2018版高考数学理科(全国通用)总复习:中档大题规范练2含解析
2018年高考理科数学新课标全国2卷逐题解析
2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及稿本纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。
1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。
2018年考前三个月高考数学理科(江苏专用)总复习——中档大题规范练2 Word版 含答案
2.三角函数的图象、性质与三角变换1.已知α为锐角,cos ⎝ ⎛⎭⎪⎫α+π4=55. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin ⎝⎛⎭⎪⎫2α+π3的值. 解 (1)因为α∈⎝ ⎛⎭⎪⎫0,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π4,3π4,所以sin ⎝⎛⎭⎪⎫α+π4=1-cos 2⎝⎛⎭⎪⎫α+π4=255,所以tan ⎝ ⎛⎭⎪⎫α+π4=sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2.(2)因为sin ⎝⎛⎭⎪⎫2α+π2=sin2⎝ ⎛⎭⎪⎫α+π4=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=45, cos ⎝ ⎛⎭⎪⎫2α+π2=cos2⎝ ⎛⎭⎪⎫α+π4=2cos 2⎝ ⎛⎭⎪⎫α+π4-1=-35, 所以sin ⎝ ⎛⎭⎪⎫2α+π3=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π2-π6=sin ⎝ ⎛⎭⎪⎫2α+π2cos π6-cos ⎝⎛⎭⎪⎫2α+π2sin π6=43+310.2.(2017·南通、扬州、泰州、淮安三调)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx +π3(A >0,ω>0)图象的相邻两条对称轴之间的距离为π,且经过点⎝ ⎛⎭⎪⎫π3,32.(1)求函数f (x )的解析式;(2)若角α满足f (α)+3f ⎝ ⎛⎭⎪⎫α-π2=1,α∈(0,π),求角α的值. 解 (1)由条件知周期T =2π,即2πω=2π,所以ω=1,即f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3.因为f (x )的图象经过点⎝ ⎛⎭⎪⎫π3,32,所以A sin 2π3=32,所以A =1,所以f (x )=sin ⎝⎛⎭⎪⎫x +π3.(2)由f (α)+3f ⎝ ⎛⎭⎪⎫α-π2=1,得sin ⎝ ⎛⎭⎪⎫α+π3+3sin ⎝ ⎛⎭⎪⎫α+π3-π2=1,即sin ⎝ ⎛⎭⎪⎫α+π3-3cos ⎝ ⎛⎭⎪⎫α+π3=1, 所以2sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π3-π3=1,即sin α=12.因为α∈(0,π),所以α=π6或5π6.3.(2017·南京三模)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝ ⎛⎭⎪⎫0,π2.(1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值;(2)若t =1,且a·b =1,求tan ⎝⎛⎭⎪⎫2α+π4的值. 解 (1)方法一 因为向量a =(2cos α,sin 2α),b =(2sin α,t ),且a -b =⎝ ⎛⎭⎪⎫25,0,所以cos α-sin α=15,t =sin 2α.由cos α-sin α=15,得(cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α+sin α=75,所以sin α=(cos α+sin α)-(cos α-sin α)2=35,从而t =sin 2α=925.方法二 因为向量a =(2cos α,sin 2α),b =(2sin α,t ), 且a -b =⎝ ⎛⎭⎪⎫25,0,所以cos α-sin α=15,t =sin 2α.又sin 2α+cos 2α=1,所以sin 2α+⎝ ⎛⎭⎪⎫sin α+152=1,整理得50sin 2α+10sin α-24=0, 解得sin α=-45或sin α=35.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以sin α>0,所以sin α=35, 从而t =sin 2α=925.(2)方法一 因为t =1,且a·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α≠0,从而tan α=14.所以tan2α=2tan α1-tan 2α=815. 从而tan ⎝⎛⎭⎪⎫2α+π4=tan2α+tanπ41-tan2α·tan π4=815+11-815=237.