人教版八年级数学上册分式的加减法练习题精选67

合集下载

【同步练习】2017-2018学年 八年级数学上册 分式加减运算 计算题练习(含答案)

【同步练习】2017-2018学年 八年级数学上册 分式加减运算 计算题练习(含答案)

2017-2018学年 八年级数学上册 分式加减运算 计算题练习1、化简:)2(2222abb a b a b a ++÷--. 2、化简:4214144122++--+-x x x x .3、化简:a a ---111.4、化简:1224422-+÷--x x x x .5、化简:)111()111(2+-÷-+a a .6、化简:xx x -+++-2122442.7、化简:)1(1x x x x -÷-. 8、化简:aa a a a -+-÷--2244)111(.9、化简:112222+---x xx x x . 10、化简:1231621222+-+÷-+-+x x x x x x x .11、化简:12)121(22+-+÷-+x x xx x . 12、化简:)111(12+-÷-x x x .13、化简:1122)1(223+-+--÷--x xx x x x x x x . 14、化简:24)2122(--÷--+x x x x .15、化简:1112221222-++++÷--x x x x x x . 16、化简:11131332+-+÷--x x x x x .17、化简:xx x x x -+-÷--+1168)1151(2. 18、化简:9)3132(2-÷-++x x x x .19、化简:12)242(2++÷-+-x x x x x . 20、化简:22121222--++--x xx x x x .21、化简:24)2122(+-÷+--x x x x . 22、化简:xxx x x x x x -⋅+----+4)44122(22.23、化简:x x x x x x x x 4)44122(22-÷+----+. 24、化简:344)3392(2--+-÷+-+-x x x x x x .25、化简:121441222+-÷-+-+-a a a a a a . 26、化简:2)422(2+÷---m m m m m m .27、化简:222a b ab b a a b a b ---+-. 28、化简:2221442++---a a a .29、化简:12412122++-÷+--x x x x x . 30、化简:)111(1222+-+÷+-x x x x x .31、化简:)131(11222+-÷-+-x x x x . 32、化简:112111122++-⋅--+x x x x x .33、化简:122)12143(22+-+÷---+x x x x x x . 34、化简:ba ba b a b b a b a +-÷--+-2)2(.35、化简:)111(3122+--+++x x x x . 36、化简:121)121(2+-+÷-+x x x x .37、化简:1)11(22-÷---x x x x x . 38、化简:1)111(2+÷-++x x x x39、化简:)2(2a b ab a a b a --÷-. 40、化简:)2(4222a a a a a --÷-.参考答案1、原式=ba ab+. 2、原式=2)2(24--x x. 3、原式=122--a a .4、原式=x x-1. 5、原式=a a 1+.6、原式=21+x .7、原式=11+x .8、原式=2-a a.9、原式=1+x x.10、原式=3x-711、原式=x x 1-. 12、原式=11-x .13、原式=xx +-21.14、原式=-x-4.15、原式=22-x x.16、原式=x x +21.17、原式=x x -+44.18、原式=xx 9-.19、原式=x+1. 20、原式=12-x x. 21、原式=﹣(x+4). 22、答案略; 23、原式=2)2(1-x .24、原式=2-x x. 25、答案略;26、原式=2-m m. 27、原式=b a ba -+.28、原式=21+a .29、原式=21+x .30、原式=11-x .31、原式=21--x x .32、原式=2)1(2+x . 33、原式=11+-x x . 34、原式=b a a-2.35、原式=11-x .36、原式=x ﹣1.37、原式=x x 1+. 38、原式=11-+x x .39、原式=b a -1.40、原式=21+a .。

