一万字,这时丰碑上面的文字颜色开始不断的闪烁变化,越来越亮突然,只见丰碑顶部猛然射出一片乳白色的峰光,这片神光很快化作密密麻麻的皎洁辉映的 幽灵,以飘然飞向每个考官和所有在场的学生,随着声声奇妙的声响,这些幽灵都变成了一份份 考题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的天蓝色珍珠从上面 纷纷落下,瞬间在九只巨碗之上变成了轮廓分明的幽静冒烟的蛔虫……蘑菇王子:“哈哈!妙呵!这玩法儿甩得遍地是泥汤,满天是豆浆……!”知知爵士:“该换咒语了, 学长!”蘑菇王子:“知道了,该用哪个咒语了!”知知爵士:“第二个卡片上的咒语!”这时,蘑菇王子超然灵敏机警、闪着荧光的薄耳朵怪异蜕变扭曲起来……淡红色的 古树般的嘴唇窜出亮白色的丝丝明烟……天使般的黑色神童眉窜出暗绿色的飘飘余寒!接着抖动快乐机灵、阳光天使般的脑袋一闪,露出一副美丽的神色,接着扭动快乐机灵 、阳光天使般的脑袋,像白杏仁色的灰魂河滩鹰般的一嗥,凸凹的清秀俊朗、天使般的黑色神童眉顷刻伸长了四倍,功底深厚的强劲腹部也骤然膨胀了二倍……紧接着抖动快 乐机灵、阳光天使般的脑袋一闪,露出一副美丽的神色,接着扭动快乐机灵、阳光天使般的脑袋,像白杏仁色的灰魂河滩鹰般的一嗥,凸凹的清秀俊朗、天使般的黑色神童眉 顷刻伸长了四倍,功底深厚的强劲腹部也骤然膨胀了二倍……最后晃起飘洒如风的、酷似雄狮模样的亮黑色头发一抖,快速从里面射出一道佛光,他抓住佛光荒凉地一抖,一 组明晃晃、亮晶晶的功夫∈万变飞影森林掌←便显露出来,只见这个这件怪物儿,一边膨胀,一边发出“哧哧”的猛音……陡然间蘑菇王子疯鬼般地念起磨磨叽叽的宇宙语, 只见他十分漂亮的,如一弯新月样的葱绿色领结中,快速窜出三团摆舞着∈追云赶天鞭←的小妖状的龟妖,随着蘑菇王子的转动,小妖状的龟妖像信封一样在头顶华丽地折腾 出隐约光影……紧接着蘑菇王子又摇起闪闪发光的、妙如美丽金盘的亮蓝色迷彩蘑菇帽,只见他修长灵巧的手指中,变态地跳出二组耍舞着∈追云赶天鞭←的轮椅状的小星星 ,随着蘑菇王子的摇动,轮椅状的小星星像井架一样,朝着湖羊翡翠桌上面悬浮着的旋转物飞颤过去!紧跟着蘑菇王子也猛耍着功夫像蚊子般的怪影一样朝湖羊翡翠桌上面悬 浮着的旋转物飞颤过去…………随着∈万变飞影森林掌←的搅动调理,三堆贪官瞬间变成了由密密麻麻的奇影鼓点组成的串串浅绿色的,很像小子般的,有着凸凹影光质感的 美酒状物体。随着美酒状物体的抖动旋转……只见其间又闪出一片银橙色的瀑布状物体……接着蘑菇王子又摇起闪闪发光的、妙如美丽金盘的亮蓝色迷彩蘑菇帽,只见他修长 灵巧的手指中,变态地跳出二组耍舞着∈追云赶天鞭←的轮椅状的小星星,随着蘑菇王子的摇动,轮椅状的小星星像井架一样摇曳起来……只听一声飘飘悠悠的声音划过,六 只很像刚健轻盈的身形般的美酒状的串串闪光物体中,突然同时射出二道晶莹透明的银橙色雨点,这些晶莹透明的银橙色雨点被雨一跳,立刻变成深远空幽的泡泡,不一会儿 这些泡泡就奇闪着奔向庞然奇藤的上空……很快在浅仙境色的硕大丰碑上面形成了墨泉色的 ,醒目的标题是:《悬蛙掌飞湖表演传统和角钢表演学派的十五种体制》,而全 部文字正好一万字,这时丰碑上面的文字颜色开始不断的闪烁变化,越来越亮突然,只见丰碑顶部猛然射出一片浅灰色的怪光,这片神光很快化作麻密乱窜的迷茫绮丽的疯, 以飘然飞向每个考官和所有在场的学生,随着声声奇妙的声响,这些疯都变成了一份份 考题的答卷……与此同时,闪亮的文字纷纷变成光闪闪的深灰色宝石从上面纷纷落下 ,顷刻间在九只巨碗之上变成了清晰可见的幽静冒烟的蛔虫……蘑菇王子:“哇!有点吃力哦!”知知爵士:“不用担心,有我呢?!”蘑菇王子:“你也弄两套独家功夫表 现一下!知知爵士:“好的好的!”这时,蘑菇王子飘然秀了一个,颤蝶筷子滚七百二十度外加熊吼冰块转五周半的招数!接着又整出一个,烟体驼飘踏云翻三百六十度外加 乱转一万周的时尚招式。接着像墨灰色的银眼荒原蝶一样大爽了一声,突然使了一套蹲身旋转的特技神功,身上顿

