初一多边形及其内角和训练题 人教版
多边形的内角和及角的计算(人教版)(含答案)
多边形的内角和及角的计算(人教版)一、单选题(共14道,每道7分)1.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是( )A.四边形B.五边形C.六边形D.八边形答案:C解题思路:∵多边形的外角和都等于360°,∴这个多边形的内角和为720°,∴(n-2)×180°=720°,∴n=6,故选C.试题难度:三颗星知识点:多边形的内角和与外角和2.一个正多边形的每个外角都等于36°,那么它是( )A.正六边形B.正八边形C.正十边形D.正十二边形答案:C解题思路:∵多边形的外角和都等于360°,正多边形的每个外角都相等,∴n=10,故选C.试题难度:三颗星知识点:多边形的内角和与外角和3.若一个n边形的每一个内角为135°,则边数n的值是( )A.6B.7C.8D.10答案:C解题思路:多边形每个外角都相等,均为180°-135°=45°,由多边形外角和为360°,知n=360°÷45°=8,故选C.试题难度:三颗星知识点:多边形的内角和与外角和4.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了( )米.A.8B.9C.10D.12答案:A解题思路:每走1米,左转45°,则机器人走过的轨迹为边长为1的正多边形.题目所求的是正多边形的周长,故只需求边数n即可.∵正多边形的每个外角都相等,∴n=360°÷45°=8,∴机器人共走了:8×1=8(米).故选A.试题难度:三颗星知识点:多边形的外角和定理5.已知:如图,在△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数( ).A.50°B.60°C.70°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形内角和定理6.一个正方形和两个等边三角形的位置如图所示,若∠2=70°,则∠1+∠3=( )A.70°B.80°C.90°D.100°答案:B解题思路:试题难度:三颗星知识点:三角形内角和定理7.如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为( )A.42°B.60°C.78°D.80°答案:A解题思路:试题难度:三颗星知识点:三角形内角和定理8.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为( )A.65°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A.30°B.25°C.20°D.15°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,且BD,CE交于点O.若∠A=50°,∠ACB=60°,则∠1的度数为( )A.130°B.120°C.110°D.100°答案:A解题思路:试题难度:三颗星知识点:三角形外角定理11.如图,点C在AB的延长线上,CE⊥AF于点E,交BF于点D.若∠F=40°,∠C=20°,则∠FBC的度数为( )A.100°B.110°C.120°D.130°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理12.如图,在△ABC中,∠C=30°,∠E=45°.若AE∥BC,则∠AFD的度数是( )A.45°B.60°C.75°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理13.已知:如图,在△ABC中,∠EFB+∠ADC=180°,∠1=∠2.求证:AB∥DG.证明:如图,∵∠EFB+∠ADC=180°(已知)∠ADB+∠ADC=180°(平角的定义)∴∠EFB=∠ADB(____________________)∴__________(同位角相等,两直线平行)∴∠1=______(两直线平行,同位角相等)∵∠1=∠2(已知)∴∠2=∠BAD(等量代换)∴__________(内错角相等,两直线平行)①同角或等角的余角相等;②同角或等角的补角相等;③等量代换;④AB∥DG;⑤EF∥AD;⑥∠BAD;⑦∠2.以上空缺处依次所填正确的是( )A.②⑤⑥④B.①⑤⑦④C.②④⑥⑤D.③⑤⑦④答案:A解题思路:试题难度:三颗星知识点:平行线的性质与判定14.已知:如图,在△ABC中,∠ACB=90°,E是BC边上的一点,过C作CF⊥AE于点F,过B 作BD⊥BC于点B,交CF的延长线于点D.若∠EAC=25°,求∠D的度数.解:如图,∵CF⊥AE(已知)∴∠EAC+∠2=90°(直角三角形两锐角互余)∵∠ACB=90°即∠1+∠2=90°(已知)___________________∴∠1=25°(等量代换)∵BD⊥BC(已知)∴∠DBC=90°(垂直的性质)∴∠D+∠1=90°(直角三角形两锐角互余)∴∠D=90°-∠1=90°-25°=65°(等式性质)横线处应填写的过程最恰当的是( )A.∴∠1=∠EAC(同角或等角的补角相等)∵∠EAC=25°(已知)B.∴∠1=∠EAC(等量代换)∵∠2=65°(已知)C.∴∠1+∠EAC=90°(直角三角形两锐角互余)∵∠EAC=25°(已知)D.∴∠1=∠EAC(同角或等角的余角相等)∵∠EAC=25°(已知)答案:D解题思路:本题主要利用直角三角形两锐角互余和同角或等角的余角相等进行角的计算.故选D.试题难度:三颗星知识点:同角或等角的余角相等。
人教版 七年级数学下册 (7.3多边形及其内角和) 课时同步优化训练习题(含答案)
7.3 多边形及其内角和5分钟训练(预习类训练,可用于课前)1.三角形的内角和等于_____________度,外角和等于_____________度.解析:三角形的内角和等于180°,外角和等于360°.答案:180 3602.n 边形的内角和等于_____________度,外角和等于_____________度.解析:n 边形的内角和等于(n-2)180°,外角和等于360°.答案:(n-2)180 3603.如果一个多边形的内角和为1 440°,那么这个多边形是( )A.6边形B.8边形C.10边形D.12边形解析:设这个多边形为n 边形,由n 边形的内角和定理得(n-2)180°=1 440°,解得n=10. 答案:C4.过多边形一个顶点可引5条对角线,那么这个多边形是______________边形.( )A.5B.7C.8D.10解析:过n 边形的一个顶点可作(n-3)条对角线,则n-3=5,∴n=8.答案:C10分钟训练(强化类训练,可用于课中)1.若一个多边形的边数减少1,则它的内角和( )A.不变B.增加180°C.减少180°D.无法确定解析:因为(n-2)180°-(n-1-2)180°=180°,所以应选C.答案:C2.若正n 边形的一个外角为60°,则n 为( )A.4B.5C.6D.9解析:n 边形的外角和为360°,由于正n 边形的一个外角为60°,所以n=360°÷60°=6.答案:C3.凸n 边形的n 个内角与某一个外角的和为1 350°,则n 等于( )A.6B.7C.8D.9解析:设该外角为α,则(1 350°-α)应是180°的整数倍,所以1 350°÷180°的整数部分即n 边形的边数. 答案:D4.过n 边形一个顶点可作_______________条对角线,过n 个顶点可作_______________条对角线. 解析:由图形规律可得,过n 边形的一个顶点可作(n-3)条对角线,则过n 个顶点可作(n-3)·n÷2,即21n (n-3)条.答案:n-3 21n(n-3) 5.已知多边形的每一个内角都是150°,求它的边数和内角和.解:设这个多边形为n 边形,则(n-2)180°=n·150°,所以n=12.所以(12-2)×180°=1 800°.答:它的边数为12,内角和为1 800°.6.一个多边形除去一个内角外,其余各角之和为2 750°,求这个多边形的边数及去掉的角的度数. 解析:由于多边形的内角和是180°的整数倍,所以去掉的这个角与2 750°÷180的余数的和应是180°. 设去掉的这个角为α,又有2 750°÷180的余数为50°,所以可得α+50°=180°.所以α=130°.∴该多边形的边数为(2 750°+130°)÷180°+2=18.所以这个多边形的边数为18,去掉的角度为130°.30分钟训练(巩固类训练,可用于课后)1.一个多边形的内角与外角的总和为2 160°,则此多边形是_____________边形.( )A.五B.六C.十D.十二解析:设这个多边形为n 边形,则(n-2)180°+360°=2 160°,解得n=12.答案:D2.若多边形的边数由n (n 为正整数)减少到3,则其外角和的度数( )A.不变B.增加C.减少D.无法确定解析:由多边形的外角和等于360°,故应选A. 答案:A3.若一个多边形的每个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数为( )A.9B.8C.7D.6解析:先求出多边形的边数n ,则从这个多边形的一个顶点出发的对角线的条数为(n-3)条.答案:D4.(2010四川广安模拟,22)已知一个多边形的内角和等于外角和的2倍,则这个多边形的边数是_________________.解析:设多边形的边数为n ,则(n-2)180°=2×360°,解得n=6.答案:65.多边形的每个内角都等于它的相邻外角的6倍,则多边形是_______________边形.解析:设多边形的边数为n ,则多边形的每个外角为7180︒,则7180︒n=360°,解得n=14. 答案:十四6.某多边形所有内角的和与某一个外角的差是1 710°,那么这个多边形是_____________边形,这个外角的度数为__________________.解析:设这个多边形的边数为n ,则n 是满足(n-2)×180°>1 710°的最小整数,所以n=12.所以这个外角的度数为(12-2)·180°-1 710°=90°.答案:12 90°7.已知一个多边形的每一个内角都是钝角,则这样的多边形至少是几边形?解:设这样的多边形至少是n 边形,因为每个内角都是钝角,则每个外角都是锐角,由此可得90°·n >360°,∴n >4.∴n=5.答:这样的多边形至少是五边形.8.一块多边形的纸片,减去一个角后(没有过顶点)得到的多边形的内角和为1 620°,求原来的纸片为几边形?分析:减去一个角后比原来的多边形多了一条边.解:设新多边形的边数为n ,则(n-2)180°= 1 620°,解得n=11,所以原来的纸片为十边形.9.小明想:2008年奥运会在北京召开,设计一个内角和为2 008°的多边形图案多有意义,试问小明的想法能实现吗?并说明理由解:小明的想法不能实现.因为多边形的内角和是180°的整数倍,而2 008°不能被180°整除,所以多边形的内角和不能是2 008°,所以小明的想法不能实现.10.如图7-3-1所示,求∠A+∠B+∠C+∠D+∠E+∠F 的值.图7-3-1解:如图,连结AD.∵∠1+∠2+∠AOD=180°,∠E+∠F+∠EOF=180°,又∵∠AOD=∠EOF ,∴∠1+∠2=∠E+∠F.∴∠BAF+∠B+∠C+∠CDE+E+∠F=∠BAF+∠1+∠B+∠C+∠CDE+∠2=∠BAD+∠B+∠C+∠CDA=360°.11.已知一个多边形的对角线条数是边数的3倍,求它的内角和.解:设这个多边形的边数为n ,n 边形的对角线为21n(n-3)条,根据题意列方程,得21n(n-3)=3n, 即n(n-3)=6n.∵n≠0,两边都除以n ,得n-3=6,∴n=9.从而它的内角和为(n-2)·180°=(9-2)×180°=1 260°.答:这个多边形的内角和为1 260°.。
初一数学多变形及其内角和试题
初一数学多变形及其内角和试题1.不能作为正多边形的内角的度数的是( )A.120°B.(128)°C.144°D.145°【答案】D【解析】本题主要考查了多边形的内角和外角. 根据n边形的内角和(n-2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D选项正确.解:A、(n-2)•180°=120•n,解得n=6,所以A选项错误;B、(n-2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n-2)•180°=144°•n,解得n=10,所以C选项错误;D、(n-2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.2.多边形的内角中,最多有________个直角.【答案】4【解析】本题主要考查了多边形的内角和外角. 根据多边形的外角的和等于360°进行解答.解:∵凸多边形的外角和等于360°,∴外角中最多有360°÷90°=4个直角,∴内角中最多有4个直角.3.一个多边形的每一个外角都等于24°,求这个多边形的边数.【答案】15【解析】本题考查了多边形的内角和和外角和定理. 根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:∵多边形的外角和为360°,∴边数=360÷24=15.则它是15边形.4.从边形的一个顶点出发的时角线有______条,可将多边形分成______个三角形.【答案】,【解析】本题主要考查了多边形的对角线. 过n边形的一个顶点出发的时角线有n-3条,过一个顶点的对角线把n边形分成(n-2)个三角形.5.一个六边形所有内角都相等,则每个内角为_____度.【答案】【解析】本题主要考查了多边形的外角和内角. 利用多边形的内角和为(n-2)•180°求出正六边形的内角和,再结合其边数即可求解.解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6-2)×180°÷6=120°.6.黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(1)第4个图案中有白色纸片_____块。
