直角坐标系的变换 课件

合集下载

平面直角坐标系伸缩变换课件

平面直角坐标系伸缩变换课件
可以方便地处理与变换相关的问题, 因为它们不依赖于特定坐标系的选取 。
伸缩变换的矩阵表示
伸缩变换
将平面中的点按照某个方向进行缩放,通常称为放缩变换。
伸缩变换矩阵
放缩变换可以通过一个二阶实对称矩阵来实现,该矩阵称为伸缩变 换矩阵。
伸缩变换矩阵的性质
具有正定的对角线元素,并且其特征值分别对应于放缩变换的两个 方向上的缩放因子。
平面直角坐标系伸 缩变换的优缺点及 展望
平面直角坐标系伸缩变换的优点
便于解决几何问题
通过伸缩变换,可以将复杂的几 何问题转化为简单的代数问题,
从而更便于解决。
丰富数学内容
伸缩变换是一种新的数学方法,可 以丰富数学的教学内容,提高学生 的学习兴趣。
应用广泛
伸缩变换在物理学、工程学等领域 都有广泛的应用,可以帮助学生更 好地理解这些领域的基础知识。
平面直角坐标系伸缩 变换课件
目录
CONTENTS
• 平面直角坐标系基础 • 伸缩变换的基本原理 • 伸缩变换的应用 • 伸缩变换的数学模型 • 伸缩变换的实现方法 • 平面直角坐标系伸缩变换的优缺
点及展望
01
平面直角坐标系基 础
定义与性质
定义
平面直角坐标系是一个二维的数 轴系统,它由两个互相垂直的坐 标轴构成。
伸缩变换的逆变换与等价变换
01
02
03
04
逆变换
如果一个变换可以通过逆变换 还原到原始状态,那么这个变
换就称为可逆的。
等价变换
两个变换可以相互转换,并且 它们对所有点的作用相同,那
么它们称为等价的。
伸缩变换的逆变换
通过伸缩变换矩阵的逆矩阵可 以获得逆变换矩阵。
等价变换的证明

平面直角坐标系ppt优秀课件

平面直角坐标系ppt优秀课件
益。──高尔基 • ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 • ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列

• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
y
4
(4)单位长度一般
3 2
取相同的
1
-3 -2 -1-1 O1 2 3
x
-2
-3 -4
选择:下面四个图形中,是平面直角坐标系的是( D )
Y
Y
2
1
-3 -2 -1 O1 2 3
X
X
3 2 1 O -1 -2 -3 -1
-2
(A)
(B)
3Y 2 1
-3 -2 -1-1 O1 2 3 X
-2 -3
3Y 2 1
则a=_4__,b=_5___。
6.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在__第__二__或__四__象__限。
7.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
· 纵轴 y 5
B(0,5)
4
3 2
·A(5,2)
1
-4 -3 (-2,-3)D
-3
-4
·C(2,-3)
例3.在下面直角坐标系中描出下列各组点,
并将各组的点用线段依次连接起来.

第1章 1.3 1.3.1 空间直角坐标系课件(共50张PPT)

第1章 1.3 1.3.1 空间直角坐标系课件(共50张PPT)

·
情 景
【例3】 如图,在直三棱柱ABC-A1B1C1的底面△ABC中,CA
课 堂


学 =CB=1,∠BCA=90°,棱AA1=2,M,N分别为A1B1,A1A的中 结
·


新 知
点,试建立恰当的坐标系求向量B→N,B→A1,A→1B的坐标.
素 养













返 首 页
·
33
·


·








·


新 知
2.在空间直角坐标系中,若A(x1,y1,z1),B(x2,y2,z2),则线
素 养
合 作 探
段AB的中点坐标为x1+2 x2,y1+2 y2,z1+2 z2.
课 时








返 首 页
·
27
·

[跟进训练]



导 学
2.点P(-3,2,-1)关于平面xOz的对称点是________,关于z轴


·
探 新
标为(1,-1,1),
提 素



而B→A1=C→A1-C→B=C→A-C→B+C→C1,
分 层


疑 难
坐标中只有竖坐标不同,|BB1|=|AA1|=5,则B1(3,4,5).