八年级分式加减练习题带答案

八年级分式加减练习题带答案

八年级分式加减练习题带答案一、选择:1.已知x?0,则11x?2x?13x等于 A.115112xB.6xC.6xD.6x2.化简2y?3z2z?3x9x?4y2yz?3zx?6xy可得到A.零B.零次多项式C.一次多项式D.不为零的分式3.分式bax,c?3bx,a5x3的最简公分母是 A.5abx B.15abxC.15abxD.15abx34.在分式①3x2ab3a?2x?y;②a2?b2;③a?b;④?2ab中分母相同的分式是 A.ba?ca?b?c2a B.ba?cd?b?dac; C.ba?cd?b?da?c; D.bcbc?ada?d?ac6.x 克盐溶解在a克水中,取这种盐水m克,其中含盐 A.mxa克 B.amammxx克 C.x?a克 D.x?a克二、填空: 1.a?2bba?b?b?a?2aa?b?;.?a?ab?ba?b??1? ;.若ab=2,a+b=-1,则1a?1b 的值为三.计算:12m?2nm2?9?2m?3; n?m+n2nn?m-n?m-4x?yx2?y2xx 1?x?3y?x2?6xy?9y2- 1 - )?2354xy??4xy x?y??x?y3a24b6abx?y??x?y??a2a?a2?2a1??a? ?a?; 2a?3a?1?a?4a?2?四.先化简,再求值:?先化简,再求值:?12??2??21??,其中x=-3.5. xx??x??x?3x?31?2?,其中x=2. x?1x?2x?1x?1- -17.2分式的运算17.2.分式的加减法同步练习一、请你填一填1. 异分母分式相加减,先________变为________分式,然后再加减.3242. 分式xy,x?y,x?y的最简公分母是________.3. 计算:2xyz1?2xy2z?3xyz2=_____________.xx?1=_____________.. 计算:x?1xM2xy?y2x?y5. 已知2=2+,则M=____________.2x?yx?yx?y6. 若2与|b-1|互为相反数,则2的值为____________. a?b7. 如果x<y<0,那么|x||xy|+化简结果为____________. xxyx2?y28. 化简的结果为____________. x?y9. 计算x?2x?2-=____________. x?2x?2二、判断正误并改正: a?ba?ba?b?a?b??1. =0 aaa2. x2?12?x2?12?x?12?1 x?13. 12x2?12y2?12c??a?ba?ba?b2三、认真选一选:y?1y?的值是 1. 如果x>y>0,那么x?1xA.零B.正数C.负数D.整数2. 甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t1小时后,快者追上慢者;若相向而行,则t2小时后,两人相遇,那么快者速度是慢者速度的 A.t1 t1?tB.t1?t2t?t C. t1t1?t2D.t?t t1?t2四、请你来运算1. 化简:121x?3x2?2x?1??2÷; ·x?2xx?1x?2xx?1x?4x?3x?21?a1?b1?cx2?9xx2?9?? + x?3xx?6x?9a2?4b2222. 已知a-2b=2求2-a+4ab-4b的值.a?4b?a?2b 3. 化简求值:当x=参考答案:一、请你填一填 12x2?1x2?2x?1?时,求的值. x?1x?11. 通分同分母 . xy3.6.+1.08.x+y .-二、判断正误并改正: yz?2xz?3xyx2y2z22x?1.5.x x?18xx?4x?12b2acx2?y21.×, .×,.×,4.×, a2x2y22a?b三、认真选一选:1.B2.D四、请你来运算 1.1210 02.- x?223123.原式=2x-将x=代入原式=2·12-2=-2分式加减乘除混合运算测试题100分钟)班级_________姓名_____________得分____________________一.填空题1.若代数式x?1x?3?有意义,则x的取值范围是__________. x?2x?42.化简?1???1?3?a 的结果是___________. ??a?2?2a?4M2xy?y2x?y3.若,则M=___________. ?2?22x?yx?yx?y 4.公路全长s千米,骑车t小时可到达,要提前40分钟到达,每小时应多走____千米.5.某班a名同学参加植树活动,其中男生b名.若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树棵.aa35m??0,则m= .化简-=,7.若x?yy?xa?1a?18.若112x?3xy?2y??3,则 xyx?xy?y二.选择题1.下列等式中不成立的是x2?y2x2?2xy?y2A、=x-yB、?x?y x?yx?yyxy2?x2xyyC、 D、?? ?xyxyx?xyx?y2.下列各式中,从左到右的变形正确的是A、?x?y?x?y?x?yx?y??B、?x?yx?y?x?yx?y?x?yx?y?x?yx?yC、 D、 ?x?yx?y?x?yx?y3.如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a克,再称得剩余电线的质量为b克, 那么原来这卷电线的总长度是b+1ba+ba A.米B.米C. +1)米 D.)米 aaab4.已知a,b为实数,且ab=1,设M=ab11??,N=,则a?1b?1a?1b?1M,N的大小关系是A、M>NB、M=NC、M 5.下列分式的运算中,其中结果正确的是112a?312a2?b23??a CA+? B=a+b D2aba?ba?3a?6a?9aa?b6.下列各式从左到右的变形正确的是1y0.2a?b2a?b2x?y? A. B. ?a?0.2ba?2bx?2yx?y2x?C.?a?ba?bx?1x?1?D. ?a?ba?bx?yx?y7.若有m人a天完成某项工程,则个同样工作效率的人完成这项工程需要的天数是A、a+mB、maam?nC、D、 m?nm?nma8. 若x?1?11,y?1?,则y等于 yxC.?xD.x A.x?1B.x?1三、计算题:3?x5x24x?2?, x?2x?2x?22?xxa2?b2a2?b2m+n11?÷a2b?ab22abx25.?2xx?1?.7.a?1a2a?2?4a?2a?1?12a2?1mnn??x?1?x?x?x?1x?2x?1xa28、a?b?a?b 四.先化简,再求值:2x1、?24x?4÷ ,其中x=- x?12、你先化简2x?6x?21?,再选取一个你喜欢的数代入并x2?4x?4x2?3xx?2求值。