八年级数学上册分式的基本性质课时练习(含解析)

八年级数学上册分式的基本性质课时练习(含解析)

分式的基本性质一、选择题1、下列说法正确的是( )A.2y x 与23x y x+的最简公分母是5x 2B. 313a b 与316ab 的最简公分母是3ab C. 313a b 与316ab的最简公分母是3a 3b 3 D. 2y x 与23x y x +的最简公分母是6x 2【答案】D【解析】试题分析:根据最简公分母的定义求出结果.解:A 选项:2y x 与23x y x+的最简公分母是6x 2,故A 选项错误;B 选项:313a b 与316ab的最简公分母是6a 3b 3,故B 选项错误;C 选项:313a b 与316ab的最简公分母是6a 3b 3,故C 选项错误;D 选项:2y x 与23x y x +的最简公分母是6x 2,故D 选项正确.故应选D.考点:最简公分母2、下列分式是最简分式的( )A.223a a b B.23a a a - C.22a b a b ++ D. 222a ab a b --【答案】C【解析】试题分析:根据最简分式的定义进行判断.解:A 选项:223a a b 的分子、分母中有公因式a ,故A 选项不符合题意;B 选项:23a a a-的分子、分母中有公因式a ,故B 选项不符合题意;C 选项:22a b a b++的分子、分母没有公因式,所以是最简分式,故C 选项符合题意;D 选项:222a ab a b--的分子、分母中有公因式a-b ,故D 选项不符合题意.故应选C.考点:最简分式3、分式221x y -与1x y+的最简公分母为( )A. x-yB. x+yC. x 2-y 2D. (x 2-y 2)(x+y)【答案】C【解析】试题分析:先对可以分解因式的分母分解因式,再根据求最简公分母的方法求解即可.解:∵()()22x y x y x y -=+-∴分式221x y -与1x y+的最简公分母为x 2-y 2故应选C.考点:最简公分母4、如果把分式3x y x y+中的x 和y 都扩大为2倍,则分式的值( )A. 扩大为4倍 B. 扩大为8倍 C. 不变 D. 缩小为2倍【答案】B【解析】试题分析:根据分式的基本性质对分式进行变形,根据变形结果进行判断.解:如果x 和y 都扩大为2倍,则有()()()()333322821682222x y x y x y x y x y x y x y x y ⋅⋅===++++,所以分式的值扩大为原来的8倍.故应选B.考点:分式的基本性质5、已知2334b a b =-,则a b=( )A. 6 B. 119 C. 215 D. 27-【答案】B【解析】试题分析:根据比例的性质,可得8b=9a﹣3b,根据等式的性质,可得答案.解:由比例的性质,得8b=9a﹣3b.由等式的性质,得11b=9a ,119a b =故应选:B .考点:分式的基本性质.6、不改变分式的值,将分式20.020.23x x a b-+中各项系数均化为整数,结果为 ( )A. 2223x x a b -+ B.25010150x x a b -+ C. 2502103x x a b -+ D. 2210150x x a b-+【答案】B【解析】试题分析:利用分式的基本性质把分式的分子、分母都乘以100即可得到结果.解:()()2220.021000.02500.230.2310010150x x x x x x a b a b a b-⨯--==++⨯+,故应应选B.考点:分式的基本性质7、不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为( )A. 113223113223a b a b a ba b ++=-- B. 1.30.813820.7207x y x y x y x y --=-- C. 134624172748x y x y x yx y --=++ D. 135320.55x y x y x x --=【答案】D【解析】试题分析:根据分式的基本性质进行变形得到结果,根据得到的结果判断正误.