方法二 因为t =1,且a·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 所以2sin2α=1+cos2α2,即4sin2α-cos2α=1,又sin 22α+cos 22α=1,所以sin 22α+(4sin2α-1)2=1, 整理得17sin 22α-8sin2α=0, 解得sin2α=817或sin2α=0.因为α∈⎝⎛⎭⎪⎫0,π2,所以2α∈(0,π),所以sin2α>0,所以sin2α=817,代入4sin2α-cos2α=1,得cos2α=1517,因为tan2α=sin2αcos2α=815,从而tan ⎝⎛⎭⎪⎫2α+π4=tan2α+tanπ41-tan2α·tan π4=815+11-815=237.4.(2017·南通一调)如图,在平面直角坐标系xOy 中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A .以OA 为始边作锐角β,其终边与单位圆交于点B ,AB =255.(1)求cos β的值;(2)若点A 的横坐标为513,求点B 的坐标.解 (1)在△AOB 中,由余弦定理,得cos ∠AOB =OA 2+OB 2-AB 22OA ·OB=12+12-⎝ ⎛⎭⎪⎫25522×1×1=35,即cos β=35.(2)因为cos β=35,β∈⎝ ⎛⎭⎪⎫0,π2,所以sin β=1-cos 2β=1-⎝ ⎛⎭⎪⎫352=45. 因为点A 的横坐标为513,由三角函数定义可得cos α=513.因为α为锐角,所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫5132=1213.所以cos(α+β)=cos αcos β-sin αsin β=513×35-1213×45=-3365,sin(α+β)=sin αcos β+cos αsin β=1213×35+513×45=5665.所以点B 坐标为⎝ ⎛⎭⎪⎫-3365,5665.。
2018年高考全国卷2理科数学真题(附含答案解析)
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2018 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5 分)=()A.i C.D.2.(5 分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9 B.8 C.5 D.43.(5 分)函数f(x)=的图象大致为()A.B.C.D.4.(5 分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5 分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x x x6.(5 分)在△ABC 中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5 分)为计算S=1﹣+ ﹣+…+ ﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5 分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2 的偶数可以表示为两个素数的和”,如30=7+23.在不超过30 的素数中,随机选取两个不同的数,其和等于30 的概率是()A.B.C.D.9.(5 分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5 分)若f(x)=cosx﹣sinx 在[﹣a,a]是减函数,则a 的最大值是()A.B.C.D.π 11.(5 分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5 分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C 的离心率为()A.B.C.D.二、填空题:本题共 4 小题,每小题 5 分,共20 分。
2018年高考理科数学全国卷2含答案
12[ f (1) f (2) f (3) f (4)] f (49) f (50)
理科数学试题 A 第 8页(共 16页)
12.【答案】D
【解析】如图,因为 PF1F2 为等腰三角形, F1F2 P 120 且 F1F2 2c ,所
以 PF1F2 30 ,则 P 的坐标为 (2c,
“每个大于 2 的偶数可以表示为两个素数的和”,如 30=7+23. 在不超过 30 的素数中,随机
选取两个不同的数,其和等于 30 的概率是
A. 1 12
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3, 则异面直线 AD1 与 DB1 所
理科数学试题 A 第 5页(共 16页)
理科数学试题 A 第 6页(共 16页)
2018 年普通高等学校招生全国统一考试
理科数学答案解析
一、选择题
1.【答案】D
1
【解析】
1
2i 2i
1 2i2 1 2i1 2i
3 5
4i
3 5
4 5
i
,故选
D.
2.【答案】A
成角的余弦值为
A. 1 5
B. 5 6
C. 5 5
10.若 f (x) cos x sin x 在 a, a是减函数,则 a 的最大值是
A.
4
B.
2
C. 3 4
D. 2 2
D.
