濠江区第二高级中学2018-2019学年高二上学期第二次月考试卷数学
城区第二高级中学2018-2019学年高二上学期第二次月考试卷数学学习
城区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设f (x )=(e -x -e x )(12x +1-12),则不等式f (x )<f (1+x )的解集为( )A .(0,+∞)B .(-∞,-12)C .(-12,+∞)D .(-12,0)2. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .3. 定义运算,例如.若已知,则=( )A .B .C .D .4. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny5. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣26. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )A .i ≤21B .i ≤11C .i ≥21D .i ≥117. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( ) A .(﹣∞,1) B .(﹣∞,1] C .(﹣∞,0) D .(﹣∞,0]8. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要9. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .10.已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 11.如图框内的输出结果是( )A .2401B .2500C .2601D .270412.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣1二、填空题13.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .14.当时,4x<log a x ,则a 的取值范围 .15.已知变量x ,y ,满足,则z=log 4(2x+y+4)的最大值为.16.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且26121a a a =∙,则数列12n n S -⎧⎫⎨⎬⎩⎭项中 的最大值为_________.17.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 . 18.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .三、解答题19.如图,在五面体ABCDEF 中,四边形ABCD 是边长为4的正方形,EF ∥AD ,平面ADEF ⊥平面ABCD ,且BC=2EF ,AE=AF ,点G 是EF 的中点. (Ⅰ)证明:AG ⊥平面ABCD ;(Ⅱ)若直线BF 与平面ACE 所成角的正弦值为,求AG 的长.20.巳知二次函数f (x )=ax 2+bx+c 和g (x )=ax 2+bx+c •lnx (abc ≠0).(Ⅰ)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k 若f (x )满足k=f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx+c 与g (x )=ax 2+bx+c •lnx 是否为“K 函数”?并证明你的结论.21.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.22.已知集合A={x|x 2+2x <0},B={x|y=}(1)求(∁R A )∩B ;(2)若集合C={x|a <x <2a+1}且C ⊆A ,求a 的取值范围.23.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.24.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.城区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】【解析】选C.f (x )的定义域为x ∈R ,由f (x )=(e -x -e x )(12x +1-12)得f (-x )=(e x -e -x )(12-x +1-12)=(e x -e -x )(-12x +1+12)=(e -x -e x )(12x +1-12)=f (x ),∴f (x )在R 上为偶函数,∴不等式f (x )<f (1+x )等价于|x |<|1+x |,即x 2<1+2x +x 2,∴x >-12,即不等式f (x )<f (1+x )的解集为{x |x >-12},故选C.2. 【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 3. 【答案】D【解析】解:由新定义可得,====.故选:D .【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.4. 【答案】C【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.对于A.取x=1,y=0,不成立,因此不正确;对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;对于C.利用y=x3在R上单调递增,可得x3>y3,正确;对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.故选:C.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.5.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.6.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.7.【答案】D【解析】解:如图,M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅, 则a ≤0.∴实数a 的取值范围为(﹣∞,0]. 故选:D .【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.8. 【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m <5且m ≠1,此时﹣3<m <5成立,即充分性成立,当m=1时,满足﹣3<m <5,但此时方程+=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m <5”的充分不必要条件.故选:C .【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.9. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。
濠江区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
濠江区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,既是偶函数又在单调递增的函数是( )(0,)+∞A . B .C .D .3y x =21y x =-+||1y x =+2xy -=2. 不等式≤0的解集是()A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]3. 与函数 y=x 有相同的图象的函数是( )A .B .C .D .4. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a5. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.6. 已知x >1,则函数的最小值为()A .4B .3C .2D .17. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形8. 下列函数中,定义域是R 且为增函数的是( )A.xy e -=B.3y x =C.ln y x =D.y x=9. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 210.正方体的内切球与外接球的半径之比为( )A .B .C .D .11.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2, =2,则与()A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直12.已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则y x ,⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y mx y z -=)3,1(实数的取值范围是( )m A .B .C .D .1-<m 10<<m 1>m 1≥m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.二、填空题13.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 15.已知正整数的3次幂有如下分解规律:m ;;;;…113=5323+=119733++=1917151343+++=若的分解中最小的数为,则的值为.)(3+∈N m m 91m 【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16.如果实数满足等式,那么的最大值是 .,x y ()2223x y -+=yx17.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ;①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值;③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交;④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2. 18.不等式的解集为R,则实数m的范围是 .三、解答题19.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?20.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.21.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC 的面积为,求角C .22.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.23.设锐角三角形的内角所对的边分别为.ABC ,,A B C ,,a b c 2sin a b A =(1)求角的大小;B(2)若,,求.a =5c =24.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.濠江区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C 【解析】试题分析:函数为奇函数,不合题意;函数是偶函数,但是在区间上单调递减,不3y x =21y x =-+()0,+∞合题意;函数为非奇非偶函数。
濠江区外国语学校2018-2019学年高二上学期第二次月考试卷数学
濠江区外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 2. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.4. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D25. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥DABCO6. 圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离 B .相交 C .内切 D .外切7. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8C .6D .48. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力. 9. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )A .{x|x ≥0}B .{x|x ≤1}C .{﹣1,0,1}D .R10.满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 11.经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=12.如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A .B . C. D .二、填空题13.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .14.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k+1)”;其中所有正确结论的序号是 .15.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .16.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .17.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .18.在△ABC 中,a=4,b=5,c=6,则= .三、解答题19.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .20.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1). (Ⅰ) 讨论函数f (x )的单调性; (Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ). (1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值.21.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y 30 40 60 50 70(1)画出散点图; (2)求线性回归方程; (3)预测当广告费支出7(百万元)时的销售额.22.已知函数322()1f x x ax a x =+--,0a >.(1)当2a =时,求函数()f x 的单调区间;(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.23.如图,已知几何体的底面ABCD 为正方形,AC ∩BD=N ,PD ⊥平面ABCD , PD=AD=2EC ,EC ∥PD .(Ⅰ)求异面直线BD 与AE 所成角: (Ⅱ)求证:BE ∥平面PAD ;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.24.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.濠江区外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 2. 【答案】B【解析】解:若f (x )的图象关于x=对称,则2×+θ=+k π,解得θ=﹣+k π,k ∈Z ,此时θ=﹣不一定成立, 反之成立,即“f (x )的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.3. 【答案】C【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 4. 【答案】C【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 5. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.6. 【答案】D【解析】解:由圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16得: 圆C 1:圆心坐标为(﹣2,2),半径r=1;圆C 2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r ,所以两圆的位置关系是外切.故选D7. 【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n(n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.8. 【答案】D【解析】由已知得{}=01A x x <?,故AB =1[,1]2,故选D .9. 【答案】A【解析】解:由A={x|x ≥0},且A ∩B=B ,所以B ⊆A . A 、{x|x ≥0}={x|x ≥0}=A ,故本选项正确;B 、{x|x ≤1,x ∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C 、若B={﹣1,0,1},则A ∩B={0,1}≠B ,故本选项错误;D 、给出的集合是R ,不合题意,故本选项错误.