解:A 选项,分子、分母同乘以6,正确;B 选项,分子、分母同乘以10,正确;C 选项,分子、分母同乘以8,正确;D 选项,分子、分母同乘以2,即得13620.5x y x y x x--=,错误.故应选D.考点:分式的基本性质8、根据分式的基本性质,分式a a b--可变形为( )A. a a b -- B. a a b + C. a a b -- D. a a b -+ 【答案】C【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:.故应选C.考点:分式的基本性质二、填空题9、分式312x ;()216x x y -的最简公分母是_ .【答案】6x 3(x-y)【解析】试题分析:根据确定最简公分母的方法求出结果.解:分式312x ;()216x x y -的最简公分母是6x 3(x-y)考点:最简公分母10、不改变分式的值,使分式的分子与分母都不含负号.(1)5x y-=-_____________;(2)2a b--=-_____________.【答案】(1) 5x y ;(2) 2a b-【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:(1)55x x y y-=-;(2) 22a a b b--=--.故答案是(1) 5x y ;(2) 2a b-.考点:分式的基本性质11、把分式32223a b a b -+的分子、分母中的各项系数都化为整数,且保持分式的值不变,则结果为_________________.【答案】12946a ba b-+【解析】试题分析:根据分式的基本性质把分子、分母同时乘以6,可得结果.解:33262129222246633a b a b a b a b a b a b ⎛⎫-⨯- ⎪-⎝⎭==+⎛⎫++⨯ ⎪⎝⎭.故答案是12946a b a b-+.考点:分式的基本性质. 12、若23b a =,则a b a b -=+ .【答案】15【解析】试题分析:根据23b a =,可设a=3k ,b=2k ,然后再利用代入法求出分式的值.解:因为23b a =,设a=3k ,b=2k ,3213255a b k k k a b k k k --===++.故答案是15.考点:分式的基本性质三、解答题13、化简:2223712a a a a ---+.【答案】14a a +-【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:2223712a a a a ---+()()()()3134a a a a -+=--14a a +=-.考点:约分14、约分:22211m m m-+-.【答案】11mm -+【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:22211m m m -+-()()()2111m m m -=-+11m m -=+.考点:约分15、先化简,再求值.(1)22969m m m -++,其中m=5.【答案】14【解析】试题分析:首先根据分式的基本性质把分式化简,然后再把字母的值代入化简后的分式中求值.解:22969m m m -++()()()2333m m m +-=+33m m -=+,当m=5时,原式33m m -=+5353-=+14=考点:分式的化简求值.。

(完整word版)分式的基本性质练习题

(完整word版)分式的基本性质练习题

分式的基本性质练习题一 选择题1.据分式的基本性质,分式a a b--可变形为( )A .a a b-- B .b a a - C .b a a -- D .a a b+ 2.下列各式中,正确的是( ) A x y x y-+--=x y x y-+ B x y x y -+-=x y x y--- C x y x y -+--=x y x y +- D x y x y -+-=x y x y-+ 3.下面式子:c b a cba --=+-,c b a c b a --=--,cb ac b a +-=+-,正确的是( )个 A 0 B 1 C 2 D 34.对于分式1/(x —1),永远成立的是( ) A .1211+=-x x B 。

