最新人教版九年级数学上册第二十五章 概率初步25.1.1 随机事件导学案课件
九年级数学人教版(上册)25.1.2 概率
⑤将油滴入水中,油会浮在水面上; ⑥明天会下大雨; ⑦地球上海洋面积大于陆地面积; ⑧购买一张彩票,中奖. 解:随机事件有②③⑥⑧. 概率为 1 的事件有⑤⑦. 概率为 0 的事件有①④.
知识点 4 与几何图形有关的概率的计算 7.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数 分别为 60°,90°,210°.让转盘自由转动,停止后指针落在黄色 区域的概率是( B )
2.掷一枚质地均匀的硬币 10 次,下列说法正确的是(B ) A.每 2 次必有 1 次正面向上 B.可能有 5 次正面向上 C.必有 5 次正面向上 D.不可能有 10 次正面向上
知识点 2 简单事件的概率的计算
3.在“践行生态文明,你我一起行动”主题有奖竞赛活动中,
903 班共设置“生态知识、生态技能、生态习惯、生态文化”四个类
别的竞赛内容.如果参赛同学抽到每一类别的可能性相同,那么小
宇参赛时抽到“生态知识”的概率是(B )
1
1
A.2
B.4
1
1
C.8
D.16
4.某存折的密码是一个六位数(每位都可以是 0~9),由于小王
忘记了密码的首位数字,则他能一次说对密码的概率是(D )
1
1
A.5
B.6
C.19
D.110
5.抛掷一枚质地均匀的正方体骰子一次,骰子的六个面上分别 1
1
1
A.6
B.4
1
7
C.3
D.12
8.(2021·苏州)一个小球在如图所示的方格地砖上任意滚动,并
随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该 2
小球停留在黑色区域的概率是 9 .
易错点 对概率的意义理解不清
九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.1随机事件
Image
12/11/2021
第十五页,共十五页。
现许多(xǔduō)偶然事件的发生也是有规律可循
的.
第三页,共十五页。
分析说明下列问题哪些是必然发生的?哪些是不可能发生的?
(1)太阳从西边下山.
必然(bìrán)事件
(2)某人的体温是100℃.
不可能(kěnéng) 事件
ab 1 2
2
(3)
(其中a,b都是实数(shìshù)).
不可能事件
(4)水往低处流.
第二十五章 概率初步
25.1 随机(suí jī)事件与概率
25.1.1 随机事件
第一页,共十五页。
一、情境 导 (qíngjìng) 入
第二页,共十五页。
“天有不测风云”.这句话被引申世 界上有很多事情具有偶然性.人们不能事
先判断这些事情是否会发生,但是随着人 们对事件发生可能性的深入研究,人们发
随机事件
(4)13个人中,至少有两个人出生的月份相同. 必然事件
(5)经过有信号灯的十字路口,遇见(yù jiàn)红灯. 随机事件
(6)在装有3个球的布袋里摸出4个球.
不可能事件
(7)物体在重力的作用下自由落下. (8)抛掷一千枚硬币,全部正面朝上.
必然事件
随机事件
第十二页,共十五页。
四、归纳 小 (guīnà) 结
本节课你学到了哪些(nǎxiē)有关随机事件的知 识?你有哪些(nǎxiē)收获和体会?