人教版八年级数学上册分式的加减法练习题精选41

人教版八年级数学上册分式的加减法练习题精选41

人教版八年级数学上册分式的加减法练习题精选41人教版八年级数学上册分式的加减法练习题精选9x———-———-5y 8y x2+y x2+y———-——— 3 1 3x +n 3x-n b——-——-6 3 b b ———-———+——— b 5b b b+1 b+1 b+1 ———-——— 1 2 4c2d 7cd2 ————+————x 7x4x+8 (4x+8)2 ————-———x 5x2-b2 x+b ———-aa-a-8 2 人教版八年级数学上册分式的加减法练习题精选6x———+———+y 3x x+y x+y ———+——— 5 2 3y +n 3y-n b——-——+5 6 b b ———-———-———9m 3m m m-7 m-7 m-7 ———+——— 1 1 2cd6cd2 ————-———— 8y 6y2y+5 (2y+5)2 ————-———n 3a2-n2 a-n ———+aa+a-4 6 人教版八年级数学上册分式的加减法练习题精选2x———+———-y 5y x3+y x3+y———-——— 3 2 3x +3a 3x-3a a——+——+9 5 a a ———-———-——— 3n n nn-5 n-5 n-5 ———-——— 4 2 8cd2 2c2d ————-———— b 5b 3b-1 (3b-1)2————-———m 4m2-n2 m-n ———-a2a-a-8 2 人教版八年级数学上册分式的加减法练习题精选9x———-———-3y 5y x+y3x+y3 ———-——— 4 2 y+n y-n b——+——-6 8 b b ———+———+——— 6b b bb-4 b-4 b-4 ———+——— 3 4 8c2d2 2c2d2————-————m 3m4m+8 (4m+8)2 ————+———y 1x2-y2 x-y ———-x2x+5x-5 人教版八年级数学上册分式的加减法练习题精选9x———-———+y 3x x3-y x3-y———-——— 4 2 2y + b 2y-b m——-——+3 6 m m ———+———-———y y yy-5 y-5 y-5 ———-——— 4 1 7c2d 4cd2————-———— 8a 2a3a-1 (3a-1)2 ————-———y 4 22m-y m+y ———-a2a+a-2 7人教版八年级数学上册分式的加减法练习题精选———-———x-6y 9x x+y x+y ———-——— 5 5 p+3a p-3a a——-——-8 7 a a ———+———-——— 5a 8a aa+8 a+8 a+8 ———-——— 3 3 3cd25c2d ————+———— 4b 3b 5b-2 (5b-2)2 ————-——— a 6a2-b2 a+b ———+mm-m-3 4 人教版八年级数学上册分式的加减法练习题精选5x———+———+2y 2x x3+y2 x3+y2———-——— 5 1 3x +a 3x-a x——+——+1 1 x x ———-———-———m m mm+7 m+7 m+7 ———-——— 2 3 6c2d2 4cd ————-———— 2n 7n5n-4 (5n-4)2 ————+———x 4 22x-b x-b ———+m2m+m-4 7 人教版八年级数学上册分式的加减法练习题精选7x———-———+8y 5x x2+y3x2+y3 ———-——— 5 4 x+3b x-3b y——-——-4 2 y y ———+———-——— 5a a 8aa+6 a+6 a+6 ———-——— 4 1 6c2d 4c2d ————-————n 7n6n+1 (6n+1)2 ————-——— b 1m2-b2 m+b ———-xx+x-5 6 人教版八年级数学上册分式的加减法练习题精选3x———-———-9y 6x x2+y3 x2+y3———-——— 3 2 3y +n 3y-n x——+——+4 2 x x ———+———-——— 7m m mm+5 m+5 m+5 ———-——— 3 3 6c2d 4c2d ————+———— a 5a 3a-7 (3a-7)2————+———y 6x2-y2 x+y ———-a2a+a-4 5 人教版八年级数学上册分式的加减法练习题精选7x———-———+y 5x x3-y2x3-y2 ———+——— 2 3 2m +q 2m-q m——-——-9 5 m m ———-———+———2y 4y y y-8 y-8 y-8 ———-——— 4 2 3cd2 9cd2————+————m m4m+7 (4m+7)2 ————-———x 5x2-y2 x-y ———+aa+a-5 2人教版八年级数学上册分式的加减法练习题精选6x———+———-8y 9y x2+y2x2+y2 ———+——— 4 2 3p +2b 3p-2b b——-——-2 5 b b ———+———+——— 8x 5x 3x x+9 x+9 x+9 ———+——— 2 3 8cd29cd ————+———— a a2a-7 (2a-7)2 ————+———m 5 22m-n m-n ———-a2a-a-2 1 人教版八年级数学上册分式的加减法练习题精选———+———x+y 9x x+y3 x+y3———+——— 1 4 2p +a 2p-a m——-——+2 3 m m ———+———-———n n 5n n+7 n+7 n+7 ———+——— 4 3 4c2d 5cd2 ————+———— 6y y6y-5 (6y-5)2 ————-——— a 6a2-n2 a+n ———+xx+x-6 5 人教版八年级数学上册分式的加减法练习题精选6x———+———-y 6y x2+y2x2+y2 ———+——— 5 1 m+q m-q x——+——+6 2 x x ———+———+———y 8y y y+5 y+5 y+5 ———+——— 4 4 4cd2 6c2d ————+———— b b 2b+6 (2b+6)2————-———n 6x2-n2 x+n ———+x2x+x-2 8 人教版八年级数学上册分式的加减法练习题精选9x———-———-2y 2y x+y3 x+y3 ———-——— 1 4 p+n p-n a——+——-6 3 a a ———-———-———x 2x 4x x-2 x-2 x-2 ———+——— 1 2 6c2d2 5cd2 ————+———— 5a a 6a-5 (6a-5)2 ————+———m 5m2-b2 m+b ———-a2a-a-5 5 人教版八年级数学上册分式的加减法练习题精选———-———x-8y 9y x+y x+y ———+——— 4 4 m+3n m-3n y——+——-7 3 y y ———+———-———2x x 9x x-8 x-8 x-8 ———+——— 3 2 8c2d2 8c2d2 ————+———— b 6b4b-4 (4b-4)2 ————+———n 5 2a-n2 a-n ———+mm-m-9 9人教版八年级数学上册分式的加减法练习题精选———+———x+y 8y x2+y3x2+y3 ———-——— 3 3 2y +3b 2y-3b y——-——+3 4 y y ———+———-——— b 4b b b+4 b +4 b+4 ———+——— 3 3 6cd8c2d ————-————x 9x 6x+2 (6x+2)2————-———x 5x2-y2 x+y ———+mm-m-2 6 人教版八年级数学上册分式的加减法练习题精选6x———-———+y 8x x3-y3x3-y3 ———+——— 1 5 m+a m-a n——+——+2 4 n n ———+———+——— 6x 7x x x+3 x+3 x+3 ———-——— 3 1 2cd22cd ————-———— 6x x6x-1 (6x-1)2 ————+——— a 2 22a-b a-b ———-x2x+x-6 3 人教版八年级数学上册分式的加减法练习题精选———-———x-y 2x x3-y x3-y———-——— 3 1 2x +n 2x-n b——+——+4 7 b b ———-———-———8m 9m 9m m-4 m-4 m-4 ———-——— 1 3 3cd6c2d2 ————-———— a 7a6a-9 (6a-9)2 ————-——— b 6m2-b2 m+b ———-xx-x-7 1 人教版八年级数学上册分式的加减法练习题精选7x———-———-7y 8y x2+y3 x2+y3———+——— 1 2 3y +q 3y-q m——+——+6 9 m m ———-———+———x 5x xx-6 x-6 x-6 ———-——— 3 3 6c2d 6c2d2 ————-———— 8a a 4a+2 (4a+2)2————+——— a 5a2-n2 a-n ———+m2m-m-3 1 人教版八年级数学上册分式的加减法练习题精选8x———-———-y 3x x-y3 x-y3———+——— 3 1 p+3n p-3n a——+——+4 8 a a ———-———-——— 4m 7m mm+8 m+8 m+8 ———-——— 4 3 8cd5cd ————-———— 6n n 24n-7 (4n-7) ————+———n 6 22m-n m-n ———-a2a+a-4 7。