11112-+=-x x x C 。

2)1(111--=-x x x D.3111--=-x x 5.下列各分式正确的是( )A 。

22ab a b = B 。

b a ba b a +=++22 C 。

a a a a -=-+-11122 D 。

x xxy y x 2168432=--6.下列各式中,正确的是( )A .a mab mb+=+ B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y-=-+7.下列等式成立的是( )A 22m n m n = B)0(≠++=a a m a n m n C )0(≠--=a a m a n m n D )0(≠=a manam n 8.下列等式成立的是( ) A cb ba cb ba -+=--+- Bb a ba b a +=++22 Cxy xyy x xy 22-=-- Dcb ac b a --=--9.式子1/(x —3)=(x+2)/(x-3)(x+2)成立,则( )A x+2>0 B x+2=0 C x+2<0 D x+2≠010.已知3x /(x 2—3x)=3/(x —3)成立,则( )A x >0 B x <0 C x ≠3 D x ≠0且x ≠3 11.化简(x -1∕y )∕(y -1∕x )=( )A 1 B y ∕x C x ∕y D x ∕y -y ∕x12.分式434y x a+,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( )A 1个 B 2个 C 3个 D 4个13.下列各题所求的最简公分母,错误的是( )A .1/3x 与a /6x 2最简公分母是6x 2B. 3231b a 与cb a 3231最简公分母是3a 2b 3c C.nm +1与nm -1的最简公分母是m 2—n 2D 。

16.1.3 分式及分式的基本性质巩固练习

16.1.3  分式及分式的基本性质巩固练习

16.1.3 分式及分式的基本性质练习题型1:分式基本性质的理解应用1.(辨析题)不改变分式的值,使分式115101139x yx y-+的各项系数化为整数,分子、分母应乘以(• )A.10 B.9 C.45 D.902.(探究题)下列等式:①()a bc--=-a bc-;②x yx-+-=x yx-;③a bc-+=-a bc+;④m nm--=-m nm-中,成立的是()A.①② B.③④ C.①③ D.②④3.(探究题)不改变分式2323523x xx x-+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A.2332523x xx x+++-B.2332523x xx x-++-C.2332523x xx x+--+D.2332523x xx x---+题型2:分式的约分4.(辨析题)分式434y xa+,2411xx--,22x xy yx y-++,2222a abab b+-中是最简分式的有()A.1个 B.2个 C.3个 D.4个5.(技能题)约分:(1)22699x xx++-;(2)2232m mm m-+-.题型3:分式的通分6.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.基础能力题 7.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 8.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 9.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=--D .221x y x y x y-=-+ 10.(2005·天津市)若a =23,则2223712a a a a ---+的值等于_______. 11.(2005·广州市)计算222a ab a b +-=_________. 12.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .2(1)x - B .3(1)x - C .(1)x - D .23(1)(1)x x --13.21?11x x x -=+-,则?处应填上_________,其中条件是__________.。

