九年级数学下册《28.3解直角三角形应用》教案 新人教版

合集下载

九年级数学下册 28.2 解直角三角形应用教案(一) 新人教版

九年级数学下册 28.2 解直角三角形应用教案(一) 新人教版
情 感
态 度
价值观
渗透数形结合的数学思想,培养学生良好的学习习惯.
教学重点
直角三角形的解法.
教学难点
三角函数在解直角三 角形中的灵活运用.
教学准备
教师
多媒体课件
学生
“五个一”
课堂教学程序设计
设计意图
(一)知识回顾
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
2解决问题要结合图形。
作业
设计
必做
教科书P92:1、2
选做
练习册




(1)边角之间关系sinA= cosA= tanA
(2)三边之间关系
a2+b2=c2(勾股定理)
(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)探究活动
1.我们已掌握Rt△AB C的边角关系、三边关系 、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.
例2在△ABC中,∠C为直角,∠A、∠ B、∠C所对的边分别为a、b、c,且b= 20 =35 ,解这个三角形(精确到0.1).
解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养 其分 析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好, 选一种板演.
2.教师在学生思考后,继续引导“为什么两个已知元 素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直 角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计1

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计1

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计1一. 教材分析人教版数学九年级下册28.2《解直角三角形及其应用》是本节课的主要内容。

这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。

本节课的主要内容有:了解解直角三角形的定义,掌握解直角三角形的方法,以及解直角三角形在实际生活中的应用。

二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数和直角三角形的性质,对于这部分内容的理解和掌握程度参差不齐。

因此,在教学过程中,需要关注学生的学习情况,对于理解程度较好的学生,可以适当提高教学难度,对于理解程度较差的学生,需要进行个别辅导,帮助其理解和掌握本节课的内容。

三. 教学目标1.了解解直角三角形的定义,掌握解直角三角形的方法。

2.能够运用解直角三角形的方法解决实际问题。

3.培养学生的空间想象能力和解决问题的能力。

四. 教学重难点1.解直角三角形的定义和方法的掌握。

2.解直角三角形在实际生活中的应用。

五. 教学方法采用问题驱动法,通过引导学生发现问题,解决问题,从而掌握解直角三角形的方法和应用。

同时,采用案例分析法,通过分析实际生活中的案例,让学生了解解直角三角形在实际生活中的应用。

六. 教学准备1.PPT课件2.实际案例资料七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾锐角三角函数和直角三角形的性质,为新课的学习做好铺垫。