第十三页,共十五页。
第十四页,共十五页。
内容 总结 (nèiróng)
第二十五章 概率初步。25.1 随机事件与概率。25.1.1 随机事件。(5)酸和碱反应生成盐和水.。(1)抽到的数 字有几种可能的结果。(4)出现的点数会是4吗。2.列举一些生活(shēnghuó)中的随机事件、不可能事件和必然事件.。 A.男生的身高一定超过女生的身高。2.下列事件中,哪些是随机事件。(3)掷一枚骰子,向上一面是3点.。(6)在
人教版九年级数学上册导学案 第二十五章 概率初步 25.1.1 随机事件
人教版九年级数学上册导学案第二十五章概率初步25.1.1 随机事件【学习目标】1、归纳出必然事件,不可能事件和随机事件的特点,会根据这些特点对有关事件作出准确判断;2、形成对事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素;【课前预习】1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是()A.①②B.①④C.②③D.②④2.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°3.下列说法正确的是()A.“任意画出一个三角形,其内角和为180 ”为必然事件B.可能性是1%的事件在一次试验中一定不会发生C.检测某批次灯泡的使用寿命,适宜用全面检查D.“任意画出一个等边三角形,它是轴对称图形”是随机事件4.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查6.某班四个小组进行辩论比赛,赛前三位同学预测比赛结果如下:甲说:“第二组得第一,第四组得第三”;乙说:“第一组得第四,第三组得第二”;丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是()A.第一组B.第二组C.第三组D.第四组7.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数8.下列说法错误的是()A.某商场对顾客健康码的审查,选择抽样调查B.在复学后,某校为了检查全校学生的体温,选择全面调查C.为了记录康复后的新冠肺炎病人的体温情况,适合选用折线统计图D.“发热病人的核酸检测呈阳性”是随机事件9.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球10.下列事件中必然发生的事件是()A.明天会下雨B.射击运动员射击一次,命中10环C.随意翻到一本书的某页,这页的页码一定是偶数D.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品【学习探究】自主学习阅读课本,完成下列问题1、下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。
学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。
教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。
但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。
因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。
三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。
2.掌握概率的基本计算方法,能够计算简单事件的概率。
3.能够运用概率的知识解决实际问题。
四. 教学重难点1.随机事件的定义和分类。
2.概率的计算方法。
3.概率在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。
2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。
3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.分组讨论的准备。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。
2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。
3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。
4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。
5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。
人教版九年级数学上章节知识点深度解析 随机事件
25.1 随机事件与概率 25.1.1 随机事件
大单元知识体系
单元作业目标
序号
作业目标及对应举例
了解必然事件、不可能事件和随机事件的概
念;知道事件发生的可能性大小有不同,能根 2501 据经验判断随机事件发生的可能性的大小,如
P 41 T 5
序号
作业目标及对应举例
了解概率的意义,体会概率是描述不确定现象
12345
5. 在一个不透明的袋子里装有3个红球,4个绿球和2 个黄球,这些球除颜色不同外,没有其他区别,现 在从袋子里随意摸出一个球. (1)摸到哪一种颜色的球的可能性最大? 解:(1)摸到绿球的可能性最大. (2)可能摸到黑球吗?摸到黑球的可能性是多少? 解:(2)不可能摸到黑球,摸到黑球的可能性是0.
能够通过随机试验,获得事件发生的频率,如 2505 P 45 T 2
知道通过大量重复试验,可以用频率估计概 2506 率,了解频率与概率的区别与联系,如 P 45 T 1
序号
作业目标及对应举例
通过实例进一步丰富对概率的认识,并能解决 2507 一些简单的实际问题,如 P 44 T 7
在解决与概率有关的实际问题的过程中,体会 2508 概率在问题决策中的重要作用,感受其中的数