(完整版)八年级数学上册分式加减运算计算题练习(含答案)

(完整版)八年级数学上册分式加减运算计算题练习(含答案)

八年级数学上册 分式加减运算 计算题练习1、化简:)2(2222ab b a b a b a ++÷--.2、化简:421444122++--+-x x x x x . 3、化简:a a a a 21222-÷-+. 4、化简:a a ---111.5、化简:2222)2(n m mn m m n mn m --⋅++.6、化简:1224422-+÷--x xx x .7、化简:)111()111(2+-÷-+a a . 8、化简:1)12111(2-÷+-+-+x xx x x x .9、化简:a a a a a -+-÷--2244)111(. 10、化简:144)14(2-+-÷---x x x x x x .11、化简:962966322--+++⋅+a a a a a a . 12、化简:112222+---x x x x x .13、化简:1231621222+-+÷-+-+x x x x x x x . 14、化简:12)121(22+-+÷-+x x x x x .15、化简:)111(12+-÷-x x x . 16、化简:44)211(22+++÷+-x x x x x .17、化简:1122)1(223+-+--÷--x x x x x x x x x . 18、化简:24)2122(--÷--+x xx x .19、化简:1112221222-++++÷--x x x x x x . 20、化简:11131332+-+÷--x x x x x .21、化简:9)3132(2-÷-++x xx x . 22、化简:12)242(2++÷-+-x x x x x .23、化简:xxx x x x x x -⋅+----+4)44122(22. 24、化简:344)3392(2--+-÷+-+-x x x x x x .25、化简:121441222+-÷-+-+-a a a a a a . 25、化简:2)422(2+÷---m mm m m m . 27、化简:222a b abb a a b a b --++-. 28、化简:x x x x x x -+⋅+÷++-21)2(12422. 29、化简:12412122++-÷+--x x x x x . 30、化简:)111(1222+-+÷+-x x x x x31、化简:1221122+-+÷--+a a a a a a . 32、化简:ba ba b a b b a b a +-÷--+-2)2(.33、化简:121)121(2+-+÷-+x x x x . 34、化简:11211222---+--⨯+-x a ax a a a a a a .35、化简:41)2212(216822+++-+÷++-x x x x x x x . 36、化简:xa x x a 22)1(-÷-.37、化简:1)11(22-÷---x x x x x . 38、化简:1)112(2-÷+--a a a a a a .39、化简:421)211(2--÷-+x x x参考答案1、原式=ba ab +. 2、原式=2)2(24--x x . 3、原式=a 2+2a. 4、原式=122--a a . 5、原式=m+n.6、原式=x x -1.7、原式=a a 1+.8、原式=1-x x .9、原式=2-a a . 10、原式=22-+x x . 11、原式=a 2. 12、原式=1+x x . 13、原式=3x-7. 14、原式=x x 1-. 15、原式=11-x .16、原式=1+2. 17、原式=x x +-21. 18、原式=-x-4. 19、原式=22-x x.20、原式=x x +21. 21、原式=xx 9-. 22、原式=x+1. 24、原式=2)2(1--x . 25、原式=2-x x . 26、原式=1-a a . 27、原式=2-m m . 28、原式=b a ba -+. 29、原式=11+-x . 30、原式=21+x . 31、原式=11-x . 32、原式=21+a .33、原式=b a a -2. 34、原式=x ﹣1. 35、原式=0. 36、原式=x x 442+.37、原式=a x +1. 38、原式=x x 1+. 39、原式=a+3. 40、原式=12+x .。