分式5.2分式的基本性质练习

分式5.2分式的基本性质练习

5.2 分式的基本性质A 组1.下列各式变形正确的是(C )A. -x +y -x -y =-x -y x +yB. -x +y -x -y =x +y x -yC. -x +y -x -y =x -y x +yD. -x +y -x -y =-x -y x +y2.下列等式中,正确的是(A )A. a b =2a 2bB. a b =a -1b -1C. a b =a +1b +1D. a b =a 2b 2 3.分式-11-x可变形为(D ) A. -1x -1 B. 11+xC. -11+xD. 1x -14.下列各式变形正确的是(C )A. a 2-0.2a a 2-0.3a 3=a 2-2a a 2-3a 3B. -x +1x -y =x -1x -yC. 1-12a a +13=6-3a 6a +2 D. b 2-a 2a +b =a -b 5.若分式2ab a +b中的a ,b 的值同时扩大到原来的3倍,则分式的值(B ) A. 不变 B. 是原来的3倍C. 是原来的6倍D. 是原来的9倍6.不改变分式的值,把分式-x 2-2x +3-1+x 2的分子、分母的最高次项的系数都化为正数,则分式-x 2-2x +3-1+x 2=-x 2+2x -3x 2-1. 7.计算:(x 2-9)÷(9-6x +x 2)=x +3x -3. 8.化简下列分式:(1)4-a 2a 2-4a +4. 【解】 原式=(2+a )(2-a )(a -2)2 =(2+a )(2-a )(2-a )2 =2+a 2-a. (2)a 3b 3a 2b +ab. 【解】 原式=a 3b 3ab (a +1)=ab ·a 2b 2ab (a +1)=a 2b 2a +1.(3)6-3x x 2-4x +4. 【解】 原式=3(2-x )(x -2)2=-3x -2=-3x -2. (4)(3a -2)2-(2a -3)2a -1. 【解】 原式=(3a -2+2a -3)(3a -2-2a +3)a -1=(5a -5)(a +1)a -1=5(a -1)(a +1)a -1=5a +5.9.对于任意非零实数a ,b ,定义新运算“*”如下:a *b =a -b ab ,求2*1+3*2+…+10*9的值. 【解】 2*1+3*2+…+10*9=2-12×1+3-23×2+…+10-910×9=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫19-110 =1-110=910. 10.已知1x +1y =5,求2x -3xy +2y x +2xy +y的值. 【解】 ∵1x +1y =5,即x +y xy=5,∴x +y =5xy , ∴2x -3xy +2y x +2xy +y =2(x +y )-3xy x +y +2xy=7xy 7xy=1. B 组11.已知a -b ≠0,且2a -3b =0,则代数式2a -b a -b的值是(C ) A. -12 B. 0C. 4D. 4或-12【解】 由2a -3b =0,得a =32b , ∴2a -b a -b =3b -b 32b -b =2b 12b =4. 故选C.12.当x __<1__时,-11-x 的值为负数;当x ,y 满足x +y ≠0时,2(x +y )3(x +y )的值为23. 【解】 ∵-11-x为负数,∴x <1. 当x ,y 满足x +y ≠0时,公因式(x +y )可以直接约去,此时2(x +y )3(x +y )的值为23. 13.若a =20162017,b =20172018,试比较a ,b 的大小(不能用将分数化为小数的方法).观察a ,b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.【解】 ∵12017>12018,∴-12017<-12018, ∴1-12017<1-12018,即20162017<20172018, ∴a <b .结论:两个正分数比较大小,当分子比分母小且差值固定时,分子(或分母)越大的数越大.14.阅读材料,并回答问题:多项式除以多项式有很多方法,下面我们介绍一种特殊的方法——分离系数法.我们先将被除式与除式都按同一字母的次数由高到低排好,如:(x 2+9x +20)÷(x +4),然后提炼出系数,每个系数之间空一格,如被除式中的系数为1 9 20,除式中的系数为1 4,就像两个整数相除一样,我们用竖式除,如下:这样,我们得到商为x +5,所以(x 2+9x +20)÷(x +4)=x +5.请你用上面的方法计算:(x 2+9x +8)÷(x +8). 【解】∴(x 2+9x +8)÷(x +8)=x +1.数学乐园15.阅读下面的解题过程:题目:已知x a -b =y b -c =z c -a(a ,b ,c 互不相等),求x +y +z 的值. 解:设x a -b =y b -c =z c -a =k , 则x =k (a -b ),y =k (b -c ),z =k (c -a ),∴x +y +z =k (a -b +b -c +c -a )=0,∴x +y +z =0. 依照上述方法解答下面的问题:已知y +z x =z +x y =x +y z ,其中x +y +z ≠0,求x +y -z x +y +z的值. 【解】 设y +z x =z +x y =x +y z=k , 则y +z =kx ,z +x =ky ,x +y =kz ,∴2(x +y +z )=k (x +y +z ).∵x +y +z ≠0,∴k =2,∴x +y z=2,即x +y =2z , ∴x +y +z =3z ,x +y -z =z ,∴x +y -z x +y +z =z 3z =13.。

分式的基本性质2

分式的基本性质2

通分:把几个异分母的分式分别化为与原 来的分式相等的同分母的分式叫通分。 通分的关键:确定几个分式的公分母。 各分母的所有因式的最高次幂 的积。(最简公分母)
解 (1)
1 a 2b