2502 发生可能性大小的数学概念,理解概率的取值 范围的意义,如 P 42 T 1
2503 能计算一些简单随机事件的概率,如 P 42 T 3
序号
作业目标及对应举例
能够运用列举法(包括列表法和画树状图法)
2504 计 算 简 单 随 机 试 验 中 事 件 发 生 的 概 率 , 如
P 43 T 6
学文化,如 P 41 T 4
要点归纳
人教版九年级数学上第25章概率初步25.1.1随机事件教案
-解决方法:教师指导学生采用有序列举的方法,如画树状图或列表,确保结果不遗漏、不重复。
-实际问题的概率应用:将概率知识应用于解决实际问题,学生可能会感到难以入手。
-解决方法:通过设置真实的情境,引导学生分析问题结构,将实际问题转化为数学模型,再进行概率计算。
实践活动环节,同学们分组讨论和实验操作都进行得很顺利。我注意到,通过实际操作,大家更容易理解概率的计算过程,这也说明了动手实践在数学教学中的重要性。
不过,我也注意到在小组讨论中,有些同学还不够积极主动,可能是因为对主题不够感兴趣,或者是对自己的观点不够自信。在之后的课程中,我需要思考如何更好地激发这些同学的积极性,鼓励他们大胆表达自己的看法。
-例如:设计一个关于彩票中奖概率的问题,让学生了解如何将实际问题转化为概率计算。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《随机事件》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过一些不确定的事情?”比如抛硬币、抽签等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索随机事件的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“随机事件在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调随机事件的分类和概率计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件教案 新人教版
25.1.1 随机事件01 教学目标1.理解必然事件、不可能事件和随机事件的特点,并会判断.2.了解和体会随机事件发生的可能性是有大小的.02 预习反馈1.在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.2.在一定条件下,可能发生也可能不发生的事件,称为随机事件.3.下列事件:①打开电视正在播放电视剧;②投掷一枚普通的骰子,掷得的点数小于9;③射击运动员射击一次,命中10环;④在一个只装有红球的袋中摸出白球.其中必然事件有②,不可能事件有④,随机事件有①③.4.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性>摸到K的可能性.(填“<”“>”或“=”)03 新课讲授类型1 事件的分类例1(教材P127问题1变式)五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个大小相同的签,每个签上面分别标有表示出场顺序的数字1,2,3,4,5,在看不到数字的情况下,小军先抽,他任意(随机)从盒中抽取一个签.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字大于0吗?是什么事件?(3)抽到的数字会是6吗?是什么事件?(4)抽到的数字会是3吗?是什么事件?【解答】(1)1,2,3,4,5,共5种.(2)必然大于0;是必然事件.(3)不可能是6;是不可能事件.(4)可能是3,也可能不是3;是随机事件.思考:确定性事件和随机事件的特点各是什么呢?确定性事件:在发生之前可以预测结果.随机事件:事先不能预料事件是否发生,即事件的发生具有不确定性.【跟踪训练1】下列事件中,是必然事件的是(B)A.购买一张彩票,中奖B.通常温度降到0 ℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【跟踪训练2】不透明的口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是(C)A.随机摸出1个球,是白球B.随机摸出2个球,都是黄球C.随机摸出1个球,是红球D.随机摸出1个球,是红球或黄球类型2 事件发生的可能性大小例2(教材P129练习2变式)一只不透明的袋子中有2个红球,3个绿球和5个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.(1)会有哪些可能的结果?(2)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(3)能否通过改变某种颜色球的数量,使“摸到红球”和“摸到白球”的可能性大小相同?【解答】(1)从袋子中任意摸出一个球,可能是红球,也可能是绿球或白球.(2)∵白球最多,红球最少,∴摸到白球的可能性最大,摸到红球的可能性最小.(3)拿出3个白球,或放入3个红球即可.思考:我们如何比较随机事件发生的可能性大小呢?事件发生的可能性大小往往是由发生事件的条件来决定的,因此我们可以通过比较各事件发生的条件及其对事件发生的影响来比较事件发生的可能性大小.【跟踪训练3】(25.1.1练习)如图,一个任意转动的转盘被均匀分成六份,随意转动一次,停止后指针落在阴影部分的可能性比指针落在非阴影部分的可能性(A)A.大B.小C.相等D.不能确定04 巩固训练1.下列事件是必然事件的是(D)A.打开手机就有未接电话B.乘坐公共汽车恰好有空座C.明天会下雨D.将油滴入水中,油会浮在水面上2.下列事件中,不可能事件是(C)A.两点确定一条直线B.五边形的内角和为540°C.实数的绝对值小于0D.如果a2=b2,那么a=b3.下列事件中,是随机事件的为(B )A .水涨船高B .冬天下雪C .水中捞月D .冬去春来4.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件(填“必然”“不可能”或“随机”).5.一个袋中装有10个红球,6个黄球,4个白球,每个球除颜色外都相同,搅匀后,任意摸出一个球,摸到红球的可能性最大.05 课堂小结事件⎩⎪⎨⎪⎧确定性事件⎩⎪⎨⎪⎧必然事件不可能事件随机事件随机事件的特点:(1)事先不能预料事件是否发生,即事件的发生具有不确定性;(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.2 概 率教案
