专题09 一次函数图象和性质及应用(第02期)-2021年中考数学必备之微测试(人教版)(解析版)

合集下载

函数专题——-一次函数的图像和性质

函数专题——-一次函数的图像和性质

教学过程一、课程导入画出y=-x与y=-x+2的图象,找出它们的相同点和不同点小结:直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。

即k值相同时,直线一定平行。

二、 复习预习①如图〔l 〕所示,当k >0,b >0时,直线经过第一、二、三象限〔直线不经过第四象限〕;②如图〔2〕所示,当k >0,b ﹥O 时,直线经过第一、三、四象限〔直线不经过第二象限〕;③如图〔3〕所示,当k ﹤O ,b >0时,直线经过第一、二、四象限〔直线不经过第三象限〕;④如图〔4〕所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限〔直线不经过第一象限〕.k >0时,y 的值随x 值的增大而增大;当k<0时, y 的值随x 值的增大而减小;一次函数y =kx +b 的图象为 一条直线,与坐标轴的交点分别为)0.(k b ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.三、知识讲解考点1 一次函数图象上点的坐标特征1、一次函数y =kx +b 的图象为一条直线,与坐标轴的交点分别为)0.(kb ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.2、正比例函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知xy 是定值. 3、经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.考点2 一次函数图像的平移上加下减〔b〕,左加右减〔x〕直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。

即k值相同时,直线一定平行。

考点3 待定系数法求一次函数关系式先设待求函数关系式〔其中含有未知的常数系数〕,再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。