(完整版)初中数学专项训练:多边形及其内角和
初中数学专项训练:多边形及其内角和一、选择题1.一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.82.五边形的内角和为【】A.720° B.540° C.360° D.180°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为【】A.5 B.5或6 C.5或7 D.5或6或74.已知一个多边形的内角和是0540,则这个多边形是【】A. 四边形B. 五边形 C . 六边形 D. 七边形5.四边形的内角和的度数为A.180° B.270° C.360° D.540°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为A.30°B.36°C.38°D.45°7.(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.(2013年四川眉山3分)一个正多边形的每个外角都是36°,这个正多边形的边数是【】A.9 B.10 C.11 D.129.(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.610.正多边形的一边所对的中心角与该正多边形一个内角的关系是().两角互余(B)两角互补(C)两角互余或互补(D)不能确定11.正五边形、正六边形、正八边形的每个内角的度数分别是_______.12.若一个多边形的内角和等于1080°,则这个多边形的边数是 ( )A.9B.8C.7D.613.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角15.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个16.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:417.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°18.一个多边形的外角中,钝角的个数不可能是( )19.一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为( ) A.5 B.6 C.7 D.820.如图,若90A B C D E F n +++++=o g ∠∠∠∠∠∠,那么n 等于( )A.2 B.3 C.4 D.521.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有( )A.无穷多个,它的边数为8B.一个,它的边数为8C.无穷多个,它的边数为6D.无穷多个,它的边数不可能确定22.如果一个正多边形的一个内角等于135o ,则这个正多边形是( )A.正八边形 B.正九边形 C.正七边形 D.正十边形二、填空题23.一个六边形的内角和是 .24.如图,在四边形ABCD 中,∠A=450,直线l 与边AB 、AD 分别相交于点M 、N 。
七年级数学下册 7.3.2 多边形内角和(二)配套练习 新人
7.3.2多边形内角和(二)配套练习
一、选择题
1、.随着多边形的边数n的增加,它的外角和()
A、增加
B、减小
C、不变
D、不定
2、一个多边形的内角和比它的外角和的2倍还大180°,则这个多边形的边数是()
A、5
B、6
C、7
D、8
2160,则这个多边形的对角线共有()
3、已知多边形内角和与外角和的总和为0
A、54条
B、65条
C、60条
D、55条
4、凸10边形的所有内角中,锐角的个数最多是()
A、0
B、1
C、3
D、5
二、填空题:
5、八边形的外角和为。
6、若多边形内角和等于外角和的3倍,则这个多边形是边形.
7.、已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为7:2,则这个多边形的边数为_________.
8.、如果一个多边形的每一个内角都相等,且每一个内角都大于150°, 那么这个多边形的边数最少为________.
解答题:
9、一个多边形的每一个外角都等于24°,求这个多边形的边数.(两种方法)
10、已知多边形的内角和为其外角和的5倍,求这个多边形的边数.
1999,求这个外角
11、一个凸边形的内角和与一个外角的和是0
12、若把一个多边形剪去一个角,剩余部分的内角和为1440°,那么原多边形有几条边?
答案:1、C 2、C 3、A 4、C
5、3600
6、十
7、9
8、十三
19 12、9或8或7 9、15 10、12 11、0。
专题11.3 多边形及其内角和(讲练)(解析版)(人教版)
专题11.3 多边形及其内角和典例体系一、知识点1、n 边形的内角和=()2180-⨯n; 2、n 边形的外角和=360。
3、一个n 边形的对角线有()23-n n 条,过n 边形一个顶点能作出()3-n 条对角线,把n 边形分成了()2-n 个三角形。
4、各角都相等、各边都相等的多边形叫做正多边形,边数为n 的正多边形,也叫作正n 边形.5、多边形的镶嵌(密铺)问题.二、考点点拨与训练考点1:与多边形内角有关的计算典例:(2020·安徽省初三三模)如图,在五边形ABCDE 中,280A B E EDC BCD ︒∠+∠+∠=∠∠,、的平分线DP CP 、相交于P 点,则P ∠的度数是( )A .40︒B .45︒C .50︒D .55︒【答案】C【解析】 ∵五边形的内角和等于(5-2)×180°=540°,∠A+∠B+∠E=280°,∴∠BCD+∠CDE=540°一280°=260°,∵∠BCD ,∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠CDE+∠BCD)=130°, ∴∠P=180°-130°=50°,故选:C .方法或规律点拨本题考查了多边形的内角和,角平分线的性质,求出五边形内角和是解题关键.巩固练习1.(2020·福建省初三月考)若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .7【答案】C【解析】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.2.(2020·福建省初三二模)已知一个多边形的内角和是540︒,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形【答案】B【解析】 根据多边形内角和定理,n 边形的内角和公式为()n 2180-︒,因此,由()n 2180540︒-=︒得n=5.故选B . 3.(2020·偃师市实验中学初一月考)如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来的多边形的边数是 ( )A .5B .6C .7D .8【答案】C【解析】设多边形原有边数为x ,则(2x−2)×180=2160,2x−2=12,解得x=7,故本题选C.4.(2020·江苏省初一月考)一个多边形的每个内角都等于135°,则这个多边形的边数为( ) A .5B .6C .7D .8 【答案】D【解析】∵一个多边形的每个内角都等于135°,∴这个多边形的每个外角都等于180°-135°=45°,∵多边形的外角和为360度,∴这个多边形的边数为:360÷45=8,故选D.5.(2020·北京初三二模)如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则αβ+的度数是( )A .360︒B .540︒C .720︒D .900︒【答案】B【解析】 直线l 将四边形ABCD 分成两部分,左边为四边形,其内角和为α=360°,右边为三角形,其内角和为β=180°,因此360180540αβ︒︒︒+=+=故选:B .6.(2019·河南省初一期末)下列选项可能是多边形的内角和的是( )A .580°B .1240°C .1080°D .2010°【答案】C【解析】解:判断哪个度数可能是多边形的内角和,看它是否能被180°整除.580÷180=3...40,1240÷180=6...160,1080÷180=6,2010÷180=11...30,只有1080°能被180°整除.故选:C .7.(2020·江苏省扬州教育学院附中初一期中)一个多边形的每个内角都是120°,这个多边形是( ) A .四边形B .六边形C .八边形D .十边形 【答案】B【解析】解:外角是180°-120°=60°,360÷60=6,则这个多边形是六边形.故选:B.8.(2020·江苏省初一月考)一个正多边形的每个内角度数均为135°,则它的边数为____.【答案】8【解析】设该正多边形的边数为n由题意得:(2)180?nn-⨯=135°解得:n=8故答案为8.考点2:与多边形外角有关的计算典例:(2020·陕西省初二期末)如果一个多边形的内角和与外角和之比是13:2,求这个多边形的边数.【答案】15.【解析】解:设这个多边形的边数为n,依题意得:13(2)1803602n-︒=⨯︒,解得15n=,∴这个多边形的边数为15.方法或规律点拨考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,多边形的外角和等于360度.巩固练习1.(2020·北大附属嘉兴实验学校初二期中)一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八B.九C.十D.十一【答案】B【解析】根据题意,得:(n-2)•180°=3×360°+180°,解得:n=9,则这个多边形的边数是9.故选B.2.(2020·福建省初一期末)若多边形的边数增加一条,则它的外角和()A.增加180°B.不变C.增加360°D.减少180°【答案】B【解析】根据多边形的外角和定理:多边形的外角和都等于360º,与边数多少无关,故选B.3.(2020·广东省初三一模)已知一个正多边形的每个外角都等于72°,则这个正多边形是( )A.正五边形B.正六边形C.正七边形D.正八边形【答案】A【解析】这个正多边形的边数:360°÷72°=5.故选A.4.(2020·江苏省初一月考)若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】B【解析】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.5.(2020·山东省济宁学院附属中学初三二模)正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【解析】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.6.(2020·重庆西南大学附中初三月考)一个正多边形的外角为45°,则这个正多边形的内角和是()A.540° B.720° C.900° D.1080°【解析】∵正多边形的一个外角是45°,∴360°÷45°=8∴这个正多边形是正八边形∴该正多边形的内角和为:180°×(8-2)=1080°.故答案选:D.7.(2020·陕西省初三一模)已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为____.【答案】5【解析】解:设这个多边形的边数为n,依题意得:(n−2)180°=32×360°,解得:n=5.故这个多边形的边数为5.故答案为:5.8.(2020·河南省初二期末)如图的七边形ABCDEFG中,AB,ED的延长线相交于O点,若图中∠1,∠2,∠3,∠4的外角的角度和为220°,则∠BOD的度数为何?( )A.40°B.45°C.50°D.60°【答案】A【解析】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣500°=40°,考点3:正多边形的角度计算典例:(2019·吉林省第二实验学校初三二模)如图,以正六边形ABCEDF 的边AB 为直角边作等腰直角三角形ABG ,使点G 在其内部,且90BAG ∠=︒,连接FG ,则EFG 的大小是__________度.【答案】45【解析】解:在正六边形ABCDEF 中, ∵∠AFE=∠BAF=(62)180120,6-⨯︒=︒ ∵∠BAG=90°, ∴∠FAG=120°-90°=30°,又∵AF=AB=AG ,∴∠AFG=1803075,2︒-︒=︒ ∴∠EFG=∠AFE -∠AFG=120°-75°=45°,故答案为:45.方法或规律点拨本题考查了多边形的内角与外角,等腰三角形的性质,熟记多边形的内角和公式是解题方法或规律点拨 巩固练习1.(2019·江苏省初一期中)如图,一块六边形绿化园地,六角都做有半径为1m 的圆形喷水池,则这六个喷水池占去的绿化园地的面积(结果保留π)为( )A .π2mB .2π2mC .4π2mD .n π2m【答案】B∵六边形的内角和为:62180720()-⨯︒=︒,∴六个阴影部分所对的圆心角的和为:720°,∴阴影部分的面积相当于两个圆的面积之和,∴阴影部分的面积为:2π×12=2π(2m )故选B .2.