25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大小. 抽取的可能性大小相等,所以我们可以用15出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().mp A=n事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=13.出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)= 23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.;(1)指向红色有3种等可能的结果,P(指向红色)=37(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5;7(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是38;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=110.7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
人教版九年级数学上册《25章 概率初步 25.1 随机事件与概率 概率
人教版九年级数学上册《25章概率初步 25.1 随机事件与概率概率人教版九年级数学上册《25章概率初步25.1随机事件与概率概率25.1.2概率教学设计教学目标知识技能:1.理解什么是随机事件的概率,并认识到概率是反映随机事件概率的数量。
2.理解“事件a发生的概率是p(a)=(在一次试验中有n种等可能的结果,其中事件a包含m种)”的求概率的方法,并能求出简单问题的概率。
过程和方法:经过实验操作、观察、思考和总结,理解随机事件概率的定义,掌握概率的计算方法。
情感态度和价值观:理解概率的含义,渗透辩证思维,感受数学与现实生活的联系,实现数学在现实生活中的应用价值。
教学重点:随机事件的概率的定义;“事件a发生的概率是p(a)=(在一次试验中有n种等可能的结果,其中事件a包含m种)”求概率的方法及运用。
教学难度:理解P(a)=n并运用。
教学过程设计:一、回顾与介绍(一)上节课我们学习了那些知识?1.不可避免的事件:在一定条件下必然发生的事件。
2.不可能事件:在特定条件下不会发生的事件。
3、随机事件:在一定条件下,可能会发生,也可能不发生的事件.也成为不确定性事件。
(二)、判断下列事件中哪些事件是必然事件?哪些是不可能事件?哪些事件是随机事件?(学生举手回答)。
1.铅球会落下。
2.运动员在100米赛跑中的成绩是2秒。
23.购买电影票的座位号为订单号。
4.X+1是一个正数。
5、投掷硬币时,国徽朝上。
6、直线y=kx+1过定点(-1,0)7、打开电视机,正在播广告。
8、明天的太阳从西方升起来。
(设计意图:通过复习旧知,唤起学生学习新知的欲望)二、情境引入,探索新知通过回顾不可避免事件、不可能事件和随机事件的定义,列出现实生活中的随机事件,我们觉得随机事件的概率是不同的。
在相同的条件下,随机事件可能会发生,也可能不会发生。
发生的可能性有多大?我们能用数值来描述它吗?(引导话题:如何计算概率和其他可能事件的概率)老师首先解释概率的含义和概率的定义。
25.1.1随机事件(导学案)人教版九年级数学上册
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件学习目标1.熟记必然事件、不可能事件、随机事件的概念和特点2.会判断一个事件是必然事件、不可能事件还是随机事件重点:能对必然事件、不可能事件、随机事件的类型作出正确判断.难点:必然事件、不可能事件、随机事件的区别与转化关系.学习过程一、创设问题情境活动:试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况.图①图②图③二、自主学习阅读课本本课时“问题1”“问题2”,解决下列问题.1.两人合作,在五张大小相同的白纸条上,分别标上1、2、3、4、5这几个数字.然后每人每次分别抓一张纸条,把所抓纸条上的数字记下.重复20次,最后汇总,填写下表:抓到的数字 1 2 3 4 5次数2.由表格可知,每次抓到的数字有种可能的结果,纸条上的数字是6(填“可能”或“不可能”),数字5出现的次数为0(填“可能”或“不可能”).3.阅读课本本课时“问题3”至“思考”部分的内容,解决下列问题.两人一组进行课本本课时“问题3”中的试验,把“摸到白球”记为事件A,把“摸到黑球”记为事件B,其中一人把球搅均匀,另一人摸球并记录下摸球10次和摸球100次的结果.(1)事件A和事件B都是事件.(2)摸球次的试验所获得的结论比较正确.(3)事件发生的可能性大.(4)如何通过改变球的数量使事件A和事件B发生的可能性一样?三、揭示问题规律(一)必然事件、不可能事件和随机事件在一定条件下,必然会发生的事件称为;不可能发生的事件称为;可能发生也可能不发生的事件称为.填表:成语水中捞月守株待兔水涨船高画饼充饥事件类型①②③④(二)随机事件发生可能性的大小一般地,随机事件发生的可能性是有的.一个口袋里有1个红球、2个白球、3个黑球,从中随机摸出一个球,摸出球的可能性最大,摸出球的可能性最小.四、尝试应用【例1】如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?(填“必然”,“不可能”或“不确定”)(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?