一次函数的图象与性质知识讲解及例题

一次函数的图象与性质知识讲解及例题

一次函数的图象与性质(基础)【学习目标】1. 理解一次函数的概念,理解一次函数的图象与正比例函数的图象之间的关系;2. 能正确画出一次函数的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如(,是常数,≠0)的函数,叫做一次函数.要点诠释:当=0时,即,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数,的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数(、为常数,且≠0)的图象是一条直线 ;当>0时,直线是由直线向上平移个单位长度得到的; 当<0时,直线是由直线向下平移||个单位长度得到的.2.一次函数(、为常数,且≠0)的图象与性质:y kx b =+y kx =y kx b =+y kx b =+k b k b y kx b =+y kx =k b y kx b =+k b k b y kx b =+y kx =b b y kx b =+y kx =b y kx b =+k b k3. 、对一次函数的图象和性质的影响:决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.4. 两条直线:和:的位置关系可由其系数确定:(1)与相交; (2),且与平行;要点三、待定系数法求一次函数解析式一次函数(,是常数,≠0)中有两个待定系数,,需要两个独立条件确定两个关于,的方程,这两个条件通常为两个点或两对,的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数中有和两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的k b y kx b =+k y kx b =+b y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l y kx b =+k b k k b k b x y y kx b =+k b k b解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此=2,可以设函数的解析式为,再利用过点(1.5,0),求出相应的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为.它的图象过点(1.5,0),(0,2)∴该函数的解析式为. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 ;提示:设一次函数的解析式为,它的图象与的图象平行,则,又因为一次函数的图象经过(2,1)点,代入得1=2×2+.解得. ∴ 一次函数解析式为.b 2y kx =+k y kx b =+41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴423y x =-+k b 2y x =23y x =-y kx b =+2y x =2k =b 3b =-23y x =-【变式2】已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有,解得∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数.(1)当、是什么数时,随的增大而增大;(2)当、是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求、的取值范围.【答案与解析】解:(1),即>-2,为任何实数时,随的增大而增大;()()243y m x n =++-m n y x m n m n 240m +>m n y x(2)当、是满足即时,函数图象经过原点; (3)若图象经过一、二、三象限,则,即. 【总结升华】一次函数的图象有四种情况:①当>0,>0时,函数的图象经过第一、二、三象限,的值随的值增大而增大;②当>0,<0时,函数的图象经过第一、三、四象限,的值随的值增大而增大;③当<0,>0时,函数的图象经过第一、二、四象限,的值随的值增大而减小;④当<0,<0时,函数的图象经过第二、三、四象限,的值随的值增大而减小.4、已知点A (4,0)及在第一象限的动点P (x ,y ),且x+y=5,0为坐标原点,设△OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=4时,求P 点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x ,再由三角形的面积公式即可得出结论;(2)由点P (x ,y )在第一象限,且x+y=5得出x 的取值范围即可;(3)把S=4代入(1)中的关系式求出x 的值,进而可得出y 的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x ,∴S=×4×(5﹣x )=10﹣2x ;(2)∵点P (x ,y )在第一象限,且x+y=5,∴0<x <5;(3)∵由(1)知,S=10﹣2x ,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).m n 24030m n +≠⎧⎨-=⎩23m n ≠-⎧⎨=⎩24030m n +>⎧⎨->⎩23m n >-⎧⎨<⎩y kx b =+k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三:【变式】函数在直角坐标系中的图象可能是( ).【答案】B ;提示:不论为正还是为负,都大于0,图象应该交于轴上方,故选B.【巩固练习】一.选择题1. 已知一次函数的图象如图所示,那么的取值范围是( )A .B .C .D .2.关于一次函数y=﹣2x+3,下列结论正确的是( )A .图象过点(1,﹣1)B .图象经过一、二、三象限C .y 随x 的增大而增大D .当x >时,y <03. 已知一次函数的图象经过第一、二、三象限,则的取值范围是( )A. B. C. D. 4.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映面积S 与x 之间的函数关系式的图象是( )(0)y kx k k =+≠k k x (1)y a x b =-+a 1a >1a <0a >0a<k x k y +-=)21(k 0>k 0<k 210<<k 21<kA .B .C .D .5.已知直线和直线相交于点(2,),则、的值分别为( ). A .2,3 B .3,2 C .,2 D .,3 6. 如图弹簧的长度与所挂物体的质量关系为一次函数,则不挂物体时,弹簧长度为( ).A .7B .8C .9D .10二.填空题7. 如果直线经过第一、二、三象限,那么 0.8.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是 .9. 已知一次函数的图象与直线平行, 则= .10. 一次函数的图象与轴的交点坐标是_____,与轴的交点坐标是______. 11.已知一次函数y=kx+b (k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则此一次函数的解析式为 .12.一次函数与两坐标轴围成三角形的面积为4,则=________.三.解答题13.已知直线y=kx+3经过点A (﹣4,0),且与y 轴交于点B ,点O 为坐标原点.(1)求k 的值;(2)求点O 直线AB 的距离;(3)过点C (0,1)的直线把△AOB 的面积分成相等的两部分,求这条直线的函数关系式.14.已知与成正比例,且当=1时,= 5y x =12y x b =-+c b c 12-12-cm cm cmcm y ax b =+ab 2y kx =-34y x =+k 113y x =-+x y 2y x b =+b 1-y 1+x x y(1)求与之间的函数关系式;(2)若图象与轴交于A 点,与交于B 点,求△AOB 的面积.15.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元.(1)写出应收门票费(元)与游览人数(人)之间的函数关系式;(2)利用(1)中的函数关系计算:某班54名学生去该风景区游览时,为购门票共花了多少元?【答案与解析】一.填空题1. 【答案】A ;【解析】由题意知.2. 【答案】D ;【解析】解:A 、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B 、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C 、∵﹣2<0,∴y 随x 的增大而减小,故错误;D 、画出草图.∵当x >时,图象在x 轴下方,∴y <0,故正确.故选D .3. 【答案】C ;【解析】由题意知,且>0,解得4. 【答案】C ;【解析】∵点P (x ,y )在第一象限内,且x+y=6,∵y=6﹣x (0<x <6,0<y <6). ∵点A 的坐标为(4,0),∵S=×4×(6﹣x )=12﹣2x (0<x <6).5. 【答案】B ;【解析】点(2,)在直线上,故=2.点(2,2)在直线上,故,解得=3.6. 【答案】D ;【解析】5+=12.5,20+=20,解得=0.5,=10.二.填空题7. 【答案】>【解析】画出草图如图所示,由图象知随的增大而增大,可知>0;图象与轴的交点在轴上方,知>0,故>0.y x x y y x 10,1a a ->>∴120k ->k 210<<k c y x =c 12y x b =-+12b -+=b k b k b k b y x a y x b ab8. 【答案】a >b ;【解析】∵一次函数y=﹣2x +1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为:a >b .9. 【答案】3;【解析】互相平行的直线相同.10.【答案】,【解析】令=0,解得=1;令=0,解得=3.11.【答案】y=x+2或y=﹣x+2.【解析】解:∵一次函数y=kx+b (k≠0)图象过点(0,2),∴b=2,设一次函数与x 轴的交点是(a ,0),则×2×|a|=2,解得:a=2或﹣2.把(2,0)代入y=kx+2,解得:k=﹣1,则函数的解析式是y=﹣x+2; 把(﹣2,0)代入y=kx+2,得k=1,则函数的解析式是y=x+2. 故答案是:y=x+2或y=﹣x+2.12.【答案】;【解析】一次函数与轴交点为,与轴交点为(0,),所以,解得=±4.三.解答题13. 【解析】解:(1)依题意得:﹣4k+3=0,解得k=;(2)由(1)得y=x+3,当x=0时,y=3,即点B 的坐标为(0,3).如图,过点O 作OP ⊥AB 于P ,则线段OP 的长即为点O 直线AB 的距离. ∵S △AOB =AB•OP=OA•OB,∴OP===;k ()3,0()0,1x y y x 4±x ,02b ⎛⎫-⎪⎝⎭y b 1||||422b b -=b(3)设所求过点C(0,1)的直线解析式为y=mx+1.S△AOB=OA•OB=×4×3=6.分两种情况讨论:①当直线y=mx+1与OA相交时,设交点为D,则S△COD=OC•OD=×1×OD=3,解得OD=6.∵OD>OA,∴OD=6不合题意舍去;②当直线y=mx+1与AB相交时,设交点为E,则S△BCE=BC•|x E|=×2×|x E|=3,解得|x E |=3,则x E =﹣3,当x=﹣3时,y=x+3=,即E 点坐标为(﹣3,).将E (﹣3,)代入y=mx+1,得﹣3m+1=,解得m=.故这条直线的函数关系式为y=x+1.14.【解析】解:(1)∵与成正比例,∴当=1时,=5解得=2∴(2)A(),B(0,3) =. 15.【解析】解:(1)由题意,得1-y 1+x ()11y k x -=+x y k 23y x =+3,02-12AOB S OA OB ∆=⨯1393224⨯⨯=25(020,)252010(20)(20,x x x y x x x <≤⎧=⎨⨯+->⎩且为整数且为整数)化简得: (2)把=54代入=10+300,=10×54+300=840(元). 所以某班54名学生去该风景区游览时,为购门票共花了840元.甲由B 地到A 地所用时间是:20÷=20分钟, 设甲由B 地到A 地的函数解析式是:,∵点(24,20)与(44,0)在此函数图象上,∴,解得:,∴甲由B 地到A 地函数解析式是:,(2)乙由A 地到B 地的函数解析式是:,即; 根据题意得:, 解得:, 则经过分钟相遇.25(020,)10300(20,x x x y x x x <≤⎧=⎨+>⎩且为整数且为整数)x y x y 1111212⎛⎫+ ⎪⎝⎭y kx b =+2420440k b k b +=⎧⎨+=⎩144k b =-⎧⎨=⎩44y x =-+711212y x ⎛⎫=- ⎪⎝⎭12y x =4412y x y x =-+⎧⎪⎨=⎪⎩883x =883。