理科数学试题 A 第 2页(共 16页)
11.已知 f (x) 是定义域为 , 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则
2018年高考理科数学全国卷2(含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。
2018年高考理科数学全国卷2答案解析
甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆共10个省份使用的全国2卷2018年高考理科数学全国卷2试题与答案分析试题与答案分析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
中,只有一项是符合题目要求的。
1.=( )A .iB .C .D .【解答】解:==+.选:.选:D D .2.已知集合A={A={((x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z ),则A 中元素的个数为(中元素的个数为( )A .9B .8C .5D .4 【解答】解:当x=x=﹣﹣1时,时,y y 2≤2,得y=y=﹣﹣1,0,1,当x=0时,时,y y 2≤3,得y=y=﹣﹣1,0,1,当x=1时,时,y y 2≤2,得y=y=﹣﹣1,0,1, 即集合A 中元素有9个,故选:个,故选:A A .3.函数f (x )=的图象大致为(的图象大致为( )A .B .C .D .【解答】解:函数f (﹣(﹣x x )==﹣=﹣f (x ),则函数f (x )为奇函数,图象关于原点对称,排除A ,当x=1时,时,f f (1)=e =e﹣﹣>0,排除D . 当x →+∞时,∞时,f f (x )→)→++∞,排除C ,故选:,故选:B B .4.已知向量,满足满足|||=1|=1,,=﹣1,则•(2)=( )A .4B .3C .2D .0 【解答】解:向量,满足满足|||=1|=1,,=﹣1,则•(2)=2﹣=2+1=3=2+1=3,,故选:故选:B B .5.双曲线=1=1((a >0,b >0)的离心率为,则其渐近线方程为(,则其渐近线方程为( )A .y=y=±±x B .y=y=±±x C .y=y=±±x D .y=y=±±x【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=y=±±x=x=±±x ,故选:,故选:A A .6.在△.在△ABC ABC 中,中,cos cos =,BC=1BC=1,,AC=5AC=5,则,则AB=AB=(( )A .4B .C .D .2【解答】解:在△解:在△ABC ABC 中,中,cos cos =,cosC=2cosC=2××=﹣,BC=1BC=1,,AC=5AC=5,则,则AB====4.故选:选:A A .7.为计算S=1S=1﹣﹣+﹣+…+﹣,设计了如图,设计了如图的程序框图,则在空白框中应填入(的程序框图,则在空白框中应填入( )A .i=i+1B .i=i+2C .i=i+3D .i=i+4 【解答】解:模拟程序框图的运行过程知,解:模拟程序框图的运行过程知,该程序运行后输出的是该程序运行后输出的是S=N S=N﹣﹣T=T=((1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2i=i+2.. 故选:故选:B B .8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+2330=7+23.在不超.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(的概率是( )A .B .C .D .【解答】解:在不超过30的素数中有,的素数中有,22,3,5,7,1111,,1313,,1717,,1919,,2323,,29共10个,个,从中选2个不同的数有=45种,种,和等于30的有(的有(77,2323)),(1111,,1919)),(1313,,1717)),共3种,种,则对应的概率P==,故选:,故选:C C .9.在长方体ABCD ABCD﹣﹣A 1B 1C 1D 1中,中,AB=BC=1AB=BC=1AB=BC=1,,AA 1=,则异面直线AD 1与DB 1所成角的余弦值为(的余弦值为( )A .B .C .D . 【解答】解:以D 为原点,为原点,DA DA 为x 轴,轴,DC DC 为y 轴,轴,DD DD 1为z 轴,建立空间直角坐标系,标系,∵在长方体ABCD ABCD﹣﹣A 1B 1C 1D 1中,中,AB=BC=1AB=BC=1AB=BC=1,,AA 1=,∴A (1,0,0),D 1(0,0,),D (0,0,0),B 1(1,1,),=(﹣(﹣11,0,),=(1,1,),设异面直线AD 1与DB 1所成角为θ, 则cos θ===,∴异面直线AD 1与DB 1所成角的余弦值为.故选:故选:C C . 1010.若.若x x x f sin cos )(-=在],[a a -是减函数,则a 的最大值是(的最大值是( )A .B .C .D .π【解答】解:)4sin(2)cos (sin sin cos )(p --=--=-=x x x x x x f 由Zk k x k Î+£-£+-,22422p p p p p , 得Z k k x k Î+££+-,24324p p p p ,取0=k ,得)(x f 的一个减区间为]43,4[pp -,由)(x f 在],[a a - 是减函数,是减函数,得,∴.则a 的最大值是.故选:.故选:A A .1111.已知.已知)(xf 是定义域为(﹣∞,是定义域为(﹣∞,++∞)的奇函数,满足)1()1(x f x f +=-,若)1(f =2=2,则,则)1(f +)2(f +)3(f +…+)50(f =( )A .﹣.