(2018·内蒙古自治区初二期末)有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°【答案】B 【解析】正五边形的内角是∠ABC =()521805-⨯=108°,∵AB =BC ,∴∠CAB =36°,正六边形的内角是∠ABE =∠E =()621806-⨯=120°,∵∠ADE +∠E +∠ABE +∠CAB =360°,∴∠ADE =360°–120°–120°–36°=84°,故选B . 3.(2020·广东省初三其他)如图,在正六边形ABCDEF 的外侧,作正方形EFGH ,则∠DFH 的度数为____.【答案】75°【解析】观察图形可知,△EFH 是等腰直角三角形,则∠EFH=45°,△DEF 是等腰三角形,∵∠DEF=120°, ∴∠EFD=(180°﹣120°)÷2=30°, ∴∠DFH=45°+30°=75°.4.(2020·陕西省西北工业大学附属中学初三月考)如果一个正多边形的内角和等于1440︒,那么这个正多边形的每一个外角的度数为______.【答案】36【解析】正多边形的内角和等于1440︒∴()21801440n-⨯=解得:10n=多边形的外角和为360,且正多边形的每一个外角均相等∴这个正多边形的每一个外角的度数为3601036÷=故答案是:365.(2020·上海初三二模)我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为__________【答案】8【解析】设正多边形的边数为n,∵内角和为(2)180n-⨯,外角和为360°,∴一个内角度数为(2)180nn-⨯,一个外角度数为360n,∴(2)180nn-⨯=3603n⨯,解得n=8,经检验n=8是方程的解且符合题意,故答案为:8.6.(2020·山东省初三一模)如图,该硬币边缘镌刻的正九边形每个内角的度数是_____.【答案】140°.【解析】解:该正九边形内角和()180921260=︒⨯-=︒, 则每个内角的度数12601409︒︒==. 故答案为:140°.7.(2020·江苏省泰兴市实验初级中学初一期中)如图,在五边形ABCDE 中,∠A =∠B =∠C =∠D ,点F 在边AB 上,∠AFE =45°,则∠AEF 与∠AED 的度数的比值是_______.【答案】1:4【解析】解:设∠AEF=x ,∵∠AFE =45°,∴∠A=180°-∠AFE -∠AEF=135°-x∴∠A =∠B =∠C =∠D =135°-x∵∠A +∠B +∠C +∠D +∠AED=180°×(5-2)=540°∴∠AED=540°-4(135°-x )=4x∴∠AEF :∠AED=1:4故答案为:1:4.8.(2020·常州市第二十四中学初一期中)一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .【答案】160.【解析】解:360÷45=8,则所走的路程是:6×8=48m ,则所用时间是:48÷0.3=160s.9.(2020·江西省石城二中初三其他)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于______ 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108考点4:多边形对角线问题典例:(2020·上蔡县思源实验学校初一月考)一个多边形的外角和是它内角和的14,求:(1)这个多边形的边数;(2)这个多边形共有多少条对角线.【答案】(1)边数为10;(2)35条【解析】解:设这个多边形的边数为n,由题意得:180(n-2)×14=360,解得:n=10,答:这个多边形的边数为10;(2)10×(10-3)÷2=35(条).方法或规律点拨本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.巩固练习1.(2020·全国初一)下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形【答案】B【解析】n边形对角线条数为(3)2n n∴A. 四边形有2条对角线,故错误;B. 五边形有5条对角线,正确;C. 六边形有9条对角线,故错误;D. 七边形有14条对角线,故错误;故选B.2.(2020·全国初一)在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5个B.6个C.7个D.8个【答案】D【解析】如图,或者根据八边形内一点,和任意一边的两端点均可构成三角形,所以可求得三角形的个数为8.故选:D.3.(2020·全国初一)将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5B.6C.7D.8【答案】D【解析】如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D .4.(2020·温州外国语学校初二月考)从十二边形的一个顶点出发,可引出对角线( )条A .9条B .10条C .11条D .12条【答案】A【解析】解:从十二边形的一个顶点出发,可引出对角线的条数是()1239-=条.故选:A .5.(2019·北京初三其他)若一个多边形从一个顶点出发的对角线共有3条,则这个多边形的内角和为( ) A .360°B .540°C .720°D .1080° 【答案】C【解析】从一个顶点出发的对角线共有3条 ∴这个多边形是一个六边形则这个多边形的内角和为180(62)720︒⨯-=︒故选:C .6.(2019·北京市第四十一中学初二期中)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7【答案】B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .7.(2019·重庆市凤鸣山中学初一期中)一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有( )A.104条B.90条C.77条D.65条【答案】C【解析】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.考点5:多边形的镶嵌问题典例:40.(2020·长春市第四十七中学初一期中)如图所示的图形中,能够用一个图形镶嵌整个平面的有()个A.1B.2C.3D.4【答案】C【解析】解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面;圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C.方法或规律点拨本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.巩固练习1.(2020·偃师市实验中学初一月考)用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()A.正八边形和正三角形B.正五边形和正八边形C.正六边形和正三角形D.正六边形和正五边形【答案】C【解析】A、正八边形的每个内角为:180°-360°÷8=135°,正三角形的每个内角60°.135m+60n=360°,n=6-9m,显然m取任何正整数时,n不能得正整数,故不能铺满;4B、正五边形每个内角是180°-360°÷5=108°,正八边形的每个内角为:180°-360°÷8=135°,108m+135n=360°,m取任何正整数时,n不能得正整数,故不能铺满;C、正六边形的每个内角是120°,正三角形的每个内角是60度.∵2×120°+2×60°=360°,或120°+4×60°=360度,能铺满;D、正六边形的每个内角是120°,正五边形每个内角是180°-360°÷5=108°,120m+108n=360°,m取任何正整数时,n不能得正整数,故不能铺满.故选C.2.(2019·山西省初一月考)用若干个某种正多边形瓷砖可以铺满地面,这种正多边形瓷砖不可能是()A.B.C.D.【答案】D【解析】A.正三角形,其单个内角为60°,360°÷60°=6,A选项满足条件;B.正方形,其单个内角为90°,360°÷90°=4,B选项满足条件;C.正六边形,其单个内角为120°,360°÷120°=3,C选项满足条件;D.正八边形,其单个内角为135°,360°÷135° 2.7≈,D选项不满足条件.故选:D.3.(2020·哈尔滨市中实学校初一期中)能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n取任何正整数时,m 不能得正整数,故不能铺满;C 、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D 、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n 取任何正整数时,m 不能得正整数,故不能铺满.故选C .4.(2020·四川省初二期末)只用下列图形不能进行平面镶嵌的是( )A .正六角形B .正五边形C .正四边形D .正三边形【答案】B【解析】解:A 、正六边形的每个内角是120°,能整除360°,能密铺;B 、正五边形每个内角是108°,不能整除360°,不能密铺;C 、正四边形的每个内角是90°,能整除360°,能密铺;D 、正三边形的每个内角是60°,能整除360°,能密铺.故选:B .5.(2019·雷州市第二中学初三一模)在下列四种边长均为a 的正多边形中,能与边长为a 的正三角形作平面镶嵌的正多边形有( )①正方形;②正五边形;③正六边形;④正八边形A .4种B .3种C .2种D .1种 【答案】C【解析】解:正三角形的一个内角度数为180360360-÷=︒,①正方形的一个内角度数为180360490-÷=︒,360290360⨯+⨯=︒,那么3个正三角形和2个正方形可作平面镶嵌;②正五边形的一个内角度数为1803605108-÷=︒,任意若干个都不能和正三角形组成平面镶嵌;③正六边形的一个内角度数为1803606120-÷=︒,2602120360⨯+⨯=︒或460120360⨯+=︒,可作平面镶嵌;④正八边形的一个内角度数为1803608135-÷=︒,任意若干个都不能和正三角形组成平面镶嵌; 能镶嵌的只有2种正多边形.故选C .考点6:多边形的去(多)角问题典例:(2019·江苏省初一期中)小李同学在计算一个n边形的内角和时不小心多加了一个内角,得到的内角之和是1380度,则这个多边形的边数n的值是_______.【答案】9【解析】设多边形的边数为n,多加的内角度数为α,则(n-2)•180°=1380°-α,∵1380°=7×180°+120°,内角和应是180°的倍数,∴n-2=7,n=9;故答案为:9.方法或规律点拨本题考查了多边形的内角和公式,根据多边形的内角和公式判断出多边形的内角和公式是180°的倍数是解题的关键.巩固练习1.(2020·全国初一)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.2.(2019·云南省初三二模)小明在计算一个多边形的内角和时,漏掉了一个内角,结果算得800°,这个多边形应该是()A.六边形B.七边形C.八边形D.九边形【答案】B【解析】解:设多边形的边数是n.依题意有(n﹣2)•180°≥800°,解得:n≥649,则多边形的边数n=7;故选:B.3.(2019·浙江省初二学业考试)一个四边形截去一个角后,形成新的多边形的内角和是()A.180°B.360°或540°C.540°D.180°或360°或540°【答案】D【解析】解:∵一个四边形截去一个角后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能是180°,或(4-2) ×180°=540°,或(5-2) ×180°=540°.故选:D.4.(2018·山西省初一期末)若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为()A.90°B.105°C.130°D.120°【答案】C【解析】解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C5.(2020·偃师市实验中学初一月考)多边形的所有内角与它的一个外角的和为600°,这个多边形的边数是_____【答案】5【解析】解:设边数为n,一个外角为α,则(n-2)×180°+α=600°,∴n=600180α-︒︒+2,∵0°<α<180°,n为正整数,∴当α=60°时,600180α-︒︒为正整数,此时n=5,内角和为(n-2)×180º=540°.故多边形的边数为5.6.(2019·山西省初一月考)如图,有一张正方形桌面,它的4个内角的和为360°,现在锯掉它的一个角,残余桌面所有的内角的和是_____________【答案】540°【解析】解:由题意得,残余桌面为五边形,∴残余桌面所有的内角的和为(5-3)×180°=540°故答案为:540°.。
七年级数学下册(多边形及其内角和)同步练习3 人教新课标版 试题