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

一次函数图像与性质ppt课件

一次函数图像与性质ppt课件


象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是

条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .

八下数学一次函数的图像和性质

八下数学一次函数的图像和性质

八下数学一次函数的图像和性质初二从平行四边形部分过渡到一次函数部分。

很多同学明显感觉一次函数部分比前面平行四边形几何部分简单了一些。

前边平行四边形几何部分没有学好的同学,这一部分只要好好学,期末还是能考一个不错的分数。

虽然,感觉难度降低了,但是在小测中有的同学成绩也并不是很好。

下面王老师就跟大家讲一下一次函数的图像和性质,初二的同学可不要错过。

一次函数的图像和性质截距一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.要点解析截距不是距离,是直线与y轴交点的纵坐标,因此可为正数、零、负数.一次函数的图像★★★一次函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线.要点解析1.一次函数y=kx+b(b≠0),是过点A(0,b)和点B(-b/k,0)的一条直线.如图当k<0,b>0和k>0,b<0时的图像如下:2.当b1=b2=b时,一次函数y=k1x+b1与一次函数y=k2x+b2的图像均经过y轴上的点(0,b).3.一次函数y=kx+b(b≠0)的图像可通过正比例函数y=kx图像平移得到当b>0时,向上平移b个单位;当b<0时,向下平移|b|个单位.因此可以得到:如果b1≠b2,那么直线y=kx+b1与直线y=kx+b2平行.反过来,如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2,b1≠b2.4.一次函数y=kx+b(k、b为常数,k≠0)与一元一次方程kx+b=0的关系一元一次方程kx+b=0的解x=-b/k,就是一次函数y=kx+b(k、b为常数,k≠0)图像与x轴交点的横坐标.5.一次函数y=kx+b(k、b为常数,k≠0)与一元一次不等式kx+b>0、kx+b<0的关系当k>0时,要使kx+b>0,其一次函数图像应在x轴上方,故其解为x>-b/k;要使kx+b<0,其一次函数图像应在x轴下方,故其解为x<-b/k.当k<0时,要使kx+b>0,其一次函数图像应在x轴上方,故其解为x<-b/k;要使kx+b<0,其一次函数图像应在x轴下方,故其解为x>-b/k.一次函数的性质★★★1.一次函数y=kx+b(k、b为常数,k≠0)具有以下性质:当k>0时,函数值y随自变量x的值增大而增大;当k<0时,函数值y随自变量x的值增大而减小.2.k、b的符号与直线y=kx+b(k≠0)位置的关系当k>0,且b>0时,直线y=kx+b经过第一、二、三象限;当k>0,且b<0时,直线y=kx+b经过第一、三、四象限;当k<0,且b>0时,直线y=kx+b经过第一、二、四象限;当k<0,且b<0时,直线y=kx+b经过第二、三、四象限.把上述结论反过来叙述,也是正确的.。

