高中数学第一章导数及其应用1.5定积分的概念1.6微积分基本定理要点讲解素材新人教A版选修2-2教案
高中数学 第一章 导数及其应用 1.5 定积分的概念 1.6 微积分基本定理要点讲解素材 新人教A版选修2-2
定积分和微积分要点讲解一、定积分的概念教材上从求曲边梯形的面积和变速运动的路程出发引入了定积分的概念:如果函数()f x 在区间[],a b 上是连续的,用分点011i i n a x x x x x b -=<<<<<<=L L 将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1,2,,i n =L),作和式()()11nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()baf x dx ⎰,即()()1lim nbi an i b af x dx f nξ→∞=-=∑⎰. 对这个概念我们应从如下几个方面进行理解1.对区间[],a b 分割的绝对任意性:在定义中我们将区间[],a b 进行等分是为了计算上的方便,实际上对区间[],a b 的分割是任意的,这时只要这些区间中长度最大的区间的长度趋向于零即可.2.在每个小区间[]1,i i x x -上取点的绝对任意性:在教材上的两个例题是为了计算的方便将点取小区间[]1,i i x x -的端点,实际上我们可以在区间[]1,i i x x -上任意取点,如取中点等.3.当n →∞时,和式()()11nni i i i b af x f nξξ==-∆=∑∑无限接近某个常数的唯一确定性.它不依赖于对区间[],a b 的分割方法,也不依赖于在每个小区间[]1,i i x x -上取点的方式.即()baf x dx ⎰是一个客观上存在的仅仅依赖于积分上下限和被积函数的唯一确定的常数.同时它也与积分变量无关,即()()b baaf x dx f t dt =⎰⎰.4.数学思想上的划时代意义.产生定积分概念的"以直代曲""以匀速代变速"和"无限逼近"的数学思想,使人类在认识数学世界的观念上有了重大突破,在数学的发展史上具有重大意义.我们要仔细理解体会这种思想,可以说这才是我们在高中阶段学习定积分的真正目的.例如在求曲边梯形的面积的课本例1中,我们把区间[]0,1等分成n 个小区间,在每个小区间上"以直代曲"就将曲边问题转化为直边问题,随着n 的增大这些小区间的宽度越来越小,这时在每个小区间上直边形的面积已经和曲边形的面积非常接近,我们就可以以这些小直边形的面积之和近似代替曲边形的面积,而当n →∞时这些小直边形就几乎变成了线段,这时小直边形的面积几乎就等于小曲边形的面积,这无穷个几乎变成了线段的直边形的面积之和就是所求的曲边形的面积了.我们常说"线动成面",对课本例1,我们也可以这样形象的理解:就将小直边形的宽度变成零,使其成为线段,这时小直边形和小曲边形的就完全重合了,而将这些线段从0到1运动就形成了()2f x x =,1x =, x 轴所围成的曲边形,将这些线段的"面积"积累起来就是所求的曲边形的面积. 二、微积分基本定理的应用作变速直线运动的物体如果其运动方程是()S t ,那么该物体在时间区间[],a b 内通过的路程是()()S b S a -,另一方面由导数的物理意义,该物体在任意时刻的瞬时速度为()()'S t s t =,我们把该物体运动的时间区间[],a b 无限细分,在每个小时间段上,将其速度看作匀速,就能求出该物体在每个小时间段上通过的路程,将这无限个小时间段上的路程加起来,就是该物体在时间区间[],a b 上通过的路程,由定积分的定义可知,这个数值是()bas t dt ⎰.由此可知()()()()'bbaaS t dt s t dt S b S a ==-⎰⎰.一般地有如下结论:如果()f x 是[],a b 上的连续函数,并且有()()F x f x '=,则()()()baf x dx F b F a =-⎰.这就是微积分基本定理,是微积分学最为辉煌的定理,是数学发展史的一个重要里程碑,利用这个定理可以很方便的计算定积分,其关键是找到一个函数使其导数等于被积函数,下面举例说明它在计算定积分上的应用.例1 计算定积分()1xx ee dx --⎰分析:()'x x e e =,()'x x e e --=-,故()'x x x x e e e e --+=-.解:()()11'112xxxx xx eedx eedx ee e e---⎡⎤-=+=+=+-⎣⎦⎰⎰.点评:关键是找()F x ,使()'x xF x e e -=-,可以通过求导运算求探求.例2 计算定积分220cos sin 22x x dx π⎛⎫- ⎪⎝⎭⎰.分析:被积函数比较复杂,我们可以先化简,再探求.由于222cos sin cos 2cos sin sin 1sin 222222x x x x x x x ⎛⎫-=-+=- ⎪⎝⎭,而'1x =,()cos 'sin x x =-,故()2cos '1sin cos sin 22x x x x x ⎛⎫+=-=- ⎪⎝⎭.解:()()[]2'2222000cos sin 1sin cos cos 2212x x dx x dx x x dx x x πππππ⎛⎫-=-=+=+ ⎪⎝⎭=-⎰⎰⎰点评:被积函数较为复杂时要先化简在求解. 掌握如下的定积分计算公式对解题是有帮助的.①111bm m ab x dx xa m +=+⎰(,1m Q m ∈≠-),②1ln bab dx x a x =⎰,③b x x a b e dx e a =⎰,④ln x n xm n a a dx ma =⎰,⑤cos sin bab xdx xa=⎰,⑥()sin cos babxdx x a=-⎰.例如 例3 计算定积分()1223x x dx -⎰.分析:先展开再利用上面的定积分公式. 解:()1223xx dx -⎰=()104269xxxdx -⋅+⎰=146920ln 4ln 6ln 9x x x ⎛⎫-⋅+ ⎪⎝⎭ 3108ln 4ln 6ln 9=-+. 点评:根据定积分公式结合定积分的运算性质是计算定积分的根本.从上面不难看出利用微积分基本定理计算定积分比用定义计算要方便的多,在实际解题中要注意对被积函数的化简展开以及有意识的利用定积分的三条运算性质,以起到化难为易的作用.三、定积分的三条性质根据定积分的定义不难得到定积分的三条性质 性质1.常数因子可提到积分号前,即:()()bbaakf x dx k f x dx =⎰⎰(k 为常数);性质2.代数和的积分等于积分的代数和: 即:()()()()bb bx aa a f x g x dx f x d g x dx ±=±⎡⎤⎣⎦⎰⎰⎰;性质3.(定积分的可加性)如果积分区间[],a b 被点c 分成两个小区间[],a c 与[],c b , 则:()()()bc daacf x dx f x dx f x dx =+⎰⎰⎰。
人教版高中数学第一章1.6微积分基本定理
的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进
行叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元
法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。
归纳升华 (1)利用微积分基本定理求定积分,关键是求使 F′(x) =f(x)的 F(x),其求法是反方向运用求导公式. (2)当被积函数是积的形式时,应先化和差的形式, 再利用定积分的性质化简,最后再用微积分基本定理求定 积分的值.
(3)对于多项式函数的原函数,应注意 xn(n≠-1)的原 xn+1
函数为 ,它的应用很广泛. n+1
[变式训练] 下列积分值为 2 的是( )
A.∫50(2x-4)dx C.∫311xdx
B.∫0π cos xdx D.∫0π sin xdx
解析:∫50(2x-4)dx=(x2-4x)|50=5,∫0π cos xdx=sin
x|π0 =0,∫311xdx=ln x|31=ln 3,∫π0 sin xdx=-cos x|0π =2.
x 的原函数为
F(x)
π
=12x-12sin x,所以 sin2 x2dx=12x-12sin x|20=π4-12=
π-2 4. π-2 答案: 4
5.曲线 y=2x2 与直线 x=1,x=2 及 y=0 所围成的 平面图形的面积为________.