7.3 多边形及其内角和练习一1.填空(1)已知:n 边形的内角和为720°,则n =______.(2)五边形的内角和与外角和的比值是______.(3)过六边形的每一个顶点都有______条对角线.(4)过七边形的一个顶点的所有对角线把七边形分成______个三角形.2.选择题(1)一个五边形有三个内角是直角,另两个内角都等于n ,则n 的值是().A .30°B .120°C .135°D .108°(2)n 边形与m 边形内角和度数差为720°,则n 与m 的差为().A .2B .3C .4D .5(3)一个多边形的内角和是外角和的3倍,则这个多边形的边数为().A .7B .8C .9D .11(4)下列角度中,不是多边形内角和的只有().A .540°B .720°C .960°D .1080°3.已知:多边形外角和是内角和的51,求多边形的边数.4.已知:一个多边形的每个外角都等于30°,求:这个多边形的内角和.5.一个多边形的内角和是外角和的n 倍(n 是正整数),求这个多边形的边数.6.一个多边形除了一个内角外,其余各内角的和为1700°,求这个多边形的边数.7.试求:n边形对角线的数量.8.一个n边形,它的每条对角线都相等,试画出这样的n边形.9.已知:如图4-5,求∠A+∠B+∠C+∠D+∠E的值.参考答案:1.(1)6(2)23(3)3 (4)5 2.(1)C(2)C (3)B (4)C3.124.1800°5.2n +26.127.2)3(nn•-8.长方形或正方形9.180°。
人教版数学七年级下册第七章 7.3 多边形及其内角和课时同步训练
第七章 三角形7.3 多边形及其内角和7.3.2 多边形的内角和课前预习篇1.多边形的内角:多边形 相邻两条边 组成的角叫做它的内角.N 边形的内角和为: (n-2)×180° .2.多边形的外角:多边形的边与 它邻边的延长线的夹角 叫做它的外角.3.多边形的内角和定理:n 边形的内角和为: (n-2)×180° ,正n 边形的一个内角度数为nn 180)2(⋅- 4.多边形的外角和定理:n 边形的外角和为 360° .正n 边形的一个外角度数为 n360 .典例剖析篇【例1】(1)下列可能是n 边形内角和的是( )A 、300°B 、550°C 、720°D 、960°(2)一个多边形的内角和外角和的比是7∶2,则这个多边形内角和为 1260° .【解析】(1)n 边形的内角和为(n -2)×180°,故n 边形内角和为180的倍数,故(1)选C ;(2)n 边形外角和360°始终不变.由题意可设多边形内角为7x 度,外角为2x 度,则2x=360,x=180,所以多边形内角和为1260°.【答案】(1) C (2)1260°【例2】一个多边形的每一个内角都相等,且它的每一个外角与相邻内角之比为3∶6,试求多边形的边数.【解析】根据题中已知条件可先求出多边形的每个内角的度数,再根据多边形的每个内角的度数相等,利用多边形内角和公式求出多边形的边数即可.解:因为多边形每一个外角与相邻内角之比为3∶6,所以设多边形每个内角的度数为3x ,则它相邻的外角为6x ,则:3x+6x=180°,x=20°. 所以多边形的每个内角的度数为3x=60°.设多边形的边数为n ,则(n -2)×180°=60n ,解得:n=3,所以多边形的边数为3.基础夯实篇1.(2010常德)四边形的内角和为( C )2.(2010本溪)八边形的内角和是( C )A .360°B .720°C .1080°D .1440°3.(2010淮安)若一个多边形的内角和小于其外角和,则这个多边形的边数是( A )A .3B .4C .5D .64.(2009宁波)如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( D ) A .110° B .108° C .105° D .100° 5.n 边形每个内角都等于150°,那么这个n 边形是( D )A .九边形B .十边形C .十一边形D .十二边形6.已知任意多边形的外角和都是360°,若一个多边形的内角和是外角和的2倍,则这个多边形是( C )A . 四边形B . 五边形C . 六边形D . 八边形7.下列说法:⑴四边形中四个内角可以都是锐角;⑵ 四边形中四个内角可以都是钝角;⑶ 四边形中四个内角可以都是直角;⑷ 四边形中四个内角最多可以有两个钝角;⑸四边形中最多可以有两个锐角;其中正确的是( )A 、1个B 、2个C 、3个D 、4个8.若多边形的边数由3增加到n (n 为正整数),则其外角和的度数( C )A 、增加B 、减少C 、不变D 、不能确定9.(2010郴州)如图3,一个直角三角形纸片,剪去直角后,得到一个四边形,则12∠+∠= 270 度.10.(2010桂林)正五边形的内角和等于__540_°.11.(2010株洲)已知一个n 边形的内角和是1080°,则n= 8 .12.(2010 泉州 )已知一个多边形的内角和等于900°,则这个多边形的边数是 7 .13.(2010徐州)若正多边形的一个外角是45°,则该正多边形的边数是___8____.14.(2010芜湖)一个正多边形的每个外角都是36°,这个正多边形的边数是___十__.15.多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有 9 条.16.从多边形一个顶点可作17条对角线,则这个多边形内角和为 3240 度.17.n 边形的边数增加1条,其内角增加 180 度,对角线增加 n-1 条.211 2 3 4 D C B A E决胜中考篇18.如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是( C )A.2008 B.2009 C.2010 D.201119.一个多边形的外角不可能都等于( C )A 、30°B 、40°C 、50°D 、60°20.一多边形除一内角外,其余各内角之和为2570°则这个内角等于 130° .21.(2010江西)一大门的栏杆如图所示,BA 垂直于地面AE 于A ,CD 平行于地面AE ,则∠ABC +∠BCD = 270°.22.(2009嘉兴)在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.解:设∠A= x (度),则∠B=x+20,∠C=2x .根据四边形内角和定理得,x+(x+20)+2x+60=360.解得,x=70.∴∠A=70°,∠B=90°,∠C=140°.23.如图,求∠A+∠B+∠C+∠D+∠E+∠F 的度数.解:360°.24.小明和小华一起做功课,小明对小华说:“我给出一道题给你做做!一个多边形各内角都等于72°,求这个多边形的边数.”小华想了又想,答不出来,他灵机一动,对小明说:“我也考考你,一个凸四边形的四个内角的度数比为1∶2∶3∶8,求这个四边形四个内角的度数.”小明想了想说:“你这道题出错了!”小华马上反击道:“你才出错了呢!”他俩说得对吗?若题目正确,请给出回答;若题目不正确,试改变题目中数据使其变成正确的题目,并给出解析.解:他俩说得都不对,可改为:各内角都等于108°,四个内角之比为3∶4∶5∶6 C B ┅25.(2010晋江)将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD,则∠BAD的大小是__72___度.26.已知一个多边形切去一个角后所得多边形的内角和是1980°,求这个多边形的边数.解:多边形切去一个角,所切的方式可能有以下几种情况:①如图1,切线过点A1,A3把A2切掉,此时所得的多边形为n-1边形;此时[(n-1)-2]×180°=1980 °,n=14;②如图2,切点过点A1与A2A3边上一点,此时所得多边形仍是n边形,此时(n-2)×180°=1980°,n=13;③如图3,切线过A1A2与A2A3上的两点,此时所得多边形为n+1边形,此时[(n+1)-2] ×180°=1980°,n=12.所以这个多边形的边数可能是14或13或12.。
多边形及其内角和(人教版)(含答案)
多边形及其内角和(人教版)试卷简介:本套试卷主要测试学生多边形的内角与外角,考查学生对两个定理的掌握程度,以及学生灵活运用这两个定理解决实际问题的能力,同时测试学生在具体问题中分析条件、有序思考、整合信息、探索思路、有序操作和验证的能力。
一、单选题(共10道,每道10分)1.已知正n边形的一个内角为135°,则边数n的值是( )A.6B.7C.8D.10答案:C解题思路:解法一:正向思维,利用多边形内角和的不同表达建等式求解.第一步:明确正多边形每个内角都相等,均为135°;第二步:根据多边形内角和定理列方程:n·135°=(n-2)·180°,解得n=8,选C解法二:逆向思维,利用多边形外角和求解.第一步:明确正多边形每个外角都相等,均为180°-135°=45°;第二步:利用多边形外角和定理:360°÷45°=8,选C试题难度:三颗星知识点:多边形的内角与外角2.一个多边形的内角和是外角和的2倍,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形答案:C解题思路:第一步:根据题意求出多边形的内角和为720°;第二步:列方程求解:(n-2)·180°=720°,解得:n=6,选C试题难度:三颗星知识点:多边形的内角与外角3.小明在求一个多边形的内角和时,不小心把一个角多加了一次,结果为1500°,则小明多加的那个角的大小为( )A.60°B.80°C.100°D.120°答案:A解题思路:第一步:分析条件,确定思路.由多边形内角和为(n-2)·180°可知,多边形的内角和是180°的倍数,用1500°÷180°,余数即为多加的角的度数.第二步:具体操作.设多加的角为x(0°<x<180°),则(n-2)·180°+x=1500°∵1500°÷180°=8……60°,∴n-2=8,n=10,x=60°,即多加的角为60°,选A试题难度:三颗星知识点:多边形内角和定理4.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是( )A.六边形B.五边形C.四边形D.三角形答案:A解题思路:第一步:理解题意,确定思路;根据题目叙述“剪去”一个角,如何“剪去”需要分类讨论.第二步:具体操作,剪去一个角的方法可能有三种:①经过两个顶点,则少了一条边(如图1);②经过一个顶点和一边,边数不变(如图2);③经过两条邻边,边数增加一条(如图3).分别如图,阴影部分为剪去的部分,剩下图形均为四边形,故选A易错点:一个n边形剪去一个角后,剩下的形状可能是n边形、(n+1)边形或(n-1)边形,故需分类讨论.试题难度:三颗星知识点:多边形的内角与外角5.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )A.5B.5或6C.5或7D.5或6或7答案:D解题思路:第一步:根据多边形内角和定理,求出截去一个角之后多边形的边数.(n-2)·180°=720°,解得:n=6,故截去一个角之后为六边形;第二步:利用上一题的结论:一个n边形剪去一个角后,剩下的图形可能是n边形、(n+1)边形或(n-1)边形,反推原多边形的边数可能为5,6,7,选D.试题难度:三颗星知识点:多边形的内角和定理6.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是( )A.110°B.108°C.105°D.100°答案:D解题思路:第一步:分析条件,设计思路.要求∠AED的度数,只需求出∠5的度数;第二步:设计方案求∠5,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,解得∠5=80°,第三步:求∠AED=180°-∠5=100°,选D.易错点:读题∠1=∠2=∠3=∠4=70°,误以为∠5=70°,缺乏有理有据的推导.试题难度:三颗星知识点:多边形的外角和定理7.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了( )米.A.8B.9C.10D.12答案:A解题思路:第一步:分析图形,理解题意.每走1米,左转,最后形成的图形应为正多边形.题目要求走了多少米,需先求正多边形的边数,根据路程=边数×边长,只需求边数n.第二步:整合信息,设计思路.题目中45°角可以看出正多边形的外角,利用正多边形的外角和定理,可以直接求出边数为n=360°÷45°=8.第三步:回到求解目标.走过的路程等于8×1=8米,选A试题难度:三颗星知识点:多边形的外角和定理8.在多边形的内角中,锐角的个数最多有( )A.1个B.2个C.3个D.4个答案:C解题思路:本题考查逆向思维的能力.第一步:分析条件,探索思路.题目中多边形的边数未知、角度未知,故内角和也未知,直接分析比较困难.需寻找不变特征,即多边形的外角和为360°.第二步:逆向思维,设计方案.要确定多边形内角中锐角最多有几个,只需确定多边形外角中钝角最多有几个.第三步:利用方案解决问题.因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度.由此确定外角中最多有3个钝角,即内角中最多有3个锐角,选C.易错点:很多时候考虑内角不容易考虑的时候,往往从外角作为突破,因为多边形的外角和为360°,这也是数学中往往从固定的量作为突破口的例子.解决方案:如果本套试卷有问题,建议先看课文第一章第3节,同时系统学习视频课:“2013~2014八年级上册数学预习课人教版→第1课初中数学三角形预习课”。
11.3 多边形及其内角和(基础训练)(解析版)