一次函数的图像和性质PPT演示课件

一次函数的图像和性质PPT演示课件
•31
1.下列函数中,是正比例函数的是
A.y=-8x
B.y=-x8
C.y=5x2+6
D.y=-0.5x-1
2.一次函数 y=x-2 的图象不经过 ( B )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
( A)
•32
3.已知正比例函数 y=kx(k≠0)的图象经过点(1,-2),则正比例
函数的解析式为
考点聚焦
考点1 一次函数与正比例函数的概念
•1
考点2 一次函数的图象和性质 (2)正比例函数与一次函数的性质
第一、三 象限
第二、四 象限
•2
第一、二、 三象限
第一、三、 四象限
第一、二、 四象限
第二、三、 四象限
•3
考点3 两条直线的位置关系
k1≠k2 k1=k2,b1≠b2
•4
考点4 两直线的交点坐标及一次函数的图象与坐标 轴围成的三角形的面积
•21
变式题
5.已知直线 y=kx+b 经过点(k,3)和(1,k),则 k
的值为( B )
A. 3
B.± 3
C. 2
D.± 2
•22
变式题
▪ 6、在平面直角坐标系中,点O为原点,直线y
=kx+b交x轴于点A(-2,0),交y轴于点
B.若△AOB的面积为8,则k的值为( D ) ▪ A.1 B.2 C.-2或4 D.4或-4
图10-2 •26
变式题
▪ 1(1)根据图象信息可求得关于x的不等式 ▪ kx+b>0的解集为____________ ▪ (2)根据图象信息可求得关于x的不等式 ▪ kx+b≥0的解集为____________ ▪ (3)根据图象信息可求得关于x的不等式 ▪ kx+b≤0的解集为____________

一次函数图象与性质课件

一次函数图象与性质课件
详细描述:在经济学中,价格和需求量之间存在一次函数关系。当价格上升时,需求量减少;当价格下降时,需求量增加。 这种关系可以用一次函数表示。
一次函数在距离与时间问题中的应用
总结词:匀速运动
详细描述:在距离、时间和速度的问题中,如果速度保持不变,则距离和时间之间存在一次函数关系 。例如,匀速行驶的汽车,其行驶的距离是时间的线性函数。
和b是常数,k≠0。
它表示的是一种线性关系,即因 变量y与自变量x之间的变化关系

当k>0时,函数为增函数,随着 x的增加,y也增加;当k<0时, 函数为减函数,随着x的增加,y
减少。
一次函数的表示方法
一次函数可以用解析 式表示为y=kx+b, 其中k和b是常数且 k≠0。
还可以通过表格的形 式表示,列出一些自 变量x的值和对应的 因变量y的值。
一次函数在交通运输中的应用
总结词
运输量与运输成本的关系
详细描述
在交通运输中,一次函数可以用来表示运输量与运输成本之 间的关系。随着运输量的增加,运输成本也会相应增加,这 种关系可以用一次函数来表示。通过分析这种关系,可以更 好地制定运输计划和控制运输成本。
2023
PART 05
总结与展望
REPORTING
2023
REPORTING
THANKS
感谢观看
数。通过求解这个方程,可以预测不同投资额下的预期回报率。
一次函数在生产计划中的应用
总结词
生产量与生产要素的关系
详细描述
在生产计划中,一次函数可以用来表示生产量与生产要素之间的关系。例如, 生产量与劳动力、原材料、设备等生产要素之间存在线性关系,可以用一次函 数来表示这种关系,从而更好地安排生产计划。