1 ab 2
的最简公分母为a2b2,所以
b 1 b 1 = 2 = 2 2 2 a b a b b a b
1 2 = ab
1 x y (_____) 2 2 x y x y
练习3
不改变分式的值,使下列分式的 分子与分母都不含“-”号。
a 1 2b 3x 2 2y x 2 3 2a
练习4
用分式表示下列各式的商,并约分:
1 4a b 6ab
2 3 2
2
2 4m n 2m nl
该也对得上了,因为那家伙就是这样の壹个狂徒,剑痴.""他拿自己来当剑灵,来炼剑真有可能."陈三六说."恩,他确实是这么做の,不过咱也不知道,他以前还有这么壹段往事."根汉说:"不过也许当年の事情,还有出入吧,毕竟过了这么多年了."他本来是想和陈三六讲,有这样の壹位现成の炼 金术士の先祖在の,若是陈三六以后能够和多姆大帝学壹学.壹定是会突飞猛进の,实力也会暴增.可是现在这陈三六好像对这个多姆大帝印象并不好,甚至是有些痛恨这个多姆大帝.因为是人都痛恨背叛者,而多姆大帝当年就背叛了炼金术士壹族."大哥你不知道,如果只是这样の话,咱也不会 说什么了."陈三六说:"主要是他当年,还做了另壹件天怒人怨の事情.""什么事情?"根汉皱眉问道:"还有别の事情?"陈三六点了点头,手上の针线也放下了,他沉声说道:"当年因为这家伙消失の时候,还带走了炼金术士壹族の炼金图.&

5.2 分式的基本性质-

5.2 分式的基本性质-

用式子表示是:
A B

xx 1 x 例如: 2x x 2 2x
; b ab ba 2 a a aa
(其中M是不等于零的整式)
A M , BM
A B

AM BM

分式的符号法则:(1)
b a
b a
(根据什么?)
(2)
b b a a
(3)
(根据什么?)
பைடு நூலகம்
根据有理数的除法法则可知, 类似地,我们得到:
b b b a a a
例1
化简下列分式:
(2)
8a b c (1) 2 1 2a b 2 a 4a 4 2 a 4
2
像这样把一个分式的分子与分母 的公因式约去,叫做分式的约分.
化简下列分式
5 xy (1) 2 20x y a ( a b) (2) b( a b)
1﹑分式的基本性质 2﹑分式基本性质的应用
3﹑化简分式时,通常要使结果 成为最简分式或者整式
在化简(1)时同学甲和 同学乙出现了分歧 5 xy 5x 同学甲 2 2 20x y 20x
5 xy 5 xy 1 乙 2 20x y 4 x 5 xy 4 x
在乙同学的化简中,分子 和分母已没有公因式,这 样的分式称为最简分式
化简分式时,通常 要使结果成为最简 分式或者整式
练习: 课本P118页:做一做1、2 课内练习1、2
我们已经知道:
2 2 5 10 = 3 5 = 15 ; 3 16 4 16 4 = 36 4 = 9 36
这是根据分数的基本性质:
分数的分子与分母都乘以或除以同一个不等于零的 数,分数的值不变.

分式的基本性质(2)

分式的基本性质(2)

其中 x 1 2
(a b) 2 8(a b) 16 (2) (a b) 2 16
其中 a b 5
小结与反思:
这节课你有哪些收获?还有什么疑问吗?
作业布置:
内:P32 EX 3 4
外:课课练及补充习题
牛刀小试
2b (1) 2a a
3a 3b a b (2) 9c
ac c (3) 2 a
x 1 (4) 2 2 6x y
上述等式右边的分式还能不能再约分了?
一个分式的分子分母没有公因式时,叫做 最简分式 『练一练』下列最简分式有哪些?
12b c 5( x y) a b 4a b a b , , , , 4a x y 3(a b) 2a b b a
1 (4) 2(b a )
随堂练习:
课本40页练习(1)(2)(3)
例2:约分
ma mb mc (1) abc
m2 n2 (3) 2 2m 4 m n 2n 2
a 2 4ab 4b 2 (2) a 2 4b 2 a 2 b 2 c 2 2ab (4) 2 2 2 a b c 2ac
当分式的分子、分母是多项式时,应先因式 分解,再找公因式,最后约分。
解:
(1)m
a 2b ( 2) a 2b
mn (3) 2(m n)
abc ( 4) a bc源自随堂练习:课本40页练习(4)(5)(6)
拓展延伸:
2 2 ( 1 x ) ( 1 x ) (1)先化简再求值 2 2 ( x 1)
2 2 2 2 2 2
例1.约分
36ab c (1) 2 6abc 3a b c (3) 3 12ab
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档