解析:依题意,所求面积为 S=∫212x2dx=23x3|21=136- 23=134. 答案:134
=sin 1-23. 答案:sin 1-23
类型 3 微积分基本定理的综合应用(互动探究)
人教版高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.5.3定积分的概
1.5 定积分的概念1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程 1.5.3 定积分的概念学习目标:、1.了解定积分的概念(难点).2.理解定积分的几何意义.(重点、易错点).3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想(难点).4.能用定积分的定义求简单的定积分(重点).[自 主 预 习·探 新 知]1.曲边梯形的面积和汽车行驶的路程 (1)曲边梯形的面积①曲线梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图151①所示).②求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图151②所示).图① 图②图151③求曲边梯形面积的步骤:分割,近似代替,求和,取极限. (2)求变速直线运动的(位移)路程如果物体做变速直线运动,速度函数v =v (t ),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a ≤t ≤b 内所作的位移s .2.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n )作和式∑n i =1f (ξi )Δx =∑n i =1 b -a nf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )d x =lim n→∞∑n i =1 b -anξ.其中a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.思考:⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a b f (x )d x 与积分变量有关系吗?[提示]由定义可得定积分⎠⎛a b f (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a b f (x )d x =⎠⎛a b f (t )d t =⎠⎛ab f (u )d u .3.定积分的几何意义与性质 (1)定积分的几何意义由直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )所围成的曲边梯形的面积设为S ,则有:① ② ③图152①在区间[a ,b ]上,若f (x )≥0,则S =⎠⎛a b f (x )d x ,如图152①所示,即⎠⎛a b f (x )d x=S .②在区间[a ,b ]上,若f (x )≤0,则S =-⎠⎛a b f (x )d x ,如图152②所示,即⎠⎛a b f (x )d x =-S .③若在区间[a ,c ]上,f (x )≥0,在区间[c ,b ]上,f (x )≤0,则S =⎠⎛a c f (x )d x -⎠⎛cbf (x )d x ,如图152③所示,即⎠⎛ab=SA -SB(S A ,S B 表示所在区域的面积).(2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数); ②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;③⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ). [基础自测]1.思考辨析(1)⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( ) (2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛012xd x <⎠⎛022xd x ( ) [答案] (1)√ (2)× (3)√2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确C [作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是[x i ,x i +1]上任一值f (ξi ).]3.图153中阴影部分的面积用定积分表示为( )图153A.⎠⎛012xd x B.⎠⎛01(2x -1)d x C.⎠⎛01(2x +1)d x D.⎠⎛01(1-2x )d x B [根据定积分的几何意义,阴影部分的面积为⎠⎛012xd x -⎠⎛011d x =⎠⎛01(2x-1)d x .]4.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,则⎠⎛02(x 2+1)d x =________.【导学号:31062080】[解析] ∵⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,∴⎠⎛02(x 2+1)d x =⎠⎛01x 2d x +⎠⎛12x 2d x +⎠⎛021d x=13+73+2 =83+2=143. [答案]143[合 作 探 究·攻 重 难]图154[解] (1)分割将曲边梯形分割成n 个小曲边梯形,用分点1n ,2n ,…,n -1n 把区间[0,1]等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,n n ,简写作⎣⎢⎡⎦⎥⎤i -1n,i n (i =1,2,…,n ).每个小区间的长度为Δx =i n -i -1n =1n .过各分点作x 轴的垂线,把曲边梯形分成n个小曲边梯形,它们的面积分别记作:ΔS 1,ΔS 2,…,ΔS i ,…,ΔS n .(2)近似代替用小矩形面积近似代替小曲边梯形面积,在小区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上任取一点ξi(i =1,2,…,n ),为了计算方便,取ξi 为小区间的左端点,用f (ξi )的相反数-f (ξi )=-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1为其一边长,以小区间长度Δx =1n 为另一边长的小矩形对应的面积近似代替第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈-f (ξi )Δx =-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n (i =1,2,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形面积S 的近似值,即S =∑i =1nΔS i ≈-∑i =1nf(ξi)Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n=-1n3[02+12+22+…+(n -1)2]+1n2[0+1+2+…+(n -1)]=-1n3·16n (n -1)(2n -1)+1n2·-2=--n2+16n2=-16⎝ ⎛⎭⎪⎫1n2-1. (4)取极限当分割无限变细,即Δx 趋向于0时,n 趋向于∞, 此时-16⎝ ⎛⎭⎪⎫1n2-1趋向于S .从而有 S =lim n→∞ ⎣⎢⎡⎦⎥⎤-16⎝ ⎛⎭⎪⎫1n2-1=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积为16.[规律方法] 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用到一些常见的求和公式,如1+2+3+…+n =+2,12+22+32+…+n 2=++6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤+22. [跟踪训练]1.求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.【导学号:31062081】[解] ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =,y =4,得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2]n 等分, 则Δx =2n ,取ξi =-n.(2)近似代替求和S n =∑ni =1 ⎣⎢⎡⎦⎥⎤-n2·2n =8n3[12+22+32+…+(n -1)2] =83⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n .(3)取极限S =lim n→∞S n =lim n→∞ 83⎝⎛⎭⎪⎫1-1n ⎝⎛⎭⎪⎫1-12n=83.∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323.(单位:km/h),求它在1≤t ≤2这段时间行驶的路程是多少?[解] 将时间区间[1,2]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n , 在第i 个时间段的路程近似为Δs i =v ⎝ ⎛⎭⎪⎫1+i n Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n,i =1,2,…,n .所以s n =∑n i =1Δs i =∑n i =1 ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n=-1n3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2[(n +1)+(n +2)+…+2n ]=-1n3⎣⎢⎡⎦⎥⎤++6-++6+2n2·+1+2=-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n,s =lim n→∞s n =lim n→∞⎣⎢⎡⎦⎥⎤-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n =23,所以这段时间行驶的路程为23 km.[规律方法]求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.[跟踪训练]2.一物体自200 m 高空自由落下,求它在开始下落后的第3秒至第6秒之间的距离.(g =9.8 m/s 2)【导学号:31062082】[解] 自由落体的下落速度为v (t )=gt . 将[3,6]等分成n 个小区间,每个区间的长度为3n.在第i 个小区间⎣⎢⎡⎦⎥⎤3+-n,3+3i n (i =1,2,…,n )上,以左端点函数值作为该区间的速度.所以s n =∑n i =1v ⎣⎢⎡⎦⎥⎤3+-n3n=∑n i =1⎣⎢⎡⎦⎥⎤3g +3g n -·3n =⎩⎨⎧⎭⎬⎫3ng +3gn [1+2+…+-·3n =9g +9gn2·-2=9g +92g ·⎝⎛⎭⎪⎫1-1n .所以s =lim n→∞s n =lim n→∞ ⎣⎢⎡⎦⎥⎤9g +92g·⎝ ⎛⎭⎪⎫1-1n =9g +92g =272×9.8=132.3(m).故该物体在下落后第3 s 至第6 s 之间的距离是132.3 m.1.在定积分的几何意义中f (x )≥0,如果f (x )<0,⎠⎛ab f (x )d x 表示什么?提示:如果在区间[a ,b ]上,函数f (x )<0,那么曲边梯形位于x 轴的下方(如图所示),由于Δx i >0,f (ξi )<0,故f (ξi )·Δx i <0,从而定积分⎠⎛a b f (x )d x <0,这时它等于图中所示曲边梯形面积的相反数,即⎠⎛a b f (x )d x =-S 或S =-⎠⎛a b f (x )d x . 2.⎠⎛024-x2d x 的几何意义是什么? 提示:是由直线x =0,x =2,y =0和曲线y =4-x2所围成的曲边梯形面积,即以原点为圆心,2为半径的14圆的面积即⎠⎛024-x2d x =π.3.若f (x )为[-a ,a ]上的偶函数,则f (x )d x 与f (x )d x 存在什么关系?若f (x )为[-a ,a ]上的奇函数,则f (x )d x 等于多少?提示:若f (x )为偶函数,则f (x )d x =2f (x )d x ;若f (x )为奇函数,则f (x )d x=0.说明下列定积分所表示的意义,并根据其意义求出定积分的值. (1)⎠⎛012d x ;(2)⎠⎛12x d x ; (3)1-x2d x .[解] (1)⎠⎛012d x 表示的是图①中阴影部分所示的长方形的面积,由于这个长方形的面积为2,所以⎠⎛012d x =2.① ② ③(2)⎠⎛12x d x 表示的是图②中阴影部分所示的梯形的面积,由于这个梯形的面积为32,所以⎠⎛12x d x =32. (3)1-x2d x 表示的是图③中阴影部分所示的半径为1的半圆的面积,其值为π2,所以1-x2d x =π2.母题探究:1.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011-x2d x .[解]⎠⎛011-x2d x 表示的是图④中阴影部分所示半径为1的圆的14的面积,其值为π4, ∴⎠⎛011-x2d x =π4.2.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011--d x .[解] ⎠⎛011--d x 表示的是图⑤中阴影部分所示半径为1的14圆的面积,其值为π4,∴⎠⎛011--d x =π4.3.(变条件)将例3(3)改为利用定积分的几何意义求 (x +1-x2)d x .[解] 由定积分的性质得,(x +1-x2)d x = x d x +1-x2d x .∵y =x 是奇函数,∴x d x =0.由例3(3)知1-x2d x =π2.∴(x +1-x2)d x =π2.[当 堂 达 标·固 双 基]1.把区间[1,3]n 等分,所得n 个小区间中每个小区间的长度为( ) A.1n B.2n C.3nD.12nB [区间长度为2,n 等分后每个小区间的长度都是2n ,故选B.]2.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关A [由定积分的定义可知A 正确.]3.由y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________. 【导学号:31062083】[解析] ∵0<x <π2, ∴sin x >0.∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为sin x d x .[答案] sin x d x4.已知某物体运动的速度为v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为__________.[解析] ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.[答案] 555.计算: (2-5sin x )d x . 【导学号:31062084】[解] 由定积分的几何意义得,2d x =⎝ ⎛⎭⎪⎫3π2-π2×2=2π. 由定积分的几何意义得,sin x d x =0. 所以 (2-5sin x )d x=2d x-5sin x d x=2π.。
高中数学第1章导数及其应用153定积分的概念课件新人教A版选修20
B.lni→m∞∑ i=n1f(ξi)·b-n a
n
C.lni→m∞∑ i=1f(ξi)ξi
n
D.lni→m∞∑ i=1f(ξi)(ξi-ξi-1)
解析:由定积分的概念可知答案为 B.
答案:B
题型二 定积分几何意义的应用
利用定积分的几何意义求下列各式的值.
(1)
1
x3dx;
-1
(2)
2
4-x2dx;
-2
(3) 2(1+x)dx. 1
【思路探索】 利用定积分的几何意义求解.
【解】 (1)∵y=x3 在[-1,1]上为奇函数,图象关于坐标原
点对称,由在 x 轴上方和下方面积相等的两部分组成,即1 x3dx -1
=0.