(3)小猫踩在红色的正方形地板上,这属于哪一类事件?【例2】不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.五、自主总结1.体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.2.根据具体情况能判断事件发生的可能性的大小.六、达标测试一、选择题1.下列事件是必然事件的是()A.地球绕着太阳转B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻2.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在学校操场上向上抛出的篮球一定会下落3.下列事件:①367人中一定有两个人的生日相同;②抛掷两枚质地均匀的骰子,向上一面的点数之和大于2;③“彩票中奖的概率是1%”表示买1000张彩票必有10张会中奖;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有().A.1个B.2个C.3个D.4个4.在一个不透明的袋子中装有4个白球和3个黑球,它们除了颜色外都相同,随机从中摸出2个球,属于不可能事件的是()A.摸到2个白球B.摸到2个黑球C.摸到1个白球,1个黑球D.摸到1个黑球,1个红球5.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生二、填空题6.写出一个所描述的事件是不可能事件的成语_______.7.袋中有4只白球,2只红球,这些球除了颜色以外完全相同,将袋中的球搅拌均匀后,小强同学闭上眼睛随机从袋中抽出三个球,这三个球都是_____球是可能发生的,都是______球是不可能发生的.8.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)______P(奇数).三解答题9.甲袋中放着19只红球和6只黑球,乙袋中则放着170只红球、67只黑球和13只白球,这些球除了颜色外没有其他区别,两袋中的球都已经搅匀.如果只给一次机会,蒙上眼睛从一个口袋中摸出一只球,摸到黑球即获奖,那么选哪个口袋摸球获奖的机会大?请说明理由.25.1.1随机事件二、自主学习阅读课本本课时“问题1”“问题2”,解决下列问题.答案: 5;不可能;可能3.阅读课本本课时“问题3”至“思考”部分的内容,解决下列问题.答案:(1)随机;(2)100;(3)B;(4)答案不唯一,只要保证袋内两种颜色的球个数相同即可,如拿出2个黑球或加入2个白球三、揭示问题规律(一)必然事件、不可能事件和随机事件答案: 必然事件;不可能事件;随机事件填表:答案:①不可能事件;②随机事件;③必然事件;④不可能事件(二)随机事件发生可能性的大小一般地,随机事件发生的可能性是有的.答案:大小一个口袋里有1个红球、2个白球、3个黑球,从中随机摸出一个球,摸出球的可能性最大,摸出球的可能性最小.答案:黑;红四、尝试应用【例1】解:(1)可能发生,也可能不发生,是不确定事件;(2)一定会发生,是必然事件;(3)一定不会发生,是不可能事件;【例2】解:事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球的可能性均为2 4×24=14;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球的可能性为412=13.14<13.答:事件B发生的可能性较大.达标测试1.A【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意;故选:A.2.D【解析】试题分析:因为A.阴天一定会下雨,可能发生也可能不发生,是随机事件,所以选项A错误;因为B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,可能发生也可能不发生,是随机事件,所以选项B错误;因为C.打开电视机,任选一个频道,屏幕上正在播放新闻联播,可能发生也可能不发生,是随机事件,所以选项C错误;因为D.在学校操场上向上抛出的篮球一定会下落,一定会发生,所以是确定事件,故选:D.3.B【解析】解:一年有365天,则367人中一定有两个人的生日相同,所以①是必然事件;抛掷两枚质地均匀的骰子,向上一面的点数之和可能为2,所以②是随机事件;彩票中奖的概率是1%,表示中奖的机会为1%,则买1000张彩票可能有10张会中奖,也可能一张也不中奖,所以③是随机事件;如果a、b为实数,则a+b=b+a,所以④是必然事件.故选B.4.D 【解析】试题分析:因为不透明的袋子中装只有4个白球和3个黑球,没有红球,所以从中摸出2个球,属于不可能事件的是:D.摸到1个黑球,l个红球,故选:D.5.C【解析】试题分析:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;不可能事件是指在大量重复实验中完全不会发生的事件,根据题意故选C.6.拔苗助长等7.白,红8.<解析:∵一个圆形转盘被等分成五个扇形区域,有2个偶数区,3个奇数区,∴有p(偶数)=25,p(奇数)=35,所以p(偶数)<p(奇数).9.解:甲袋摸中黑球的几率为:p甲=625;乙袋摸中黑球的几率为:p乙=671701367++=67250;∴p甲=60250,p乙=67250,显然p甲<p乙,∴选择乙袋摸球获奖的几率比较大.。
九年级数学上册 第二十五章 概率初步知识归纳 新人教版