2.呈现(15分钟)讲解解直角三角形的定义和 methods,结合PPT课件,让学生直观地了解解直角三角形的过程。

3.操练(15分钟)让学生通过实际案例,运用解直角三角形的方法进行计算,巩固所学知识。

教师在此过程中进行个别辅导,帮助学生解决问题。

4.巩固(10分钟)让学生完成练习题,检查学生对解直角三角形方法的掌握程度。

教师对学生的答案进行讲解,纠正错误,巩固所学知识。

5.拓展(10分钟)分析实际生活中的案例,让学生了解解直角三角形在实际生活中的应用。

九年级数学下册 28.2 解直角三角形及其应用教案 (新版)新人教版

九年级数学下册 28.2 解直角三角形及其应用教案 (新版)新人教版

28.2 解直角三角形及其应用28.2.1 解直角三角形知识与技能在理解解直角三角形的含义、直角三角形五个元素之间关系的基础上,会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.过程与方法通过综合运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.情感、态度与价值观在探究学习的过程中,培养学生合作交流的意识,使学生认识到数与形相结合的意义与作用,体会到学好数学知识的作用,并提高学生将数学知识应用于实际的意识,从而体验“从实践中来,到实践中去”的辩证唯物主义思想,激发学生学习数学的兴趣.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学好数学的信心.重点直角三角形的解法. 难点灵活运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.一、复习回顾师:你还记得勾股定理的内容吗? 学生叙述勾股定理的内容.师:直角三角形的两个锐角之间有什么关系呢? 生:两锐角互余.师:直角三角形中,30°的角所对的直角边与斜边有什么关系? 生:30°的角所对的直角边等于斜边的一半. 二、共同探究,获取新知 1.概念.师:由sin A =ac,你能得到哪些公式?生甲:a =c ·sin A.生乙:c =asin A.师:我们还学习了余弦函数和正切函数,也能得到这些式子的变形.我们知道,在直角三角形中有三个角、三条边共六个元素,能否从已知的元素求出未知的元素呢?教师板书:在直角三角形中,由已知的边角关系,求出未知的边与角,叫做解直角三角形. 2.练习.教师多媒体课件出示:(1)如图(1)和(2),根据图中的数据解直角三角形.(1) (2)师:图(1)中是已知一角和一条直角边解直角三角形的类型,你怎样解决这个问题呢?生1:根据cos 60°=AC AB ,得到AB =ACcos 60°,然后把AC 边的长和60°角的余弦值代入,求出AB 边的长,再用勾股定理求出BC 边的长,∠B 的度数根据直角三角形两锐角互余即可得到.生2:先用直角三角形两锐角互余得到∠B 为30°,然后根据30°的角所对的直角边等于斜边的一半,求出AB 的值,再由sin 60°=BCAB得到BC =AB ·sin 60°,从而得到BC 边的长.师:同学们说出的这几种做法都是对的.下面请同学们看图(2),并解这个直角三角形. 学生思考,计算. 三、例题讲解例1 如图,在Rt △ABC 中,∠C =90°,AC =2,BC =6,解这个直角三角形.解:∵tan A =BC AC =62=3,∴∠A =60°,∠B =90°-∠A =90°-60°=30°, AB =2AC =2 2.例2 如图,在Rt △ABC 中,∠C =90°,∠B =35°,b =20,解这个直角三角形.(结果保留小数点后一位)解:∠A =90°-∠B =90°-35°=55°.∵tan B =ba ,∴a =b tan B =20tan 35°≈28.6.∵sin B =bc ,∴c =b sin B =20sin 35°≈34.9.四、巩固练习1.在△ABC 中,∠C =90°,下列各式中不正确的是( ) A .b =a ·tan B B .a =b ·cos AC .c =b sin BD .c =acos B答案 B2.在Rt △ABC 中,∠C =90°,c =10,b =53,则∠A =________,S △ABC =________.答案 30° 2523五、课堂小结师:本节课,我们学习了什么内容?学生回答.师:你还有什么不懂的地方吗?学生提问,老师解答.本节课在教学过程中,能灵活处理教材,敢于放手让学生通过自主学习、合作探究达到理解并掌握知识的目的,并能运用知识解决问题.在本章开头,我带领学生复习了与解直角三角形有关的知识点,使学生在解决问题时能想到并能熟练运用.在解有特殊角的三角形时有不止一种解法,我鼓励学生勇于发言,给了他们展示自我的机会,锻炼他们表达自己想法的能力,并且增强了他们的自信心.28.2.2应用举例知识与技能使学生掌握仰角、俯角的概念,并会正确运用这些概念和解直角三角形的知识解决一些实际问题.过程与方法让学生体验方程思想和数形结合思想在解直角三角形中的用途.情感、态度与价值观使学生感知本节课与现实生活的密切联系,进一步认识到将数学知识运用于实践的意义.重点将实际问题转化为解直角三角形问题.难点将实际问题中的数量关系如何转化为直角三角形中元素间的关系求解.一、新知讲授1.讲解.师:在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.教师在黑板上作图.师:当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角;在水平线下方的角叫做俯角.注意:(1)仰角和俯角必须是视线与水平线所夹的角,而不是与铅垂线所夹的角;(2)仰角和俯角都是锐角.师:测量仰角、俯角有专门的工具,是测角仪.2.练习新知.教师多媒体课件出示:如图,∠C =∠DEB =90°,FB ∥AC ,从A 看D 的仰角是________;从B 看D 的俯角是________;从A 看B 的________角是________;从D 看B 的________角是________;从B 看A 的________角是________.答案:从A 看D 的仰角是∠2,从B 看D 的俯角是∠FBD ,从A 看B 的仰角是∠BAC ,从D 看B 的仰角是∠3,从B 看A 的俯角是∠1.二、例题讲解例1 2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km 的圆形轨道上运行,如图,当组合体运行到地球表面P 点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P 点的距离是多少?(地球半径约为6 400 km ,π取3.142,结果取整数)分析:从组合体中能直接看到的地球表面最远点,是视线与地球相切时的切点.如图,本例可以抽象为以地球中心为圆心、地球半径为半径的⊙O 的有关问题:其中点F是组合体的位置,FQ 是⊙O 的切线,切点Q 是从组合体中观测地球时的最远点,PQ ︵的长就是地球表面上P ,Q 两点间的距离.为计算PQ ︵的长需先求出∠POQ(即α)的度数.解:设∠POQ =α,在图中,FQ 是⊙O 的切线,△FOQ 是直角三角形.∵cos α=OQ OF = 6 4006 400+343≈0.9491.∴α≈18.36°, ∴PQ ︵的长为18.36π180×6 400≈18.36×3.142180×6 400≈2 051(km ).由此可知,当组合体在P 点正上方时,从中观测地球表面时的最远点距离P 点约2051 km . 例2 热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m ,这栋楼有多高?(结果取整数)解:如图,α=30°,β=60°,AD =120.∵tan α=BD AD ,tan β=CDAD,∴BD =AD ·tan α=120×tan 30°=120×33=403, CD =AD ·tan β=120×tan 60°=120×3=120 3. ∴BC =BD +CD =403+1203=1603≈277(m ). 因此,这栋楼高约为277 m .例3 如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80 n mile 的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处.这时,B 处距离灯塔P 有多远?(结果取整数)解:如图,在Rt △APC 中, PC =PA ·cos (90°-65°) =80×cos 25° ≈72.505.在Rt △BPC 中,∠B =34°,∵sin B =PCPB ,∴PB =PC sin B =72.505sin 34°≈130(n mile ).因此,当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约130 n mile . 三、巩固提高1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,现测得有一水塔(图中点A 处)在她家北偏东60°方向500 m 处,那么水塔所在的位置到公路的距离AB 长是( )A .250 mB .250 3 mC .500 33 m D .250 2 m 答案 A2.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60°,已知水平距离BD =10 m ,楼高AB =24 m ,则树CD 的高度为( )A .(24-1033)m B .(24-103) mC .(24-53) mD .9 m答案B四、课堂小结师:本节课,我们学习了什么内容?学生回答.师:你还有什么不懂的地方吗?学生提问,教师解答.解直角三角形的内容是初中阶段数学教学中的重点之一,使学生对所学知识有了更好的巩固,同时让学生体会到数学与实际生活的联系,例题设置具有一定坡度,由浅入深,步步深入.。