人教版初二数学上册分式的加减专项练习

人教版初二数学上册分式的加减专项练习

1 .化简:oX +4 4x z-2 2-x3. 计算: 旷9b _ a+3b6ab 29 a2b5. 计算:7. 计算: 2n+b "2^b9. 按要求化简:11 .化简:n 斗2mnm n nH-n - n2分式的加减22 •化简一-a- b-一的结果是a _b4 血2门+ n _ 2mn _ID in _n n_n6.化简:&化简:10 .化简x2- y2_ 4x (x - y) + y2 x+y 2x _ya,- 4 ________ 館a2- a2 - 2a12.计算:»:一,加一一.13•已知「宀「三求A 、B 的值.14.化简:19.计算: 15•计算: 16.计算:17•化简」一 18.化简:a 2+ab+b 2b 2 ab+b 2---------------- -------------------------+ -----------a 3 -b 3 b 2-2ab+b 2 a 2 - b 22a+l 『+3.」2 1 a+220.化简:「、一21.计算:1 :..x+6 1x3x.解答题(共22小题) 1.( 2011?佛山)化简:考点: 分式的加减法.分析: 首先将原分式化为同分母的分式,然后再利用同分母的分式的加减运算法则求解即可求得答案. 解答:解:龙?+4 分_/+4_ 令 _/+4-弧_ (x-2) J. 2X - 22 - x K - 2 x - 2 i-2K - 2点评:此题考查了分式的加减运算法则.解题的关键是要注意通分与化简.2. (2006?北京)化简 丄〒的结果是 a+ba ~b a _ b考点:分式的加减法. 专题:计算题. 分析: 解答:(a+b ) (a - b )= =a+b , 故答案为a+b .点评:本题考查了分式的加减法,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即 可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.考点: 分式的加减法. 专题: 计算题.分析: 先找出最小公倍数,再通分,最后计算即可.解答:&3a (a- 9b) - 2b (a+3b)3a 2- 29ab _ 6b 3解:原式-.-., .13a 2b Z18孑L点评:本题考查了分式的加减法,解题的关键是找出各分母的最小公倍数.4. (1997?福州)'--———n _ m in _ n n _ ir考点:分式的加减法.参考答案与试题解析根据同分母的分数相加,分母不变,分子相加减.3.计算:a-9b _ a +3b 6ab 29 a 2b观察发现,只需对第二个分母提取负号,就可变成同分母•然后进行分子的加减运算•最后注意进行化简. 解:原式=上丄n _ mnH-2n _ n _ 2m点评: 注意:m - n= -( n - m ).分式运算的最后结果应化成最简分式或整式.,2-45. (2012?宁波)计算:-..I ■. a+2考点: 分式的加减法.分析:首先把分子分解因式,再约分,合并同类项即可.解答:, 解:原式=「:一」,a+2a Z=a - 2+a+2, =2a .点评:. 此题主要考查了分式的加减法,关键是掌握计算方法,做题时先注意观察,找准方法再计算.x 2 - y 2 _ (K - y) + y 2 x+y 2x - y考点: 分式的加减法. 专题: 计算题.分析: 首先把各分式进行约分,然后进行加减运算.解答:宓眉十=&+¥)(X- y) _ _4xy+y 2x+y2x _ y(2x-=x y】 ■ y=x - y - 2x+y =-x .点评: 本题不必要把两式子先通分, 约分后就能加减运算了.考点: 分式的加减法. 专题: 计算题.分析: 先通分,再把分子相加减即可. 解答:解:原式=■ +_ --2ab 2ab 2ab2b+2a - (2a+b )= 2比专题:计算题. 分析: 解答:6. (2005?长春)化简: 2 s+b"2^b2b+2a 2a - b2ab b2ab 2a点评:本题考查的是分式的加减法,异分母分式的加减就转化为同分母分式的加减.8 (2009?郴州)化简:a _b b _ a=1+1 =2 .点评:归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分 母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.9曲+29.(2013?佛山)按要求化简:「I 」.考点:分式的加减法.分析:首先通分,把分母化为(a+1) (a - 1),再根据同分母分数相加减,分母不变,分子相加减进行计算,注意 最后结果要化简. 解答:㊇舌亠—-.-' :(a+1)(a - 1)点评:此题主要考查了分式的加减,关键是掌握异分母分式加减法法则:把分母不相同的几个分式化成分母相同 的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.10. (2005?宜宾)化简 ’ -一—一a - 4a+4 盘上-2a考点:分式的加减法.考点:分式的加减法. 专题:计算题. 分析:解答:(1) 几个分式相加减,根据分式加减法则进行运算; (2) 当整式与分式相加减时,一般可以把整式看作分母为解:原式=_ •_:■a-b a-b 1a-b =—a-b 丄1的分式,与其它分式进行通分运算.解:原式=(a - 1)(a+1) 1) (a+1)_2a+2 _ a - 3 (0i ]〉(a+1)a- 1专题:计算题.分析:此题分子、分母能分解的要先分解因式,经过约分再进行计算.解:原式二—=1(a- 2)2a(且一2)自亠2考点:分式的加减法. 专题:计算题.分析:把异分母分式转化成同分母分式,然后进行化简.(ID - n) (nr+n)=(nH-n)2 Cin _ nJ (nH-n)m _ n点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则 必须先通分,把异分母分式化为同分母分式,然后再相加减.12 .计算:1_ 1 _ 3x 6x-4y6x+4y4/ —9 /考点:分式的加减法.分析:根据异分母分式相加减,先通分,再加减,可得答案. 解答:解:原式__一+人解:原式 2 (3x-2y)2 (3靈+2y) (3計2y) (3x-2y)(3x+2y) - (3x- 2y) +6x_3x+2y - 3x+2yf6x _2(3x+2y)(3K -2y)2 (3x+2y)_2〔3时2y)(3x-2y)_ 1_^~2y .点评:本题考查了分式的加减,先通分花成同分母分时,再加减.解答:点评:此题的分解因式、约分起到了关键的作用.11. (2010?陕西)化简:n nrhnZinn解答:解:原式= ___________ _____ ________(m nJ (nrhi)n n) *2nnin n) (nrbn ) nJ Cmf-n)13 . (2005?十堰)已知: 求A 、B 的值.考点:分式的加减法;解一兀一次方程组.专题:计算题.分析:此题可先右边 A 通分,使结果与J 相等,从而求出A、B的值.1-1 s- 2 (x- 1) (y+2)解答:解:••(比较等解得*A E A K+2A+B K- B (A+B) x+2A - Bs- (x- 1) Cx+2) (x - 1) (s+2),2x- 3 _ (A+B) x+2A - Bx-1) (x+2)-(垃一1) (x+2),試两边分子的系数,得,鑒七H' 1点评:此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.沁-2x x ?+工-214. (2003?资阳)化简:x2 -4X2+4X+4考点:分式的加减法.专题:计算题.分析:通过观察分式可知:将分母分解因式,找最简公分母,把分式通分,再化简即可. 解答:解:原式点评:解答本题时不要盲目的通分,先化简后运算更简单.2 ^2 ,15.计算:(x- ) + -------耳+2x+2考点: 分式的加减法.分析:: 将括号里通分,再进行冋分母的运算. 解答:22解: (x - ' ) + :,''x+2 x+2 X2+2X - x 2 K 2+X _ + x+2 x+2X 2+3Xx+2 .点评:本题考查了分式的加减运算.关键是由同分母的加减法法则运算并化简.]II/ 一 皿E - 52ID 2 -216. (2003?常州)计算:考点:分式的加减法.专题:计算题.分析:根据分式的加减运算法则,先通分,再化简.解答:解:原式= 一:厂]+—川* 二2m (iri_1) (ird-1) 2m (in _1) (irrFl)= _ 3時22m (m_ 1) (nH4 )=_1) - 2)2m (m _1) (nH-1)=22m ( mF 1)点评:本题考查了分式的加减运算•解决本题首先应通分,最后要注意将结果化为最简分式.考点:分式的加减法.专题:计算题.分析:原式两项通分并利用同分母分式的减法法则计算,约分即可得到结果. 解答:解:原式=丄- ':.S ~ 1 X ( X —1 )=2x- 2=葢G- 1)=2 (x- 1)=葢(X- 1)_2点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18. (1999?烟台)化简:a^+ab+ b2b2. ab+b^a3- b3 b2- 2ab+b2 a2- b2考点:分式的加减法. 专题:计算题.分析:首先将各式的分子、分母分解因式,约分、化简后再进行分式的加减运算. 解答:a2+ab+ b 匚解:原式= —-——?-(a-b) ( a2+ab+b2) (a~b) 2% G+b)(2 分)1 _ b(a-b) 1 -ba^b (3 分)(4分)点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减;如果分式的分子、分母中含有公因式的,需要先约分、化简,然后再进行分式的加减运算.17. (2014?溧水区一模)化简考点: 分式的加减法. 专题: 计算题.分析:: 先通分,把异分母分式加减运算转化为冋分母分式加减运算,求解即可. 解答:, 解:原式=(a+2)(自-1)(a+2j (a - 1) = 2a+l - a+1(a+2) (a~ 1)_a+2(a+2) ( a~ 1) _ 1a- I ,点评: 本题主要考查异分母分式加减运算,先通分,把异分母分式化为冋分母分式,然后再相加减.考点:分式的加减法. 分析:本题需先根据分式的运算顺序及法则,分别对每一项进行整理,再把每一项合并即可求出答案. 解答:‘ 解:原式_『 _ ・• ,x _ 2 x (x+2)(K +2) ( I _ 2) x 2 (x+2) +x (x - 2) - x Cx+6)x (x+2) (x - 2)_x‘十2,+ /一23[-i (i+2) (x _ 2)'x (x+4) (x- 2),_ x+4 x+2点评: 本题主要考查了分式的加减,在解题时要根据分式的运算顺序及法则进行计算这是本题的关键. 21 . (2002?上海模拟)计算:考点:分式的加减法. 专题:计算题. 分析:先找到最简公分母,通分后再约分即可得到答案. 解答: 解:原式=(x+2) (x - 2)(x+2) (i 2) (x+2) ( K - 2) 4+2x - 4- x- 2(x+2) (x _ 2)19. (2007?上海模拟)计算: 2a+la 2+a-2 3+220. (2007?普陀区二模)化简:X -2(x+2) 1=1〔X - 2)点评:本题考查了分式的加减,会通分以及会因式分解是解题的关键.X _ 計6 十1 耳_3 X2-3K x考点:分式的加减法.专题:计算题.分析:观察各个分母,它们的最简公分母是x (X- 3),先通分把异分母分式化为同分母分式,然后再加减./ - E - 6+x - 3 x (x - 3)(x-3) (x+3)X (x- 3)__x+3点评:本题主要考查异分母分式加减,通分是解题的关键.解答:。