(2)∵y= 4-x2表示的曲线是圆心在原点,半径为 2 的半圆,
由定积分的几何意义知2
是极限的一种记号.
(1)当函数 f(x)≥0 时,定积分bf(x)dx 在几何上表示由直线 x a
=a,x=b(a<b),y=0 及曲线 y=f(x)所围成的曲边梯形的面积. (2)当函数 f(x)≤0 时,曲边梯形位于 x 轴的下方,此时bf(x)dx
a
等于曲边梯形面积 S 的相反数,即bf(x)dx=-S. a
a
a
a
b[f(x)-g(x)]dx=bf(x)dx-bg(x)dx=1,
a
a
a
两式相加,得bf(x)dx=2, a
两式相减,得bg(x)dx=1. a
(2)b[3-2f(x)]dx=b3dx-2bf(x)dx
a
a
a
=3(b-a)-2×1=3b-3a-2.
[名 师 点 拨]
定积分的性质为我们求定积分提供了方便,可以把复杂的被
高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程
内容(nèiróng)总结
第一章 §1.5 定积分的概念(gàiniàn)。第一章 §1.5 定积分的概念(gàiniàn)。思考2 如图所示的图形与我们熟悉的“直 边图形”有什么区别。一些小曲边梯形.对每个小曲边梯形“以直代曲”,即。(5)求和时可用一些常见的求和公式,如。将区间
No [0,1]等分为n个小区间:。解 将区间[1,2]等分成n个小区间,。本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶
于是(yúshì)所求平面图形的面积近似等于
1101+2356+4295+6245+2851=110×22555=1.02.
12/9/2021
12345
第三十五页,共三十七页。
解析 答案
求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n等分区间[a,b];
(2)近似(jìn sì)代替:取点ξi∈[xi-1,xi];
131+2/9/220231 +33+…+n3=nn2+12.
第十五页,共三十七页。
跟踪训练1 求由直线x=0,x=1,y=0和曲线y=x2所围成的图形(túxíng)的面积.
12/9/2021
第十六页,共三十七页。
解答
类型二 求变速运动(biànsùyùndòng)的路程
例2 当汽车以速度v做匀速直线运动(yùndòng)时,经过时间t所行驶的路程s=vt.如果汽 车做变速直线运动,在时刻t的速度为v(t)=t2+2(单位:km/h),那么它在1≤t≤2(单 位:h)这段时间行驶的路程是多少?
答案(dá
3.一物体沿直线运动,其速度v(t)=t,这个(zhè ge)物体在t=0到t=1这段时间内所 走的路程为
1 A.3
√B.12
C.1
高中数学第一章导数及其应用1.4定积分与微积分基本定理1.4.2微积分基本定理课件新人教版B
=
������
������ ������
������(������)d������.
(3)当积分上限与下限交换时,积分值一定要取其相反数,即
������ ������
������(������)d������ = −
������
其中F(x)叫做f(x)的一个原函数.由于[F(x)+c]'=f(x),F(x)+c也是f(x)
的原函数,其中c为常数.
|������
一般地,原函数在[a,b]上的改变量 F(b)-F(a)简记作 F(x) . 因此,
������
| 微积分基本定理可以写成形式:
������ ������
性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.
题型一 题型二 题型三
利用微积分基本定理求函数的定积分
【例题 1】 求下列定积分:
(1)
-1 -2
(2 + ������2)2d������;
(2)
4 1
������+1 ������
d������;
(3)
π π cos
2.求复杂函数定积分要依据定积分的性质.
(1)有限个函数代数和(ຫໍສະໝຸດ )的积分,等于各个函数积分的代数和
(差),即
������ ������
[������1(������) ±
������2(������) ±
⋯±fn(x)]dx=
������ ������
������1(������)d������
±
������
2.利用微积分基本定理求定积分 ������(������)d������ 的关键是找出使
高中数学第一章导数及其应用1定积分的简单应用定积分在物理中的应用素材
定积分在物理中的应用摘要:伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分.微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科.内容主要包括极限、微分学、积分学及其应用.微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分最重要的思想就是用"微元"与”无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分'就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一.在高中物理中,微积分思想多次发挥了作用.定义:设函数f(x)在[a,b]上有界,在[a,b ]中任意插入若干个分点 a=X0〈X1〈...〈Xn —1<Xn=b 把区间[a ,b ]分成n 个小区间 [X0,X1],..。
[Xn —1,Xn]。
在每个小区间[Xi —1,Xi ]上任取一点ξi(Xi -1≤ξi≤Xi ),作函数值f(ξi )与小区间长度的乘积f(ξi )△Xi ,并作出和()in i ix s ∆=∑=1ξ如果不论对[a,b]怎样分法,也不论在小区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x)在区间[a ,b]上的定积分, 记作: ()dx x f a b⎰即: ()()ini ia bx f I dx x f ∆==∑⎰==11lim ξλ变力沿直线所作的功设物体在连续变力F(x )作用下沿x 轴从x=a 移动到x=b ,力的方向与运动方向平行,求变力所作的功.在[a ,b]上任取子区间[x ,x+dx ],在其上所作的功元素为()dx x F dW =因此变力F (x )在区间[a,b ]上所作的功为()dx x F W b a⎰=例1.在一个带+q 电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a 处移动到b 处(a 〈b ),求电场力所做的功。
高中数学 第一章 导数及其应用 1.5 定积分的概念 1.5.1 曲边梯形的面积 1.5.2 汽车行
1.5.1~1.5.2 曲边梯形的面积汽车行驶的路程问题1:曲边梯形与“直边图形”的主要区别是什么?提示:前者有一边是曲线段,而“直边图形”的所有边都是直线段.问题2:能否用求直边图形面积的方法求曲边梯形的面积?提示:不能.问题3:当曲边梯形的高很小时,是否可用“直边图形”的面积近似代替曲边梯形的面积?提示:可以.1.连续函数如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.2.曲边梯形的面积(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图甲).(2)求曲边梯形面积的方法与步骤:①分割:把区间分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图乙);②近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.“以直代曲”的思想曲边梯形的边中有曲线,不方便直接求出其面积,把曲边梯形分割成一系列的小曲边梯形,再用小矩形近似代替之,“以直代曲”求和,无限“细分”去“逼近”面积的精确值,这种极限的思想是学习定积分的一种很重要的思想.问题:利用“以直代曲”的思想可以求物体做变速直线运动的路程吗? 提示:可以.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么它在时间t 所在的区间内的路程(或位移)也可以运用①分割;②近似代替;③求和;④取极限的方法求得.变速直线运动的路程与曲边梯形的面积间的关系与求曲边梯形面积类似,我们采取“以不变代变”的方法,把求变速直线运动的路程问题化归为求匀速直线运动的路程问题.求由直线⎝ ⎛⎭⎪⎫提示:13+23+…+n 3=⎣⎢⎡⎦⎥⎤12n n +2(1)分割如右图所示,用分点n +1n ,n +2n ,…,n +n -n,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤1,n +1n ,⎣⎢⎡⎦⎥⎤n +1n ,n +2n ,…,n +i -1n ,n +in,…, ⎣⎢⎡⎦⎥⎤n +n -n ,2,每个小区间的长度为Δx =n +i n -n +i -1n =1n(i =1,2,3,…,n ).过各分点作x 轴的垂线,把曲边梯形ABCD 分割成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n .(2)近似代替各小区间的左端点为ξi ,取以点ξi 的纵坐标ξ3i 为一边,以小区间长Δx =1n为其邻边的小矩形面积,近似代替小曲边梯形面积.第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈ξ3i ·Δx =⎝⎛⎭⎪⎫n +i -1n 3·1n(i =1,2,3,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应的小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形ABCD 面积S 的近似值,即S =∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫n +i -1n 3 ·1n .(4)取极限当分点数目越多,即Δx 越小时,和式的值就越接近曲边梯形ABCD 的面积S .因此n →∞,即Δx →0时,和式的极限就是所求的曲边梯形ABCD 的面积.因为∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1n 4∑i =1n(n +i -1)3=1n 4∑i =1n[(n -1)3+3(n -1)2i +3(n -1)i 2+i 3] =1n4,所以S =li m n →∞∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1+32+1+14=154.求曲边梯形的面积应关注两点(1)根据步骤“分割、近似代替、求和、取极限”求曲边梯形的面积S ,实质是用n 个小矩形面积的和S n 来逼近,S n 的极限即为所求曲边梯形的面积S .