﹣50 50 B.0 C .2 D .50 【解答】解:∵)(x f 是奇函数,且)1()1(x f x f +=-, ∴)1()1()1(--=+=-x f x f x f 、,f (0)=0=0,, 则)()2(x f x f -=+,则)()2()4(x f x f x f =+-=+, 即函数)(xf 是周期为4的周期函数,的周期函数,∵)1(f =2=2,,∴)2(f =)0(f =0=0,,)3(f =)1()1()21(f f f -=-=- =﹣2, )4(f =)0(f =0=0,,则)1(f +)2(f +)3(f +)4(f =2+0=2+0﹣﹣2+0=02+0=0,,则)1(f +)2(f +)3(f +…+)50(f =12[)1(f +)2(f +)3(f +)4(f ]+)49(f +)50(f =)1(f +)2(f =2+0=2=2+0=2,故选:,故选:,故选:C C .1212.已知.已知F 1,F 2是椭圆C :=1=1((a >b >0)的左、右焦点,)的左、右焦点,A A 是C 的左顶点,点P 在过A 且斜率为的直线上,△的直线上,△PF PF 1F 2为等腰三角形,∠为等腰三角形,∠F F 1F 2P=120P=120°,°,则C 的离心率为(的离心率为( )A .B .C .D .【解答】解:由题意可知:解:由题意可知:A A (﹣(﹣a a ,0),F 1(﹣(﹣c c ,0),F 2(c ,0), 直线AP 的方程为:的方程为:y=y=(x+a x+a)), 由∠由∠F F 1F 2P=120P=120°,°,°,|PF |PF 2|=|F 1F 2|=2c |=2c,则,则P (2c 2c,,c ),代入直线AP AP::c=(2c+a 2c+a)),整理得:,整理得:a=4c a=4c a=4c,,∴题意的离心率e==.故选:.故选:D D .二、填空题:本题共4小题,每小题5分,共20分。
2018年高考真题理科数学全国卷II含解析
适用全国卷Ⅱ(甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆)2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。
(word完整版)2018年高考全国2卷理科数学带答案解析
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷2理科数学真题附含答案解析
2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。
若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
高考数学(全国甲卷通用理科)考前抢分必做 中档大题规范练2含答案
中档大题规范练2 立体几何与空间向量1.如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =,PA ⊥PD ,底2面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为?若存在,求出的63PQ QD 值;若不存在,请说明理由.(1)证明 因为PA =PD =,O 为AD 的中点,2所以PO ⊥AD ,因为侧面PAD ⊥底面ABCD ,所以PO ⊥平面ABCD .(2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1).=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),=(-1,0,1),=(0,PB → CP → PD → 1,-1).则Error!取z =1,得u =(1,1,1),B 点到平面PDC 的距离d ==.|BP ,→ ·u ||u |33(3)解 假设存在,则设=λ (0<λ<1),PQ → PD → 因为=(0,1,-1),所以Q (0,λ,1-λ),PD → 设平面CAQ 的法向量为m =(a ,b ,c ),则Error!即Error!所以取m =(1-λ,λ-1,λ+1),平面CAD 的法向量n =(0,0,1),因为二面角Q —AC —D 的余弦值为,63所以=,|m·n||m||n |63所以3λ2-10λ+3=0,所以λ=或λ=3(舍去),所以=.13PQQD 122.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A —DF —C 的大小.(1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2).∵E 为AB 的中点,∴E 点坐标为(1,1,0),∵D 1F =2FE ,∴==(1,1,-2)=(,,-),D 1F → 23D 1E → 23232343=+=(0,0,2)+(,,-)=(,,).DF → DD 1→ D 1F → 232343232323设n =(x ,y ,z )是平面DFC 的法向量,则Error!∴Error!取x =1得平面FDC 的一个法向量n =(1,0,-1).设p =(x ,y ,z )是平面ED 1C 的法向量,则Error!∴Error!取y =1得平面D 1EC 的一个法向量p =(1,1,1).∵n·p =(1,0,-1)·(1,1,1)=0,∴平面DFC ⊥平面D 1EC .(2)解 设q =(x ,y ,z )是平面ADF 的法向量,则q ·=0,q ·=0.DF → DA → ∴Error!取y =1得平面ADF 的一个法向量q =(0,1,-1),设二面角A —DF —C 的平面角为θ,由题中条件可知θ∈(,π),π2则cos θ=-||=-=-,n·q|n|·|q |0+0+12×212∴二面角A —DF —C 的大小为120°.3.