八年级数学上册分式的加减法同步训练(含解析).doc

八年级数学上册分式的加减法同步训练(含解析).doc
货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.
(1)甲、乙所购肥料的平均价格是多少元?
(2)谁的购货方式平均价钱低?
考点 : 分式的加减法.
专题 : 应用题.
分析: (1)由于第一次的价格为a元/千克,第二次的价格为b元/千克,甲每次购买800千克, 故可得出甲用的总钱数是800a+800b,总斤数是1600,由此可得出甲所购肥料的平均
4.(2014秋?招远市期末)若x为整数,且++也是整数,则所有符合条件
的x值的和为()
A.40B.18C.12D.9
考点 : 分式的加减法.
专题 : 计算题.
分析:原式通分并利用同分母分式的加法法则计算,根据x与结果都为整数,确定出满足
题意x的值,求出之和即可.
解答:解:原式===,
由x为整数,且结果为整数,得到x﹣3=1或x﹣3=﹣1或x﹣3=2或x﹣3=﹣2,
分式的加减法
一.选择题(共7小题)
1.(2015?义乌市)化简的结果是()
A.x+1B.C.x﹣1 D.
2.(2015?杭州模拟)下列各等式中,错误的是()
A.x+=B.(x﹣3)2=x2﹣9C.x2﹣x=x(x﹣1)D.|x﹣1|2=(x﹣1)2
3.(2014秋?乳山市期末)设p=﹣,q=﹣,则p,q的关系是()
专题 : 计算题.
分析: 已知等式左边利用除法法则变形,约分后求出ab的值,代入原式计算即可得到结果.
解答:解:已知等式整理得:?=3ab=9,即ab=3,
5
则原式=9,
故选B
点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
7.(2015春?西安校级期末)已知=﹣,其中A、B为常数,则4A﹣B