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计2

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计2

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计2一. 教材分析人教版数学九年级下册28.2《解直角三角形及其应用》是本节课的教学内容。

这部分内容主要包括直角三角形的性质、锐角三角函数的概念及应用。

通过这部分内容的学习,学生能够理解和掌握直角三角形的性质,熟练运用锐角三角函数解决实际问题。

教材通过丰富的案例和练习题,帮助学生巩固知识,提高解题能力。

二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数的概念和直角三角形的性质。

但部分学生在应用锐角三角函数解决实际问题时,仍存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习需求,针对性地进行辅导,帮助学生提高解题能力。

三. 教学目标1.理解直角三角形的性质,掌握锐角三角函数的概念及应用。

2.能够运用锐角三角函数解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.教学重点:直角三角形的性质,锐角三角函数的概念及应用。

2.教学难点:运用锐角三角函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入锐角三角函数的概念,激发学生的学习兴趣。

2.案例教学法:分析实际问题,引导学生运用锐角三角函数解决问题。

3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力。

4.启发式教学法:引导学生主动思考,提高学生的逻辑思维能力。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。

2.练习题:准备相关练习题,巩固所学知识。

3.教学工具:准备三角板、直尺等教学工具,便于直观展示。

七. 教学过程1.导入(5分钟)利用生活实例,如测量楼高、电视塔高度等,引导学生思考如何利用数学知识解决实际问题。

激发学生的学习兴趣,引出本节课的主题。

2.呈现(10分钟)讲解直角三角形的性质,引导学生掌握锐角三角函数的概念。

通过示例,演示如何运用锐角三角函数解决实际问题。

3.操练(10分钟)学生分组讨论,分析练习题。

人教版九年级下册《28.2解直角三角形》教学设计

人教版九年级下册《28.2解直角三角形》教学设计
(2)根据勾股定理、正弦、余弦、正切的知识,计算以下直角三角形的未知边长或角度:
a.直角三角形,其中两条直角边分别为3cm和4cm。
b.直角三角形,其中一条直角边为5cm,斜边为13cm。
c.直角三角形,其中一个锐角为30°,斜边为10cm。
2.提高作业:
(1)在实际生活中找一个直角三角形的例子,如测量窗户玻璃的尺寸、计算楼梯的倾斜角度等,运用解直角三角形的知识解决问题,并写下解题过程。
3.遇到问题,及时与同学或老师沟通交流,共同解决。
3.合作探究,交流分享:组织学生进行小组合作,共同探究解直角三角形的方法和应用。在合作过程中,引导学生学会倾听、交流、分享,培养团队合作意识。
4.精讲精练,总结规律:在教学过程中,教师要精讲重点、难点,让学生掌握解题方法。同时,设计针对性的练习题,让学生在练习中总结解题规律,提高解题效率。
5.适时反馈,调整教学:在教学过程中,教师要关注学生的反馈,了解他们在学习中的困惑和问题。根据学生的反馈,及时调整教学策略,确保教学效果。
1.如何运用勾股定理、正弦、余弦和正切解决直角三角形问题?
2.这四种方法在实际问题中的应用有何异同?
3.遇到复杂的直角三角形问题,如何选择合适的解题方法?
(四)课堂练习
在小组讨论之后,我会安排课堂练习环节。根据学生的实际情况,设计不同难度的练习题,让学生巩固所学知识。
课堂练习包括以下类型:
1.基础题:主要考察学生对解直角三角形四种方法的掌握。
二、学情分析
九年级下册的学生已经具备了一定的数学基础和逻辑思维能力,对于三角形的知识有初步的了解,特别是在之前的课程中学习了勾股定理,为解直角三角形打下了基础。在此基础上,学生对于解直角三角形的四种方法(勾股定理、正弦、余弦、正切)已有一定的认识,但可能在实际应用中还不够熟练,需要通过本章节的学习来巩固和提升。

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3

人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3一. 教材分析《人教版数学九年级下册28.2《解直角三角形及其应用》》这一章节是在学生已经掌握了锐角三角函数的基础上进行学习的,目的是让学生能够运用解直角三角形的知识解决实际问题。