一次函数图像与性质课件

一次函数图像与性质课件

03 一次函数的性质
单调性
一次函数在其定义域内要么是增函数,要么是减函数。
当一次函数的比例系数大于0时,函数是增函数;当比例系数小于0时,函数是减函 数。
通过观察一次函数的图像,可以直观地判断函数的单调性。
奇偶性
一次函数既不是奇函数也不是偶函数,因为它不满足奇函数或偶函数的 定义。
奇函数和偶函数的定义是基于原点对称的,而一次函数的图像是一条直 线,不一定关于原点对称。
04 一次函数的应用
实际问题中的一次函数模型
匀速运动模型
01
当物体以恒定速度移动时,其位移和时间之间呈一次函数关系。
线性增长或减少模型
02
例如,人口自然增长、产品均匀生产等问题中,数量随时间呈
线性增ቤተ መጻሕፍቲ ባይዱ或减少。
比例关系模型
03
在实际问题中,两个变量之间往往存在比例关系,这种关系可
以用一次函数来描述。
利用一次函数解决实际问题
求解最值问题
通过一次函数的单调性, 可以方便地求解实际问题 中的最大值或最小值。
预测和决策
利用一次函数模型对实际 数据进行拟合,可以预测 未来趋势,为决策提供科 学依据。
优化资源配置
在生产、销售等领域,通 过一次函数模型可以优化 资源配置,降低成本,提 高效率。
一次函数在其他领域的应用
一次函数图像与性质课件
目录
• 引言 • 一次函数的图像 • 一次函数的性质 • 一次函数的应用 • 一次函数的综合题型 • 一次函数与其他知识点的联系
01 引言
函数的定义与分类
函数的定义
函数是一种特殊的对应关系,它 表达了自变量与因变量之间的依 赖关系。
函数的分类

2021年中考数学 专题汇编:一次函数的图象与性质(含答案)

2021年中考数学 专题汇编:一次函数的图象与性质(含答案)