11.3 多边形及其内角和【基础训练】一、单选题1.若一个正多边形的每个内角为144︒,则这个正多边形的边数是()A.7B.10C.12D.14【答案】B【分析】根据多边形的内角和公式,可得答案.【详解】解:设正多边形是n边形,由内角和公式得(n-2)180°=144°×n,解得n=10,故选:B.【点睛】本题考查了多边形内角与外角,由内角和得出方程是解题关键.2.一个正多边形的一个内角是150︒,则这个正多边形的边数为()A.2B.3C.9D.12【答案】D【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:外角是:180°-150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.3.一个n边形的各内角都等于120 ,则n等于()A.5B.6C.7D.8【答案】B【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∵每一个外角都等于180°-120°=60°,∵边数n=360°÷60°=6.故选:B.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.4.如图,在∵ABC中,∵A=90°,若沿图中虚线截去∵A,则∵1+∵2的度数为()A.90°B.180°C.270°D.300°【答案】C【分析】在∵ABC中,利用三角形内角和定理可求出∵B+∵C的度数,再利用四边形内角和为360°,即可求出∵1+∵2的度数.【详解】解:在∵ABC中,∵A=90°,∵A+∵B+∵C=180°,∵∵B+∵C=180°﹣90°=90°,又∵∵1+∵2+∵B+∵C=360°,∵∵1+∵2=360°﹣90°=270°.故选:C.【点睛】本题考查三角形和四边形内角和的性质,熟知:“三角形内角和为180°,四边形内角和为360°”是解答本题的关键.5.下列多边形中,内角和为360°的图形是()A.B.C.D.【答案】B【分析】若多边形的边数是n,则其内角和计算公式为(n﹣2)•180°,据此进行解答即可.【详解】解:由多边形内角和公式可得,(n﹣2)•180°=360°,解得n=4,是四边形,故选择B.【点睛】本题考查了多边形的内角和计算,牢记其公式是解题关键.6.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是()A.5边形B.6边形C.7边形D.8边形【答案】D【分析】设多边形的边数是n,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n,则180(n﹣2)=3×360,解得:n=8.故选:D.【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.7.某校初一数学兴趣小组对教材《多边形的内角和与外角和》的内容进行热烈的讨论,甲说:“∵∵∵∵∵∵∵∵∵1,则内角和增加180°”;乙说:“∵∵∵∵∵∵∵∵∵1,则外角和增加180°”;丙说:“∵∵∵∵∵∵∵∵∵∵∵∵∵∵”;丁说:“∵∵∵∵∵∵,外角和都是360°”∵∵∵∵∵∵∵∵( )A .甲和丁B .乙和丙C .丙和丁D .以上都不对【答案】A【分析】根据多边形的内角和与外角和逐个判断即可.【详解】多边形的内角和公式为180(2)n ︒-,n 为多边形的边数当n 增加1,则内角和增加180︒,甲说法正确任意多边形的外角和都等于360︒,则乙说法错误,丁说法正确当3n =时,多边形的内角和为180︒,外角和为360︒,则丙说法错误综上,说法正确的是甲和丁故选:A .【点睛】本题考查了多边形的内角和与外角和,熟记多边形的内角和与外角和是解题关键.8.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若1∠,2∠,3∠,4∠相邻的外角的和等于210,则BOD ∠的度数是( )A .30B .35C .40D .45【答案】A【分析】 由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为210°,∵∵1+∵2+∵3+∵4+210°=4×180°,∵∵1+∵2+∵3+∵4=510°,∵五边形OAGFE 内角和=(5−2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD=540°,∵∵BOD=540°−510°=30°,故选A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键.9.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形B.九边形C.十边形D.十二边形【答案】C【分析】设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.【点睛】本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.10.五边形的外角和等于()A.180°B.360°C.540°D.720°【答案】B【详解】根据多边形的外角和等于360°解答.解:五边形的外角和是360°.故选B.本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.11.在某广场整修工程中,计划采用同一种正多边形地板砖铺设地面.则下列满足要求的地板砖是()A.正五边形B.正六边形C.正七边形D.正八边形【答案】B【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【详解】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∵用同一种正多边形铺满地面,则可供选择的正多边形是正六边形.故选:B.【点睛】此题主要考查了平面镶嵌,用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.12.一个多边形的内角和是外角和的2倍,这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.【详解】解:设多边形的边数为n,由题意得,(n-2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选:D.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.13.一个五边形截去个角后剩下的多边形内角和是()A.360︒B.540︒C.720︒D.360︒或540︒或720︒【答案】D【分析】一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;然后分别求出每一种情况下的多边形的内角和.【详解】解:一个五边形剪去一个角后,分三种情况:∵边数可能减少1,∵边数可能增加1,∵边数可能不变;∵四边形的内角和为:360°;∵六边形的内角和为:(6-2)×180°=720°;∵五边形的内角和为:(5-2)×180°=540°;故选D.【点睛】此题主要考查了多边形内角和公式,解题的关键是:根据题意,讨论出剪去一个角后的各种情况.∠+∠=()14.如图三角形纸片,剪去60︒角后,得到一个四边形,则12A.120︒B.180︒C.240︒D.300︒【答案】C【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∵1+∵2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∵1,∵2后的两角的度数为180°-60°=120°,则根据四边形的内角和定理得:∵1+∵2=360°-120°=240°.故选:C.【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360°及三角形的内角和为180°.15.一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A .360°B .1080°C .1260°D .1440°【答案】D【分析】 根据外角和以及每一个外角确定出多边形的边数,即可求出内角和.【详解】解:根据题意得:360°÷36°=10,(10-2)×180°=1440°,则该多边形的内角和等于1440°,故选:D .【点睛】此题考查了多边形的内角与外角,熟练掌握各自的性质是解本题的关键.16.如图,B E F ∠+∠+∠等于( )A .360°B .335°C .385°D .405°【答案】C【分析】根据多边形的内角和公式解答即可.【详解】解:由多边形的内角和公式可得:()62180720-⨯︒=︒,∵72012012590385B E F ∠+∠+∠=︒-︒-︒-︒=︒,【点睛】本题考查多边形的内角和,掌握多边形的内角和公式是解题的关键.17.下列说法中,正确的个数有()∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°;∵三角形的外角大于与它不相邻的任意一个内角;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°;A.1个B.2个C.3个D.4【答案】C【分析】分别根据三角形的三边关系,三角形的内角和定理,三角形的外角性质以及多边形的内角和公式逐一判断即可.【详解】解:∵若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;∵一个三角形中,至少有一个角不小于60°,说法正确;∵三角形的外角大于与它不相邻的任意一个内角,说法正确;∵一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确.所以正确的个数有3个.故选:C.【点睛】本题主要考查了三角形的三边关系,三角形的内角和定理,多边形的内角与外角以及三角形的外角性质,熟记相关知识是解答本题的关键.18.一个多边形的每个内角都相等,已知它的一个外角为20°,那么这个多边形是一个()A.正十八边形B.正十六边形C.正十四边形D.正十二边形【答案】A【分析】根据多边形的外角和为360°,而多边形每个外角都等于20°,可求多边形外角的个数,确定多边形的边数.解:∵多边形的外角和为360°,360°÷20°=18,∵这个多边形是正十八边形,故选:A.【点睛】本题考查了多边形内角与外角.关键是利用多边形的外角和为360°的性质,求多边形的边数.19.科技馆为某机器人编制了一个程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.12米B.16米C.18米D.20米【答案】C【分析】先判断出机器人所走过的路线是正多边形,然后用多边形的外角和除以每一个外角的度数求出多边形的边数,再根据周长公式列式进行计算即可得解.【详解】解:根据题意得,机器人所走过的路线是正多边形,∵每一次都是左转20°,∵多边形的边数=360°÷20°=18,周长=18×1=18(米),故选:C.【点睛】本题考查了多边形的内角与外角,判断出走过的路线是正多边形是解题的关键.20.如图,有一个正五边形木框,若要保证它不变形,需要再钉的木条根数至少是()A.1B.2C.3D.4【答案】B【分析】根据三角形具有稳定性,钉上木条后把五边形分成三角形即可.【详解】解:如图,要保证它不变形,至少还要再钉上2根木条.故选:B.【点睛】本题考查了三角形具有稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.21.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.22.若一个多边形的每个内角都等于160°,则这个多边形的边数是()A.18B.19C.20D.21【答案】A【分析】设多边形的边数为n,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n,由题意得,(n−2)•180=160•n,解得:n=18,故选:A.【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.23.如图,在五边形ABCDE中,AB∵CD,∵A=135°,∵C=60°,∵D=150°,则∵E的大小为()A.60°B.65°C.70°D.75°【答案】D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB∵CD得到∵B+∵C=180°,即可求出∵E的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB∵CD,∵∵B+∵C=180°,∵∵E=540°-∵A-∵B-∵C-∵D=540°-135°-180°-150°=75°.【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.24.如图,四边形ABCF ≅四边形EDCF ,若150AFC DCF ∠+∠=︒,则A B D E ∠+∠+∠+∠的大小是( )A .240︒B .300︒C .420︒D .460︒【答案】C【分析】 根据全等的性质得到300AFE BCD ∠+∠=,再根据六边形的内角和即可求解.【详解】解:∵四边形ABCF ≅四边形EDCF ,150AFC DCF ∠+∠=,∵150EFC DCF ∠+∠=,∵300AFE BCD ∠+∠=.又∵六边形的内角和为()62180720-⨯=,∵720300420A B D E ∠+∠+∠+∠=-=.故选C .【点睛】此题主要考查多边形的角度求解,解题的关键是熟知多边形的内角和的求解公式.25.如图的七边形ABCDEFG 中,AB 、ED 的延长线相交于O 点.若图中1∠、2∠、3∠、4∠的外角的角度和为220︒,则BOD ∠的度数为( )A .40︒B .35︒C .80︒D .20︒【答案】A【分析】 根据外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∵BOD .【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE 内角和=(5﹣2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°﹣500°=40°.