本章节主要包括解直角三角形的概念、方法及其应用。

通过本章节的学习,学生能够进一步理解和掌握解直角三角形的方法,提高解决实际问题的能力。

二. 学情分析学生在学习本章节之前,已经掌握了锐角三角函数的知识,具备了一定的几何基础。

但是,对于解直角三角形的应用,学生可能还不够熟悉,需要通过实例讲解和练习来提高理解。

同时,学生可能对于实际问题的解决还缺乏一定的思路和方法,需要教师进行引导和指导。

三. 教学目标1.知识与技能:使学生理解和掌握解直角三角形的概念、方法及其应用。

2.过程与方法:通过实例讲解和练习,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。

四. 教学重难点1.重点:解直角三角形的概念、方法及其应用。

2.难点:如何运用解直角三角形的知识解决实际问题。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。

通过实例讲解和练习,引导学生掌握解直角三角形的方法,并通过讨论和探究,提高学生解决实际问题的能力。

六. 教学准备1.教具准备:黑板、粉笔、课件等。

2.学具准备:练习本、直尺、三角板等。

七. 教学过程1.导入(5分钟)通过复习锐角三角函数的知识,引导学生回顾已学的三角函数概念,为新课的学习做好铺垫。

2.呈现(10分钟)(1)讲解解直角三角形的概念,介绍解直角三角形的定义及其性质。

(2)讲解解直角三角形的方法,包括勾股定理、三角函数的定义等。

(3)通过示例,演示解直角三角形的具体步骤和应用。

3.操练(10分钟)学生独立完成练习题,巩固所学知识。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)学生分组讨论,总结解直角三角形的方法和技巧。

九年级数学下册 28.2 解直角三角形教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案

九年级数学下册 28.2 解直角三角形教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案

28.2 解直角三角形教学目标:1、使学生理解解直角三角形中五个元素的关系,及解直角三角形的概念2、能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形教学重点:直角三角形的解法。

教学难点:三角函数在解直角三角形中的灵活运用。

学过程设计一、实际问题引入:由实际问题的解答引入课题,并归纳出解直角三角形的概念。

教师给出解直角三角形定义:解直角三角形:由直角三角形中除直角外的两个已知元素,求出所有未知元教素的过程,叫做解直角三角形.二、回顾旧知1.在三角形中共有几个元素?(几条边,几个角)2.直角三角形中,,这五个元素间有哪些等量关系呢?(1)边角之间关系;(2)三边之间关系(勾股定理);(3)锐角之间关系.从上面可以看出,直角三角形的边与角,边与边,角与角之间都存在着密切的关系,能否根据直角三角形的几个已知元素去求其余的未知元素呢?这节课就来探究这个问题,引出课题.二、自主探究问题:我们已经了解了直角三角形的边角关系、三边关系、角角关系,利用这些关系,在知道直角三角形几个元素个元素,就可求出其余的元素?结合图形探究。

提问思考:共有多少种情况?1.已知一个元素能否解直角三角形?(否)2.已知两个元素能否解直角三角形?共有三种情况:知两边知一边一角知两角a.讲解例一例1如图,在Rt △ABC 中,∠C =90°,解这个直角三角形分組讨论交流解题方法,师板书。

归纳得出(1)知两边解直角三角形可以。

注意:一题多解时选择简单方法。

计算时,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底。

例2如图,在Rt △ABC 中,∠B =60°,b=20,解这个直角三角形(精确到)提出问题,学生思考,教师指名口述,师板书。

归纳得出(2)知一边一角解直角三角形可以。

AB C 26 A B C a b c 20 60° 6,2==BC ACc.讨论得出:知两角解直角三角形不可以。

人教版九年级数学下册:28.2解直角三角形的应用优秀教学案例

人教版九年级数学下册:28.2解直角三角形的应用优秀教学案例
(二)讲授新知
在导入新课后,我开始讲授解直角三角形的相关知识。首先,我讲解直角三角形的定义和性质,让学生理解直角三角形的特殊地位。接着,我引入勾股定理,并通过几何图形和实例讲解勾股定理的应用。最后,我讲解如何利用三角函数解决直角三角形的问题。在讲授过程中,我注重与学生的互动,提问和引导学生思考,确保学生能够理解和掌握解直角三角形的知识。
问题导向是本节课的重要教学策略。在教学过程中,教师应提出一系列与解直角三角形相关的问题,引导学生思考和探索。例如,可以提出“如何利用勾股定理计算直角三角形的边长?”“在实际问题中,如何确定直角三角形的各个角度?”等问题。通过问题导向,激发学生的思维,培养学生解决问题的能力。
(三)小组合作
小组合作是本节课的重要教学组织形式。教师可以将学生分成若干小组,让学生在小组内进行讨论、交流和合作。例如,可以设计一个小组活动,让学生共同解决一个关于直角三角形的实际问题。通过小组合作,培养学生的合作意识和团队精神,提高学生的实践能力。
五、案例亮点
1.贴近生活实际:本案例以实际问题为背景,让学生在解决问题的过程中自然引入解直角三角形的知识和方法。这种贴近生活实际的教学方式能够激发学生的学习兴趣,使学生感受到数学与生活的紧密联系,从而提高学习的积极性和主动性。
2.问题导向:本案例通过提出一系列与解直角三角形相关的问题,引导学生思考和探索。问题导向的教学策略能够激发学生的思维,培养学生解决问题的能力。在解决问题的过程中,学生能够深入理解和掌握解直角三角形的知识和方法。
在教学过程中,我发现许多学生在学习这一章节时,往往对直角三角形的理解不够深入,无法将理论知识与实际问题相结合。因此,我设计了本节教学案例,以帮助学生更好地理解和应用解直角三角形的知识。
本案例以一个实际问题为切入点,让学生在解决问题的过程中,自然而然地引入解直角三角形的概念和方法。通过案例的引导和学生的积极参与,使学生能够掌握解直角三角形的技巧,提高解决问题的能力。同时,本案例还注重培养学生的合作意识和创新精神,使他们在解决实际问题的过程中,能够灵活运用所学知识,提高自己的综合素质。