故选:A .【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.10.【答案】D.【解析】11.【答案】D【解析】考点:直线的方程.12.【答案】C【解析】考点:平面图形的直观图.二、填空题13.【答案】.【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.14.【答案】①②④.【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.15.【答案】(﹣1,﹣).【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.16.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.17.【答案】.【解析】解:由题意f1(x)=f(x)=.f2(x)=f(f1(x))=,f3(x)=f(f2(x))==,…f n+1(x)=f(f n(x))=,故f2015(x)=故答案为:.18.【答案】1.【解析】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.三、解答题19.【答案】(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)推导出BC AC ⊥,1CC AC ⊥,从而⊥AC 平面11B BCC ,连接11,NA CA ,则N A B ,,1三点共线,推导出MN CN BA CN ⊥⊥,1,由线面垂直的判定定理得⊥CN 平面BNM ;(2)连接1AC 交1CA 于点H ,推导出1BA AH ⊥,1BA HQ ⊥,则AQH ∠是二面角C BA A --1的平面角.由此能求出二面角1B BN C --的余弦值.试题解析:(1)如图,取CE 的中点G ,连接BG FG ,. ∵F 为CD 的中点,∴DE GF //且DE GF 21=. ∵⊥AB 平面ACD ,⊥DE 平面ACD , ∴DE AB //, ∴AB GF //.又DE AB 21=,∴AB GF =. ∴四边形GFAB 为平行四边形,则BG AF //. (4分) ∵⊄AF 平面BCE ,⊂BG 平面BCE , ∴//AF 平面BCE (6分)考点:直线与平面平行和垂直的判定. 20.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】21.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时, =6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.22.【答案】(1)()f x 的单调递增区间是(),2-∞-和2,3⎛⎫+∞ ⎪⎝⎭,单调递减区间为2(2,)3-;(2)[1,)+∞.【解析】试题分析:(1) 2a =时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;(2) 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.试题解析:(1)当2a =时,32()241f x x x x =+--,所以2'()344(32)(2)f x x x x x =+-=-+, 由'()0f x >,得23x >或2x <-, 所以函数()f x 的单调递减区间为2(2,)3-.(2)要使()0f x ≤在[1,)+∞上有解,只要()f x 在区间[1,)+∞上的最小值小于等于0. 因为22'()32(3)()f x x ax a x a x a =+-=-+,令'()0f x =,得103ax =>,20x a =-<.1考点:导数与函数的单调性;分类讨论思想. 23.【答案】【解析】解:(Ⅰ)PD ⊥平面ABCD ,EC ∥PD , ∴EC ⊥平面ABCD , 又BD ⊂平面ABCD , ∴EC ⊥BD ,∵底面ABCD 为正方形,AC ∩BD=N , ∴AC ⊥BD ,又∵AC ∩EC=C ,AC ,EC ⊂平面AEC , ∴BD ⊥平面AEC , ∴BD ⊥AE ,∴异面直线BD 与AE 所成角的为90°.(Ⅱ)∵底面ABCD 为正方形, ∴BC ∥AD ,∵BC ⊄平面PAD ,AD ⊂平面PAD , ∴BC ∥平面PAD ,∵EC ∥PD ,EC ⊄平面PAD ,PD ⊂平面PAD , ∴EC ∥平面PAD ,∵EC ∩BC=C ,EC ⊂平面BCE ,BC ⊂平面BCE ,∴ ∴平面BCE ∥平面PAD , ∵BE ⊂平面BCE , ∴BE ∥平面PAD .(Ⅲ) 假设平面PAD 与平面PAE 垂直,作PA 中点F ,连结DF , ∵PD ⊥平面ABCD ,AD CD ⊂平面ABCD , ∴PD ⊥CD ,PD ⊥AD , ∵PD=AD ,F 是PA 的中点, ∴DF ⊥PA , ∴∠PDF=45°,∵平面PAD ⊥平面PAE ,平面PAD ∩平面PAE=PA ,DF ⊂平面PAD , ∴DF ⊥平面PAE , ∴DF ⊥PE ,∵PD ⊥CD ,且正方形ABCD 中,AD ⊥CD ,PD ∩AD=D , ∴CD ⊥平面PAD . 又DF ⊂平面PAD , ∴DF ⊥CD ,∵PD=2EC ,EC ∥PD , ∴PE 与CD 相交, ∴DF ⊥平面PDCE , ∴DF ⊥PD ,这与∠PDF=45°矛盾,∴假设不成立即平面PAD 与平面PAE 不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.24.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析.【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.。
濠江区第三中学校2018-2019学年高二上学期第二次月考试卷数学
又∵全集 U={﹣1,0,1,2},
5. 【答案】D 【解析】解:∵“a2>b2”既不能推出“a>b”; 反之,由“a>b”也不能推出“a2>b2”.
21.已知命题 p:“存在实数 a,使直线 x+ay﹣2=0 与圆 x2+y2=1 有公共点”,命题 q:“存在实数 a,使点(a,1) 在椭圆 内部”,若命题“p 且¬q”是真命题,求实数 a 的取值范围.
第 3 页,共 18 页
精选高中模拟试卷
22.(本小题满分 12 分)
ABC 的内角 A, B, C 所对的边分别为 a, b, c , m (sin B,5sin A 5sin C ) , n (5sin B 6sin C ,sin C sin A) 垂直.
则其图象关于点 ( m, n) 对称. 9. 【答案】C 【解析】解:由三次函数的图象可知,x=2 函数的极大值,x=﹣1 是极小值, 即 2,﹣1 是 f′(x)=0 的两个根, ∵f(x)=ax3+bx2+cx+d, ∴f′(x)=3ax2+2bx+c, 由 f′(x)=3ax2+2bx+c=0, 得 2+(﹣1)= ﹣1×2= =﹣2, =1,
第 6 页,共 18 页
精选高中模拟试卷
∴“a2>b2”是“a>b”的既不充分也不必要条件. 故选 D. 6. 【答案】 B 【解析】解:模拟执行程序框图,可得 i=1,sum=0,s=0 满足条件,i=2,sum=1,s= 满足条件,i=3,sum=2,s= 满足条件,i=4,sum=3,s= 满足条件,i=5,sum=4,s= + + + + + + =1﹣ + ﹣ + ﹣ + ﹣ = .
濠江区高中2018-2019学年高二上学期数学期末模拟试卷含解析
濠江区高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列命题正确的是()A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.2. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .D .6433233. 如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=,M N BC和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈(,N AMC -y 的变化关系,其中正确的是()A .B . C. D .1111]4. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为()A .{x|x <﹣1或x >﹣lg2}B .{x|﹣1<x <﹣lg2}C .{x|x >﹣lg2}D .{x|x <﹣lg2}5. 函数在定义域上的导函数是,若,且当时,,()f x R '()f x ()(2)f x f x =-(,1)x ∈-∞'(1)()0x f x -<设,,,则( )(0)a f =b f =2(log 8)c f =A .B .C .D .a b c <<a b c >>c a b <<a c b<<6. 已知函数与轴的交点为,且图像上两对称轴之间的最()2sin()f x x ωϕ=+(0)2πϕ<<y (0,1)小距离为,则使成立的的最小值为()1111]2π()()0f x t f x t +--+=t A .B .C .D .6π3π2π23π7. 已知直线与圆交于两点,为直线上任意34110m x y +-=:22(2)4C x y -+=:A B 、P 3440n x y ++=:一点,则的面积为( )PAB ∆A . B.C. D. 8. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,]6πB .[,)6ππ C. (0,]3πD .[,)3ππ9. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A .2B .3C .7D .910.函数在区间上的最大值为5,最小值为1,则的取值范围是( )2()45f x x x =-+[]0,m m A . B .C .D .[2,)+∞[]2,4(,2]-∞[]0,211.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或212.已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)二、填空题13.已知直线:()被圆:所截的弦长是圆心到直线的043=++m y x 0>m C 062222=--++y x y x C 距离的2倍,则.=m14.已知、、分别是三内角的对应的三边,若,则a b c ABC ∆A B C 、、C a A c cos sin -=的取值范围是___________.3cos(4A B π-+【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.15.长方体中,对角线与棱、、所成角分别为、、,1111ABCD A B C D -1A C CB CD 1CC αβ则 . 222sinsin sin αβγ++=16.在正方形中,,分别是边上的动点,当时,则ABCD 2==AD AB N M ,CD BC ,4AM AN⋅=MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.17.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= . 18.函数在区间上递减,则实数的取值范围是.2()2(1)2f x x a x =+-+(,4]-∞三、解答题19.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1.(1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .20.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[]B[]C[]D[]21.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.22.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.23.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.24.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.濠江区高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D 【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D 是正确,故选D.考点:集合的概念;子集的概念.2. 【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:,故选B. 1444322⨯⨯⨯=考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.3. 【答案】A 【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.4. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x <,由指数函数的值域为(0,+∞)一定有10x >﹣1,而10x <可化为10x <,即10x <10﹣lg2,由指数函数的单调性可知:x <﹣lg2故选:D 5. 【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数满足:()f x 或,则其图象关于直线对称,如满足,()()f a x f a x +=-()(2)f x f a x =-x a =(2)2()f m x n f x -=-则其图象关于点对称.(,)m n 6. 【答案】A 【解析】考点:三角函数的图象性质.7. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,之间的距离为,∴C m 1d =||AB ==m n 、3d '=PAB∆的面积为,选C .1||2AB d '⋅=8. 【答案】C【解析】考点:三角形中正余弦定理的运用.9.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.10.【答案】B【解析】m m 试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知m[]2,4的右端点为,故的取值范围是.考点:二次函数图象与性质.11.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D .【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f (x )的解析式,进而求出三个函数的极值点坐标,是解答本题的关键. 12.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B . 二、填空题13.【答案】9【解析】考点:直线与圆的位置关系【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.222d R l -=14.【答案】 【解析】15.【答案】【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:1AC 1111,,AC D AC B AC A ∆∆∆.2222221111222111sin sin sin BC DC A C AC AC AC αβγ++=++2221212()2AB AD AA AC ++==考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.16.【答案】2](,)上的点到定点,最大值为,故的取值02x ££02y ££(,)x y (2,2)2MN 范围为.2]x17.【答案】 4 .【解析】解:由题意可得点B 和点C 关于原点对称,∴|+|=2||,再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键. 18.【答案】3a ≤-【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以()f x 1x a =-(,4]-∞.14,3a a -≥≤-考点:二次函数图象与性质.三、解答题19.【答案】解:(1)∵a n+1=2a n +1,∴a n+1+1=2(a n +1),又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列,∴a n +1=2n ,∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n ,于是T n =1+(n ﹣1)•2n .则所求和为6分12nn -20.【答案】B【解析】当x ≥0时,f (x )=,由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。
濠江区第二中学2018-2019学年上学期高三数学10月月考试题