返 首 页
·
18
·

空间直角坐标系PPT课件

空间直角坐标系PPT课件
通过透视变换将三维图形投影 到某一平面上,产生近大远小
的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。

1.3.1空间直角坐标系 课件(共15张PPT)

1.3.1空间直角坐标系 课件(共15张PPT)

e1 x
O e2
y
∠xOy=135°(或45),∠yOz=90°.
在空间直角坐标系中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中 指指向z轴的正方向,则称这个坐标系为右 手直角坐标系,本书建立的坐标系都是右 手直角坐标系。
3
学习新知
在空间直角坐标系Oxyz中(如图), i, j, k 为坐标向量,对空
间任意一点A,对应一个向量OA,且点A的位置由向量OA 唯一
确定,由空间向量基本定理,存在唯一的有序实数组(x,y,z),
使 OA xi yj zk
在单位正交基底{i, j, k}
此时向量OA的坐标恰是点A 在直角坐标系Oxyz中的坐标 A(x,y,z),其中x叫做点A的横 坐标,y叫做点P的纵坐标,z 叫做点A的竖坐标.
14
能力训练
如图所示,已知三棱锥P-ABC 中,PA=PC, ∠APC=∠ACB=90°,且∠BAC=30°,且平面PAC⊥平 面ABC,建立适当的坐标系,写出每一个顶点的坐标.
解:分别取AC、AB的中点为H、D, 连接PH,HD,∵PA=PC,∴PH⊥AC 又平面PAC⊥平面ABC,交线为AC, PH在平面 PAC内,∴PH⊥平面ABC. 又 BC⊥AC,∴HD⊥AC.
唯一的实数组使.p xa yb zc
单位正交基底:如果空间的一个基底的三个基向量互相垂 直,且长都为1,则这个基底叫做单位正交基底,
常用{ i, j, k }表示
计算单位正交基之间的数量积i j, i k, j k, i i, j j, k k.
2
学习新知 空间直角坐标系:在空间选定一点O和一个单位正交基
1.3.1空间直角坐标系
复习引入
共线向量定理: 对空间任意两个向量a、(b b 0),a / /b的

高中数学必修课件第二章空间直角坐标系

高中数学必修课件第二章空间直角坐标系
台体
台体是由两个平行且小于大底面的截面所截得的几何体,在空间直角坐标系中可以通过上 下底面的方程和高度来描述。
几何体顶点、棱长等参数求解
要点一
顶点坐标
对于给定的几何体方程,可以通过解 方程求得顶点的坐标。例如,对于圆 锥方程$z = sqrt{x^2 + y^2} tan(theta)$,当$x=y=0$时, $z=0$,即顶点在原点。
质。
06
空间直角坐标系在实际问 题中应用
地球经纬度系统简介及转换方法
要点一
地球经纬度系统概述
要点二
经纬度与空间直角坐标系的转换
地球经纬度系统是一种以经度和纬度来表示地球上任意位 置的方法,广泛应用于地理、导航、气象等领域。
在实际应用中,经常需要将经纬度坐标转换为空间直角坐 标系中的坐标,或者将空间直角坐标系中的坐标转换为经 纬度坐标。这种转换可以通过一定的数学公式和算法来实 现。
点与坐标对应关系
空间中的每一个点都唯一对应一个三元组坐标,反之每一个三元组坐标也唯一对 应空间中的一个点。
空间向量及其运算规则
01
空间向量定义
既有大小又有方向的量称为空间向量,其大小称为向量的模,方向由起
点指向终点。
02
向量表示
在空间直角坐标系中,向量可以用一个有序三元组来表示,即向量的坐
标表示。
03
向量运算
空间向量的运算包括加法、减法、数乘和点积等,其中加法和减法遵循
平行四边形法则和三角形法则,数乘是将向量与标量相乘得到新的向量
,点积则是两个向量的数量积运算。
02
空间直角坐标系中点与线 关系
点到直线距离公式推导及应用
公式推导
通过向量投影的概念,推 导出点到直线的距离公式 。