求小矩形面积时,一般选取函数在相应小区间的左端点值.(2)分割实现了把求不规则的图形的面积化归为计算矩形面积,但这是近似值,为逼近精确值,分割得越细,近似程度就会越好,无限细分就无限逼近精确值.求由直线x =1,x =2,y =0与曲线y =2x 2所围成的曲边梯形的面积. 解:(1)分割在区间上等间隔地插入n -1个分点,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =1n,每个小区间内曲边梯形的面积记为ΔS i (i =1,2,…,n ),显然S =∑i =1nΔS i .(2)近似代替 记f (x )=2x 2,取ξi =n +i -1n (i =1,2,…,n ),于是ΔS i ≈ΔS i ′=f ⎝ ⎛⎭⎪⎫n +i -1n ·Δx=2⎝⎛⎭⎪⎫n +i -1n 2·1n(i =1,2,…,n ).(3)求和S n =∑i =1nΔS i ′=∑i =1n2⎝⎛⎭⎪⎫n +i -1n 2·1n=2n 1+⎝ ⎛⎭⎪⎫1+1n 2+⎝ ⎛⎭⎪⎫1+2n 2+…+1+n -1n2=2nn +2n +1n 2=2n ⎣⎢⎡⎦⎥⎤n +2n·n n -2+1n2·n -nn -6=2+2⎝ ⎛⎭⎪⎫1-1n +13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫2-1n . 从而得到S 的近似值S ≈S n . (4)取极限S =li m n →∞ S n =li m n →∞ 2+2⎝ ⎛⎭⎪⎫1-1n +131-1n ·⎝ ⎛⎭⎪⎫2-1n =143.3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?(1)分割在时间区间上等间隔地插入n -1个分点,将它等分成n 个小区间.记第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n (i =1,2,…,n ),其长度为Δt =2i n-i -n=2n.每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ).于是Δs i ≈Δs i ′=v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n3+4n(i =1,2,…,n ). (3)求和s n =∑i =1nΔs i ′=∑i =1n⎝⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4=24n3·nn +n +6+4=8⎝ ⎛⎭⎪⎫1+1n 1+12n+4.从而得到s 的近似值s n =8⎝ ⎛⎭⎪⎫1+1n 1+12n +4.(4)取极限s =li m n →∞ s n =li m n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12,所以这段时间内行驶的路程为12 km.变速运动的路程的求法求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.已知自由落体的运动速度v =gt ,求在时间区间内物体下落的距离. 解:(1)分割将时间区间分成n 等份. 把时间分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n t ,it n (i =1,2,…,n ),每个小区间所表示的时间段Δt=it n -i -1n t =tn,在各小区间物体下落的距离记作Δs i (i =1,2,…,n ).(2)近似代替在每个小区间上以匀速运动的路程近似代替变速运动的路程. 在⎣⎢⎡⎦⎥⎤i -1n t ,it n 上任取一时刻ξi (i =1,2,…,n ),可取ξi 使v (ξi)=g ·i -n t近似代替第i 个小区间上的速度,因此在每个小区间上自由落体Δt =t n内所经过的距离可近似表示为Δs i =g ·i -1n t ·tn(i =1,2,…,n ). (3)求和s n =∑i =1n Δs i =∑i =1ng ·i -1n t ·tn=gt 2n2 =12gt 2⎝ ⎛⎭⎪⎫1-1n . (4)取极限s =lim n →∞ 12gt 2⎝ ⎛⎭⎪⎫1-1n =12gt 2.4.搞错区间端点致误求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间等分成n 个小区间,则第i -1个区间为( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤t i -n ,tin D.⎣⎢⎡⎦⎥⎤t i -n ,t i -n每个小区间长度为tn,故第i -1个区间的左端点为0+(i -2)×t n =t i -n,右端点为t i -n+t n =t i -n.D1.解决本题易错误地认为区间左端为t i -n,从而误选C.2.在将区间等分成n 个小区间时,其第1个小区间的左端点为0,第2个小区间的左端点为1n ,…,依次类推,第i 个小区间的左端点为i -1n.在求直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间等分成n 个小区间,则第i 个小区间是( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤i -n,2i nD.⎣⎢⎡⎦⎥⎤2i n,i +n解析:选C 将区间等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n.1.在“近似代替”中,函数f (x )在区间上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈)D .以上答案均正确解析:选C 作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是上任一值f (ξi ).2.已知汽车在时间内以速度v =v (t )做直线运动,则下列说法不正确的是( ) A .当v =a (常数)时,汽车做匀速直线运动,这时路程s =vt 1B .当v =at +b (a ,b 为常数)时,汽车做匀速直线运动,这时路程s =bt 1+12at 21C .当v =at +b (a ≠0,a ,b 为常数)时,汽车做匀变速直线运动,这时路程s =bt 1+12at 21D .当v =at 2+bt +c (a ≠0,a ,b ,c 为常数)时,汽车做变速直线运动,这时路程s =li m n →∞s n =li m n →∞∑i =1n v (ξi )Δt解析:选B 对于v =at +b ,当a =0时为匀速直线运动,当a ≠0时为匀变速直线运动,其中a >0时为匀加速直线运动,a <0时为匀减速直线运动.对于v =at 2+bt +c (a ≠0)及v =v (t )是t 的三次、四次函数时,汽车做的都是变速(即变加速或变减速)直线运动,故B 是错误的.3.在计算由曲线y =-x 2以及直线x =-1,x =1,y =0所围成的图形面积时,若将区间 n 等分,则每个小区间的长度为________.解析:每个小区间长度为1--n=2n.答案:2n4.求由抛物线f (x )=x 2,直线x =1以及x 轴所围成的平面图形的面积时,若将区间等分成5个区间,如右图所示,以小区间中点的纵坐标为高,所有小矩形的面积之和为________.解析:由题意得S =(0.12+0.32+0.52+0.72+0.92)×0.2=0.33.答案:0.335.利用分割、近似代替、求和、取极限的办法求函数y =1+x ,x =1,x =2的图象与x 轴围成梯形的面积,并用梯形的面积公式加以验证.解:f (x )=1+x 在区间上连续,将区间分成n 等份,则每个区间的长度为Δx i =1n,在=⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取ξi =x i -1=1+i -1n(i =1,2,3,…,n ),于是f (ξi )=f (x i -1)=1+1+i -1n =2+i -1n, 从而S n =∑i =1nf (ξi )Δx i =∑i =1n⎝ ⎛⎭⎪⎫2+i -1n ·1n =∑i =1n⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n 2=2+1n2·n n -2=2+n -2n =52-12n.则S =li m n →∞S n=li m n →∞ ⎝ ⎛⎭⎪⎫52-12n =52.如下进行验证:如右图所示,由梯形的面积公式得S =12×(2+3)×1=52.一、选择题1.下列函数在其定义域上不是连续函数的是( ) A .y =x 2B .y =|x |C .y =xD .y =1x解析:选D 由于函数y =1x的定义域为(-∞,0)∪(0,+∞),故其图象不是连续不断的曲线.2.在求由x =a ,x =b (a <b ),y =f (x )(f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的是( )A .n 个小曲边梯形的面积和等于SB .n 个小曲边梯形的面积和小于SC .n 个小曲边梯形的面积和大于SD .n 个小曲边梯形的面积和与S 之间的大小关系无法确定解析:选A n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S .3.和式∑i =15(y i +1)可表示为( )A .(y 1+1)+(y 5+1)B .y 1+y 2+y 3+y 4+y 5+1C .y 1+y 2+y 3+y 4+y 5+5D .(y 1+1)(y 2+1)…(y 5+1)解析:选C ∑i =15(y i +1)=(y 1+1)+(y 2+1)+(y 3+1)+(y 4+1)+(y 5+1)=y 1+y 2+y 3+y 4+y 5+5.4.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( )A.19B.125C.127 D.130解析:选A 将区间三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为s 1=03·13+⎝ ⎛⎭⎪⎫133·13+⎝ ⎛⎭⎪⎫233·13=19. 5.若做变速直线运动的物体v (t )=t 2在0≤t ≤a 内经过的路程为9,则a 的值为( ) A .1 B .2 C .3 D .4解析:选C 将区间 n 等分,记第i 个区间为⎣⎢⎡⎦⎥⎤a i -n ,ain (i =1,2,…,n ),此区间长为a n ,用小矩形面积⎝ ⎛⎭⎪⎫ai n 2·a n 近似代替相应的小曲边梯形的面积,则S n =∑i =1n⎝⎛⎭⎪⎫ai n 2·an =a 3n 3·(12+22+…+n 2)=a 33·⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n ,依题意得lim n →∞ a 33⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n =9,∴a 33=9,解得a =3.