人教版初二数学上册分式的加减法(1)练习题

人教版初二数学上册分式的加减法(1)练习题

17.2分式的运算17.2.2 分式的加减法(1) 同步练习一、请你填一填(每小题4分,共36分)1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 已知22y x M -=2222y x y xy --+yx y x +-,则M=____________. 6. 若(3-a )2与|b -1|互为相反数,则ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 化简yx y x --22的结果为____________. 9. 计算22+-x x -22-+x x =____________. 二、判断正误并改正: (每小题4分,共16分) 1. ab a b a a b a a b a --+=--+=0( ) 2. 11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x xx x x( ) 3. )(2121212222y x y x +=+( ) 4.222b a c b a c b a c +=-++( )三、认真选一选:(每小题4分,共8分)1. 如果x >y >0,那么xy x y -++11的值是( )A.零B.正数C.负数D.整数2. 甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t 1小时后,快者追上慢者;若相向而行,则t 2小时后,两人相遇,那么快者速度是慢者速度的( ) A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+ 四、请你来运算(共40分)1. (4×5=20)化简:(1)(21222---+x x x x )÷x 2; (2)13112-+-+x x x ·341222+++-x x x x(3 ) x x x x 3922+++96922++-x x x (4)))((1))((1))((1b c a c c a b c b b c a b a a --++--++--+2. (10分)已知a -2b=2(a ≠1)求ba b a b a 2442222++---a 2+4ab -4b 2的值.3. (10分)化简求值:当x=21时,求1121122-+-++-x x x x x 的值.。

(word版)初二数学分式加减法练习题

(word版)初二数学分式加减法练习题

初中数学辅导网分式的运算分式的加减法〔1〕同步练习一、请你填一填(每题4分,共36分)1. 异分母分式相加减,先________变为________分式,然后再加减.23y,42.分式xy,x x y的最简公分母是________.3.计算:123=_____________.x2yz xy2z2xyz4.计算:xx1(1x1)=_____________.x5.M2=2xy y2+x y,那么M=____________.222x y x y x y6.假设〔3-a〕2与|b-1|互为相反数,那么2的值为____________.a b7.如果x<y<0,那么|x|+|xy|化简结果为____________.xy8.化简x2y2的结果为____________.x y9.计算x2-x2=____________.x2x2二、判断正误并改正:(每题4分,共16分)1.a b a ba b a ba a a=0〔〕2.(x x(11x(x1x11〔〕1)2x)2(x1)21)2(x1)2x13.111〔〕2x22y22(x22y)4.c c2cb2〔〕abab a2三、认真选一选:(每题4分,共8分)y1y1.如果x>y>0,那么x1x的值是〔〕京翰教育中心初中数学辅导网A.零B.正数C.负数D.整数2.甲、乙两人分别从相距 8千米的两地同时出发,假设同向而行,那么t1小时后,快者追上慢者;假设相向而行,那么 t2小时后,两人相遇,那么快者速度是慢者速度的〔〕t 1t t 2t tt tA.B.1C.1 22t1D.1t 1 t 2t 1 t 2 t 1t 2四、请你来运算 (共40分) 1.(4 ×5=20)化简:x2121x3x 22x1〔1〕〔x 22xx2〕÷x ;〔2〕x1 x 21·x 24x3221a1b 1c(3) x9x +x9x 2〔4〕(bc)(ba)(ca)(c b)x 23x 6x9(ab)(ac)2.(10分)a -2b=2〔a≠1〕求a 2 4b 22 4b 2 -a 2+4ab -4b 2的值.a a2b3.(10分)化简求值:当x=1x 21 x 22x1时,求1 x 的值.2x1参考答案:一、请你填一填京翰教育中心初中数学辅导网xy〔x y〕〔x-y〕yz2xz3xy2x1x21.通分同分母2. 4. 5.+ 3.x2y2z2x16.3+18.xy9.-8x+x24:二、判断正误并改正2b2.×,x13.x2y24.×,2ac1.×,(x1)2×,2b2a2x2y2a三、认真选一选:1.B四、请你来运算1.( 1)1(2)2(3)2(4)0 2.-10 x1)22(x33.原式=2x-2将x=1代入原式=2·1-2=2-222京翰教育中心。

八年级数学分式的加减法(含答案)

八年级数学分式的加减法(含答案)

分式的加减法(三)一、填空题:1、化简11xx -+的结果是__________; 2、计算42__________22a a a a ⎛⎫+-÷= ⎪--⎝⎭; 3、若()450x y y =≠,则222x y y-的值等于__________; 4、已知22440x xy y -+=,则x yx y -+得值等于__________; 5、已知340a b -+-=,则b aa b+得值是__________;6、计算112112a a -=+-__________; 7、分式223a a b -的分母经通分后变为()()22a b a b +-,则分子应变为 __________;8、计算2335346a b ab+-=__________; 9、计算()2331b ab a b a a b a b⎛⎫÷-÷= ⎪--⎝⎭__________; 10、使代数式2111111x x x ++-+-等于0的x 的值是__________; 11、计算22b a b a b-++等于__________; 12、若42x y x y +=⎧⎨-=⎩,则21x y y x xy x y ⎛⎫⎛⎫-+÷+= ⎪ ⎪⎝⎭⎝⎭__________; 13、分式①222x y xy x y y x ++--;②222244x y x y xy xy -+-;③22a a a ba b b a-++--中,计算结果是整式的序号为__________;14、计算21222933m m m ++=--+__________;15、计算a b b c c aab bc ac ---++=__________; 16、计算2481124811111x x x x x+++--+++-=__________;二、选择题:17、分式b ax 、3c bx -、25a x的最简公分母是 ( ) A 、5abx B 、315abx C 、15abx D 、215abx18、在分式()()()()()()()()222323221;2;3;4;5x ab a a b abx y a b a b a b a b a b ++----+--中,分母相同的分式是 ( )A 、()()()134B 、()()25C 、()()34D 、()()()()2345 19、把()()()2111,,2233x x x x --++通分,下列说法不正确的是 ( ) A 、最简公分母是()()223x x -+ B 、()()()2231223x x x x +=--+ C 、()()()()2132323x x x x x +=-+-+ D 、()()()22222323x x x x -=+-+20、下列计算正确的是 ( )A 、2b c b c a a a ++=B 、b c b d a d a c ++=C 、b d b d a c a c ++=+D 、b d b c a da c a c++= 21、下列各题中,所求的最简公分母错误的是 ( )A 、13x 与26a x的最简公分母是26xB 、2313a b 与2313a b c 的最简公分母是233a b cC 、()1a x y -与()1b y x -的最简公分母是()()ab x y y x -- D 、1m n +与1m n-的最简公分母是()()m n m n +- 22、计算BA D C÷÷的正确运算顺序是 ( )A 、ABCD ÷÷÷ B 、A C B D⨯÷÷ C 、A B C D ÷⨯⨯ D 、A C B D ⨯÷⨯ 23、下列各式正确的是 ( )()1a c a c b b b +-+=- ()2a c c a b b b --+= ()30x y x y x y x ya a a-+--+-== ()()()()()2222111411111xxx x x x x +=-=----- A 、()()13 B 、()()24 C 、()()14D 、不同于以上答案24、x 克盐溶于a 克水中,取这种盐水m 克,其中含盐 ( ) A 、mx a 克 B 、am x 克 C 、am x a +克 D 、mx x a +克 三、计算下列各题:25、2312212422a a a a ⎛⎫⎛⎫+÷- ⎪ ⎪---+⎝⎭⎝⎭ 26、22142111x x x x x x ⎛⎫+--⎛⎫+÷- ⎪ ⎪--⎝⎭⎝⎭27、22227119443x x x x x x --⎛⎫+÷ ⎪--++⎝⎭ 28、()()2221111x y x y x y x y ⎡⎤⎛⎫⎢⎥-÷- ⎪+--+⎢⎥⎝⎭⎣⎦29、222111121a a a a a a -+⎛⎫--÷ ⎪--+⎝⎭ 30、222222222222233x y x y x y x x y x x ⎡⎤⎛⎫+----÷⎢⎥ ⎪+⎝⎭⎣⎦四、解答题:31、已知()()420x x +-=,求2214233x x x xx x x x ---⎛⎫-÷ ⎪-+⎝⎭的值。