濠江区第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016B .[]0,2015C .(]1,2016D .[]1,20172. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是()A .2B .C .D .33. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)4. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .141015. 若关于的不等式的解集为或,则的取值为( )2043x ax x +>++31x -<<-2x >A . B . C .D .1212-2-6. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣27. 下列命题中错误的是()A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形8. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .9. 直线的倾斜角是( )A .B .C .D .10.设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n11.圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .22512.在正方体中,是线段的中点,若四面体的外接球体积为,1111ABCD A B C D -M 11AC M ABD -36p 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.二、填空题13.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .所示的框图,输入,则输出的数等于15.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 . 16.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为▲ .17.若展开式中的系数为,则__________.6()mx y +33x y 160-m =【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.三、解答题18.【南师附中2017届高三模拟二】已知函数.()()323131,02f x x a x ax a =+--+>(1)试讨论的单调性;()()0f x x ≥(2)证明:对于正数,存在正数,使得当时,有;a p []0,x p ∈()11f x -≤≤(3)设(1)中的的最大值为,求得最大值.p ()g a ()g a 19.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x )(1)判断函数f (x )﹣g (x )的奇偶性,并予以证明.(2)求使f (x )﹣g (x )<0成立x 的集合.20.如图,在三棱锥 中,分别是的中点,且P ABC -,,,E F G H ,,,AB AC PC BC .,PA PB AC BC ==(1)证明: ;AB PC ⊥(2)证明:平面 平面 .PAB A FGH 21.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.22.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.23.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C 相交于点D.(1)求证:BD⊥平面AA1C1C;(2)求二面角C1﹣AB﹣C的余弦值.濠江区第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】2.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.3.【答案】A【解析】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f(x)<0的解集为(﹣b,﹣a2),g(x)<0的解集为(﹣,﹣),则不等式f(x)g(x)>0等价为或,即a2<x<或﹣<x<﹣a2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g(x)<0的解集是解决本题的关键.4.【答案】B【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n }是周期为2的周期数列.a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4,∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题. 5. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选2043x ax x +=++3,1,x x x a =-=-=-3,1,2x x x =-=-=2a =-D.考点:不等式与方程的关系.6. 【答案】D【解析】: 解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D .7. 【答案】 B【解析】解:对于A ,设圆柱的底面半径为r ,高为h ,设圆柱的过母线的截面四边形在圆柱底面的边长为a ,则截面面积S=ah ≤2rh .∴当a=2r 时截面面积最大,即轴截面面积最大,故A 正确.对于B ,设圆锥SO 的底面半径为r ,高为h ,过圆锥定点的截面在底面的边长为AB=a ,则O 到AB 的距离为,∴截面三角形SAB 的高为,∴截面面积S==≤=.故截面的最大面积为.故B 错误.对于C ,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C 正确.对于D ,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D 正确.故选:B .【点评】本题考查了旋转体的结构特征,属于中档题. 【解析】解:设从第2天起每天比前一天多织d 尺布m 则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解. 9. 【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tan α=,∵0°<α<180°,∴α=30°故选A .【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握. 10.【答案】D【解析】解:A 选项中命题是真命题,m ⊥α,m ⊥β,可以推出α∥β;B 选项中命题是真命题,m ∥n ,m ⊥α可得出n ⊥α;C 选项中命题是真命题,m ⊥α,n ⊥α,利用线面垂直的性质得到n ∥m ;D 选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D .【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理. 11.【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得,{2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2)解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9,令y =0得,x =-1±,5∴|MN |=|(-1+)-(-1-)|=2,选D.555二、填空题13.【答案】 .【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,∴直线AB的方程为y=(x﹣),l的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质. 14.【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。
濠江区高中2018-2019学年高二下学期第二次月考试卷数学
濠江区高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1.双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13B .15C .12D .112. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )3. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .30 4. 执行如图所示的程序框图,输出的z 值为( )A .3B .4C .5D .65. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1)D .(﹣5,3,4)6. 设双曲线=1(a >0,b >0)的渐近线方程为y=x ,则该双曲线的离心率为( )A.B .2C.D.7. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形8. 函数f (x )=,则f (﹣1)的值为( )A .1B .2C .3D .49.经过两点,的直线的倾斜角为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .120°B .150°C .60°D .30°10.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .311.已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点12.下列命题中正确的是( ) A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=二、填空题13.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .14.在等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q= .15.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b . 16.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .17.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .18.在(1+x )(x 2+)6的展开式中,x 3的系数是 .三、解答题19.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米. (Ⅰ)求底面积并用含x 的表达式表示池壁面积;(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?20.本小题满分10分选修41-:几何证明选讲如图,ABC ∆是⊙O 的内接三角形,PA 是⊙O 的切线,切点为A ,PB 交AC 于点E ,交⊙O 于点D ,PE PA =,︒=∠45ABC ,1=PD ,8=DB . Ⅰ求ABP ∆的面积; Ⅱ求弦AC 的长.21.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+.22.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x),且有最小值是. (1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.23.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.(1)求B;(2)若b=2,求△ABC面积的最大值.24.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为.(1)求椭圆C的方程;(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.25.如图,在边长为a的菱形ABCD中,∠ABC=60°,PC⊥面ABCD,E,F是PA和AB的中点.(1)求证:EF∥平面PBC;(2)求E到平面PBC的距离.26.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
濠江区高级中学2018-2019学年高二上学期第二次月考试卷数学
濠江区高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣22. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a3. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .724. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .5. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④6. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D7. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,) B.(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)8.若,,且,则λ与μ的值分别为( ) A.B .5,2C.D .﹣5,﹣29. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .310.某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为( )A .5B .7C .9D .1111.若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( ) A .1 B .2 C .3 D .412.如图可能是下列哪个函数的图象( )A.y=2x﹣x2﹣1 B.y=C.y=(x2﹣2x)e x D.y=二、填空题13.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为.14.已知圆22240:,则其圆心坐标是_________,m的取值范围是________.C x y x y m+-++=【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.15.阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是.16.已知f(x+1)=f(x﹣1),f(x)=f(2﹣x),方程f(x)=0在[0,1]内只有一个根x=,则f(x)=0在区间[0,2016]内根的个数.17.函数y=lgx的定义域为.18.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i,j)有4种不同取值;④当x=﹣1时,(i,j)有2种不同取值;⑤M中的元素之和为0.其中正确的结论序号为.(填上所有正确结论的序号)三、解答题19.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.20.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值; (Ⅲ)求四面体PABC 体积的最大值.21.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.22.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .23.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .24.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO 图案是多边形A B E F M N ,其设计创意如下:在长4cm 、宽1cm 的长方形A B C D 中,将四边形D F E C 沿直线E F 翻折到M F E N (点F 是线段A D 上异于D 的一点、点E 是线段B C 上的一点),使得点N 落在线段A D 上. (1)当点N 与点A 重合时,求N M F ∆面积;(2)经观察测量,发现当2N F M F -最小时,LOGO 最美观,试求此时LOGO 图案的面积.濠江区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.2.【答案】A【解析】解:由f(x)=e x+x﹣2=0得e x=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出计算y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.3.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.4.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题5.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D6.【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D⊂A,矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,正方形是矩形,所以C⊆B.故选B.7.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.8.【答案】A【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.9.【答案】D【解析】考点:简单线性规划.10.