空间直角坐标系ppt课件

空间直角坐标系ppt课件
坐标系 Oxyz 中 x 轴、y 轴、z 轴的正方向
上的单位向量,且O→B=-i+j-k,则点 B 的坐标是
√A.(-1,1,-1)
B.(-i,j,-k)
C.(1,-1,-1)
D.不确定
由空间直角坐标系中点的坐标的定义可知点B的坐标为(-1,1,-1).
D.5,23,2
由题图知,点 P 在 x 轴、y 轴、z 轴上的射影分别为 P1,P2,P3, 它们在坐标轴上的坐标分别是32,5,4,故点 P 的坐标是32,5,4.
3.已知点 B 的坐标是(-1,2,1),则|O→B|=
√A. 6
B.6
C. 5
D.5
由 B 点坐标是(-1,2,1),得O→B=-i+2j+k,故|O→B|2=1+4+1=6, 故|O→B|= 6.
特别提醒
空间点对称问题的解题策略 (1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对 称点的变化规律,才能准确求解. (2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反” 这个结论.
训练3.已知点P(2,3,-1)关于坐标平面Oxy的对称点为P1,点P1关于坐标平面 Oyz 的 对 称 点 为 P2 , 点 P2 关 于 z 轴 的 对 称 点 为 P3 , 则 (点2,P-3 的3,坐1)标 为 ______________.
则p=a+2b+3c=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,
x+y=1,
x=23,
所以xz=-3y,=2,解得yz==3-,12,
故 p 在基底{a+b,a-b,c}下的坐标为32,-21,3.
二、空间点及向量的坐标表示
探究 2 在平面直角坐标系中,{i,j}为一个单位正交基底,O→A=xi+yj,那么向 量O→A的坐标为(x,y),点 A 的坐标为(x,y);如果设{i,j,k}为空间的单位正交 基底,O→A=xi+yj+zk,猜想空间向量O→A的坐标是什么?点 A 的坐标是什么? 提示 (x,y,z);(x,y,z).

高中数学第1章坐标系二第二课时极坐标和直角坐标的互化课件

高中数学第1章坐标系二第二课时极坐标和直角坐标的互化课件
人教A版数学 ·选修4-4
返回导航 上页
下页
二 极坐标系
第二课时 极坐标和直角坐标的互化
人教A版数学 ·选修4-4
返回导航 上页
下页
考纲定位
重难突破
1.掌握点的极坐标与直角 重点:点的极坐标与直角
坐标的互化公式.
坐标的互相转化.
2.能进行点的极坐标与直 难点:将点的直角坐标转
角坐标的互相转化.
化为极坐标.
人教A版数学 ·选修4-4
返回导航 上页
下页
极坐标与直角坐标互化的应用
[典例] 在极坐标系中,点2,π3和圆(x-1)2+y2=1 的圆心的距离为(
)
A. 3
B.2
C. 1+π92
D. 4+π92
人教A版数学 ·选修4-4
返回导航 上页
下页
[解析] 方法一 ∵(x-1)2+y2=1 的圆心坐标为(1,0),化为极坐标是(1,0), ∴点(2,π3)到圆心的距离 d= ρ12+ρ22-2ρ1ρ2cosθ1-θ2 = 22+12-2×2×1×cosπ3= 4+1-2= 3. 方法二 将点(2,π3)化为直角坐标是(1, 3) 又(x-1)2+y2=1 的圆心的坐标是(1,0), ∴点(2,π3)到圆心的距离 d= 1-12+ 3-02= 3. [答案] A
返回导航 上页
下页
人教A版数学 ·选修4-4
返回导航 上页
下页
探究二 点的直角坐标化为极坐标
[例 2] 将下列点的直角坐标化为极坐标(ρ≥0,θ∈[0,2π)):
(1)(-2,2);(2) 23,-12;(3)(0,- 6). [解析] (1)由 ρ= x2+y2=2 2,tan θ=xy=-1,且角 θ 的终边经过点(-2,2),