2021中考数学 专题汇编:一次函数的图象与性质一、选择题(本大题共10道小题)1. (2019•上海)下列函数中,函数值y 随自变量x 的值增大而增大的是 A .3x y = B .3xy =-C .3y x= D .3y x=-2. 对于正比例函数y=-2x ,当自变量x 的值增加1时,函数y 的值增加 ( ) A .-2B .2C .-D .3. (2019•辽阳)若0ab <且a b >,则函数y ax b =+的图象可能是A .B .C .D .4. (2019•威海)甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天 12345678累计完成施工量/米 3570105140160215270325下列说法错误的是 A .甲队每天修路20米 B .乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲、乙两队修路长度相等5. 已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数图象的交点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若式子k-1+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()7. (2019•遵义)如图所示,直线l1:y32=x+6与直线l2:y52=-x-2交于点P(-2,3),不等式32x+652>-x-2的解集是A.x>-2 B.x≥-2C.x<-2 D.x≤-28. 如图,一直线与两坐标轴的正半轴分别交于A、B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A. y=x+5B. y=x+10C. y=-x+5D. y=-x+109. 如图,在Rt △ABO 中,∠OBA=90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为 ( )A .(2,2)B .C .D .(3,3)10. 一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或6二、填空题(本大题共8道小题)11. 已知点A (x 1,y 1)、B (x 2,y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为 .12. 已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.13. 将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.14. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为__________.15. 若点M (k -1,k +1)关于y 轴的对称点在第四象限内,则一次函数y =(k -1)x+k 的图象不经过...第________象限.16. 为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.17. (2019•贵阳)在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是__________.18. (2019•河池)如图,在平面直角坐标系中,2,0,()()0,1A B ,AC 由AB 绕点A 顺时针旋转90︒而得,则AC 所在直线的解析式是__________.三、解答题(本大题共4道小题)19. (2019•陕西)根据记录,从地面向上11 km 以内,每升高1 km ,气温降低6 °C ;又知在距离地面11 km 以上高空,气温几乎不变.若地面气温为m(°C),设距地面的高度为x(km)处的气温为y(°C) (1)写出距地面的高度在11 km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26 °C 时,飞机距离地面的高度为7 km ,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12 km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12 km时,飞机外的气温.20. 如图,直线y=3x+3与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴正半轴于C,AB=AC,求直线l的函数解析式.21. 如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.22. (2019•伊春)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x 个,求有多少种购买方案?(3)设学校投入资金W 元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?2021中考数学 专题汇编:一次函数的图象与性质-答案一、选择题(本大题共10道小题) 1. 【答案】A【解析】A 、该函数图象是直线,位于第一、三象限,y 随x 增大而增大,故本选项正确;B 、该函数图象是直线,位于第二、四象限,y 随x 增大而减小,故本选项错误;C 、该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 增大而减小,故本选项错误;D 、该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 增大而增大,故本选项错误. 故选A .2. 【答案】A3. 【答案】A【解析】∵0ab <,且a b >, ∴a>0,b<0.∴函数y ax b =+的图象经过第一、三、四象限. 故选A .4. 【答案】D【解析】由题意可得,甲队每天修路:16014020-=(米),故选项A 正确; 乙队第一天修路:352015-=(米),故选项B 正确;乙队技术改进后每天修路:2151602035--=(米),故选项C 正确;前7天,甲队修路:207140⨯=米,乙队修路:270140130-=米,故选项D 错误, 故选D .5. 【答案】A【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.【一题多解】由题意得⎩⎨⎧y =kx +5y =k ′x +7,解得⎩⎪⎨⎪⎧x=2k -k ′y =7k -5k ′k -k ′,即为交点坐标,∵k >0,k ′<0,∴k -k ′>0,7k -5k ′>0,∴x >0,y >0,∴这两个一次函数图象的交点在第一象限.6. 【答案】C【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.7. 【答案】A【解析】当x>-2时,32x+652>-x-2, 所以不等式32x+652>-x-2的解集是x>-2.故选A .8. 【答案】C【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.9. 【答案】C [解析]由题可知:A (4,4),D (2,0),C (4,3),点D 关于AO 的对称点D'坐标为(0,2),设l D'C :y=kx +b ,将D'(0,2),C (4,3)代入,可得y=x +2,解方程组得∴P.故选C.10. 【答案】D【解析】∵直线y=43x-1 与x轴的交点A的坐标为(34,0),与y轴的交点C的坐标为(0,-1),∴OA=34,OC=1,直线y=43x-b与直线y=43 x-1的距离为3,可分为两种情况:(1)如解图①,点B的坐标为(0,-b),则OB=-b,BC=-b+1,易证△OAC∽△DBC,则OADB=ACBC,即343=12+(34)2-b+1,解得b=-4;(2)如解图②,点F的坐标为(0,-b),则CF=b-1,易证△OAC ∽△ECF,则OAEC=ACCF,即343=12+(34)2b-1,解得b=6,故b=-4或6.二、填空题(本大题共8道小题)11. 【答案】y1>y2[解析]∵一次函数图象经过第二、四象限,∴k<0,y随x的增大而减小,∴当x1<x2时,y1>y2.12. 【答案】一【解析】由题意知m+3=4,即m=1,将m=1代入一次函数有y=(1-2)x-3=-x-3,故函数图象不过第一象限.13. 【答案】四【解析】根据平移规律“上加下减,左加右减”,将直线y=2x 向上平移3个单位,得到的直线解析式为y=2x+3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限.14. 【答案】3x>【解析】∵正比例函数13y x=也经过点A,∴13kx b x+<的解集为3x>,故答案为:3x >.15. 【答案】一【解析】依据题意,M 关于y 轴对称点在第四象限,则M 点在第三象限,即k -1<0,k +1<0, 解得k<-1.∴一次函数y =(k -1)x +k 的图象过第二、三、四象限,故不经过第一象限.16. 【答案】120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎨⎧60k +b =360150k +b =540,解得⎩⎨⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎨⎧S =2t +240S =4t ,得⎩⎨⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.17. 【答案】21x y =⎧⎨=⎩【解析】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩.故答案为:21x y =⎧⎨=⎩.18. 【答案】24y x =-【解析】∵2,0,()()0,1A B , ∴2,1OA OB ==,如图,过点C 作CD x ⊥轴于点D ,∴∠BOA=∠ADC=90°. ∵∠BAC=90°,∴∠BAO+∠CAD=90°. ∵∠ABO+∠BAO=90°, ∴∠CAD=∠ABO . ∵AB=AC ,∴ACD BAO △≌△. ∴1,2AD OB CD OA ====, ∴()3,2C ,设直线AC 的解析式为y kx b =+,将点A ,点C 坐标代入得0223k bk b =+⎧⎨=+⎩, ∴24k b =⎧⎨=-⎩,∴直线AC 的解析式为24y x =-. 故答案为:24y x =-.三、解答题(本大题共4道小题)19. 【答案】(1)∵从地面向上11 km 以内,每升高1 km ,气温降低6 °C ,地面气温为m(°C),距地面的高度为x(km)处的气温为y(°C), ∴y 与x 之间的函数表达式为:y=m-6x(0≤x≤11). (2)将x=7,y=-26代入y=m-6x ,得-26=m-42, ∴m=16,∴当时地面气温为16 °C . ∵x=12>11,∴y=16-6×11=-50(°C), 假如当时飞机距地面12 km 时,飞机外的气温为-50 °C .20. 【答案】解:(1)对于y =3x +3,令x =0,则y = 3. ∴A 的坐标为(0,3),∴OA =3,(1分)令y =0,则x =-1,∴OB =1.(2分)在Rt △AOB 中,tan ∠ABO =OA OB =3,∴∠ABO =60°.(4分)(2)在△ABC 中,AB =AC ,又∵AO ⊥BC ,∴BO =CO ,(6分)∴C 的坐标为(1,0),设直线l 的函数解析式为y =kx +b(k 、b 为常数且k ≠0),代入点A(0,3),点C(1,0),有⎩⎨⎧3=b 0=k +b,(8分) 解得⎩⎨⎧k =-3b =3. ∴直线l 的函数解析式为y =-3x + 3.(10分)21. 【答案】解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2,∴OB =3,∴B(0,3).(2分)(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1,∴C(0,-1).(4分)设直线l 2的解析式为y =kx +b(k ≠0),∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎨⎧0=2k +b -1=b , 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.(6分)22. 【答案】(1)设购买一个甲种文具a 元,一个乙种文具b 元,由题意得:235330a b a b +=⎧⎨+=⎩,解得155a b =⎧⎨=⎩, 答:购买一个甲种文具15元,一个乙种文具5元.(2)根据题意得:955155(1202)1000x ≤+-≤,解得35.540x ≤≤,∵x 是整数,∴3637383940x =,,,,, ∴有5种购买方案.(3)155(120)10600W x x x =+-=+,∵100>,∴W 随x 的增大而增大,当36x =时,1036600960W =⨯+=最小(元),∴1203684-=.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.。