【答案】C【解析】解:若果树前n年的总产量S与n在图中对应P(S,n)点则前n年的年平均产量即为直线OP的斜率由图易得当n=9时,直线OP的斜率最大即前9年的年平均产量最高,故选C11.【答案】A【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,∴f′(x)=﹣asinx,g′(x)=2x+b,∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,即a=1,b=0.∴a+b=1.故选:A.【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.12.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.二、填空题13.【答案】 .【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),∵∠F 1PF 2=60°,∴=, 即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.14.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-,而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 15.【答案】 ﹣3 .【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f (x )=的函数值.当x=2时,f (x )=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.16.【答案】 2016 .【解析】解:∵f (x )=f (2﹣x ),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.17.【答案】{x|x>0}.【解析】解:对数函数y=lgx的定义域为:{x|x>0}.故答案为:{x|x>0}.【点评】本题考查基本函数的定义域的求法.18.【答案】①③⑤【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.三、解答题19.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.20.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.21.【答案】【解析】解:(1)由已知得:f′(x)=.要使函数f(x)在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a>0可知,只需a,x∈[1,+∞)即可.易知,此时=1,所以只需a≥1即可.(2)结合(1),令f′(x)==0得.当a ≥1时,由(1)知,函数f (x )在[1,e]上递增,所以f (x )min =f (1)=0;当时,,此时在[1,)上f ′(x )<0,在上f ′(x )>0,所以此时f (x)在上递减,在上递增,所以f (x )min =f()=1﹣lna﹣;当时,,故此时f ′(x )<0在[1,e]上恒成立,所以f (x )在[1,e]上递减,所以f (x )min =f (e )=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.22.【答案】(本小题满分12分) 解: (Ⅰ)由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4, (3分)∴244(1)4n a n n =+-=,由0n a >得n a =. (6分)(Ⅱ)∵11112n na a +==+, (9分)∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(1)2222n -+++-=. (12分)23.【答案】【解析】解:解:集合A={x|x 2﹣3x+2=0}={1,2}∵B ⊆A ,∴(1)B=∅时,a=0 (2)当B={1}时,a=2 (3))当B={2}时,a=1 故a值为:2或1或0.24.【答案】(1)215c m 16;(2)24m 3-.【解析】试题分析:(1)设M F x =4x =,则158x =,据此可得N M F ∆的面积是2115151c m 2816⨯⨯=;试题解析:(1)设M F x =,则F D M F x ==,N F =∵4N F M F +=,4x +=,解之得158x =,∴N M F ∆的面积是2115151c m 2816⨯⨯=;(2)设N E C θ∠=,则2N E F θ∠=,N E B F N E πθ∠=∠=-,∴()22M N F πππθθ∠=--=-,∴112M N N F c o s M N Fs in c o s πθθ===∠⎛⎫- ⎪⎝⎭,M F F D M N ta n M N F ==⋅∠=2c o s ta n s in πθθθ⎛⎫-=- ⎪⎝⎭, ∴22c o s N F M F s in θθ+-=.∵14N F F D <+≤,∴114c o s s in θθ-<≤,即142ta nθ<≤,∴42πθα<≤(4ta n α=且,32ππα⎛⎫∈⎪⎝⎭), ∴22πθα<≤(4ta n α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2c o s f s in θθθ+=,则()212c o s f s in θθθ--=',令()0f θ'=得23πθ=,列表得∴当23πθ=时,2N F M F -取到最小值,此时,N E F C E F N E B ∠=∠=∠3F N E N F E N F M π=∠=∠=∠=,6M N F π∠=,在R t M N F ∆中,1M N =,3M F =,3N F =,在正N F E ∆中,3N F E F N E ===,在梯形A N E B 中,1A B =,4A N =-43B E =-,∴M N F E F N A B E F M N A B E N S S S S ∆∆=++=六边形梯形1441463233⎛+⨯--⨯=- ⎝⎭.答:当2N F M F -最小时,LOGO 图案面积为24m 3-.点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.。
濠江区实验中学2018-2019学年上学期高二数学12月月考试题含解析
濠江区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .02. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.3. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是()A .2B .C .D .34. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=()A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)5. 如图,在正方体中,是侧面内一动点,若到直线与直线的距离1111ABCD A B C D -P 11BB C C P BC 11C D 相等,则动点的轨迹所在的曲线是()PA 1 C A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.6. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .807. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .208. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .B .C .D .1323129. 已知,若存在,使得,则的()(2)(0)xb g x ax a e a x =-->0(1,)x∈+∞00()'()0g x g x +=b a取值范围是( )A .B .C.D .(1,)-+∞(1,0)-(2,)-+∞(2,0)-10.设集合,,则( )A B C D11.在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .212.方程表示的曲线是( )1x -=A .一个圆B . 两个半圆C .两个圆D .半圆二、填空题13.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 . 14.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 . 15.如图,已知,是异面直线,点,,且;点,,且.若,分m n A B m ∈6AB =C D n ∈4CD =M N别是,的中点,与所成角的余弦值是______________.AC BD MN =m n【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.16.已知向量若,则( )(1,),(1,1),a x b x ==- (2)a b a -⊥ |2|a b -=A .B .C .2D 23【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.17.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .18.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .三、解答题19.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.20.【常州市2018届高三上武进区高中数学期中】已知函数,.()()221ln f x ax a x x =+--R a ∈⑴若曲线在点处的切线经过点,求实数的值;()y f x =()()1,1f ()2,11a ⑵若函数在区间上单调,求实数的取值范围;()f x ()2,3a ⑶设,若对,,使得成立,求整数的最小值.()1sin 8g x x =()10,x ∀∈+∞[]20,πx ∃∈()()122f x g x +≥a 21.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;( 2)求证:AC 1∥平面CDB 1.22.如图,在三棱锥 中,分别是的中点,且P ABC -,,,E F G H ,,,AB AC PC BC .,PA PB AC BC ==(1)证明: ;AB PC ⊥(2)证明:平面 平面 .PAB A FGH 23.在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设xOy (2,0)C 24y x =A B ,.11(,)A x y 22(,)B x y (1)求证:为定值;12y y (2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程y AC 和弦长,如果不存在,说明理由.24.设函数f (x )=lnx+a (1﹣x ).(Ⅰ)讨论:f (x )的单调性;(Ⅱ)当f (x )有最大值,且最大值大于2a ﹣2时,求a 的取值范围. 濠江区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:∵A 1B ∥D 1C ,∴CP 与A 1B 成角可化为CP 与D 1C 成角.∵△AD 1C 是正三角形可知当P 与A 重合时成角为,∵P 不能与D 1重合因为此时D 1C 与A 1B 平行而不是异面直线,∴0<θ≤.故选:D .2. 【答案】A 【解析】,所以虚部为-1,故选A.()12(i)122(i)i i z i i i +-+===-- 3. 【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.则体积为=,解得x=.故选:C .4. 【答案】A【解析】解:由已知点A (0,1),B (3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A .【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.5. 【答案】D.第Ⅱ卷(共110分)6.【答案】C【解析】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.7.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.8. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为的正方体21111ABCD A B C D -中的一个四面体,其中,∴该三棱锥的体积为,选B .1ACED 11ED =112(12)2323⨯⨯⨯⨯=9. 【答案】A 【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).10.【答案】C【解析】送分题,直接考察补集的概念,,故选C 。
濠江区二中2018-2019学年高二上学期第二次月考试卷数学
濠江区二中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个2.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是()A.0 B.1 C.2 D.33.如图,△ABC所在平面上的点P n(n∈N*)均满足△P n AB与△P n AC的面积比为3;1,=﹣(2x n+1)(其中,{x n}是首项为1的正项数列),则x5等于()A.65 B.63 C.33 D.314.设集合,,则( )ABCD5. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)6. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)7. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinA B .2bcosAC .2bsinBD .2bcosB8. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A .B .18C .D .9. sin570°的值是( )A .B .﹣C .D .﹣10.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)11.已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .12.下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示二、填空题13.数据﹣2,﹣1,0,1,2的方差是 .14.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .16.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .17.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= . 18.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.三、解答题19.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.20.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.21.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.22.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值.23.已知不等式的解集为或(1)求,的值(2)解不等式.24.一艘客轮在航海中遇险,发出求救信号.在遇险地点A南偏西45方向10海里的B处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;中,求角B的正弦值.(2)若最短时间内两船在C处相遇,如图,在ABC濠江区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.2.【答案】C【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.3.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.4.【答案】C【解析】送分题,直接考察补集的概念,,故选C。
城区第二高级中学2018-2019学年高二上学期第二次月考试卷数学