直角坐标和极坐标的互化PPT讲稿

直角坐标和极坐标的互化PPT讲稿

2
3
)
( 3,1)
解: (1)
x cos 5cos 2 5 ,
32
当前你正在浏览到的事第十页PPTT,共二十六页。
问题解析
例 (1) 将点M的极坐标 (2) 将点M的直角坐标
化成直角坐标;
化成极坐标.
x cos 5cos 2 5 ,
32
y sin 5sin 2 5 3 .
即(x 1)2 ( y 1 )2 5 这是以点(1, 1)为圆心,
24
2
半径为
5 的圆。 2
当前你正在浏览到的事第二十三页PPTT,共二十六页。
(2)极坐标方程 sin 2 cos所表示的
曲线是
解:将极坐标方程化为直角坐标方程即可判断
曲线的形状,因为给定的不恒等于零,用同
乘方程的两边得 2= sin 2 cos
因为点M在第三象限, 所以
7 .
6
因此, 点M的极坐标为
(2, 7 ).
6
当前你正在浏览到的事第十六页PPTT,共二十六页。
试一试
1.将下列各点的极坐标化为直角坐标:
( 2, ),(6, ),(2,11 ),(5, ).
4
3
6
当前你正在浏览到的事第十七页PPTT,共二十六页。
试一试
1.将下列各点的极坐标化为直角坐标:
4
解:根据极坐标的定义
tan y tan 3 y
x
4x
即y x( y 0)
当前你正在浏览到的事第二十页PPTT,共二十六页。
试一试
(1) 3 的直角坐标方程是
4
解:根据极坐标的定义
tan y tan 3 y
x
4x

平面直角坐标系(二)课件

平面直角坐标系(二)课件
平面直角坐标系是平面几何理论的基础,通过坐标系可以推导和解决平面上的几何问题。
平面直角坐标系(二)
本课件介绍平面直角坐标系的基本知识,包括坐标系的起源、元素,直角坐 标系中的点、线段、图形表示方法等内容。
什么是平面直角坐标系?
平面直角坐标系是研究平面上各点的位置关系的基本工具,由横轴和纵轴构成,用来定位平面上的点。
坐标系的起源和应用
坐标系起源于数学,广泛应用于几何、物理、经济等领域。它提供了一种精确描述和计算空间问题的方 法。
坐标系的基本元素
横轴
表示平面上的横向方向,通常用x轴表示。
纵轴
表示平面上的纵向方向,通常用y轴表示。
原点
坐标系的起点,表示平面上的零点。
直角坐标系的横坐标和纵坐标
横坐标
表示点在横轴上的投影,通常用x表示。
纵坐标
表示点在纵轴上的投影,通常用y表示。
坐标轴的正负方向
横轴从左向右为正方向,纵轴从下向上为正方向。负方向相反。
坐标系中的点及其表示方法
点在坐标系中由横坐标和纵坐标确定,通常表示为一个有序数对(x, y)。
坐标系中的线段及其表示方法
线段是坐标系中两点之间的连线,可以由两点的坐标表示。
坐标系中的图形及其表示方法
图形可以由若干个点或线段组成,在坐标系中可以通过点的坐标或系与平面几何理论的关系

1.3.1 空间直角坐标系 课件(共24张PPT)

1.3.1 空间直角坐标系 课件(共24张PPT)

AB C1 A1
2
2, 2
向量 AB 与向量 C1 A1 的夹角是 135°.
1. 空间向量运算的坐标表示; 2. 空间向量数量积运算的坐标表示的证明; 3. 空间向量的平行、垂直、长度和夹角余弦的坐标表示; 4. 空间两点间的距离公式.
谢 谢
设{i, j, k} 为空间的一个单位正交基底,则 a a1i a2 j a3k , b b1i b2 j b3k ,所以 a b (a1i a2 j a3k ) (b1i b2 j b3k ) ,利用向量数量积的分配律以及 i i j j k k 1 , i j j k k i 0 ,得 a b a1b1 a2b2 a3b3 .
a1b1 a2b2 a3b3 a12 a22 a32 b12 b22 b32 .
探究四:空间两点间的距离公式
如图建立空间直角坐标系 Oxyz,设 P1(x1, y1, z1) , P2 (x2 , y2 , z2 ) 是空间中任意两点,则 P1P2 OP2 OP1 (x2 x1, y2 y1, z2 z1) .
第一章 空间向量与立体几何
1.3.1 空间直角坐标系
学习目标:
1.掌握平行向量,垂直向量的坐标表示,并能解决相关的向量的 平行,向量的垂直问题. 2.能熟练应用两个向量夹角与向量长度的坐标计算公式.
学习重点:
向量的坐标运算,夹角公式,距离公式,空间向量平行 和垂直的条件.
导入
同学们,因为我们学过平面向量,知道平面向量的坐标运算,从 上一节课,我们知道,一个空间向量的坐标等于表示此向量的有向线 段减去起点坐标,你还能得出空间向量的相关运算的坐标表示并给出 证明吗?
A.-1
B.1
C.-4
D.4
解析