九年级数学下册《解直角三角形》全章教案 新人教版

九年级数学下册《解直角三角形》全章教案 新人教版

九年级数学下册《解直角三角形》全章教案新人教版九年级数学下册《解直角三角形》全章教案(新人教版)第一课时:锐角三角函数教学目标:知识目标:初步了解正弦、余弦、正切的概念;能正确地用sinA、cosA、___表示直角三角形中两边的比;熟记30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

能力目标:逐步培养学生观察、比较、分析和概括的思维能力。

情感目标:提高学生对几何图形美的认识。

教学程序:一、探究活动1.通过特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。

2.归纳三角函数的定义。

sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边3.例1.求如图所示的直角三角形Rt⊿ABC中的sinA、cosA、___的值。

二、探究活动二1.让学生画30°、45°、60°的直角三角形,分别求sin30°、cos45°、tan60°,并归纳结果。

sinA cosA ___30° 1/2 √3/2 √3/345° √2/2 √2/2 160°√3/2 1/2 √32.求下列各式的值。

1) sin30° + cos30°2) 2sin45° - cos30° + tan60° - tan30°三、拓展提高1.P82例4.(略)2.如图,在直角三角形ABC中,∠A = 30°,tanB = 1/3,AC = 2√3,求AB。

四、小结通过本节课的研究,我们初步了解了正弦、余弦、正切的概念,并学会了用sinA、cosA、___表示直角三角形中两边的比。

同时,我们也熟记了30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。

新人教版数学九年级下册第28章28.2解直角三角形的简单应用(教案)

新人教版数学九年级下册第28章28.2解直角三角形的简单应用(教案)
3.重点难点解析:在讲授过程中,我会特别强调勾股定理和锐角三角函数这两个重点。对于难点部分,我会通过实际例题和图示来帮助大家理解如何选择合适的三角函数解决问题。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解直角三角形相关的实际问题,如测量旗杆的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用尺子和角度计实地测量物体的高度,从而演示解直角三角形的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形及其解法的基本概念。直角三角形是一种有一个角为直角(90度)的三角形,它的边长关系遵循勾股定理。这些性质使直角三角形在工程测量、建筑设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的高度,我们展示了如何利用解直角三角形的方法来计算实际中无法直接测量的距离。
3.实践活动环节,学生们积极参与,分组讨论和实验操作进行得如火如荼。但在成果展示时,我发现有些小组对问题的分析不够深入,可能是因为讨论时间不够充分,今后可以考虑适当延长这一环节的时间。
4.学生小组讨论中,大家提出了很多有创意的想法,将解直角三角形的方法应用到各种实际问题中。但同时我也注意到,有些学生在讨论中较为沉默,可能需要我在组织讨论时更加关注每个学生的参与度,鼓励他们大胆表达自己的观点。
针对以上反思,我认为在今后的教学中需要做出以下改进:
1.加强对学生的个别辅导,特别是针对那些在课堂上表现出困惑的学生,及时解答他们的疑问。
2.在讲解锐角三角函数时,可以结合更多实际案例,让学生更好地理解函数值的含义和计算方法。
3.调整实践活动的时间分配,确保学生们有足够的时间进行深入讨论和分析。

九年级数学下册(人教版)28.2解直角三角形及其应用优秀教学案例

九年级数学下册(人教版)28.2解直角三角形及其应用优秀教学案例
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的内在动力。
2.培养学生勇于探究、积极向上的精神风貌,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的社会责任感。
在教学过程中,我会注重激发学生的学习兴趣,鼓励学生积极参与课堂讨论。对于学习有困难的学生,我会耐心引导,关爱鼓励,帮助他们建立自信。同时,我会通过联系生活实际,让学生认识到数学在生活中的重要作用,从而培养学生的社会责任感。
导入新课时,我会利用多媒体展示生活实际的图片,如房屋设计、工程测量等,让学生认识到直角三角形在生活中的重要性。然后,我会提出具有挑战性的问题,如“如何在未知直角边的情况下求斜边长度?”激发学生的求知欲。在学生思考问题时,我会适时回顾勾股定理及其在直角三角形中的应用,为新课的学习做好铺垫。
(二)过程与方法
1.培养学生独立思考、自主学习的能力,养成良好的学习习惯。
2.培养学生团队协作、交流分享的良好品质,提高学生的沟通能力。
3.培养学生运用数学知识解决实际问题的能力,提高学生的数学素养。
在教学过程中,我会组织多样化的教学活动,如小组讨论、合作探究等,让学生在实践中学习、交流、分享。例如,在讲解直角三角形的应用时,我会让学生分组讨论,共同探讨如何运用所学知识解决实际问题。通过这样的教学方法,学生不仅能掌握知识,还能提高自己的学习能力和综合素质。
3.使学生了解解直角三角形在实际中的应用,提高学生的数学应用意识。
在教学过程中,我注重引导学生通过观察、操作、思考、讨论等方式,深入了解直角三角形的性质和解法。例如,在讲解勾股定理时,我会让学生亲自动手测量直角三角形的边长,通过实际操作发现勾股定理的规律。同时,我会设计一些生活化的例题,让学生在解决实际问题的过程中,运用所学知识,提高学生的数学应用能力。