城区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .32. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .23. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x =4. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.5. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )A .B .C .D .6. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3A .πB .2πC .3πD .4π7. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.2 B. C. D.48.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.9.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.y=C.y=(x2﹣2x)e x D.y=10.如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<)的图象过点(0,),则f(x)的图象的一个对称中心是()A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)11.已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )A .B .C .D .12.在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°二、填空题13.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________.14.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .15.的展开式中的系数为 (用数字作答).16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3 ③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .18.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题19.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.20.设数列{a n }的前n 项和为S n ,a 1=1,S n =na n ﹣n (n ﹣1). (1)求证:数列{a n }为等差数列,并分别求出a n 的表达式;(2)设数列的前n 项和为P n ,求证:P n <;(3)设C n =,T n =C 1+C 2+…+C n ,试比较T n 与的大小.21.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.22.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.23.(本小题满分12分) 已知函数21()x f x x +=,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭(N n *∈).(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.24.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D (2,0).(1)求该椭圆的标准方程; (2)设点,若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.城区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.故选B .【点评】本题考查复数相等的意义、复数的基本运算,是基础题.2. 【答案】B【解析】解:抛物线y 2=4x 的准线l :x=﹣1.∵|AF|=3, ∴点A 到准线l :x=﹣1的距离为3∴1+x A =3 ∴x A =2,∴y A =±2,∴△AOF 的面积为=.故选:B .【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键.3. 【答案】B 【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x=为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.4. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 5. 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C 63=20种,其中恰有两个球同色C 31C 41=12种,故恰有两个球同色的概率为P==,故选:B .【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.6. 【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半, ∴此几何体的体积==2π.故选:B .7. 【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c , 由椭圆和双曲线的定义可知, 设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1MF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.8.【答案】A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S侧面=×π×12+×2×2+×π×=2+.故选A.【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.9.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.10.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.11.【答案】A【解析】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)=故选A.12.【答案】A【解析】解:如图所示,设AB=2,则A(2,0,0),B(2,2,0),B1(2,2,2),C1(0,2,2),E(2,1,0),F(2,2,1).∴=(﹣2,0,2),=(0,1,1),∴===,∴=60°.∴异面直线EF和BC1所成的角是60°.故选:A.【点评】本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了推理能力与计算能力,属于中档题.二、填空题13.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).14.【答案】[,1].【解析】解:设两个向量的夹角为θ,因为|2﹣|=1,|﹣2|=1,所以,,所以,=所以5=1,所以,所以5a2﹣1∈[],[,1],所以;故答案为:[,1].【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.15.【答案】20【解析】【知识点】二项式定理与性质 【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:16.【答案】②④⑤【解析】解析:构造函数()()x g x e f x =,()[()()]0x g x e f x f x ''=+>,()g x 在R 上递增, ∴()x f x e -<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;构造函数()()x f x g x e =,()()()0xf x f xg x e'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;由()()x e xf x f x x '+=得2()()x e xf x f x x-'=,设()()xg x e xf x =-,则()()()xg x e f x xf x ''=--(1)x x x e e e x x x=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.17.【答案】 ①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan (A+B )=tan (π﹣C )=﹣tanC , 又∵tan (A+B )=,∴tanA+tanB=tan (A+B )(1﹣tanAtanB )=﹣tanC (1﹣tanAtanB )=﹣tanC+tanAtanBtanC , 即tanA+tanB+tanC=tanAtanBtanC ,故①正确; 当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA ,tanB ,tanC 中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA :tanB :tanC=1:2:3,则6tan 3A=6tanA ,则tanA=1,故A=45°,故④正确;当tanB ﹣1=时, tanA •tanB=tanA+tanB+tanC ,即tanC=,C=60°,此时sin 2C=,sinA •sinB=sinA •sin (120°﹣A )=sinA •(cosA+sinA )=sinAcosA+sin 2A=sin2A+﹣cos2A=sin (2A ﹣30°)≤,则sin 2C ≥sinA •sinB .故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.18.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===222x y +=. 三、解答题19.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质. 20.【答案】【解析】解:(1)证明:∵S n =na n ﹣n (n ﹣1) ∴S n+1=(n+1)a n+1﹣(n+1)n … ∴a n+1=S n+1﹣S n =(n+1)a n+1﹣na n ﹣2n … ∴na n+1﹣na n ﹣2n=0 ∴a n+1﹣a n =2,∴{a n }是以首项为a 1=1,公差为2的等差数列 … 由等差数列的通项公式可知:a n =1+(n ﹣1)×2=2n ﹣1, 数列{a n }通项公式a n =2n ﹣1;…(2)证明:由(1)可得,…=…(3)∴,=,两式相减得…=,=,=,=,∴…∴…∵n ∈N *,∴2n>1,∴,∴…21.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。
濠江区三中2018-2019学年高二上学期第二次月考试卷数学
濠江区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)2. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|3. i 是虚数单位, =( )A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i4. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③5. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .6. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .7. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为458. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A B D .349. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+ ⎪⎝⎭等于( )A .15-B .15C .-5D .510.如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④11.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <012.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( )A .1B .2C .3D .4二、填空题13.设,则14.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .15.(﹣2)7的展开式中,x 2的系数是 .16.已知实数x,y满足,则目标函数z=x﹣3y的最大值为17.已知椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其左焦点,若AF⊥BF,设∠ABF=θ,且θ∈[,],则该椭圆离心率e的取值范围为.18.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是.三、解答题19.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.20.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.21.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.22.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列; (Ⅱ)设b n =a nsin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n<.23.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.24.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.濠江区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:复数z满足iz=2+4i,则有z===4﹣2i,故在复平面内,z对应的点的坐标是(4,﹣2),故选C.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.2.【答案】D【解析】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.3.【答案】D【解析】解:,故选D.【点评】本小题考查复数代数形式的乘除运算,基础题.4.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.故选:B.5. 【答案】D【解析】解:A :y=的定义域[0,+∞),与y=x 的定义域R 不同,故A 错误B :与y=x 的对应法则不一样,故B 错误C :=x ,(x ≠0)与y=x 的定义域R 不同,故C 错误D :,与y=x 是同一个函数,则函数的图象相同,故D 正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题6. 【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 7. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 8. 【答案】D 【解析】考点:异面直线所成的角.9.【答案】B【解析】考点:三角恒等变换.10.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D11.【答案】B【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a>1,a0﹣b﹣1<0,即a>1,b>0,故选:B12.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.二、填空题13.【答案】9【解析】由柯西不等式可知14.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.15.【答案】﹣280解:∵(﹣2)7的展开式的通项为=.由,得r=3.∴x2的系数是.故答案为:﹣280.16.【答案】5【解析】解:由z=x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,﹣1).代入目标函数z=x﹣3y,得z=2﹣3×(﹣1)=2+3=5,故答案为:5.17.【答案】[,﹣1].【解析】解:设点A(acosα,bsinα),则B(﹣acosα,﹣bsinα)(0≤α≤);F(﹣c,0);∵AF⊥BF,∴=0,即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0,故c2﹣a2cos2α﹣b2sin2α=0,cos 2α==2﹣,故cos α=,而|AF|=,|AB|==2c ,而sin θ===,∵θ∈[,],∴sin θ∈[,],∴≤≤,∴≤+≤,∴,即,解得,≤e ≤﹣1;故答案为:[,﹣1].【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.18.【答案】 [,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],故答案为[,1].三、解答题19.【答案】【解析】解:(I)由∵cosA=,0<A<π,∴sinA==,∵5(a2+b2﹣c2)=3ab,∴cosC==,∵0<C<π,∴sinC==,∴cos2C=2cos2C﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.20.【答案】【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.21.