常用坐标系介绍及变换PPT课件

常用坐标系介绍及变换PPT课件
常用坐标系介绍及变 换ppt课件
目录
• 常用坐标系介绍 • 坐标变换基础 • 坐标变换的应用 • 坐标变换的数学表达 • 坐标变换的物理意义 • 坐标变换的计算机实现
01
常用坐标系介绍
笛卡尔坐标系
01
02
03
直角坐标系
以原点为中心,x轴、y轴、 z轴分别代表三个相互垂 直的坐标轴,用于描述平 面和空间中的点。
二维坐标变换
总结词
二维坐标变换是指平面内的坐标变化, 包括平移、旋转、缩放等操作。
详细描述
二维坐标变换涉及平面内的点,可以 通过平移、旋转或缩放等操作进行坐 标变化。这种变换在平面几何、图形 处理等领域应用广泛,可以通过矩阵 运算实现快速变换。
三维坐标变换
总结词
三维坐标变换是指空间中的坐标变化,包括平移、旋转、缩放等操作。
详细描述
三维坐标变换涉及空间中的点,可以通过平移、旋转或缩放等操作进行坐标变化。这种变换在三维建模、动画制 作、机器人控制等领域应用广泛,需要使用三维矩阵运算进行实现。
03
坐标变换的应用
图形变换
图形变换是指通过数学方法将一个二维或三维图形在坐标系 中进行平移、旋转、缩放等操作,以达到改变图形位置、大是一种数值计算方法,通过将物体离散化为有限个单元,可 以分析物体的受力情况和形变程度。有限元分析在工程领域中有着广泛 的应用,可以提高设计效率和精度。
06
坐标变换的计算机实现
OpenGL中的坐标变换
投影变换
将三维场景投影到二维屏 幕上,包括正交投影和透 视投影。
视图变换
将场景中的坐标系与观察 者的坐标系进行关联,实 现视景体裁剪。
旋转变换不改变图形的大小和形状, 只改变其方向。

空间直角坐标系通用课件

空间直角坐标系通用课件
向量的数量积、向量积和混合积
通过向量的数量积、向量积和混合积,可以研究向量的长度、角度、向量的平行 与垂直等关系。
空间几何图形的表示与计算
平面几何图形
在空间直角坐标系中,可以表示平面几何图形,如三角形、 四边形、圆等,并研究其性质和计算面积、体积等。
立体几何图形
利用空间直角坐标系,可以表示三维几何图形,如长方体、 圆柱体、圆锥体等,并研究其性质和计算表面积、体积等。
各坐标轴的单位长度可以 根据实际需要设定,通常 为厘米或米等。
空间点的坐标表示
点P的坐标
在空间直角坐标系中,任意一点P可以用三个实数来表示,这三个实数分别是 点P在三个坐标轴上的投影点的坐标值。
坐标表示方法
设点P在x轴、y轴和z轴上的投影点分别为P₁、P₂和P₃,则点P的坐标可以表示为 (x, y, z),其中x=x₁, y=y₂, z=z₃。
柱面坐标系是以某一方向为轴线 ,以原点为中心,以一定长度为 范围的柱面来表示空间位置的坐
标系。
三个参数
柱面坐标系由三个参数确定,分别 是方位角、仰角和距离。
转换关系
柱面坐标系与直角坐标系之间可以 通过一系列的坐标变换进行转换。
任意曲线坐标系
定义
任意曲线坐标系是指以任意曲线为轴 线,以该曲线上某一点为中心,以一 定长度为范围的曲线来表示空间位置 的坐标系。
旋转变换可以用旋转变换矩阵来表示,该矩阵表示了每个点在旋转过程中 的角度和旋转轴的方向。
旋转变换在三维空间中也是可逆的,即可以通过旋转变换矩阵的逆矩阵来 恢复原始位置。
坐标变换的矩阵表示
坐标变换的矩阵表示是一种通用的方法,可以将平移变换和旋转变换等操作统一表示为 矩阵乘法运算。
通过坐标变换的矩阵表示,我们可以方便地实现三维空间中任意两个坐标系之间的转换 ,从而方便地描述三维空间中物体的位置和运动状态。