二、填空题6.已知某物体运动的速度为v =t ,t ∈,若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.解析:∵把区间10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1,∴物体运动的路程近似值s =1×(1+2+…+10)=55. 答案:557.物体运动的速度和时间的函数关系式为v (t )=2t (t 的单位:h ;v 的单位:km/h),近似计算在区间内物体运动的路程时,把区间6等分,则过剩近似值(每个ξi 均取值为小区间的右端点)为________km.解析:以小区间右端点时的速度作为小区间的平均速度,可得过剩近似值为s =(2×3+2×4+2×5+2×6+2×7+2×8)×1=66 (km).答案:668.直线x =0,x =2,y =0与曲线y =x 2+1围成的曲边梯形,将区间5等分,按照区间左端点和右端点估计梯形面积分别为________、________.解析:将区间5等分为⎣⎢⎡⎦⎥⎤0,25,⎣⎢⎡⎦⎥⎤25,45,⎣⎢⎡⎦⎥⎤45,65,⎣⎢⎡⎦⎥⎤65,85,⎣⎢⎡⎦⎥⎤85,2,以小区间左端点对应的函数值为高,得S 1=1+⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1×25=3.92,同理S 2=⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1+22+1×25=5.52.答案:3.92 5.52 三、解答题9.汽车行驶的速度为v =t 2,求汽车在0≤t ≤1这段时间内行驶的路程s . 解:(1)分割将区间等分为n 个小区间⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,每个小区间的长度为Δt =i n -i -1n =1n . (2)近似代替在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,汽车近似地看作以时刻i -1n 处的速度v ⎝ ⎛⎭⎪⎫i -1n =⎝ ⎛⎭⎪⎫i -1n 2做匀速行驶,则在此区间上汽车行驶的路程为⎝ ⎛⎭⎪⎫i -1n 2·1n . (3)求和在所有小区间上,汽车行驶的路程和为sn =02×1n +⎝ ⎛⎭⎪⎫1n 2×1n +⎝ ⎛⎭⎪⎫2n 2×1n +…+⎝ ⎛⎭⎪⎫n -1n 2×1n =1n 3=1n 3×n -n n -6=13⎝⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n . (4)取极限汽车行驶的路程 s =li m n →∞s n =li m n →∞13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n =13.10.求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积.解:(1)分割将曲边梯形分割成n 个小曲边梯形,在区间上等间隔地插入n -1个点,将区间等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1, 记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为 Δx =i n -i -n =1n. 把每个小曲边梯形的面积记为ΔS 1,ΔS 2,…,ΔS n .(2)近似代替把每个小曲边梯形近似地看作矩形,可得第i 个小曲边梯形的面积的近似值 ΔS i ≈⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎪⎫i -1n ·Δx =⎪⎪⎪⎪⎪⎪⎣⎢⎡⎦⎥⎤i -n ·⎝ ⎛⎭⎪⎫i -1n -1·1n=i -1n 2·⎝ ⎛⎭⎪⎫1-i -1n (i =1,2,…,n ).(3)求和求出这n 个小矩形的面积的和S n =∑i =1n⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫i -1n ·Δx=∑i =1ni -1n 2·⎝ ⎛⎭⎪⎫1-i -1n=16·⎝ ⎛⎭⎪⎫1-1n 2,从而得到所求图形面积的近似值S ≈16⎝ ⎛⎭⎪⎫1-1n 2.(4)取极限S =lim n →∞ 16·⎝ ⎛⎭⎪⎫1-1n 2=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积为16.。
高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念讲义新人教A版选修22
高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念讲义新人教A 版选修221.定积分的概念一般地,设函数f (x )在区间[a ,b ]上□01连续,用分点a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式□02∑ni =1f (ξi )Δx =∑ni =1b -a nf (ξi ). 当n →∞时,上述和式无限接近某个常数,那么这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作:□03⎠⎛ab fx d x ,即⎠⎛ab f (x )d x =□04lim n →∞∑ni =1 b -a n f (ξi ).2.定积分的相关名称3.定积分的几何意义(1)前提条件:函数f (x )在区间[a ,b]上连续,f (x )≥0.(2)定积分⎠⎛ab f (x )d x 的几何意义:由y =0,曲线f (x )以及直线x =a ,x =b 围成的曲边梯形的□12面积. 4.定积分的基本性质(1)⎠⎛a b kf (x )d x =□13k ⎠⎛ab f (x )d x (k 为常数). (2)⎠⎛a b [f (x )±g(x )]d x =□14⎠⎛a b f (x )d x ±⎠⎛ab g(x )d x . (3)⎠⎛ab f (x )d x =□15⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c<b).用定积分求曲边图形面积时,不判断曲边图形位于x 轴上方、还是下方,直接求解而出现错误.避免出错的措施为:(1)当对应的曲边图形位于x 轴上方时(图①),定积分的值取正值,且等于曲边图形的面积;(2)当对应的曲边图形位于x 轴下方时(图②),定积分的值取负值,且等于曲边图形面积的相反数;(3)当位于x 轴上方的曲边图形面积等于位于x 轴下方的曲边图形面积时,定积分的值为0(图③),且等于位于x 轴上方的曲边图形面积减去位于x 轴下方的曲边图形面积.1.判一判(正确的打“√”,错误的打“×”) (1)⎠⎛a b f (x )d x =⎠⎛ab f (t)d t .( )(2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛ab (x 2+2x )d x =⎠⎛a b x 2d x +⎠⎛ab 2xd x .( )答案 (1)√ (2)× (3)√探究1 利用定义计算定积分例1 利用定积分的定义,计算⎠⎛12(3x +2)d x 的值.[解] 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n . (2)近似代替、求和 取ξi =n +i -1n (i =1,2,…,n ), 则S n =∑ni =1f (n +i -1n)·Δx =∑ni =1⎣⎢⎡⎦⎥⎤3n +i -1n +2·1n=∑i =1n⎣⎢⎡⎦⎥⎤3i -1n 2+5n =3n2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n . (3)取极限⎠⎛12(3x +2)d x =lim n→∞S n =lim n→∞ ⎝ ⎛⎭⎪⎫132-32n =132. 拓展提升利用定义求定积分的关键仍然是“分割、近似代替、求和、取极限”这一过程.其中: (1)在近似代替时,可以选取每个小区间的左端点、右端点、区间中点、区间端点的几何平均数等相应的函数值来代替该区间的函数值;(2)将“近似代替、求和”作为一个步骤来处理,其条理性更强.【跟踪训练1】 求由直线x =0,x =1,y =0与曲线f (x )=x 2+2x +1围成曲边梯形的面积.解 将区间[0,1]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤i -1n ,i n ,等i 个小区间的面积为ΔS i =f ⎝ ⎛⎭⎪⎫i n ·1n =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n,S n =∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n=1n 3(12+22+32+…+n 2)+2n2(1+2+3+…+n )+1=1n3·n n +12n +16+2n2·n n +12+1=⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n+2,S =lim n→∞S n =lim n→∞ ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n +2=73, 所以所求的曲边梯形的面积为73.拓展提升b f(x)d x的值的关键是确定由曲线y=f(x),直线x=a,利用定积分所表示的几何意义求⎠⎛a直线x=b及x轴所围成的平面图形的形状.常见形状是三角形、直角梯形、矩形、圆等可求面积的平面图形.解 (1)如图1,阴影部分面积为2+5×12=72,从而 ⎠⎛01(3x +2)d x =72.图1 图2探究3 利用定积分的性质求定积分例3 已知⎠⎛01x 3d x =14,⎠⎛12x 3d x =154,⎠⎛12x 2d x =73,⎠⎛24x 2d x =563,求:(1)⎠⎛02(3x 3)d x ;(2)⎠⎛14(6x 2)d x ; (3)⎠⎛12(3x 2-2x 3)d x .[解] (1)⎠⎛02(3x 3)d x =3⎠⎛02x 3d x=3⎝⎛⎭⎫⎠⎛01x 3d x +⎠⎛12x 3d x =3×⎝ ⎛⎭⎪⎫14+154=12.