故选:A.【点睛】本题主要考查的是多边形内角与外角的知识点,熟练掌握多边形内角与外角的关系是本题的解题关键. 26.一副三角板如图所示摆放,则α∠与β∠的数量关系为( )A .180αβ∠+∠=︒B .225αβ∠+∠=︒C .270αβ∠+∠=︒D .αβ∠=∠【答案】B【分析】先根据对顶角相等得出1α∠=∠,2β∠=∠,再根据四边形的内角和即可得出结论【详解】解: ∵219045360∠+∠++=︒︒︒;∵21225∠+∠=︒;∵1α∠=∠,2β∠=∠;∵225αβ∠+∠=︒故选:B【点睛】本题考查了四边形的内角和定理,和对顶角的性质,熟练掌握相关的知识是解题的关键27.如图,已知∵ABC 为直角三角形,90B ∠=︒,若沿图中虚线剪去∵B ,则∵1+∵2等于( )A .315°.B .180°C .270°D .135°.【答案】C【分析】 根据三角形的内角和定理及四边形的内角和定理进行计算即可得解.【详解】∵90B ∠=︒,180A B C ∠+∠+∠=︒,∵90A C ∠+∠=︒,∵12360A C ∠+∠+∠+∠=︒,∵1236090270∠+∠=︒-︒=︒,故选:C.【点睛】本题主要考查了三角形的内角和定理及四边形的内角和定理,熟练掌握相关角的计算是解决本题的关键. 28.如图,∵1,∵2,∵3是五边形ABCDE 的3个外角,若∵A+∵B =220°,则∵1+∵2+∵3=( )A.140°B.180°C.220°D.320°【答案】C【分析】根据∵A+∵B=220°,可求∵A、∵B的外角和,再根据多边形外角和360°,可求∵1+∵2+∵3的值.【详解】解:根据∵A+∵B=220°,可知∵A的一个邻补角与∵B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∵1+∵2+∵3=360°﹣140°=220°.故选C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.29.如图,五边形ABCDE中,AB∵CD,∵1、∵2、∵3分别是∵BAE、∵AED、∵EDC的外角,则∵1+∵2+∵3等于A.90°B.180°C.210°D.270°【答案】B【详解】试题分析:如图,如图,过点E作EF∵AB,∵AB∵CD ,∵EF∵AB∵CD ,∵∵1=∵4,∵3=∵5,∵∵1+∵2+∵3=∵2+∵4+∵5=180°,故选B30.已知一个多边形的内角和等于900º,则这个多边形是( ∵A .五边形B .六边形C .七边形D .八边形【答案】C【详解】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.二、填空题31.如图:在六边形ABCDEF 中,//,//,//,150AB DE BC EF CD AF A ∠=︒,则C E ∠+∠=__________.【答案】210°【分析】连接DE ,利用平行线的性质证明∵ABC =∵DEF ,∵A =∵D ,∵C =∵F ,再计算出六边形内角和,结合∵A 的度数可得结果.【详解】解:如图,连接DE,∵AB∵DE,BC∵EF,∵∵1=∵2,∵3=∵4,∵∵1+∵4=∵2+∵3,即∵ABC=∵DEF,同理:∵A=∵D,∵C=∵F,∵∵A+∵C+∵D+∵F+∵ABC+∵DEF=(6-2)×180°=720°,∵∵A+∵C+∵DEF=360°,∵∵A=150°,∵∵C+∵DEF=210°,故答案为:210°.【点睛】本题考查了平行线的性质,多边形内角和,作出辅助线,证明∵ABC=∵DEF是解题的关键.∠+∠+∠+∠+∠+∠=______.32.一个不规则的图形如右图所示,那么A B C D E F【答案】360°【分析】根据三角形外角的性质,可得∵1与∵E、∵AFE的关系,∵1、∵2、∵D的关系,根据多边形的内角和公式,可得答案.【详解】解:如图延长AF交DC于G点,由三角形的外角等于与它不相邻的两个内角的和,得∵1=∵E+∵AFE,∵2=∵1+∵D,等量代换,得∵2=∵E+∵F+∵D,∵A+∵B+∵C+∵D+∵E+∵AFE=∵A+∵B+∵2+∵C=(4﹣2)×180°=360°.故答案为:360°.【点睛】本题考查的是三角形外角的性质及四边形的内角和,熟知三角形外角的性质和多边形内角和公式是解答此题的关键.33.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∵1、∵2、∵3、∵4的外角的角度和为220°,则∵BOD的度数为__________.【答案】40【分析】由外角和内角的关系可求得∵1、∵2、∵3、∵4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∵BOD.【详解】解:∵∵1、∵2、∵3、∵4的外角的角度和为220°,∵∵1+∵2+∵3+∵4+220°=4×180°,∵∵1+∵2+∵3+∵4=500°,∵五边形OAGFE内角和=(5-2)×180°=540°,∵∵1+∵2+∵3+∵4+∵BOD =540°,∵∵BOD =540°-500°=40°,故答案为:40°.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∵1、∵2、∵3、∵4的和是解题的关键. 34.一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的内角和是______.【答案】1260°【分析】设这个正多边形的外角为x ,则内角为5x ﹣60,根据内角和外角互补可得x +5x ﹣60=180,解可得x 的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n ﹣2)×180°计算内角和即可.【详解】解:设这个正多边形的外角为x ,则内角为5x ﹣60°,由题意得:x +5x ﹣60=180,解得:x =40,360°÷40°=9.(9﹣2)×180°=1260°故答案为:1260°.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.35.如图,一个直角三角形纸板的直角边,AC BC 分别经过正八边形的两个顶点,则图中12∠+∠=____【答案】180º【分析】利用∵C=90︒,求得∵3+∵4=90︒,利用公式求出正八边形的每个内角的度数=(82)1801358-⨯︒=︒,即可求出答案.【详解】解:如图,∵∵C=90︒,∵∵3+∵4=90︒,∵正八边形的每个内角的度数=(82)1801358-⨯︒=︒,∵∵1+∵2=135290︒⨯-︒=180︒,故答案为:180︒.【点睛】此题考查直角三角形两锐角互余的性质,正多边形内角和公式,熟记正多边形内角和公式是解题的关键.三、解答题36.一个正多边形的一个外角的度数等于它的一个内角度数的13,求这个正多边形的边数.【答案】8【分析】首先设正多边形的一个外角等于x°,则内角为3x°,即可得方程:x+3x=180,解此方程得到外角度数,再根据外角和求边数即可.【详解】解:设正多边形的一个外角等于x°,∵外角等于它的一个内角的13,∵这个正多边形的一个内角为:3x°,∵x+3x=180,解得:x=45,∵这个多边形的边数是:360°÷45°=8.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.37.一个多边形的内角和比外角和的13多780︒,它是几边形?【答案】它是七边形【分析】根据多边形的内角和公式(n-2)•180°和外角和等于360°列方程求解即可.【详解】解:设这个多边形边数为n,依题意得:()121803607803n-⋅︒=︒⨯+︒,解得:7n=,答:它是七边形.【点睛】本题考查了多边形的内角和与外角和,只要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.38.(1)计算:()2 031220183-⎛⎫+---⎪⎝⎭(2)若一个多边形的内角和与它的外角和相等,求这个多边形边数.【答案】(1)0;(2)4.【分析】(1)先分别计算乘方,再计算加减法.(2)多边形内角和公式为(2)180n-⨯,外角和为360,由此设边数列方程解答即可.【详解】(1)()2031220183-⎛⎫+--- ⎪⎝⎭ =8+1-9=0;(2)设这个多边形的边数为n ,(2)180360n -⨯=,n=4,.【点睛】此题(1)考查实数的运算,正确理解正指数幂、零次幂、负指数幂的计算方法是解题的关键;(2)考查多边形的内角和公式与外角和,熟记公式即可正确列式计算.39.已知n 边形的内角和()2180n θ=-⨯︒.(1)当900θ=︒时,求出边数n ;(2)小明说,θ能取800︒,这种说法对吗?若对,求出边数n ;若不对,说明理由.【答案】(1)7n =;(2)不能取800︒.∵∵∵∵∵.【分析】(1)将900θ=︒代入内角和公式计算即可得;(2)将800θ=︒代入内角和公式计算n 的值,如果n 是正整数,则说法对;如果n 不是整数,则说法不对.【详解】(1)()9002180n ︒=-⨯︒,整理得25n -=,解得7n =;(2)小明的说法不对,理由如下:当θ取800︒时,()8002180n ︒=-⨯︒,解得589n = n 为正整数,θ∴不能取800︒.【点睛】本题考查了多边形的内角和公式,依据题意正确求解是解题关键.40.如图,已知四边形ABCD 中,∵A=∵D ,∵B=∵C ,试判断AD 与BC 的关系,并说明理由.【答案】AD∵BC ,理由见解析【分析】根据四边形的内角和是360°,结合已知条件得到∵A+∵B=180°,根据同旁内角互补,两直线平行得AD∵BC .【详解】解:AD 与BC 的关系是:AD∵BC .理由:∵四边形ABCD 的内角和是360°,∵∵A+∵B+∵C+∵D=360°,∵∵A=∵D ,∵B=∵C ,∵∵A+∵B+∵B+∵A=360°,∵∵A+∵B=180°,∵AD∵BC (同旁内角互补,两直线平行).【点睛】本题考查四边形的内角和,平行线的判定,解题的关键是熟记四边形的内角和是360°.41.如图,在∵ABC 中,AB =AC ,BD 、CE 是高,BD 与CE 相交于点O .(1)求证:OB =OC ;(2)若∵BAC =80°,求∵BOC 的度数.【答案】(1)见解析;(2)∵BOC =100°.【分析】(1)证明∵ABD∵∵ACE (AAS ),即可得出BD =CE ;(2)利用四边形内角和定理即可解决问题;【详解】(1)证明:∵BD 、CE 是高,∵∵ADB =∵AEC =90°,在∵ABD 和∵ACE 中,ADB AEC BAD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∵ABD∵∵ACE(AAS),∵BD=CE.(2)解:∵∵A=80°,∵ADB=∵AEC=90°,∵∵BOC=360°﹣∵BAC﹣∵AEC﹣∵ADB,=360°﹣80°﹣90°﹣90°=100°.【点睛】本题考查全等三角形的判定和性质、四边形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.42.画出图中多边形的所有对角线。
人教版-数学-七年级下册-【】人教版数学 多边形及其内角和 课后拓展训练
新思维系列人教版数学七年级下7.3多边形及其内角和课后拓展训练1.四边形ABCD中, ∠A+∠C=∠B+∠D, ∠A的外角为120°,则∠C的度数为( )A.30°B.60°C.90°D.120°2.若四边形ABCD中,∠A: ∠B: ∠C: ∠D=1:2:4:5,则∠A与∠D的度数分别为( )A.15°,75°B.20°,100°C.30°,120°D.30°,150°3.如果一个多边形的每一个外角都是锐角,那么这个多边形的边数一定不小于( )A.3B.4C.5D.64.每个内角都为144°的多边形为________边形.5.多边形的内角中最多有__________个锐角,最多有________个直角.6.如果一个多边形的每一个外角都相等,并且它的内角和为2880°,那么它的一个内角为_______.7.如果一个多边形增加一条边,那么它的内角和增加______度;减少一条边,内角和减少______度.如果一个多边形减少一条边后内角和为2160°,那么原来多边形的边数是_____.8.一个多边形只截去一个角,形成另一个多边形的内角和为2520°,则原多边形的边数为______(截线不经过顶点).9.如果一个多边形的各内角都相等,且每个内角都大于135°,那么这个多边形的边数最少为_______,最多为_______.10.如图7-56所示, ∠A+∠B+∠C+∠D+∠E+∠F的度数为________.11.一个多边形的每个外角都是45°,那么这个多边形的内角和为________.12.六边形中的四个内角的度数和为600°,另两个内角相等,则与另外两个内角相邻的外角的度数均为_________.13.一个多边形除一个内角外,其余各内角之和是2570°,则这一内角的度数为________.参考答案1.D2.D3.C4.十5.3 46.160°7.180 180 158.159.9 无数条(大于8)10.360°11.1080°12.120°13.130°。
多边形及其内角和练习题(含答案)