高二数学选修4-4平面直角坐标系中的伸缩变换与极坐标系上课用-公开课课件ppt.ppt

高二数学选修4-4平面直角坐标系中的伸缩变换与极坐标系上课用-公开课课件ppt.ppt
19
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
探索
•已知一点, 与它关于极轴所在直线对称的点如何表示?
Ø若M的坐标为 ( , ) ,则M’的坐标可以是 (,).
M(,)
O
x
M (,)
20
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
x’=x 2
y’=3y
通常把 2 叫做平面直角坐标系中的一个坐标伸长变 换。
3
(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x? 写 出其坐标变换。
设点P(x,y)经变换得到点为P’(x’,y’)
x’=
1 2
x
y’=3y
通常把这样的变换叫做平面直角坐标系中的一个坐标 伸缩变换。
4
定义:设P(x,y)是平面直角坐标系中任意 一点,在变换
x=ρcosθ, y=ρsinθ
26
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
互化公式的三个前提条件:
1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
轴重合; 3. 两种坐标系的单位长度相同.
与直角坐标系的联系与区别
•极坐标系与直角坐标系的异同是什么? Ø都是用有序实数对来表示平面上的点. Ø其中的有序实数对意义不同. Ø直角系的坐标与平面上点是一一对应的;
极坐标系的坐标与平面上点多对一的; •有没有办法使极坐标与点之间一一对应?

空间直角坐标系及点的坐标表示PPT课件

空间直角坐标系及点的坐标表示PPT课件

定义
在空间直角坐标系中,一个点P 可以用三个实数x、y、z来表示,
这三个实数称为点P的坐标。
坐标轴
空间直角坐标系由三条互相垂直 的坐标轴X、Y、Z组成,其中X 轴与Y轴构成平面直角坐标系。
点的坐标表示
点P在直角坐标系中的表示方法 为(x, y, z)。
点在极坐标系中的表示
01
02
03
04
定义
在空间中,一个点P可以用极 径ρ和极角θ来表示,这种表示
通过球面坐标与直角坐标之间的转换公式将点在球面坐标系中的坐标转换为直 角坐标系中的坐标。
坐标系的扩展与推广
参数方程表示
通过引入参数方程来表示点的位置, 使得点的表示更加灵活和多样。
多维空间坐标系
将二维或三维直角坐标系扩展到更高 维度的空间,用于描述更复杂的多维 几何对象。
05
空间直角坐标系的实践 案例
计算几何量
通过空间直角坐标系,可以方便地计算几何量,如两点之间的距离、 点到直线的距离等。
在物理学中的应用
01
பைடு நூலகம்
02
03
描述物体运动轨迹
在物理中,物体的运动轨 迹通常可以用空间直角坐 标系来表示。
描述力场和电场
通过空间直角坐标系,可 以描述各种物理场,如重 力场、电场等。
计算物理量
利用空间直角坐标系,可 以方便地计算物理量,如 速度、加速度等。
镜像坐标系
将坐标系沿某一轴进行对 称,得到镜像坐标系,如 极坐标系。
拉伸坐标系
通过拉伸坐标轴上的单位 长度来改变坐标系的尺度, 但不改变其方向。
坐标系的转换
笛卡尔坐标系到极坐标系的转换
通过极坐标与笛卡尔坐标之间的转换公式将点在笛卡尔坐标系中的坐标转换为 极坐标系中的坐标。