(2)⎠⎛14(6x 2)d x =6⎠⎛14x 2d x =6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6×⎝ ⎛⎭⎪⎫73+563=126. (3)⎠⎛12(3x 2-2x 3)d x =⎠⎛12(3x 2)d x -⎠⎛12(2x 3)d x=3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=7-152=-12.拓展提升【跟踪训练3】 已知f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,2,4-x ,x ∈[2,3,52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.1.求阴影部分面积可分两类:(1)规则图形:按照面积的相关公式直接计算;(2)不规则图形:转化为规则图形或曲边梯形,再求面积的和或差,曲边梯形面积利用定积分来计算;改变积分变量,使问题简化.2.可以利用“分割、近似代替、求和、取极限”求定积分;对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.1.若函数f(x)在区间[a,b]上的图象在x轴上方,且图象从左至右上升,则求由曲线y =f(x),直线x=a,x=b(a≠b)及x轴围成的平面图形的面积S时,将区间[a,b]n等分,用每个小区间的左端点的函数值计算出面积为S1,用每个小区间的右端点的函数值计算出面积为S2,则有( )A.S1<S<S2B.S1≤S<S2C.S1≤S2≤S D.S1≤S≤S2答案 A解析 由题意知,在区间⎣⎢⎡⎦⎥⎤i-1n ,i n 上,f ⎝ ⎛⎭⎪⎫i -1n <f ⎝ ⎛⎭⎪⎫i n,所以S 1=∑i =1nf ⎝ ⎛⎭⎪⎫i -1n ·1n <∑i =1nf ⎝ ⎛⎭⎪⎫i n ·1n =S 2,则S 1<S <S 2.答案 D3.⎠⎛06(2x -4)d x =________.答案 12解析 如图A(0,-4),B(6,8),M(2,0),S △AOM =12×2×4=4,S △MBC =12×4×8=16,所以⎠⎛06(2x -4)d x =16-4=12.4.曲线y =1x与直线y =x ,x =2所围成的图形面积用定积分可表示为 ________.答案 ⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x解析 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121xd x =⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x . 5.根据定积分的几何意义求定积分⎠⎛13(x -2)d x ,⎠⎛13|x -2|d x .解 根据定积分的几何意义,所求定积分表示直线x =3,x =1,y =0分别与函数y =x -2,y =|x -2|的图象所围成的图形的面积,即如图的阴影部分的面积.∴⎠⎛13(x -2)d x =-12×1×1+12×1×1=0. ⎠⎛13|x -2|d x =12×1×1+12×1×1=1.。
高中数学第一章导数及其应用1.6微积分基本定理说课稿
1.6微积分基本定理一、教材分析1、地位与作用“微积分基本定理”是高中人教版选修2-2第一章第6节的内容。
这节课的主要内容是:微积分基本定理的形成,以及用它求定积分。
在本节课之前教材已经引入导数和定积分的概念,并研究了其性质。
该定理揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。
本节内容不仅是本书一个非常重要的内容,也是整个数学学习中的一块重要知识,该定理为下一节定积分的应用的学习奠定了基础,同时也为学生深入研究数学作了一个知识储备。
2、教学目标根据以上的教材分析,确定本节课的教学目标如下:知识与技能:(1)了解微积分基本定理,学会应用微积分基本定理求定积分;(2)通过对本课学习,培养应用微积分思想解决实际问题的能力。
过程与方法:(1)通过自主探究速度与位移的关系对图像的研究,巩固数形结合的方法,;(2)通过设问,探究速度与位移的关系,培养化整为零,以直代曲的思想。
情感态度与价值观:(1)感知寻求计算定积分新方法的必要性,激发求知欲;(2)通过对定理的应用,体会微积分基本定理的优越性;(3)帮助建立微观与宏观的联系桥梁。
3、教学重点根据教材分析,及教学目标我对本节课确定了以下重点:通过探究变速直线运动中的速度和位移的关系导出出微积分基本定理,以及对微积分基本定理的应用。
二、学情分析1、已有的知识与能力学生是在高二时学习该定理,因此学生具备了以下知识和能力储备(1)学生在学习本节内容之前,变速直线运动中的位移、速度、时间三者的关系已经很熟悉;(2)已经熟练掌握高中导数的知识,并能应用这些知识解决问题;(3)理解了定积分的定义及其几何意义,并能按定积分的定义求解定积分;(4)相对高一而言具有更好地抽象思维能力和计算、化简能力。
2、学生可能遇到的困难(1)学生在本学期才开始接触微分和逐步逼近的思想,所以大部分学生微积分基本定理的形成还是比较困难的,因此只要求学生通过实例了解微积分基本定理;(2)在用微积分基本定理计算定积分时,部分学生对该定理的条件的理解和找满足()()x f x F ='的()x F 还是存在困难,但在高中对此要求不高,故提醒学生不必深究。
高中数学 第一章 导数及其应用 1.5 定积分的概念(第1
高中数学 第一章 导数及其应用 1.5 定积分的概念(第1课时)课堂探究 新人教A 版选修2-2探究一 求曲边梯形的面积1.求曲边梯形的面积时要按照分割—近似代替—求和—取极限这四个步骤进行. 2.近似代替时,可以用每个区间的右端点的函数值代替,也可用每个区间的左端点的函数值代替.3.求和时要用到一些常见的求和公式,例如:1+2+3+…+n =n (n +1)2,12+22+…+n 2=n (n +1)(2n +1)6等.【典型例题1】求由直线x =0,x =1,y =0及曲线y =x 2+2x 所围成的图形的面积S . 思路分析:严格按照分割—近似代替—求和—取极限这四个步骤进行计算求解. 解:(1)分割在区间[0,1]上等间隔地插入n -1个点,将它等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为Δx =i n -i -1n =1n.分别过上述n -1个分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形(如图),它们的面积记作:ΔS 1,ΔS 2,…,ΔS n ,则小曲边梯形面积的和为S =∑i =1nΔS i .(2)近似代替记f (x )=x 2+2x ,当n 很大,即Δx 很小时,在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上,可以认为f (x )的值变化很小,近似地等于一个常数,不妨认为它近似地等于右端点i n处的函数值f ⎝ ⎛⎭⎪⎫i n .从图形上看就是用平行于x 轴的直线段近似地代替小曲边梯形的曲边,这样在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上,用小矩形的面积ΔS ′i 近似地代替ΔS i ,则有ΔS i ≈ΔS ′i =f ⎝ ⎛⎭⎪⎫i n·Δx =1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2·i n . (3)求和小曲边梯形的面积和S n =∑i =1nΔS i ≈∑i =1nΔS ′i=∑i =1n 1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2·i n=1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12n2+22n2+…+n 2n 2+2⎝ ⎛⎭⎪⎫1n +2n +…+n n =(n +1)(2n +1)6n 2+n +1n=16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎝ ⎛⎭⎪⎫1+1n .(4)取极限分别将区间[0,1]等分成8,16,20,…等份时,可以看到,当n 趋向于无穷大,即Δx趋向于0时,S n 越来越趋向于S ,从而有S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎝ ⎛⎭⎪⎫1+1n =43. 即由直线x =0,x =1,y =0及曲线y =x 2+2x 所围成的图形的面积等于43.探究二 汽车行驶路程的计算问题把变速直线运动的路程问题,化归为求匀速直线运动的问题,采用方法仍然是分割、近似代替、求和、取极限,求变速直线运动的路程和曲边梯形的面积,虽然它们的意义不同,但都可以归纳为求一个特定形式和的极限,通过这样的背景问题,能更好的体会后面所要学习的定积分的概念.【典型例题2】一辆汽车做变速直线运动,设汽车在时刻t 的速度v (t )=6t2,求汽车在t =1到t =2这段时间内运动的路程s .思路分析:选定区间→分割→近似代替→求和→取极限→得到结果 解:(1)分割.把区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个区间的长度Δt=1n,每个时间段行驶的路程记为Δs i (i =1,2,…,n ).故路程和s n =∑i =1nΔs i .(2)近似代替.ξi =n +i -1n(i =1,2,…,n ).Δs i ≈v ⎝ ⎛⎭⎪⎫n +i -1n ·Δt =6·⎝ ⎛⎭⎪⎫n n +i -12·1n=6⎝ ⎛⎭⎪⎫1+i -1n 2·1n =6n (n +i -1)2≈6n(n +i -1)(n +i )(i =1,2,3,…,n ). (3)求和.s n =∑i =1n6n(n +i -1)(n +i )=6n ⎣⎢⎡⎦⎥⎤1n -1n +1+1n +1-1n +2+…+12n -1-12n=6n ⎝ ⎛⎭⎪⎫1n -12n .(4)取极限.s =lim n →∞s n =lim n →∞6n ⎝ ⎛⎭⎪⎫1n -12n =3.所以这段时间内运动的路程s 为3.。
高中数学第一章导数及其应用1定积分的简单应用定积分和不定积分的历史联系素材
学必求其心得,业必贵于专精
定积分和不定积分的历史联系
这两个东西在概念上的联系我困扰了我好一阵子,因为他们在高数书上的反映这两个部分完全是两个概念,不定积分只是一种运算方式,而定积分是微分的逆向思维。
后来,看到这么一个帖子内容才有所明白其中的缘由~~
定积分和不定积分在几何意义上没有任何关系,但有牛顿莱布尼茨公式中所表示的代数关系。
为什么?难道是一种巧合吗?
历史的发展应该是这个样子的,先是黎曼提出了黎曼积分,也就是定积分的概念。
然后牛顿和莱布尼茨发现了那个公式,揭示了定积分和原函数之间的关系。
下面的问题是怎么计算原函数,牛顿和莱布尼茨又根据原函数提出了不定积分的概念。
之所以命名为不定积分就是根据那个公式。
所以定积分和不定积分并不是共同出生的一对孪生兄弟,只是后人根据牛莱公式给原函数族起了一个和定积分相似的名字.