9.2 多边形的内角和与外角和练习一一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是______.2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是___.6.用正n边形拼地板,则n的值可能是_______. 二、选择题7.一个多边形的内角和是720°,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( ) A.5 B.6 C.7 D.89.若正n边形的一个外角为60°,则n的值是( ) A.4 B.5 C.6 D.810.下列角度中,不能成为多边形内角和的是( )A.600°B.720°C.900°D.1080°11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )A.八边形B.十边形C.十二边形D.十四边形12.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形三、解答题13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.11.3 多边形及其内角和16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的2/3, 求这个多边形的边数及内角和.17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边形?最少是几边形?21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.21.下列地板是由正方形、正六边形、正十二边形拼成的,试说明由这三种正多边形能拼地板的理由.22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°求各内角的度数.23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少1.四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80° B.90° C.170° D.20°2.一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.63.内角和等于外角和2倍的多边形是() A.五边形B.六边形C.七边形D.八边形4.六边形的内角和等于_______度.5.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.6.如图,你能数出多少个不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?•为什么?8.求下列图形中x的值:综合创新作业9.(综合题)已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,•DF平分∠ADC.BE与DF有怎样的位置关系?为什么?10.(应用题)有10个城市进行篮球比赛,每个城市均派3个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场,问按此规定,•所有代表队要打多少场比赛?11.(创新题)如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.12.(1)(2005年,南通)已知一个多边形的内角和为540°,则这个多边形为()A.三角形 B.四边形 C.五边形 D.六边形(2)(2005年,福建泉州)五边形的内角和等于_______度.13.(易错题)一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角(• )A.1个 B.2个 C.3个 D.4个14.(探究题)(1)四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?……猜想并探索:n边形有几条对角线?(2)一个n边形的边数增加1,对角线增加多少条?15.(开放题)如果一个多边形的边数增加1,•那么这个多边形的内角和增加多少度?若将n边形的边数增加1倍,则它的内角和增加多少度?攻其不备壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B•处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图7-3-5.结果,•壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?答案:1.A 点拨:∠B=360°-(∠A+∠C+∠D)=360°-280°=80°.故选A.2.B 点拨:设这个多边形的边数为n,则(n-2)·180=1080.解得n=8.故选B.3.B 点拨:设这个多边形的边数为n,根据题意,得(n-2)·180=2×360.解得n=6.故选B.4.7205.144°;36°点拨:正十边形每一个内角的度数为:(102)18010-⨯︒=144°,每一个外角的度数为:180°-144°=36°.6.有27个不同的四边形.7.解:四边形的四个内角不可以都是锐角,不可以都是钝角,可以都是直角.因为四边形的内角和为360°,如果四个内角都是锐角或都是钝角,•则内角和小于360°或大于360°,与四边形的内角和为360°矛盾.•所以四个内角不可以都是锐角或都是钝角.若四个内角都是直角,则四个内角的和等于360°,与内角和定理相符,所以四个内角可以都是直角.8.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180-x)=360.解得x=65.(3)x+(x+30)+60+x+(x-10)=(5-2)×180.解得x=115.9.解:BE∥DF.理由:∵∠A=∠C=90°,∴∠A+∠C=180°.∴∠ABC+∠ADC=360°-180°=180°.∵∠ABE=12∠ABC,∠ADF=12∠ADC,∴∠ABE+∠ADF=12(∠ABC+∠ADC)=12×180°=90°.又∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF(同位角相等,两直线平行).10.解:12n(n-3)=12×10×(10-3)=12×10×7=35(场).答:按此规定,所有代表队要打35场比赛.点拨:问题类似于求多边形对角线的个数.11.解:(5-2)×180°÷360°×12=1.5.点拨:不能直接求出扇形的度数,用整体法圆与五边形重合部分的角度和正好是五边形的内角和.12.(1)C 点拨:设这个多边形的边数为n,依题意,得(n-2)×180°=540°,解得n=5,故选C.(2)540 点拨:(n-2)×180°=(5-3)×180°=540°.13.C 14.解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;…… n边形有(3)2n n-条对角线.(2)当n边形的边数增加1时,对角线增加(n-1)条.点拨:从n边形的一个顶点出发,向其他顶点共可引(n-3)条对角线,n个顶点共可引n(n-3)条,但这些对角线每一条都重复了一次,故n边形的对角线条数为(3)2n n-.15.180°,n·180°.是最短的路程.可用纸板做一个模型,沿AB剪开便可看出结论.。
人教版(数学试卷七年级)多边形及其内角和练习题及答案及答案1
7.3 多边形及其内角和(检测时间50分钟 总分值100分) 一、选择题:(每题3分,共24分) 1.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D.4个 2.不能作为正多边形的内角的度数的是( ) A.120 B.(128)°C.144 D.145°3.假设一个多边形的各内角都相等,那么一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有( )A.3个 B.4个 C.5个 D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角可能( ) A.都是钝角; B.都是锐角 C.是一个锐角、一个钝角 D.是一个锐角、一个直角 6.假设从一个多边形的一个顶点出发,最多可以引10条对角线,那么它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形7.假设一个多边形共有十四条对角线,那么它是( ) A.六边形 B.七边形 C.八边形 D.九边形 8.假设一个多边形除了一个内角外,其余各内角之和为2570°,那么这个内角的度数为( ) A.90° B.105° C.130° D.120° 二、填空题:(每题3分,共15分) 1.多边形的内角中,最多有________个直角. 2.从n 边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形. 3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________. 4.一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,那么这个多边形的边数为_________. 5.每个内角都为144°的多边形为_________边形. 三、根底训练:(每题12分,共24分) 1.如下图,用火柴杆摆出一系列 三角形图案,当摆到20层(n=20)时,需要多少 根火柴?2.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n 是互质的正整数,求这个多边形的边数(用m,n 表示)及n 的值.五、探索发现:(共18分) 从n 边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n 边形共有多少条对角线. 六、中考题与竞赛题:(共4分) (2002·湖南)假设一个多边形的内角和等于1080°,那么这个多边形的边数是( ) A.9 B.8 C.7 D.6 镶嵌47(检测时间50分钟 总分值100分) 一、选择题:(每题3分,共18分) 1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( ) A.等腰三角形 B.正方形 C.正五边形 D.正六边形 2.以下图形中,能镶嵌成平面图案的是( ) A.正六边形 B.正七边形 C.正八边形 D.正九边形 3.不能镶嵌成平面图案的正多边形组合为( ) A.正八边形和正方形 B.正五边形和正十边形 C.正六边形和正三角形 D.正六边形和正八边形 4.如下图,各边相等的五边形ABCDE 中,假设∠ABC=2∠DBE,那么∠ABC 等于( ) A.60° B.120° C.90° D.45° 5.用正三角形和正十二边形镶嵌,可能情况有( ) A.1种 B.2种 C.3种 C.4种6.用正三角形和正六边形镶嵌,假设每一个顶点周围有m 个正三角形、n 个正六边形,那么m,n 满足的关系式是( )A.2m+3n=12B.m+n=8C.2m+n=6D.m+2n=6二、填空题:(每题4分,共12分) 1.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形. 2.用正多边形镶嵌,设在一个顶点周围有m 个正方形、n 个正八边形,那么m=_____,n=______.3.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能〞或“不能〞)三、根底训练:(每题15分,共30分)1.计算用一种正多边形拼成平整、无隙的图案,你能设计出几种方案?画出草图.2.用一个正方形、一个正五边形、一个正二十边形能否镶嵌成平面图案? 说明理由.四、提高训练:(共15分) 请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案?五、探索发现:(共15分)如图2所示的地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无隙的地面? (2)像上面那样铺地砖,能否全用正十边形的材料?为什么? (3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图. 六、中考题竞赛题:(共10分) 用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成假设干个图案.(1)第四个图案中有白色地砖_______块; (2)第n 个图案中有白色地砖________块. 答案:一、1.C 2.A 3.C 4.A 5.A 6.D 二、1.2 2 4 1 2.1 2 3.不能 三、略 四、略 五、(1)每个顶点周围有6个正三角形的内角,恰好组成一个周角.(2)不能,因为正十边形的内角不能组成360°.(3)能(图略) E D C B A六、(1)18 (2)4n+2.答案:一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C 二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十 三、1.630根 2.15四、边数为,n=1或2. 五、(n-3)条 六、B.2()m n n +(3)2n n -。
七年级数学下册 多边形的内角和配套练习 新人教版
多边形的内角和(3)练习
一、选择题
1若正n边形的一个外角为60°,则n的值是
A 4
B 5
C 6
D 8
2.一个多边形的外角和是内角和的一半,则它的边数()
A.7 B.6
C.5 D.4
3.一个多边形的内角和与外角和为540°,则它的边数()
A.5 B.4
C.3 D.不确定
8一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是
.6 C
二、填空题
1(1)多边形的外角和等于