2021年数学中考数学辅导之—一次函数的图象和性质

2021年数学中考数学辅导之—一次函数的图象和性质

中考数学辅导之—一次函数的图象和性质一次函数是本章中最重要的一个单元,在课本中,讲叙本部分内容的篇幅虽然不长,但利用它的概念、性质解决的题目却不少,而且有些题目还较难,并且从这部分内容开始,我们将学习利用代数的方法去解决几何问题,这是同学们过去从未涉及到的方法,所以不管从解题思路、解题方法上还是从所学知识的综合应用上的要求都有较大幅度的提高,可能会使同学们感到有时无从下手,“很难学”是同学们普遍的反映。

在本讲中,我们将要补充一些必要的知识,讲解几个例题,以便使同学们体会解题思路和解题方法,从而达到较好的掌握本部分知识的目的。

一、学习要求:1.理解一次函数和正比例函数的概念。

2.会画正比例函数及一次函数的图象。

3.理解并掌握正比例函数和一次函数的性质。

4.会利用待定系数法确定正比例及一次函数的解析式。

5.会解关于一次函数的较难的题目。

二、知识要点:1.正比例函数和一次函数是分别用)0(≠=k kx y 和)0(≠+=k b kx y 来定义的,其中x 是自变量,y 是自变量的函数,k 是自变量的系数,是常数,这两种函数解析式都是方程,而且它的图象上的点的坐标都是对应方程的解,因此,一次函数与一次方程有密不可分的关系。

2.课本中;用具体的函数利用描点法得出正比例函数)0(≠=k kx y 和一次函数)0(≠+=k b kx y 的图象都是一条直线,既然是一条直线,我们只要描出两点即可确定该直线。

因为正比例函数是过原点的直线,当然坐标原点是所描的两点中的一个,另外一个是1=x 时y=k 就是点),1(k ,所以正比例函数的图像是过(0,0)、(1,k )两点的直线。

而一次函数与两条坐标轴各有一个交点(注意:与x 轴、y 轴交点的坐标是极其重要的),那么“两点确定一条直线”中的两点就可以取这两个交点,由于一次函数与x 轴的交点必在x 轴上;而在x 轴上的点的特点是纵坐标为0,即:在一次函数)0(≠+=k b kx y 中,当y=0时可得kx+b=0,解此方程得x=-k b ,从而得出一次函数)0(≠+=k b kx y 与x 轴交于(-kb ,0)点:同理,由一次函数)0(≠+=k b kx y 与y 轴交点的横坐标为0可以得出:它与y 轴的交点为(0,b ):因此一次函数)0(≠+=k b kx y 的图象是过它与x 轴的交点(-kb ,0)和它与y 轴的交点(0,b )两点的直线。