微分思想是无限分割,积分思想是无限累加。
但这指的应该是定积分,不定积分体现不出来这种思想,因为它根本就不是积出来的.从数学思想上,微分和定积分才是互逆的。
不定积分和导数是互逆运算,不表示它和微分也是互逆运算。
微分用导数来表示,只是一个计算得出的结果,从定义中推不出来.所以说微分是不定积分的逆运算并不准确,它们形似而神非。
1。
高中数学 第1章 导数及其应用 1.5 定积分 1.5.3 微积分基本定理讲义(含解析)苏教版选修2
1. 微积分基本定理[对应学生用书P28]已知函数f (x )=2x +1,F (x )=x 2+x . 问题1:f (x ) 和F (x )有何关系? 提示:F ′(x )=f (x ).问题2:利用定积分的几何意义求⎠⎛20(2x +1)d x 的值.提示:⎠⎛20(2x +1)d x =6.问题3:求F (2)-F (0)的值. 提示:F (2)-F (0)=4+2=6. 问题4:你得出什么结论?提示:⎠⎛20f (x )d x =F (2)-F (0),且F ′(x )=f (x ).问题5:已知f (x )=x 3,F (x )=14x 4,试探究⎠⎛10f (x )d x 与F (1)-F (0)的关系. 提示:因⎠⎛10f (x )d x =⎠⎛10x 3d x =14.F (1)-F (0)=14,有⎠⎛10f (x )=F (1)-F (0)且F ′(x )=f (x ).微积分基本定理对于被积函数f (x ),如果F ′(x )=f (x ),那么⎠⎛ba f (x )d x =F (b )-F (a ),即⎠⎛ba F ′(x )d x=F (b )-F (a ).1.微积分基本定理表明,计算定积分⎠⎛a bf (x )d x 的关键是找到满足F ′(x )=f (x )的函数F (x ).通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F (x ).2.微积分基本定理揭示了导数与定积分之间的内在联系,最重要的是它也提供了计算定积分的一种有效方法.[对应学生用书P29]求简单函数的定积分[例1] 求下列定积分: (1)⎠⎛21(x 2+2x +3)d x ;(2)⎠⎛π0(sin x -cos x )d x ;(3)⎠⎛0-π(cos x -e x)d x . [思路点拨]先求被积函数的原函数,然后利用微积分基本定理求解. [精解详析](1)取F (x )=x 33+x 2+3x ,则F ′(x )=x 2+2x +3,从而⎠⎛12(x 2+2x +3)d x =⎠⎛12F ′(x )d x =F (2)-F (1)=253. (2)取F (x )=-cos x -sin x , 则F ′(x )=sin x -cos x ,从而⎠⎛0π(sin x -cos x )d x =⎠⎛0πF ′(x )d x =F (π)-F (0)=2.(3)取F (x )=sin x -e x ,则F ′(x )=cos x -e x,从而⎠⎛0-π(cos x -e x )d x =⎠⎛0-πF ′(x )d x =F (0)-F (-π)=1eπ-1. [一点通]求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.1.(某某高考改编)若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =____________.解析:∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x 10=13+2⎠⎛01f (x )d x .∴⎠⎛01f (x )d x =-13.答案:=-132.⎠⎛0π(cos x +1)d x =________. 解析:∵(sin x +x )′=cos x +1,∴⎠⎛π0(cos x +1)d x =(sin x +x )|π0 =(sin π+π)-(sin 0+0)=π. 答案:π3.求下列定积分:(1)∫π20sin 2x 2d x ;(2)⎠⎛23(2-x 2)(3-x )d x . 解:(1)sin 2x 2=12-cos x 2,而⎝ ⎛⎭⎪⎫12x -12sin x ′=12-12cos x ,所以∫π20sin 2x 2d x =∫π20⎝ ⎛⎭⎪⎫12-12cos x d x=⎝ ⎛⎭⎪⎫12x -12sin x |π20=π4-12=π-24.(2)原式=⎠⎛32(6-2x -3x 2+x 3)d x=⎝⎛⎭⎪⎫6x -x 2-x 3+14x 4|32 =⎝ ⎛⎭⎪⎫6×3-32-33+14×34-⎝ ⎛⎭⎪⎫6×2-22-23+14×24 =-74.求分段函数的定积分[例2](1)设f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x >0.求⎠⎛1-1f (x )d x ; (2)求⎠⎛a-a x 2d x (a >0). [思路点拨]按照函数f (x )的分段标准,求出每一段上的积分,然后求和. [精解详析](1)⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛01(cos x -1)d x =13x 3|0-1+(sin x -x )|10=sin 1-23. (2)由x2=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,得⎠⎛a -a x 2d x =⎠⎛a 0x d x +⎠⎛0-a (-x )d x =12x 2|a0-12x 2|0-a =a 2.[一点通](1)分段函数在区间[a ,b ]上的积分可分成几段积分的和的形式.(2)分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.4.⎠⎛3-4|x +2|d x =________. 解析:∵|x +2|=⎩⎪⎨⎪⎧x +2,(-2<x ≤3)-x -2,(-4≤x ≤-2)∴⎠⎛3-4|x +2|d x =⎠⎛3-2(x +2)d x +⎠⎛-4-2(-x -2)d x =⎝ ⎛⎭⎪⎫12x 2+2x |3-2+⎝ ⎛⎭⎪⎫-12x 2-2x |-2-4=292.答案:2925.设f (x )=⎩⎪⎨⎪⎧lg x , x >0,x +∫a 0 3t 2d t ,x ≤0,若f (f (1))=1,则a =________.解析:显然f (1)=lg 1=0, 故f (0)=0+∫a 0 3t 2d t =t 3|a0=1, 得a =1. 答案:1求图形的面积[例3] 求由曲线[思路点拨]在坐标系中作出图象→求曲线与直线的交点→利用定积分求面积.[精解详析] 画出草图,如图所示.解方程组⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3,得A (0,3),B (3,6).所以S =⎠⎛30(x +3)d x -⎠⎛30(x 2-2x +3)d x ,取F (x )=12x 2+3x ,则F ′(x )=x +3,取H (x )=13x 3-x 2+3x ,则H ′(x )=x 2-2x +3,从而S =F (3)-F (0)-[H (3)-H (0)]=⎝ ⎛⎭⎪⎫12×32+3×3-0-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13×33-32+3×3-0 =92. [一点通]利用定积分求曲线所围成的平面图形的面积的步骤: (1)根据题意画出图形;(2)找出X 围,定出积分上、下限; (3)确定被积函数;(4)写出相应的定积分表达式,即把曲边梯形面积表示成若干个定积分的和或差; (5)用微积分基本定理及其运算性质计算定积分,求出结果.6.曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为________. 解析:所围成的图形如图阴影部分所示,点A (0,-2), 由⎩⎨⎧y =x ,y =x -2,得⎩⎪⎨⎪⎧x =4,y =2,所以B (4,2),因此所围成的图形的面积为∫40()x -x +2d x =⎪⎪⎪⎝ ⎛⎭⎪⎫23x 32-12x 2+2x 40=163. 答案:1637.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0ax d x =23x 32|a 0=23a 32=a 2,所以a 12=23,所以a =49. 答案:491.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)求被积函数是分段函数的定积分,应分段求定积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号后才能积分. 2.利用定积分求曲边梯形的面积(1)在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观地确定出被积函数以及积分的上、下限.(2)要把定积分和用定积分计算平面图形的面积这两个概念区分开,定积分是一种积分和的极限,可为正,也可为负或零;而平面图形的面积在一般意义下总为正,因此当f (x )≤0时要通过绝对值处理为正,一般情况下是借助定积分求出两个曲边梯形的面积,然后相加起来.[对应课时跟踪训练(十一)]一、填空题1.⎠⎛1e1x d x =________.解析:⎠⎛1e1x d x =ln x |e 1=ln e -ln 1=1.答案:12.⎠⎛0π(2sin x -3e x+2)d x =________.解析:⎠⎛0π(2sin x -3e x +2)d x =(-2cos x -3e x +2x )|π0=7+2π-3e π. 答案:7+2π-3e π3.(某某高考改编)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e xd x ,则S 1,S 2,S 3的大小关系为________.解析:S 1=13x 3⎪⎪⎪21=83-13=73,S 2=ln x ⎪⎪⎪21=ln 2<ln e =1,S 3=e x⎪⎪⎪21=e 2-e ≈2-=,所以S 2<S 1<S 3.答案:S 2<S 1<S 34.设f (x )=错误!则错误!f (x )d x =________.解析:⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3|10+(2x -12x 2)|21=56. 答案:565.(某某高考)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:因为函数y =e x与函数y =ln x 互为反函数,其图象关于直线y =x 对称,又因为函数y =e x与直线y =e 的交点坐标为(1,e),所以阴影部分的面积为2(e ×1-⎠⎛01e x d x )=2e -2e x |10=2e -(2e -2)=2,由几何概型的概率计算公式, 得所求的概率P =S 阴影S 正方形=2e 2. 答案:2e2二、解答题6.f (x )是一次函数,且∫10f (x )d x =5,∫10xf (x )d x =176,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则⎠⎛01(ax +b )d x =⎝ ⎛⎭⎪⎫12ax 2+bx |10=12a +b =5. ⎠⎛01x (ax +b )d x =⎠⎛01(ax 2+bx )d x=⎝ ⎛⎭⎪⎫13ax 3+12bx 2|10=13a +12b =176,所以由⎩⎪⎨⎪⎧12a +b =5,13a +12b =176,解得a =4,b =3,故f (x )=4x +3.7.求由曲线y =x 2与直线x +y =2围成的面积.解:如图,先求出抛物线与直线的交点,解方程组⎩⎪⎨⎪⎧y =x 2,x +y =2,得⎩⎪⎨⎪⎧x 1=1,y 1=1或⎩⎪⎨⎪⎧x 2=-2,y 2=4,即两个交点为(1,1),(-2,4).直线为y =2-x ,则所求面积S 为: S =⎠⎛1-2[(2-x )-x 2]d x =⎝⎛⎭⎪⎫2x -x 22-x 33|1-2=92.8.设f (x )是二次函数,其图象过点(0,1),且在点(-2,f (-2))处的切线方程为2x +y +3=0.(1)求f (x )的表达式;(2)求f (x )的图象与两坐标轴所围成图形的面积;(3)若直线x =-t (0<t <1)把f (x )的图象与两坐标轴所围成图形的面积二等分,求t 的值.解:(1)设f (x )=ax 2+bx +c , ∵其图象过点(0,1),∴c =1,又∵在点(-2,f (-2))处的切线方程为2x +y +3=0,∴⎩⎪⎨⎪⎧f (-2)=1,f ′(-2)=-2.∵f ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧a ·(-2)2+b ·(-2)+1=1,2a ·(-2)+b =-2.∴a =1,b =2,故f (x )=x 2+2x +1.(2)依题意,f (x )的图象与两坐标轴所围成的图形如图中阴影部分所示,故所求面积S =∫0-1(x 2+2x +1)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3+x 2+x 0-1=13. (3)依题意,有12S =∫0-t (x 2+2x +1)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3+x 2+x 0-t =16,即13t 3-t 2+t =16, ∴2t 3-6t 2+6t -1=0, ∴2(t -1)3=-1, ∴t =1-132.。