【答案】【解析】(Ⅰ)设D 点坐标为)q q ,由已知得C 是以(0,0)O 因为C 在点D 处的切线与l 垂直,所以直线OD 与直线+2=0x y +的斜率相同,34πθ=,故D 点的直角坐标为(1,1)-,极坐标为3)4p . (Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(222≥=+y y x 相切时21|22|2=+-kk0142=+-∴k k 32-=∴k ,32+=k (舍去)设点)0,2(-B ,则2ABk ==-故直线l 的斜率的取值范围为]22,32(--. 22.【答案】【解析】(I )证明:由S n =2a n ﹣n 2+3n+2(n ∈N *),∴当n ≥2时,,a n =S n ﹣S n ﹣1=2a n ﹣2a n ﹣1﹣2n+4,变形为a n +2n=2[a n ﹣1+2(n ﹣1)],当n=1时,a 1=S 1=2a 1﹣1+3+2,解得a 1=﹣4,∴a 1+2=﹣2,∴数列{a n +2n}是等比数列,首项为﹣2,公比为2;(II )解:由(I )可得a n =﹣2×2n ﹣1﹣2n=﹣2n﹣2n .∴b n =a n sinπ=﹣(2n +2n ),∵ ==(﹣1)n ,∴b n =(﹣1)n+1(2n+2n ).设数列{b n }的前n 项和为T n .当n=2k (k ∈N *)时,T 2k =(2﹣22+23﹣24+…+22k ﹣1﹣22k)+2(1﹣2+3﹣4+…+2k ﹣1﹣2k )=﹣2k=﹣n .当n=2k ﹣1时,T 2k ﹣1=﹣2k ﹣(﹣22k﹣4k )=+n+1+2n+1=+n+1.(III )证明:C n =﹣=,当n ≥2时,c n .∴数列{C n}的前n项和为P n<==,当n=1时,c1=成立.综上可得:∀n∈N*,.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.23.【答案】【解析】解:(Ⅰ)由题意可知:X~B(9,p),故EX=9p.在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:.在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:.通讯器械正常工作的概率P′=;(Ⅱ)当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作.①若前9个元素有4个正常工作,则它的概率为:.此时后两个元件都必须正常工作,它的概率为:p2;②若前9个元素有5个正常工作,则它的概率为:.此时后两个元件至少有一个正常工作,它的概率为:;③若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P″=p2++,可得P″﹣P′=p2+﹣,==.故当p=时,P″=P′,即增加2个元件,不改变通讯器械的有效率;当0<p时,P″<P′,即增加2个元件,通讯器械的有效率降低;当p时,P″>P′,即增加2个元件,通讯器械的有效率提高.【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目.24.【答案】【解析】解:(1)∵向量=(,1),=(cos,),记f(x)=.∴f(x)=cos+=sin+cos+=sin(+)+,∴最小正周期T==4π,2kπ﹣≤+≤2kπ+,则4kπ﹣≤x≤4kπ+,k∈Z.故函数f(x)的单调递增区间是[4kπ﹣,4kπ+],k∈Z;(2))∵将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为:y=g(x)=sin[(x﹣+)]+=sin(﹣)+,∴则y=g(x)﹣k=sin(x﹣)+﹣k,∵x∈[0,],可得:﹣≤x﹣≤π,∴﹣≤sin(x﹣)≤1,∴0≤sin(x﹣)+≤,∴若函数y=g(x)﹣k在[0,]上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,∴实数k的取值范围是[0,].∴当k<0或k>时,函数y=g(x)﹣k在的零点个数是0;当0≤k<1时,函数y=g(x)﹣k在的零点个数是2;当k=0或k=时,函数y=g(x)﹣k在的零点个数是1.【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.。
濠江区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
濠江区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣i C .﹣1+iD .1﹣i2. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .3. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .4. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .35. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( )A .1B .C .D .6. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)7. 已知等差数列的公差且成等比数列,则( )A .B .C .D .8. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .kB .﹣kC .1﹣kD .2﹣k9. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要10.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .B .12+C .122+ D .122+ 11.已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣12.下列关系式中,正确的是( ) A .∅∈{0} B .0⊆{0}C .0∈{0}D .∅={0}二、填空题13.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= . 14.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .15.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.16.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .17.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B 方格的数字,则不同的填法共有 种(用数字作答).18.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .三、解答题19.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.20.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.21.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .22.已知函数f (x )=. (1)求f (x )的定义域; (2)判断并证明f (x )的奇偶性;(3)求证:f ()=﹣f (x ).23.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.24..已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.濠江区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.2.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.3.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
濠江区第一高级中学2018-2019学年高二上学期第二次月考试卷数学
濠江区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π2. 下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°3. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .14. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.5. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A.4 B.16 C.27 D.366.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()A.0.1 B.0.2 C.0.3 D.0.47.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样8.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是()A.i≤5?B.i≤4?C.i≥4?D.i≥5?9.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.2 B. C. D.410.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为()A.2:1 B.5:2 C.1:4 D.3:111.定义某种运算S=a⊗b,运算原理如图所示,则式子+的值为()A.4 B.8 C.10 D.1312.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的部分图象如图所示,则函数y=f(x)对应的解析式为()A.B. C.D.二、填空题13.已知关于的不等式在上恒成立,则实数的取值范围是__________14.无论m为何值时,直线(2m+1)x+(m+1)y﹣7m﹣4=0恒过定点.15.阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是.16.已知圆O:x2+y2=1和双曲线C:﹣=1(a>0,b>0).若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则﹣=.17.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)18.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.三、解答题19.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.20.设函数f (x )=lnx ﹣ax 2﹣bx .(1)当a=2,b=1时,求函数f (x )的单调区间;(2)令F (x )=f (x )+ax 2+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求实数a 的取值范围;(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2]内有唯一实数解,求实数m 的取值范围.21.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.22.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.23.已知函数f(x)=的定义域为A,集合B是不等式x2﹣(2a+1)x+a2+a>0的解集.(Ⅰ)求A,B;(Ⅱ)若A∪B=B,求实数a的取值范围.24.已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,).(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x≥0)的值域.濠江区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.2.【答案】C【解析】解:∵sin168°=sin(180°﹣12°)=sin12°,cos10°=sin(90°﹣10°)=sin80°.又∵y=sinx在x∈[0,]上是增函数,∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.故选:C.【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.3.【答案】【解析】选C.由题意得log2(a+6)+2log26=9.即log2(a+6)=3,∴a+6=23=8,∴a=2,故选C.4.【答案】B5.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
濠江区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
濠江区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=2. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]3. 与函数 y=x 有相同的图象的函数是( ) A .B .C .D .4. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a5. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.6. 已知x >1,则函数的最小值为( )A .4B .3C .2D .17. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形8. 下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =9. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 210.正方体的内切球与外接球的半径之比为( )A .B .C .D .11.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2,=2,=2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直12.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.二、填空题13.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= . 14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .15.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 17.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.18.不等式的解集为R,则实数m的范围是.三、解答题19.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?20.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.21.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC 的面积为,求角C .22.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.23.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;(2)若a =5c =,求.24.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.濠江区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】试题分析:函数3y x=-+是偶函数,但是在区间()y x=为奇函数,不合题意;函数210,+∞上单调递减,不合题意;函数2x=为非奇非偶函数。
濠江区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
y2 2. 过抛物线 y 2 px( p 0) 焦点 F 的直线与双曲线 x = 1 的一条渐近线平行,并交其抛物线于 A 、 8 ) B 两点,若 AF > BF ,且 | AF | 3 ,则抛物线方程为(
A. y x
2
B. y 2 x
2
C. y 4 x
2
D. y 3 x
第 5 页,共 16 页
濠江区第二中学 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】C 【解析】解:法一: 由回归直线的斜率的估计值为 1.23,可排除 D 由线性回归直线方程样本点的中心为(4,5), 将 x=4 分别代入 A、B、C,其值依次为 8.92、9.92、5,排除 A、B 法二: 因为回归直线方程一定过样本中心点, 将样本点的中心(4,5)分别代入各个选项,只有 C 满足, 故选 C 【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程. 2. 【答案】C
3. 【答案】D 【解析】解:命题 p:∃x∈R,cosx≥a,则 a≤1. 下列 a 的取值能使“¬p”是真命题的是 a=2. 故选;D. 4. 【答案】D 【解析】解:抛物线 x=﹣4y2 即为 y2=﹣ x,
第 6 页,共 16 页
可得准线方程为 x= 故选:D. 5. 【答案】C 【解析】解:x= 故选 C.