第二十五章 概率初步25.1 随机事件与概率1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用e 表示,e 称为样本空间中的样本点,记作{}e Ω=.2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.频率与概率的定义(1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =.(3) 古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型:(i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=; (ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·25.2 用列举法求概率1、当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,可以用被关注的结果在全部试验结果中所占的比分析出事件中该结果发生的概率,此时可采用列举法.2、列举法就是把要数的对象一一列举出来分析求解的方法.但有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.3、利用列表法或树形图法求概率的关键是:①注意各种情况出现的可能性务必相同;②其中某一事件发生的概率各种情况出现的次数某一事件发生的次数=;③在考查各种情况出现的次数和某一事件发生的次数时不能重复也不能遗漏; 4、用列表法或树形图法求得的概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率。
人教版数学九年级上册25.1.1《随机事件》说课稿
人教版数学九年级上册25.1.1《随机事件》说课稿一. 教材分析人教版数学九年级上册第25.1.1节《随机事件》是学生在学习了概率初步知识后,进一步探究随机事件的特性及其规律的一节内容。
本节课的主要内容有:了解随机事件的定义,理解必然事件、不可能事件与随机事件的关系,掌握随机事件的性质,并能运用所学知识解决一些简单的实际问题。
本节课的内容是在前一章概率初步知识的基础上进行拓展和深化的,同时也是后续学习更复杂概率问题的基础。
通过本节课的学习,学生能够更好地理解概率的概念,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对概率初步知识有一定的了解,这为本节课的学习打下了基础。
然而,对于随机事件的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来理解和掌握。
同时,九年级的学生正处于青春期的末期,他们的思维活跃,好奇心强,对于新的知识有较强的求知欲。
但也存在一部分学生对数学学科的学习兴趣不高,学习主动性不足,这给教学带来了一定的挑战。
三. 说教学目标1.知识与技能目标:学生能够理解随机事件的定义,掌握随机事件的性质,能够运用所学知识解决一些简单的实际问题。
2.过程与方法目标:通过观察、实验、讨论等方法,学生能够探究随机事件的特性及其规律,提高观察和分析问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学学科的兴趣和好奇心,增强解决实际问题的信心和勇气。
四. 说教学重难点1.教学重点:随机事件的定义及其性质。
2.教学难点:随机事件的性质的理解和运用。
五. 说教学方法与手段本节课采用讲授法、讨论法、实践法等多种教学方法相结合。
通过具体的例子和实践活动,引导学生观察、分析和解决问题,提高学生的理解能力和实践能力。
同时,利用多媒体教学手段,如PPT、视频等,为学生提供丰富的学习资源,增强课堂教学的趣味性和互动性。
六. 说教学过程1.导入新课:通过一个简单的抽奖活动,引发学生对随机事件的兴趣,进而引入本节课的主题。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。
本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。
但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。
三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。
2.理解概率的定义,并能运用概率知识解决简单问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。
2.难点:概率的计算和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例和问题。
3.小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。
2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。
3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。
4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。
教师巡回指导,帮助学生解决遇到的问题。
5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
25.1 随机事件与概率25.1.1 随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1 掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2 摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1 有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是( )A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它( )A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D 解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2 一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。