直角坐标系中的伸缩变换课件PPT

直角坐标系中的伸缩变换课件PPT

03 伸缩变换的矩阵表示
二维伸缩变换的矩阵表示
总结词
描述二维平面上的点通过伸缩变换后的坐标变化。
详细描述
在二维直角坐标系中,伸缩变换可以通过一个矩阵来表示。假设原点为 $(x, y)$, 经过伸缩变换后变为 $(x', y')$,则变换矩阵可以表示为
二维伸缩变换的矩阵表示
• $\begin{pmatrix}
02
在直角坐标系中,设原点为 $O(0,0)$,点$P(x,y)$经过伸缩变 换后变为点$P'(x',y')$,则变换公 式为:$x' = kx, y' = ky$,其中 $k$为伸缩系数。
伸缩变换的性质
伸缩变换保持点之间 的距离不变,即 $|OP| = |OP'|$。
伸缩变换可以同时对 x和y进行放大或缩小, 但比例系数必须相同。
伸缩变换的理论研究
01
02
03
理论框架
深入探讨伸缩变换的基本 原理、数学表达和推导过 程,建立完善的理论框架。
性质研究
研究伸缩变换的性质,如 线性、可逆性、连续性和 可微性等,并探讨其在不 同坐标系下的表现。
几何意义
从几何角度解释伸缩变换, 探究其在图形、曲线和曲 面等几何对象上的应用和 表现。
伸缩变换的应用研究
02 伸缩变换在直角坐标系中 的应用
横向伸缩变换
总结词
在直角坐标系中,横向伸缩变换 是指沿x轴方向的伸长或缩短。
详细描述
横向伸缩变换通过乘以一个大于1 的系数来增加x轴上的长度,或者 乘以一个小于1的系数来减小x轴 上的长度。这种变换不会改变点 在y轴上的坐标。
纵向伸缩变换
总结词
纵向伸缩变换是指沿y轴方向的伸长或缩短。