一次函数图像与性质

一次函数图像与性质

1一次函数图像与性质【基础知识精讲】1. 函数b kx y +=(0≠k )是 函数,它的图像是 ,当0b =时,这个函数是 函数,图像是 。

2. 作函数图像的一般步骤: , , 。

3. 作一次函数图像一般用两点作图:A ( , ),B ( , )。

4. 作正比例函数图像只要过( , ),( , )即可。

5. 一次函数的图像及性质6. 一次函数b kx y +=系数意义:①k 表示 ,k 越大,直线越 ,越靠近 轴,k 越小,直线越 ,越靠近 轴,②b 表示直线在y 轴上的截距, 0>b 表示与y 轴交点在 0=b 表示与y 轴交点在20<b 表示与y 轴交点在7. 同一平面内,不重合的两直线位置关系:1:111,l y k x b =+ 2:222l y k x b =+ 12(0)k k ≠①当12k k =时,两直线平行; ②当12k k ≠时,两直线相交.【例题精讲】例1:(1)作出一次函数21y x =+的图象①.列表②.描点 ③.连线(2)作出一次函数25y x =-+的图象①.列表②.描点 ③.连线ⅰ点(0,0)在一次函数25y x =-+的 图象上吗?ⅱ点(3,1)在一次函数25y x =-+的 图象上吗?ⅲ此一次函数的图像是___ ____,它经过_________象限,y 随x 的增大而__ ____;(3)在同一坐标系中作出正比例函数 12y x =、y x =、3y x =和32-y x =的图象,回答下列问题 ⅰ归纳正比例函数y kx =的图象有什么特点?ⅱ直线12y x =、y x =、3y x =中,哪一个最靠近 x 轴?哪一个最靠近y 轴?ⅲ上述四个函数图像中,随着x 值的增大,y 的值分别如何变化?跟k 值有什么关系?ⅳ3y x =和32-y x =的位置关系如何?例2:根据下列一次函数y kx b =+(0k ≠)的草图回答出各图中k ,b 的符号:k ___0,b ___0 k ___0,b ___0 k ___0,b ___0 k ___0,b ___0例3:(1)有下列函数:①65y x =-, ②5y x =, ③4y x =+, ④4y x =+。

初三一次函数的图像和性质分析知识点

初三一次函数的图像和性质分析知识点

2019 初三一次函数的图像和性质分析知识点1基本信息1.y 的变化值与对应的x 的变化值成正比率,比值为k即:△ y/△ x=k ( △为随意不为零的实数),即函数图像的斜率。

2.一次函数的表达式:y=kx+b3.性质:当 k0 时, y 随 x 的增大而增大 ;当 k0 时, y 随 x 的增大而减小。

当 b0 时,该函数与 y 轴交于正半轴 ; 当b0 时,该函数与 y 轴交于负半轴当 x=0时, b 为函数在 y 轴上的截距。

4.一次函数定义域xR, 值域 f(x)R5.一次函数在xR 上的单一性:若 f(x)=kx+b,k0 ,则该函数在 xR 上单一递加。

若f(x)=kx+b,k0 ,则该函数在 xr 上单一递减。

2函数性质1.y 的变化值与对应的 x 的变化值成正比率,比值为 k 即:y=kx+b(k0) (k 不等于 0,且 k, b 为常数 )2.当 x=0 时, b 为函数在 y 轴上的 ,坐标为 (0,b).当 y=0 时,该函数图像在x 轴上的交点坐标为(-b/k , 0)3.k 为一次函数 y=kx+b 的斜率 ,k=tan( 角为一次函数图象与 x 轴正方向夹角 ,90)形、取、象、交、减。

4.当 b=0 时 (即 y=kx) ,一次函数图像变成正比率函数,正比例函数是特其余一次函数.5.函数图像性质:当k 同样,且 b 不相等,图像平行;当 k 不同样,且 b 相等,图像订交 ;当 k 互为负倒数时,两直线垂直 ; 当k, b 都同样时,两条直线重合。

3图像性质1.作法与图形:经过以下 3 个步(1)列表(2)描点:一般取两个点,依据两点确立一条直线的道理;(3)连线,能够作出一次函数的图像一条直线。

所以,作一次函数的图像只要知道 2 点,并连成直线即可。

(平常找函数图像与 x 轴和 y 轴的交点分别是 -k 分之 b 与 0, 0 与 b)2.性质: (1)在一次函数上的随意一点P(x, y),都知足等式:y=kx+b(k0) 。

中考数学一次函数专题

中考数学一次函数专题

中考数学一次函数专题(共11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一次函数考点分析与知识点汇总 考点分析一次函数及其图像是初中代数的重要内容,也是中考的重点考查内容。

一次函数的考查有多种角度及形式,尤其近几年新型题的不断出现,加大了对学生的能力的考查力度。

现以部分中考题为例介绍一次函数的几个考查点。

希望对同学们的学习有所帮助。

一、知识立意型(基础知识考查) 1、考定义 2、求解析式3、考查函数的性质 二、能力立意型: 1、阅读理解能力 2、应用能力3、图形变换的能力4、综合能力一次函数知识点汇总● 知识点一 一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. ● 知识点二 一次函数的图象及其画法 ⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线. ⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可. ①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0bk⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+. ● 知识点三 一次函数的性质 ⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b=+中,当0k>时,其图象一定经过一、三象限;当0k<时,其图象一定经过二、四象限.当0b>时,图象与y轴交点在x轴上方,所以其图象一定经过一、二象限;当0b<时,图象与y轴交点在x轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b=+的图象的位置也可以确定其系数k、b的符号. 知识点五用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.⑵用待定系数法求函数解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x y,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.考查一:点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;例1:若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档