九年级数学下册(人教版)28.2解直角三角形及其应用教学设计

九年级数学下册(人教版)28.2解直角三角形及其应用教学设计
-能够根据给定角度和边长,计算出其他角度和边长。
-能够根据实际问题,选择合适的三角函数进行求解。
3.能够运用解直角三角形的知识解决实际问题,如测量高度、距离等。
(二)过程与方法
在本章节的教学过程中,学生将通过以下方法来提高解决问题的能力:
1.实践操作:通过实际测量和绘制直角三角形,使学生直观地理解直角三角形的性质和解题方法。
3.培养学生的空间想象能力和逻辑推理能力。
-在解决直角三角形问题时,学生需要能够在脑中构建图形,并进行严密的逻辑推理。
(二)教学设想
1.创设情境,引入新课:
-通过生活中的实际例子,如测量旗杆高度、计算物体斜面的倾角等,引出解直角三角形的重要性,激发学生的学习兴趣。
2.知识传授与探究学习相结合:
-在讲解基本概念和定理时,教师应引导学生通过实际操作、自主探究等方式加深理解。
2.探索与发现:鼓励学生通过观察、猜想、验证等方式,自主发现勾股定理和解直角三角形的规律。
3.小组合作:通过小组讨论、交流,培养学生的团队协作能力和沟通能力。
4.问题解决:设置实际问题,引导学生运用所学知识解决问题,提高学生的应用能力和创新意识。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,使其认识到数学在生活中的重要作用。
-利用问题驱动法,激发学生的好奇心和求知欲。
3.教学步骤:
-首先,简要回顾直角三角形的基本概念和勾股定理。
-然后,引出解直角三角形的实际应用,如测量高度、距离等。
(二)讲授新知
1.教学内容:
-讲解正弦、余弦、正切函数的定义及其在解直角三角形中的应用。
-解释如何利用这些三角函数来计算直角三角形中的未知角度和边长。
九年级数学下册(人教版)28.2解直角三角形及其应用教学设计

人教版数学九年级下册28.2《解直角三角形(1)》教学设计

人教版数学九年级下册28.2《解直角三角形(1)》教学设计

人教版数学九年级下册28.2《解直角三角形(1)》教学设计一. 教材分析人教版数学九年级下册28.2《解直角三角形》是本节课的主要内容。

这部分内容是在学生已经掌握了锐角三角函数的基础上进行的,是初中的重要知识,也是高考的重点内容。

解直角三角形在实际生活中有广泛的应用,如测量高度、距离等。

本节课的内容包括了解直角三角形的边角关系,利用锐角三角函数解决实际问题。

二. 学情分析九年级的学生已经掌握了锐角三角函数的知识,对解直角三角形有一定的认知基础。

但是,解直角三角形的实际应用能力还需加强。

学生在学习本节课的内容时,需要将理论知识与实际问题相结合,提高解决问题的能力。

三. 教学目标1.理解直角三角形的边角关系,掌握解直角三角形的方法。

2.能够运用锐角三角函数解决实际问题。

3.培养学生的动手操作能力和团队协作能力。

四. 教学重难点1.教学重点:直角三角形的边角关系,解直角三角形的方法。

2.教学难点:如何将实际问题转化为解直角三角形的问题,运用锐角三角函数解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探索直角三角形的边角关系。

2.利用多媒体演示,帮助学生直观理解解直角三角形的过程。

3.运用实例分析法,让学生动手操作,提高解决问题的能力。

4.采用小组讨论法,培养学生的团队协作能力。

六. 教学准备1.多媒体课件2.直角三角形模型3.实际问题案例七. 教学过程1.导入(5分钟)利用多媒体展示直角三角形的图片,引导学生思考直角三角形的特征。

提问:直角三角形有哪些特殊的性质?让学生回顾已学的锐角三角函数知识。

2.呈现(10分钟)讲解直角三角形的边角关系,引导学生理解解直角三角形的意义。

通过多媒体演示,让学生直观地感受解直角三角形的过程。

3.操练(10分钟)给出实际问题案例,让学生动手操作,尝试运用锐角三角函数解决实际问题。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生分组讨论,总结解直角三角形的步骤和方法。