平面直角坐标系中的位似变换课件

平面直角坐标系中的位似变换课件

B′(4,3)
2 A′(2,1) A
-4 -2A′O′(-2,-1)2 4 6 8
x
-2
D′′(1,-3) B′′(-4,-3) -4
C′′(-3,-5)-6
例 在平面直角坐标系中, 四 边 形 OABC的 顶 点 坐 标 分 别 是 O(0,0) , A(6,0) , B(3,6),C(-3,3).以原点O为 位似中心画一个四边形, -6 使它与四边形 OABC位似, 且类似比是2∶3.
x 6 4 2
-6 -4
-2 O -2
-4
-6
B′ B
(1)将点O,A,B的横、纵坐标都
乘2,得到O′( 0,0),A′( 6,0), B′( 4,6)
A 24
(2) △OAB和△OA′B′是位似的,
A′ 6
y 位似中心是点O,类似比是2.
在直角坐标系中,△OAB三个顶点的坐标分别为O(0,0), A(3,0),B(2,3).
A′ -6 -4
2 -2 O
(2) △OAB和△OA′B′是位似的,
Байду номын сангаас
A 24
6
y 位似中心是点O,类似比是-2.
-2
-4
-6 B′
探究新知
y C
10
在直角坐标系中,四边形
8
OABC的顶点坐标分别为A(4,2), D 6 C′(3,5)
B
B(8,6),C(6,10), D(-2,6).将点
O,A,B,C的横、纵坐标都
x 6 4 C 2
-4 -2 O -2 -4
-6
B
A 24 6y
四边形OABC的顶点坐标 都乘 2 分别是O(0,0),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义:设P(x,y)是平面直角坐标系中 任意一点,在变换
:
x y
' '
x y
( 0) ( 0)
4
的作用下,点P(x,y)对应P’(x’,y’).称
为平面直角坐标系中的伸缩变换。
注 (1) 0, 0
(2)把图形看成点的运动轨迹, 平面图形的伸缩变换可以用坐标伸缩变 换得到;
(3)在伸缩变换下,平面直角坐 标系不变,在同一直角坐标系下进行伸 缩变换。
在正弦曲线y=sinx上任取一点P(x,y), 保持纵坐标不变,将横坐标x缩为原来 的 1 ,在此基础上,将纵坐标变为原 来的23倍,就得到正弦曲线y=3sin2x. 设点P(x,y)经变换得到点为P’(x’,y’)
1
x’= 2 x 3 y’=3y 通常把 3 叫做平面直角坐标系中 的一个坐标伸缩变换。
x 680 5, y 680 5,
即P(680 5,680 5),故PO 680 10
答:巨响发生在接报中心的西偏北
450距中心 680 10m 处.
解决此类应用题的关键:建系-设 点(点与坐标的对应)-列式(方 程与坐标的对应)-化简-说明
2.已知△ABC的三边a,b,c满足
• a2+b2=5a2,BE,CF分别为边AC,CF 上的中线,建立适当的平面直角坐 标系探究BE与CF的位置关系。
yC P
B o
Ax
以接报中心为原点O,以BA方向为x轴, 建立直角坐标系.设A、B、C分别是西、 东、北观测点,则 A(1020,0),B(-1020,0) C(0,1020)
设P(x,y)为巨响为生点,由B、C同 时 听 到 巨 响 声 , 得 |PC|=|PB| , 故 P 在 BC的垂直平分线PO上,PO的方程为 y=-x,因A点比B点晚4s听到爆炸声, 故|PA|- |PB|=340×4=1360
一.平面直角坐标系的建立
思考:声响定位问题
某中心接到其正东、正西、正北方向 三个观测点的报告:正西、正北两个 观测点同时听到一声巨响,正东观测 点听到巨响的时间比其他两个观测点 晚4s,已知各观测点到中心的距离都 是 1020m , 试 确 定 该 巨 响 的 位 置 。 (假定当时声音传播的速度为340m/s, 各相关点均在同一平面上) (2004年广东高考题)
曲线C变为x’2-9y’2 =1,求曲线C的 方程并画出图形。
思考:在伸缩 4 下,椭圆是否可以 变成圆?抛物线,双曲线变成什么曲 线?
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题;
(2)掌握平面直角坐标系中的伸缩 变换。
作业: P8 1, 4, 5 预习: 极坐标系(书本P9-P11)
设P(x,y)是平面直角坐标系中任意 一点,保持纵坐标不变,将横坐标x缩为 原来 1 ,得到点P’(x’,y’).坐标对应关系 为: 2
坐标对应关系为:
1
x’= 2 x 1 y’=y
通常把 1 叫做平面直角坐标系中 的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。
练习:
1.在直角坐标系中,求下列方程所对 应的图形经过伸缩变换
x’=x
y’=3y
后的图形。 (1)2x+3y=0; (2)x2+y2=1
2.在同一直角坐标系下,求满足下列 图形的伸缩变换:曲线4x2+9y2=36变 为曲线x’2+y’2=1 3.在同一直角坐标系下,经过伸缩变
x’=3x

后,
y’=y
在正弦曲线上任取一点P(x,y), 保持横坐标x不变,将纵坐标伸长为原 来的3倍,就得到曲线y=3sinx。
设点P(x,y)经变换得到点为P’(x’,y’) x’=x 2 y’=3y
通常把 2 叫做平面直角坐标系中 的一个坐标伸长变换。
(3)怎样由正弦曲线y=sinx得到曲 线y=3sin2x? 写出其坐标变换。
具体解答过程见书本P4
你能建立不同的直角坐标系解决这 个问题吗?比较不同的直角坐标系下解 决问题的过程,建立直角坐标系应注意 什么问题?
建系时,根据几何特点选择适当的直角 坐标系。
(1)如果图形有对称中心,可以选对 称中心为坐标原点;
(2)如果图形有对称轴,可以选择对 称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在 坐标轴上。
二.平面直角坐标系中的伸缩变换
思考: (1)怎样由正弦曲线y=sinx得到曲 线y=sin2x?y=sin来自x2Ox
y=sinx
在正弦曲线y=sinx上任取一点P(x,y), 保持纵坐标不变,将横坐标x缩为原来 的 1 ,就得到正弦曲线y=sin2x.
2
上述的变换实质上就是一个坐标的 压缩变换,即:
由双曲线定义知P点在以A、B为焦点的
双曲线 x 2 y 2 1 上,
a2 b2 a 680 ,c 1020
b2 c2 a2 10202 6802 5 3402
故双曲线方程为 x2 6802
y2 5 3402
1(x
0)
用y=-x代入上式,得 x 680 5 ,
∵|PA|>|PB|,
相关文档
最新文档