(2)若一多边形的内角和等于它的外角和,则它为______
2 一个多边形的每个外角都等于30°,则这个多边形边数是______
3 n边形的外角和与内角和的度数之比为2:7,则边数为_______
4如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为
三、解答题
1一个多边形的每一个外角都等于45°,求这个多边形的内角和
2已知一个多边形的内角和与外角和的差为900°,求这个多边形的边数
3一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的 , 求这个多边形的边数及内角和
4一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数
一、C B C C
二、1、360°、四边形 2、12 3、9 4、5:3:1
三、1、1080°
2、9
3、五边形、540°
4、80°、八边形。
七年级数学下册《多边形及其内角和》同步练习1人教新课标版
7. 3多边形及其内角和选择题1、一个多边形的内角和是14400,这个多边形的边数是()A 7 B8 C9 D102、下面哪一个角度是某个多边形的内角和()A 270 0B 560 0 C1800 0 D1900 03、一个多边形每个外角都等于45°,这个多边形的内角和是()A6750 B1080 C 120 0D1304、一个n边形除了一个内角外,其余各内角之和是2570 0,则这个角等于(A900B15 C120 D1305、下列正多边形地砖中不能铺满地面的正多边形是()A正三角形B正四边形C正五边形D正六边形6、能够铺满地面的正多边形组合是()A正八边形和正方形B正五边形和正十边形C正方形和正六边形D正四边形和正七边形7、下图各图形不能铺满地面的是()A菱形B 圆C 正六边形 D 任意四边形填空题&四边形最少有_________ 个钝角,最多有 _____ 个钝角9、一个多边形每增加一条边,它的内角和增加__________ ,外角和增加_______10、一个七边形,有三个内角是直角,另外四个角都等于m则m=11、如果一个多边形的每一个外角都等于300,那么这个多边形是_______ 边形,它的内角和等于112、如果一个多边形的内角和等于外角和的2-倍,那么这个多边形是 _______ 边形,过这个多边形的2一个顶点可画 _______ 条对角线13、正五边形的每一个角都是 _____ 而一个周角为______ , 360不是108的整数倍,所以用正五边形_铺满地面14、正多边形中有的能够用来铺设地面,有的则不行,一般是,当正多边形的每一个内角是周角3600的 ____ 时,能够铺设15、设在一个顶点周围,围有m(m>0)个正三角形,n (n> 0)个正六边形,刚好无空隙,贝U m+n= 解答题16、如图,求/ A+Z B+Z C+Z D+Z E+Z F+Z G+Z H+Z K的度数17、已知:如图,四边形ABCD中,Z A=Z C=90°, BE, DF分别平分Z B,Z D,你判断BE// DF吗?AF18、某单位的地板由三种正多边形铺成,设这三种多边形的边数分别为x、y、z,1 1 1求的值x y z参考答案:1.D2. C3. B4. D5. C6. C7.B8.0;1 9. 180° , 0 °10. 157.511. 12; 1800O12. 七;四13. 108° ;360 °;不能14.约数15. 416. 540O17. BE//DF18.。
初一多边形及其内角和训练题人教版.doc
I•一个多边形的外角中.钝角的个数不可能是a >1. I个■. 2个C. 7个4个2•若一个多边形的内角和等于i»w ,则这个多边形的边数是a >1. q B.S B.b九若一个多边形的各内角都相毫则一个内角与一个外角的度数之比不可能是4 >1.2:1 I. 1:1 C.Sd B.S:44•一个多边形的内角电锐角的个数最多有4 >1.7个・.4个C.•个个S.四边形电如果有一组对角都是直鬼那么另一组对角可能< >1»都是钝角I 1.都是锐角C是一个锐角、一个钝角■是一个锐角、一个直角S若从一个多边形的一个顶点出发,最多可以引I•条对角线,则它是4 > 1•十三边形■•十二边形C十一边形■十边形T•若一个多边形除了一个内角处,其余各内角之和为2F»,则这个内角的度数为C >L I. NS° C. 09° B. I2T1.名边形的内角中一最名有个首角.亂从■边形的一个顶点出彪最多可以引______ 条对角线.这些对角线可以将这个多边形分成_______ 个三角形.I••如果一个多边形的每一个内角都相笔且每一个内角都大于1»,那么这个多边形的边数最少为_______ ・IL已知一个多边形的每一个外角都相竜一个内角与一个外角的度数之比为9込则这个多边形的边数为 _______ ・12•每个内角都为144°的多边形为_______ 边形13•—个三角形三个内角度数的比是2: 5: 4,那么这个三角形是_______ 三角形。
14.在△!>€ 中,Zl-Zi=3b° , ZC=2Z1,则, Zl= _______ ,ZC= _____ o15.多边形的每个内角都是每个外角的4倍,则这个多边形的边数是____ oK*.如果一个多边形的内角和是它外角和的3倍,那么那么这个多边形是—边形。
初中数学:多边形的内角和测试题(含答案)
初中数学:多边形的内角和测试题(含答案)总分100分时间40分钟一、选择题(每题5分)1、四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°【答案】A【解析】试题分析:根据四边形的内角和是360°,所以∠B的度数是360°-280°=80°. 解:根据多边形内角和公式可得:∠A+∠B+∠C+∠D=360°,∴∠B=360°-(∠A+∠C+∠D),∵∠A+∠C+∠D=280°,∴∠B=80°.故应选A.考点:多边形的内角和2、内角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形【答案】B【解析】试题分析:设多边形的边数是x,根据多边形的内角和与多边形的外角列方程求解.解:设多边形的边数是x,根据题意可得:(x-2)×180°=2×360°,解得:x=6,所以这个多边形是六边形.故应选B.考点:多边形的内角和3、过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的( )A.4倍B.5倍C.6倍D.3倍【答案】A【解析】试题分析:过多边形的一个顶点可以作7条对角线,把这个多边形分成了8个三角形,根据三角形内角和定理求解.解:∵过多边形的一个顶点可以作7条对角线,∴过多边形一个顶点的对角线把这个多边形分成了8个三角形,∴这个多边形的内角和是8×180°=4×360°,∴多边形的内角和是外角和的4倍,故应选A.考点:多边形的内角和4、 若正n 边形的一个内角与正2n 边形的一个内角的和等于270°,则n 为( ) A7 B.6 C.5 D.4【答案】B【解析】试题分析:根据正多边形的每个内角与正多边形的边数之间的关系列方程求解. 解:根据题意可得:()()112180221802702n n n n-⨯︒+-⨯︒=︒, 解得:n=6,故应选B.考点:多边形的内角和5、多边形的每个外角与它相邻内角的关系是( )A .互为余角B .互为邻补角C .两个角相等D .外角大于内角【答案】B【解析】试题分析:根据多边形的外角和与它相邻的内角的位置关系解答.解:多边形的每个外角与它相邻的内角互为邻补角.故应选B.考点:多边形6、一个多边形的内角和为720°,那么这个多边形的对角线条数为( )A.6条B.7条C.8条D.9条【答案】D【解析】试题分析:根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线与多边形的边数之间的关系求解.解:设多边形的边数是n,根据题意可得:(n-2)×180°=720°,解得:n=6,所以多边形的对角线的条数是12×6×(6-3)=9.故应选D考点:多边形的内角和7、一个多边形每个内角为108°,则这个多边形()A.四边形B,五边形C.六边形D.七边形【答案】【解析】试题分析:设多边形的边数是n,根据多边形的内角和公式列方程求解. 解:设多边形的边数是n,根据题意可得:(n-2)×180°=n×108°,解得:n=5,答:这个多边形是五边形.故应选B.考点:多边形的内角和8、n边形的n个内角中锐角最多有()个.A.1个B.2个C.3个D.4个【答案】C【解析】试题分析:根据多边形的外角和是360°求解.解:因为多边形的外角和是360°,所以多边形的外角中最多有3个钝角,所以多边形的内角中最多有3个锐角.故应选C.考点:多边形的内角和.9、如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是()A.nB.2n-2C.2nD.2n+2【答案】【解析】试题分析:首先设这个多边形的边数是x,根据多边形的内角和公式列方程求解. 解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=n×360°,解得:x=2n+2.故应选D.考点:多边形的内角和二、填空题(每题5分)10、一个多边形的内角和角和是外角和的4倍,则这个多边形是边形. 【答案】10【解析】试题分析:首先设这个多边形的边数是x,根据多边形内角和公式列方程求解. 解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=4×360°,解得:x=10,所以这个多边形是10边形.考点:多边形11、正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.【答案】144°;36°【解析】试题分析:首先利用多边形的外角和是360°,求出每一个外角的度数,再根据多边形的内角与它相邻的外角是邻补角,求出每一个内角的度数.解:因为正十边形有10个外角,所以每一个外角的度数是360°÷10=36°,因为多边形的内角与它相邻的外角是邻补角,所以每个内角是180°-36°=144°.故答案是144°;36°考点:多边形内角和三、解答题(12、13、14每题10分,15题15分)12、若两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.一个多边形的外角中,钝角的个数不可能是( )
A.1个
B.2个
C.3个
D.4个
2.若一个多边形的内角和等于1080°,则这个多边形的边数是( )
A.9
B.8
C.7
D.6
3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )
A.2:1
B.1:1
C.5:2
D.5:4
4.一个多边形的内角中,锐角的个数最多有( )
A.3个
B.4个
C.5个
D.6个
5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )
A.都是钝角;
B.都是锐角
C.是一个锐角、一个钝角
D.是一个锐角、一个直角
6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )
A.十三边形
B.十二边形
C.十一边形
D.十边形
7.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数
为( )
A.90°
B.105°
C.130°
D.120°
8.多边形的内角中,最多有________个直角.
9.从n边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这
个多边形分成________个三角形.
10.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这
个多边形的边数最少为________.
11.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为
9:2,则这个多边形的边数为_________.
12.每个内角都为144°的多边形为_________边形
13.一个三角形三个内角度数的比是2∶3∶4,那么这个三角形是三角形。
14.在△ABC中,∠A-∠B=36°,∠C=2∠B,则∠A=,∠B=,
∠C=。
15.多边形的每个内角都是每个外角的4倍,则这个多边形的边数是。
16.如果一个多边形的内角和是它外角和的3倍,那么那么这个多边形是边形。
17.多边形的边数增加1,则内角和增加度,而外角和=。
18.在直角三角形中,有一个锐角是另一个锐角的2倍,则这两个锐角的度数为 。
19.如图,DE ∥BC ,∠ADE =60°,∠C =50°,则∠A = 。
20.如图,在四边形ABCD 中,∠1、∠2分别是∠BCD 和∠BAD 的补角,且∠B +∠ADC =140°,则∠1+∠2= 。
21、如图,AD 平分∠BAC ,其中∠B =50°,∠ADC =80°, 求∠BAC 、∠C 的度数。
22、如图,已知∠B =40°,∠C =59°,∠DEC =47°,求∠F
23、如图,求∠α的度数。
B D
C
B D C
B C
第19题图 第20题图
A
2
1
B
C
D
参考答案
1.D
2.B
3.D
4.A
5.C
6.A
7.C
8. 4 9. n – 3 , n - 2 10. 9 11. 11 12.十13.锐角14. 72°、36°、 72° 15.10 16.8 17. 180°、360°18. 60°和30° 19. 70° 20. 140°
21. ∠BAC=60°、∠C=70° 22. ∠F=34° 23. ∠α=106°。