人教版数学九年级下册教学设计28.2《解直角三角形及其应用》

人教版数学九年级下册教学设计28.2《解直角三角形及其应用》

人教版数学九年级下册教学设计28.2《解直角三角形及其应用》一. 教材分析人教版数学九年级下册第28.2节《解直角三角形及其应用》是本册教材中的重要内容,主要让学生掌握解直角三角形的各种方法,以及如何运用这些方法解决实际问题。

本节课的内容包括:了解直角三角形的性质,掌握解直角三角形的基本方法,学会运用解直角三角形解决实际问题。

二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对三角形有了一定的了解。

但是,对于解直角三角形的应用,部分学生可能会感到困难。

因此,在教学过程中,需要关注学生的学习困难,引导学生掌握解直角三角形的方法,并能够运用到实际问题中。

三. 教学目标1.知识与技能:使学生掌握解直角三角形的基本方法,能够运用这些方法解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:解直角三角形的基本方法。

2.难点:如何运用解直角三角形的方法解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的解决问题的能力。

六. 教学准备1.准备相关的教学案例和实际问题。

2.准备教学PPT和其他教学资源。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如:“一个房屋的面积是50平方米,已知其中一个角是90度,另外两个角的度数分别是30度和60度,求房屋的长和宽。

”2.呈现(10分钟)呈现房屋的示意图,引导学生观察并思考问题。

让学生尝试用已学的知识解决此问题,鼓励学生发表自己的观点和想法。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用解直角三角形的方法进行解决。

教师在这个过程中给予学生指导,帮助学生解决问题。

4.巩固(10分钟)请各组代表分享自己组的问题和解决过程,让全班学生共同讨论和评价。

新人教版数学九年级下册第二十八章 解直角三角形及其应用教案

新人教版数学九年级下册第二十八章 解直角三角形及其应用教案

数学九年级下册第二十八章解直角三角形及其应用教案28.2.1 解直角三角形教学目标:知识与技能:1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、渗透数形结合的数学思想,培养学生良好的学习习惯.过程与方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.情感态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯.重难点、关键:1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.教学过程:一、复习旧知、引入新课【引入】我们一起来解决关于比萨斜塔问题见课本在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m.sin=5.254.5BCAB≈0.0954.所以∠A≈5°28′.二、探索新知、分类应用【活动一】理解直角三角形的元素【提问】1.在三角形中共有几个元素?什么叫解直角三角形?总结:一般地,直角三角形中,除直角外,共有5个元素,即3条边和2个锐角,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。

【活动二】直角三角形的边角关系直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.【活动三】解直角三角形例1:在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.例2:在Rt △ABC 中, ∠B =35°,b=20,解这个三角形(结果保留小数点后一位.引导学生思考分析完成后,让学生独立完成。

九年级数学下册282解直角三角形及其应用3教案新人教

九年级数学下册282解直角三角形及其应用3教案新人教

28.2 解直角三角形及其应用课题28.2 解直角三角形及其应用(3)授课类型课标依据能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。

教学目标知识与技能1.了解什么是方位角,能准确找到方位角是指哪一个角;2.了解坡角、坡度的概念,知道坡角和坡度的关系;3. 掌握运用解直角三角形有关知识解决关于方位角、坡角的实际问题. 过程与方法经历解直角三角形的实际应用的过程,运用转化思想,把实际问题转化为数学问题来解决,进一步培养学生分析问题、解决问题的能力,渗透数形结合的数学思想和方法.情感态度与价值观渗透理论联系实际的观点,培养学生用数学的意识,感受生活与数学的密不可分.教学重点难点教学重点用三角函数有关知识解决方位角、坡角问题.教学难点学会准确分析问题,并将实际问题转化成数学模型,解决问题.教学师生活动设计意图过程 一、复习引入 问题1:结合上节课学习,谈谈运用解直角三角形知识解决实际问题的一般思路是什么? 二、探究新知 问题2:教材76页例5: 如图,一艘海轮位于灯塔P 的北偏东65方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34方向上的B 处.这时,海轮所在的B 处距离灯塔P 有多远? 思考:1.回顾方位角概念: 题中“一艘海轮位于灯塔P 的北偏东65方向”是什么意思? “位于灯塔P 的南偏东34方向上”呢? 2.尝试画出几何图形,找出已知什么,要求什么?怎么求? (引导学生阅读、思考、尝试画出几何图形,结合图形分析,把实际问题中的已知和求解转化为数学问题中的已知和求解。

) 归纳:运用解直角三角形解决实际问题的一般步骤: (1) 将实际问题转化为数学问题; (2) 选用适当的锐角三角函数求解; (3) 求出数学问题的答案; (4) 得到实际问题的答案。

三、巩固训练 课本77页练习1. 四、补充讲解 坡度与坡角的概念坡度:坡面的铅直高度h 和水平宽度l 的 比叫做坡度(或叫做坡比),一般用i 表示。

数学九年级下册解直角三角形及其应用教案新人教

数学九年级下册解直角三角形及其应用教案新人教

28.2 解直角三角形及其应用课题28.2 解直角三角形及其应用(2)授课类型课标依据能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。