ADM 平面 ABCM .
(1)求证: AD BM ; (2)若 DE DB(0 1) ,当二面角 E AM D 大小为
3
时,求 的值.
第 4 页,共 16 页
【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.
濠江区第二中学校2018-2019学年上学期高二数学12月月考试题含解析
濠江区第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .2. 下列函数中,在区间(0,+∞)上为增函数的是( )A .y=x ﹣1B .y=()xC .y=x+D .y=ln (x+1)3. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)4. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π5. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④ 7. 若,则下列不等式一定成立的是( ) A .B .C .D .8. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)9. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( ) A .(﹣∞,] B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]10.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题11.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A .B .C .24D .483.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥12.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)二、填空题13.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____. 14.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.15.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .16.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 17.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .18.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.20.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0(1)若a=,且p∧q为真,求实数x的取值范围.(2)若p是q的充分不必要条件,求实数a的取值范围.21.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.22.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.23.永泰青云山特产经营店销售某种品牌蜜饯,蜜饯每盒进价为8元,预计这种蜜饯以每盒20元的价格销售时该店一天可销售20盒,经过市场调研发现每盒蜜饯的销售价格在每盒20元的基础上每减少一元则增加销售4盒,每增加一元则减少销售1盒,现设每盒蜜饯的销售价格为x元.(1)写出该特产店一天内销售这种蜜饯所获得的利润y(元)与每盒蜜饯的销售价格x的函数关系式;(2)当每盒蜜饯销售价格x为多少时,该特产店一天内利润y(元)最大,并求出这个最大值.24.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.(1)求椭圆C的离心率的值;(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.濠江区第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.2.【答案】D【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.3.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.4.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.5.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.6.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.7.【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D8.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.9.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.10.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.11.【答案】C【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则,由双曲线的性质知,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.12.【答案】B【解析】解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.二、填空题13.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,14.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x 是增函数,∴a >1,∵+=.∴a 1+a ﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n }.∵数列{}的前n 项和大于62,∴2+22+23+ (2)==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n >5.∴n 的最小值为6. 故答案为:6.【点评】本题考查等比数列的前n 项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.15.【答案】.【解析】解:在△ABC 中,∵6a=4b=3c∴b=,c=2a ,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a 表示b ,c 是解决问题的关键,属于基础题.16.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===222x y +=.17.【答案】4或.【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.18.【答案】3.【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.20.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;∴,∴;∴实数a的取值范围为.【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.21.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;22.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值23.【答案】【解析】解:(1)当0<x≤20时,y=[20+4(20﹣x)](x﹣8)=﹣4x2+132x﹣800,当20<x<40时,y=[20﹣(x﹣20)](x﹣8)=﹣x2+48x﹣320,∴(2)①当,∴当x=16.5时,y取得最大值为289,②当20<x<40时,y=﹣(x﹣24)2+256,∴当x=24时,y取得最大值256,综上所述,当蜜饯价格是16.5元时,该特产店一天的利润最大,最大值为289元.24.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q(0,).。
濠江区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
濠江区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .42. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .3. 设M={x|﹣2≤x ≤2},N={y|0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )A .B .C .D .4. 若关于的不等式的解集为,则参数的取值范围为( )x 07|2||1|>-+-++m x x R m A .B .C .D .),4(+∞),4[+∞)4,(-∞]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.5. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)6. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为()A .48B .±48C .96D .±967. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是()A .B .C .D .8. 已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是()A .B .C .(﹣,)D.9. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .1210.设是两个不同的平面,是一条直线,以下命题正确的是( )βα,A .若,,则 B .若, ,则α⊥l βα⊥β⊂l α//l βα//β⊂l C .若,,则 D .若,,则α⊥l βα//β⊥l α//l βα⊥β⊥l 11.抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣212.已知函数,则( )(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩(2016)f -=A .B .C .1D .2e e 1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.二、填空题13.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .14.不等式的解集为 .15.【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为__________.()2ln f x x x =-16.已知平面向量,的夹角为,,向量,的夹角为,与a b 3π6=-b ac a - c b - 23πc a -= a 的夹角为__________,的最大值为.ca c ⋅ 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.17.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x xx =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是.18.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.三、解答题19.已知数列的前项和公式为.{}n a 2230n S n n =-(1)求数列的通项公式;{}n a n a (2)求的最小值及对应的值.n S 20.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A ∪B ;(2)求(∁U A )∩B ;(3)求∁U (A ∩B ). 21.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值. 序号分组组中值频数频率(i)(分数)(Gi)(人数)(Fi)1[60,70)65①0.102[70,80)7520②3[80,90)85③0.204[90,100)95④⑤合计50122.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.23.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点.(Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.24.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S濠江区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.2.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.3.【答案】B【解析】解:A项定义域为[﹣2,0],D项值域不是[0,2],C项对任一x都有两个y与之对应,都不符.故选B.【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题.4.【答案】A5.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.6.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a2和a8的等比中项为=±48.故选:B.7.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.8.【答案】A【解析】解:函数f(x)=31+|x|﹣为偶函数,当x≥0时,f(x)=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x≥0时,f(x)为增函数,则当x≤0时,f(x)为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x∈,故选:A.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.9.【答案】A【解析】解:复数z===.由条件复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3.故选:A.【点评】本题考查复数的代数形式的混合运算,考查计算能力.C10.【答案】111]【解析】考点:线线,线面,面面的位置关系11.【答案】A【解析】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置. 12.【答案】B【解析】,故选B .(2016)(2016)(54031)(1)f f f f e -==⨯+==二、填空题13.【答案】 2n ﹣1 .【解析】解:∵a 1=1,a n+1=a n +2n ,∴a 2﹣a 1=2,a 3﹣a 2=22,…a n ﹣a n ﹣1=2n ﹣1,相加得:a n ﹣a 1=2+22+23+2…+2n ﹣1,a n =2n ﹣1,故答案为:2n ﹣1, 14.【答案】 (0,1] .【解析】解:不等式,即,求得0<x ≤1,故答案为:(0,1].【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题. 15.【答案】⎛ ⎝【解析】16.【答案】,.6π18+【解析】17.【答案】21≥a 【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,'21()a f x x x =-(0,3]x ∈00(,)P x y 12k ≤,,,恒成立,由.12112a x x ∴-≤(0,3]x ∈x x a +-≥∴221(0,3]x ∈2111,222x x a -+≤∴≥考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.18.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
濠江区三中2018-2019学年上学期高二数学12月月考试题含解析