高中数学 第一章 导数及其应用 1.5 定积分的概念教案 新人教A版选修2-2(2021年最新整理)
高中数学第一章导数及其应用1.5 定积分的概念教案新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章导数及其应用1.5 定积分的概念教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章导数及其应用1.5 定积分的概念教案新人教A版选修2-2的全部内容。
1.5定积分的概念教学目标:1、通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;2、借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.3、理解掌握定积分的几何意义;教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程: 一.创设情景 复习:1.2.对这四个步骤再以分析、理解、归纳,找出共同点. 二.新课讲授1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()ba S f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
高中数学第一章导数及其应用1.5定积分的概念黎曼积分素材新人教A版选修2-2(2021学年)
高中数学第一章导数及其应用 1.5 定积分的概念黎曼积分素材新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章导数及其应用1.5 定积分的概念黎曼积分素材新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章导数及其应用 1.5 定积分的概念黎曼积分素材新人教A版选修2-2的全部内容。
黎曼积分定积分的正式名称是黎曼积分.用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积.实际上,定积分的上下限就是区间的两个端点a,b。
我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。
它们看起来没有任何的联系,那么为什么定积分要写成积分的形式呢?定积分的定义设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …,(x n-1,x n],其中x0=a,x n=b。
可知各区间的长度依次是:△x1=x1-x0, △x2=x2-x1, …,△xn=x n-xn-1。
在每个子区间(x i—1,xi]中任取一点ξi(1,2,。
,n),作和式。
设λ=max{△x1, △x2,…,△x n}(即λ是最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为:其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫叫做积分号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分和微积分要点讲解一、定积分的概念教材上从求曲边梯形的面积和变速运动的路程出发引入了定积分的概念:如果函数()f x 在区间[],a b 上是连续的,用分点011i i n a x x x x x b -=<<<<<<= 将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x -上任取一点i ξ(1,2,,i n = ),作和式()()11nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[],a b 上的定积分,记作()baf x dx ⎰,即()()1l i mnbi an i b af x dx f n ξ→∞=-=∑⎰.对这个概念我们应从如下几个方面进行理解1.对区间[],a b 分割的绝对任意性:在定义中我们将区间[],a b 进行等分是为了计算上的方便,实际上对区间[],a b 的分割是任意的,这时只要这些区间中长度最大的区间的长度趋向于零即可.2.在每个小区间[]1,i i x x -上取点的绝对任意性:在教材上的两个例题是为了计算的方便将点取小区间[]1,i i x x -的端点,实际上我们可以在区间[]1,i i x x -上任意取点,如取中点等.3.当n →∞时,和式()()11nni i i i b af x f nξξ==-∆=∑∑无限接近某个常数的唯一确定性.它不依赖于对区间[],a b 的分割方法,也不依赖于在每个小区间[]1,i i x x -上取点的方式.即()baf x dx ⎰是一个客观上存在的仅仅依赖于积分上下限和被积函数的唯一确定的常数.同时它也与积分变量无关,即()()b baaf x dx f t dt =⎰⎰.4.数学思想上的划时代意义.产生定积分概念的"以直代曲""以匀速代变速"和"无限逼近"的数学思想,使人类在认识数学世界的观念上有了重大突破,在数学的发展史上具有重大意义.我们要仔细理解体会这种思想,可以说这才是我们在高中阶段学习定积分的真正目的.例如在求曲边梯形的面积的课本例1中,我们把区间[]0,1等分成n 个小区间,在每个小区间上"以直代曲"就将曲边问题转化为直边问题,随着n 的增大这些小区间的宽度越来越小,这时在每个小区间上直边形的面积已经和曲边形的面积非常接近,我们就可以以这些小直边形的面积之和近似代替曲边形的面积,而当n →∞时这些小直边形就几乎变成了线段,这时小直边形的面积几乎就等于小曲边形的面积,这无穷个几乎变成了线段的直边形的面积之和就是所求的曲边形的面积了.我们常说"线动成面",对课本例1,我们也可以这样形象的理解:就将小直边形的宽度变成零,使其成为线段,这时小直边形和小曲边形的就完全重合了,而将这些线段从0到1运动就形成了()2f x x =,1x =, x 轴所围成的曲边形,将这些线段的"面积"积累起来就是所求的曲边形的面积. 二、微积分基本定理的应用作变速直线运动的物体如果其运动方程是()S t ,那么该物体在时间区间[],a b 内通过的路程是()()S b S a -,另一方面由导数的物理意义,该物体在任意时刻的瞬时速度为()()'S t s t =,我们把该物体运动的时间区间[],a b 无限细分,在每个小时间段上,将其速度看作匀速,就能求出该物体在每个小时间段上通过的路程,将这无限个小时间段上的路程加起来,就是该物体在时间区间[],a b 上通过的路程,由定积分的定义可知,这个数值是()b as t dt ⎰.由此可知()()()()'b baaS t dt s t dt S b S a ==-⎰⎰.一般地有如下结论:如果()f x 是[],a b 上的连续函数,并且有()()F x f x '=,则()()()baf x dx F b F a =-⎰.这就是微积分基本定理,是微积分学最为辉煌的定理,是数学发展史的一个重要里程碑,利用这个定理可以很方便的计算定积分,其关键是找到一个函数使其导数等于被积函数,下面举例说明它在计算定积分上的应用.例1 计算定积分()1xx ee dx --⎰分析:()'x x ee =,()'x x e e --=-,故()'x x x x e e e e --+=-.解:()()11'112x x x x x xe e dx e e dx e e e e---⎡⎤-=+=+=+-⎣⎦⎰⎰.点评:关键是找()F x ,使()'xxF x e e -=-,可以通过求导运算求探求.例2 计算定积分220cos sin 22x x dx π⎛⎫- ⎪⎝⎭⎰.分析:被积函数比较复杂,我们可以先化简,再探求.由于222cos sin cos 2cos sin sin 1sin 222222x x x x x x x ⎛⎫-=-+=- ⎪⎝⎭,而'1x =,()cos 'sin x x =-,故()2cos '1sin cos sin 22x x x x x ⎛⎫+=-=- ⎪⎝⎭.解:()()[]2'2222000cos sin 1sin cos cos 2212x x dx x dx x x dx x x πππππ⎛⎫-=-=+=+ ⎪⎝⎭=-⎰⎰⎰点评:被积函数较为复杂时要先化简在求解. 掌握如下的定积分计算公式对解题是有帮助的.①111bm m ab x dx xa m +=+⎰(,1m Q m ∈≠-),②1ln bab dx x a x =⎰,③b x x a b e dx e a =⎰,④ln x n xm n a a dx ma =⎰,⑤cos sin ba b xdx x a =⎰,⑥()sin cos b a bxdx x a =-⎰.例如 例3 计算定积分()1223x x dx -⎰.分析:先展开再利用上面的定积分公式. 解:()1223xx dx -⎰=()104269xxxdx -⋅+⎰=146920ln 4ln 6ln 9x x x ⎛⎫-⋅+ ⎪⎝⎭ 3108ln 4ln 6ln 9=-+. 点评:根据定积分公式结合定积分的运算性质是计算定积分的根本.从上面不难看出利用微积分基本定理计算定积分比用定义计算要方便的多,在实际解题中要注意对被积函数的化简展开以及有意识的利用定积分的三条运算性质,以起到化难为易的作用.三、定积分的三条性质根据定积分的定义不难得到定积分的三条性质 性质1.常数因子可提到积分号前,即:()()bbaakf x dx k f x dx =⎰⎰(k 为常数);性质2.代数和的积分等于积分的代数和: 即:()()()()bb bx aa a f x g x dx f x d g x dx ±=±⎡⎤⎣⎦⎰⎰⎰;性质3.(定积分的可加性)如果积分区间[],a b 被点c 分成两个小区间[],a c 与[],c b , 则:()()()bc daacf x dx f x dx f x dx =+⎰⎰⎰。
这三条性质为我们计算定积分带来了很大的方便,下面举例说明. 例4 计算定积分10431x dx x ⎛⎫+ ⎪+⎝⎭⎰. 分析:根据定积分的性质2知道111000443311x dx xdx dx x x ⎛⎫+=+ ⎪++⎝⎭⎰⎰⎰,再根据性质111111000004413334111x dx xdx dx xdx dx x x x ⎛⎫+=+=+ ⎪+++⎝⎭⎰⎰⎰⎰⎰,下面只需根据微积分基本定理计算即可.解析:()111110000021104413334111334ln 14ln 222x dx xdx dx xdx dx x x x x x ⎛⎫+=+=+ ⎪+++⎝⎭=⋅+⋅+=+⎰⎰⎰⎰⎰. 点评:微积分基本定理结合定积分的性质是我们计算定积分的主要方法.例5 计算定积分22sin xdx π⎰.分析:利用微积分基本定理计算的话,我们就要找到一个函数,使其导数等于2sin x ,这个函数不好找,为此我们对被积函数进行变形21cos 2sin 2xx -=,而()'sin 22cos 2x x =,即'sin 2cos22x x ⎛⎫= ⎪⎝⎭,再根据定积分的性质和微积分基本定理加以解决.解析:222220002201cos 211sin 1cos 222211sin 22224x xdx dx dx xdx x x πππππππ-==-=⋅-⋅=⎰⎰⎰⎰.点评:在计算三角函数的定积分时,进行恰当的三角恒等变换往往能起到意想不到的作用.例6 计算定积分2201x dx -⎰.分析:由于在[]0,1上2211x x -=-,而在[]1,2上2211x x -=-,我们不能直接在[]0,2上计算该定积分,为此我们可以用定积分的性质3和性质2结合微积分基本定理进行计算.解析:2121222222011112222011111(1)(1)171111233x dx x dx x dx x dx x dxdx x dx x dx dx -=-+-=-+-=-+-=-+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰点评:含有绝对值的函数实际上是分段函数,我们可以根据积分区间的可加性,将其转化为各段上的定积分再进行计算.从上面不难看出,合理地使用定积分的三条性质,再结合微积分基本定理就能使我们在进行定积分计算时得心应手,如鱼得水,使看似复杂的定积分计算变得简单起来.。