教学目标知识与技能1.会把实际问题转化为解直角三角形问题,能运用解直角三角形的方法解决问题;2.认识仰角、俯角等概念,学会综合运用所学知识解决实际题.过程与方法经历解直角三角形的实际应用,运用转化思想,学会把实际问题转化为数学问题来解决,培养学生分析问题、解决问题的能力.情感态度与价值观渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识教学重点难点教学重点将实际问题中的数量关系归结为解直角三角形元素之间的关系,从而利用所学的知识解决实际问题.教学难点将实际问题转化为数学模型教学师生活动设计意图过程一、复习引入问题1:什么是解直角三角形?直角三角形的边边、角角、边角之间有哪些关系?问题2 、3.(见PPT)这节课利用解直角三角形的知识解决实际问题,引出课题.二、应用知识问题3. 教材74页例3分析:(1)从飞船上最远能直接看到的地球上的点,应该是视线与地球相切时的切点;(2)所要求的距离应该是点P与切点之间的弧长。

(3)已知哪些条件?求弧长需要知道哪些条件?(4)如图,⊙O表示地球,点F式飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点,弧PQ的长就是地面上P,Q 两点间的距离,为了计算弧PQ的长,需要先求出∠POQ的度数. (5)如何求∠POQ的度数?(教师给出问题,引导学生阅读、思考、尝试画出几何图形,结合图形分析,小组讨论,把实际问题中的已知和求解转化为数学问题中的已知和求解。

)归纳:根据题意将实际问题转化为数学问题,该题综合运用了圆和解直角三角形的知识,关于圆的知识用到了切线的性质,弧长公式,解直角三角形用到了已知一条直角边和斜边求它们所夹的锐角.构造出解题所需的几何图形,把已知条件和所求有机的结合进行分析,是解决此类题的关键.问题4. 教材75页例4分析:(1)什么是仰角、俯角?在视线和水平线所成的角中,视线在水平线上方的角是仰角;视线在水平线下方的角是俯角.(2)如何根据题意构造几何图形?(3)怎样求出BC的长?在两个直角三角形中分别求出BD、CD,也可以先求出AB、AC的长,再运用勾股定理求出BC. 通过学生亲自探究实际问题,初步领会把实际问题转化为数学问题的方法,培养学生用数学的能力(教师给出问题,学生独立思考,运用不同方法分析解题思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《28.3解直角三角形应用》教案
课题 28.3解直角三角形应用
授课时间
年 月 日
教学目标 知识与能力
巩固用三角函数有关知识解决问题,学会解决坡度问题.
过程与方法
逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
情感态度价值观 培养学生用数学的意识,渗透理论联系实际的观点. 教学重点 解决有关坡度的实际问题. 教学难点 理解坡度的有关术语. 教学方法 合作深究,小组学习
教具准备
课型
新授 教 学 活 动
教学环节补充
一、情景导学:
例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m ,坝高23m ,斜坡AB 的坡度i=1∶3,斜坡CD 的坡度i=1∶2.5,求斜坡AB 的坡面角α,坝底宽AD 和斜坡AB 的长(精确到0.1m). 二、自学梳理
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义. 介绍概念 坡度与坡角
结合图6-34,教师讲述坡
度概念,并板书:坡面的铅直高度h 和水
平宽度l 的比叫做坡度(或叫做坡比),一般用i 表示。

即i=l h

把坡面与水平面的夹角α叫做坡角.
引导学生结合图形思考,坡度i 与坡角α之间具有什么关系?
教师巡视,个别指导
答:i =l h
=tan α
三、合作解疑:
这一关系在实际问题中经常用到,教师不妨设置练习,加以巩固.
练习(1)一段坡面的坡角为60°,则坡度i=______; ______,坡角α______度.
为了加深对坡度与坡角的理解,培养学生空间想象力,教师还可以提问: (1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系?举例说明.
(2)坡面水平宽度一定,铅直高度与坡度有何关系,举例说明. 答:(1)
如图,铅直高度AB 一定,水平宽度BC 增加,α将变小,坡度减小,
因为 tan α=BC AB
,AB 不变,tan α随BC 增大而减小
(2)与(1)相反,水平宽度BC 不变,α将随铅直高度增大而增大,tan α
也随之增大,因为tan α=BC AB
不变时,tan α随AB 的增大而增大
四、点拨校正(师生共同分析,总结归纳)
引导学生分析例题,图中ABCD 是梯形,若BE ⊥AD ,CF ⊥AD ,梯形就被分割成Rt △ABE ,矩形BEFC 和Rt △CFD ,AD=AE+EF+FD ,AE 、DF 可在△ABE 和△CDF 中通过坡度求出,EF=BC=6m ,从而求出AD .
以上分析最好在学生充分思考后由学生完成,以培养学生逻辑思维能力及良好的学习习惯.
坡度问题计算过程很繁琐,因此教师一定要做好示范,并严格要求学生,选择最简练、准确的方法计算,以培养学生运算能力. 五、巩固应用:教材P124. 2
六、课堂小结: 说说你在本节课的收获。

七、达标检测:(见学案)
板书设计: 28.3 解直角三角形应用。

相关文档
最新文档