人教版八年级数学上册分式的加减1同步练习题

人教版八年级数学上册分式的加减1同步练习题

人教版八年级数学试题15.2.2 分式的加减 第1课时 分式的加减一、选择题1.下列计算正确的是( )A .mm m 312=-+ B .1=---a b b b a a C .212122++=++-+y y y y y D .ba ab b b a a -=---1)()(222.计算222---x xx 的结果是( ) A .0 B .1 C .﹣1 D .x 3.计算3632+++x x x ,其结果是( ) A .2 B .3 C .x+2 D .2x+64.计算233x xyx y x y+++的正确结果是( ) A.233x xy x y ++ B.3x C.33x y x y + D.6xyx y+5.化简:nm n n m m ---22的结果是( ) A .n m + B .n m - C .m n - D .n m --6.已知x 为整数,且分式1222-+x x 的值为整数,则x 可取的值有( )A.1个B.2个C.3个D.4个 7.计算xy yy x x 222-+-的结果是( ) A .1 B .﹣1 C .y x +2 D .y x + 8.化简xx x x -----2222的结果是( )A.0B.2C.-2D.2或-2二、填空题9.计算:1212+++x x x=___________. 10.计算:y xxy x -2=___________. 11.化简ab a b a b 24222-+-的结果是___________. 12. 若12x y y -=,则x y =___________.13.化简:y x y y x x ---22=___________. 14.化简:42232--+++x xx x= ___________. 15.计算:22)1(3)1(3---x xx=___________. 16.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:f v u 111=+.若f =6厘米,v =8厘米,则物距u = ___________厘米. 17.若50mx y y x-=--,则m =___________. 18.若记y =f (x )=221x x +,其中f (1)表示当x =1时y 的值,即f (1)==; f ()表示当x =时y 的值,即f ()=;…;则f (1)+f (2)+f ()+f (3)+f ()+…+f (2011)+f ()=___________. 三、解答题 19.计算:(1)1+-+-a b bb a a ;(2)1112--++a a a a .20.先化简,再求值:xx x x x x x -+----22222124,其中x =.21.已知22221111x x x y x x x x+++=÷-+--.试说明不论x 为何使分式有意义 的值,y 的值不变.22.已知: ()()y x y y x Q yx y y x x P +-+=---=2222,,小敏、小聪两人在x=2,y=-1的条件下分别计算了P 和Q 的值, 小敏说P 的值比Q 大, 小聪说Q 的值比P 大.请你判断谁的结论正确,并说明理由.23.观察下列各式:=﹣,=﹣,=﹣…(1)填空:)1(1+a a =___________.(2)计算:+++…+.15.2.2 分式的加减第1课时 分式的加减一、选择题1.D2.C3.A4.B5.A6.B7.A8.D 二、填空题9.2 10.0 11.b a --2 12.32 13.y x + 14.115.﹣13-x (或x-13) 16.24 17.-5 18.2010. 三、解答题19.解:(1)原式=1+---ba bb a a =1+--b a b a =1+1=2. (2)原式=)1)(1(11+--++a a a a a =111+++a a a =11++a a =1. 20.解:原式=)1()1()2()2)(2(2----+-x x x x x x x =x x x x 12--+=x 3.当x =时,原式==.21.解:22221111x x x y x x x x +++=÷-+--=()()()1111)1(2+-•-++x x x x x x -1+x =1+-x x =1,所以不论x 为何使分式有意义的值,y 的值不变,都为1.22.解:小聪的说法正确,理由如下:y x y y x x P ---=22=y x +,当x =2,y =-1时,P=1; ()()y x y y x Q +-+=22= 22y x -.当x =2,y =-1时,Q=3.所以Q 的值比P 大,小聪的说法正确. 23.解:(1)111)1(1+-=+a a a a ,(2)原式===.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档