濠江区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .2. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .983. 记,那么ABC D4. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④5. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 6. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:27. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 8. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .B .12+C .122+ D .122+9. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .310.下列关系式中,正确的是( ) A .∅∈{0} B .0⊆{0}C .0∈{0}D .∅={0}11.已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.12.已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .7二、填空题13.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .14.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .15.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .16.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).17.已知直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),则ab的最大值是.18.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=.三、解答题19f x=sinωx+φω00φ2π(2)求函数g(x)=f(x)+sin2x的单调递增区间.20.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.21.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.22.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.23.证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.24.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.濠江区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.2.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.3.【答案】B【解析】【解析1】,所以【解析2】,4.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②, 故选:B .【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.5. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 6. 【答案】D【解析】解:设球的半径为R ,则圆柱、圆锥的底面半径也为R ,高为2R ,则球的体积V 球=圆柱的体积V 圆柱=2πR 3圆锥的体积V 圆锥=故圆柱、圆锥、球的体积的比为2πR 3:: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.7. 【答案】B 【解析】8. 【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 9. 【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .10.【答案】C【解析】解:对于A ∅⊆{0},用“∈”不对,对于B 和C ,元素0与集合{0}用“∈”连接,故C 正确; 对于D ,空集没有任何元素,{0}有一个元素,故不正确.11.【答案】C12.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.二、填空题13.【答案】(0,)∪(64,+∞).【解析】解:∵f(x)是定义在R上的偶函数,∴f(log8x)>0,等价为:f(|log8x|)>f(2),又f(x)在[0,+∞)上为增函数,∴|log8x|>2,∴log8x>2或log8x<﹣2,∴x>64或0<x<.即不等式的解集为{x|x>64或0<x<}故答案为:(0,)∪(64,+∞)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.14.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.15.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.16.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.17.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.18.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.三、解答题19.【答案】【解析】(本题满分12分)解:(1)由表格给出的信息知,函数f(x)的周期为T=2(﹣0)=π.所以ω==2,由sin(2×0+φ)=1,且0<φ<2π,所以φ=.所以函数的解析式为f(x)=sin(2x+)=cos2x…6分(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),令2k≤2x+≤2k,k∈Z则得kπ﹣≤x≤kπ+,k∈Z故函数g(x)=f(x)+sin2x的单调递增区间是:,k∈Z…12分【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.20.【答案】【解析】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.21.【答案】【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,∴|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t≠0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12﹣y22=4(x1﹣x2)∴k MN=,∴直线MN的方程为y﹣t=(x﹣3),∴B的横坐标为x=3﹣,直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0△>0可得0<t2<12,∴x=3﹣∈(﹣3,3),∴点B横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.22.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),,由=﹣2(t﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.23.【答案】【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.24.【答案】【解析】解:设直线l的倾斜解为α,则l与y轴的夹角θ=90°﹣α,cotθ=tanα=2,∴sinθ=,|AB|==40.线段AB的长为40.【点评】本题考查抛物线的焦点弦的求法,解题时要注意公式|AB|=的灵活运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
濠江区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( )A .(0,1)∪(2,3)B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)2. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .43. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .144. 求值:=( )A .tan 38°B .C .D .﹣5. 若如图程序执行的结果是10,则输入的x 的值是( )A .0B .10C .﹣10D .10或﹣10 6. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1997. 设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c 8. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④9. 已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则log (a 5+a 7+a 9)的值是( )A .﹣B .﹣5C .5D .10.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 211.函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+112.在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.二、填空题13.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.14x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.15.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin(2x+)的图象向右平移个单位长度得到y=3sin2x的图象;④函数y=sin(x﹣)在[0,π]上是减函数其中真命题的序号是.16.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.17.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是.18.函数y=sin2x﹣2sinx的值域是y∈.三、解答题19.已知抛物线C:x2=2py(p>0),抛物线上一点Q(m,)到焦点的距离为1.(Ⅰ)求抛物线C的方程(Ⅱ)设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(n∈N*)(ⅰ)记△AOB的面积为f(n),求f(n)的表达式(ⅱ)探究是否存在不同的点A,使对应不同的△AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由.20.(理)设函数f(x)=(x+1)ln(x+1).(1)求f(x)的单调区间;(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.4天的用电量与当天气温.气温(℃)14 12 8 6用电量(度)22 26 34 38(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.22.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.23.已知向量=(x ,y ),=(1,0),且(+)•(﹣)=0.(1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y=kx+m 相交于不同的两点M 、N ,又点A (0,﹣1),当|AM|=|AN|时,求实数m 的取值范围.24.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是243x ty t=-+⎧⎨=⎩(为参数).(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.濠江区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),∴f(0)=0,且f(2+x)=﹣f(2﹣x),∴f(x)的图象关于点(2,0)中心对称,又0<x<2时,f(x)=1﹣log2(x+1),故可作出fx(x)在0<x<4时的图象,由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,∴(x﹣2)f(x)>0;当x∈(2,3)时,x﹣2>0,f(x)>0,∴(x﹣2)f(x)>0;∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.2.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A3.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a>,0d<”判断前项和的符号问题是解答的关键.4.【答案】C【解析】解:=tan(49°+11°)=tan60°=,故选:C.【点评】本题主要考查两角和的正切公式的应用,属于基础题.5.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x<0,时﹣x=10,解得:x=﹣10当x≥0,时x=10,解得:x=10故选:D.6.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.7.【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a<c<b.故选:A.8.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.9.【答案】B【解析】解:∵数列{a n}满足log3a n+1=log3a n+1(n∈N*),∴a n+1=3a n>0,∴数列{a n}是等比数列,公比q=3.又a2+a4+a6=9,∴=a5+a7+a9=33×9=35,则log(a5+a7+a9)==﹣5.故选;B.10.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B11.【答案】A【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,∴x∈(1,2),(x﹣2)∈(﹣1,0),f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,故选A.12.【答案】B二、填空题13.【答案】①③④【解析】解:①“p∧q为真”,则p,q同时为真命题,则“p∨q为真”,当p真q假时,满足p∨q为真,但p∧q为假,则“p∧q为真”是“p∨q为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC中,tan∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案为:①③④14.【答案】7.5【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.15.【答案】③.【解析】解:①、终边在y轴上的角的集合是{a|a=,k∈Z},故①错误;②、设f(x)=sinx﹣x,其导函数y′=cosx﹣1≤0,∴f(x)在R上单调递减,且f(0)=0,∴f(x)=sinx﹣x图象与轴只有一个交点.∴f(x)=sinx与y=x 图象只有一个交点,故②错误;③、由题意得,y=3sin[2(x﹣)+]=3sin2x,故③正确;④、由y=sin(x﹣)=﹣cosx得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.16.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:17.【答案】4.【解析】解:由题意知,满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A有:{2,3},{2,3,1},{2,3,4},{2,3,1,4},故共有4个,故答案为:4.18.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.三、解答题19.【答案】【解析】解:(Ⅰ)依题意得|QF|=y Q+=+=1,解得p=1,∴抛物线C的方程为x2=2y;(Ⅱ)(ⅰ)∵直线l与抛物线C交于A、B两点,∴直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x2﹣2kx﹣4=0,此时△=(﹣2k)2﹣4×1×(﹣4)=4(k2+4)>0,由韦达定理,得:x1+x2=2k,x1x2=﹣4,∴S△AOB=|OM|•|x1﹣x2|=×2==2(*)又∵A点横坐标为n,∴点A坐标为A(n,),又直线过点M(0,2),故k==﹣,将上式代入(*)式,可得:f(n)=2=2=2=n+(n∈N*);(ⅱ)结论:当A点坐标为(1,)或(4,8)时,对应不同的△AOB的面积相等.理由如下:设存在不同的点A m(m,),A n(n,)(m≠n,m、n∈N*),使对应不同的△AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:m﹣n=﹣=,又∵m≠n,即m﹣n≠0,∴1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8).【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题.20.【答案】【解析】解:(1)由f'(x)=ln(x+1)+1≥0得,∴f(x)的增区间为,减区间为.(2)令g(x)=(x+1)ln(x+1)﹣ax.“不等式f(x)≥ax在x≥0时恒成立”⇔“g(x)≥g(0)在x≥0时恒成立.”g'(x)=ln(x+1)+1﹣a=0⇒x=e a﹣1﹣1.当x∈(﹣1,e a﹣1﹣1)时,g'(x)<0,g(x)为减函数.当x∈(e a﹣1﹣1,+∞)时,g'(x)>0,g(x)为增函数.“g(x)≥0在x≥0时恒成立”⇔“e a﹣1﹣1≤0”,即e a﹣1≤e0,即a﹣1≤0,即a≤1.故a的取值范围是(﹣∞,1].21.【答案】【解析】解:(1)由表可得:;又;∴,;∴线性回归方程为:;(2)根据回归方程:当x=10时,y=﹣2×10+50=30;∴估计当气温为10℃时的用电量为30度.【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.22.【答案】【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).23.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k 2+1,②将②代入①得2m >m 2,解得0<m <2,由②得,解得,故所求的m 的取值范围是(,2).…(ii )当k=0时,|AM|=|AN|,∴AP ⊥MN ,m 2<3k 2+1,解得﹣1<m <1.…综上,当k ≠0时,m 的取值范围是(,2), 当k=0时,m 的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.24.【答案】(1)参数方程为1cos sin x y θθ=+⎧⎨=⎩,3460x y -+=;(2)145.【解析】试题分析:(1)先将曲线C 的极坐标方程转化为直角坐标系下的方程,可得22(1)1x y -+=,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C 上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值. 试题解析:(1)曲线C 的普通方程为22cos ρρθ=,∴2220x y x +-=,∴22(1)1x y -+=,所以参数方程为1cos sin x y θθ=+⎧⎨=⎩,直线的普通方程为3460x y -+=.(2)曲线C 上任意一点(1cos ,sin )θθ+到直线的距离为33cos 4sin 65sin()914555d θθθϕ+-+++==≤,所以曲线C 上任意一点到直线的距离的最大值为145.考点:1.极坐标方程;2.参数方程.。