如图所示,在直三棱柱A 1B 1C 1—ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解 (1)以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以=(2,0,-4),=(1,-1,-4).A 1B →C 1D →因为cos 〈,〉===,A 1B → C 1D → A 1B ,→ ·C 1D→ |A 1B → ||C 1D → |1820×1831010所以异面直线A 1B 与C 1D 所成角的余弦值为.31010(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为=(1,1,0),=(0,2,4),AD → AC 1→ 所以n 1·=0,n 1·=0,AD → AC 1→ 即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|===,|n1·n2|n1||n2||29×123得sin θ=.53因此,平面ADC 1与平面ABA 1所成二面角的正弦值为.534.如图,在四棱锥P —ABCD 中,平面PAD ⊥底面ABCD ,其中底面ABCD 为等腰梯形,AD ∥BC ,PA =AB =BC=CD =2,PD =2,PA ⊥PD ,Q 为PD 的中点.3(1)证明:CQ ∥平面PAB ;(2)求二面角D —AQ —C 的余弦值.(1)证明 如图所示,取PA 的中点N ,连接QN ,BN .在△PAD 中,PN =NA ,PQ =QD ,所以QN ∥AD ,且QN =AD .12在△APD 中,PA =2,PD =2,PA ⊥PD ,3所以AD ===4,PA 2+PD 222+(23)2而BC =2,所以BC =AD .12又BC ∥AD ,所以QN ∥BC ,且QN =BC ,故四边形BCQN 为平行四边形,所以BN ∥CQ .又CQ ⊄平面PAB ,BN ⊂平面PAB ,所以CQ ∥平面PAB .(2)解 如图,在平面PAD 内,过点P 作PO ⊥AD 于点O ,连接OB .因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD .又PO ⊥AD ,AP ⊥PD ,所以PO ===,AP ×PDAD 2×2343故AO ===1.AP 2-PO 222-(3)2在等腰梯形ABCD 中,取AD 的中点M ,连接BM ,又BC =2,AD =4,AD ∥BC ,所以DM =BC =2,DM ∥BC ,故四边形BCDM 为平行四边形.所以BM =CD =AB =2.在△ABM 中,AB =AM =BM =2,AO =OM =1,所以BO ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,所以BO ⊥平面PAD .如图,以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),D (0,3,0),A (0,-1,0),B (,0,0),P (0,0,),C (,2,3330),则=(,3,0).AC → 3因为Q 为DP 的中点,故Q ,(0,32,32)所以=.AQ → (0,52,32)设平面AQC 的法向量为m =(x ,y ,z ),则Error!可得Error!令y =-,则x =3,z =5.3故平面AQC 的一个法向量为m =(3,-,5).3因为BO ⊥平面PAD ,所以=(,0,0)是平面ADQ 的一个法向量.OB → 3故cos 〈,m 〉====.OB → OB → ·m |OB → |·|m |333·32+(-3)2+5233733737从而可知二面角D—AQ —C 的余弦值为.337375.在四棱锥P —ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =90°,AB =AD =PD =1,CD =2.(1)求证:BC ⊥平面PBD ;(2)在线段PC 上是否存在一点Q ,使得二面角Q —BD —P 为45°?若存在,求的值;若不PQ PC 存在,请说明理由.(1)证明 平面PCD ⊥底面ABCD ,PD ⊥CD ,所以PD ⊥平面ABCD ,所以PD ⊥AD .如图,以D 为原点建立空间直角坐标系Dxyz ,则A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),=(1,1,0),=(-1,1,0),DB → BC → 所以·=0,BC ⊥DB ,BC → DB → 又由PD ⊥平面ABCD ,可得PD ⊥BC ,因为PD ∩BD =D ,所以BC ⊥平面PBD .(2)解 平面PBD 的法向量为=(-1,1,0),BC → =(0,2,-1),设=λ,λ∈(0,1),PC → PQ → PC → 所以Q (0,2λ,1-λ),设平面QBD 的法向量为n =(a ,b ,c ),=(1,1,0),=(0,2λ,1-λ),DB → DQ → 由n ·=0,n ·=0,DB → DQ → 得Error!令b =1,所以n =(-1,1,),2λλ-1所以cos 45°===,|n ·BC → ||n ||BC → |22 2+(2λλ-1)222注意到λ∈(0,1),得λ=-1,2所以在线段PC 上存在一点Q ,使得二面角Q —BD —P 为45°,此时=-1.PQPC 2。
(完整word版)2018高考全国2卷理科数学带答案
绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>3 C .A .2y x =± B .3y x=6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 297.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50- B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。
2018年高考数学(理)二轮复习 专项精练:中档大题规范练(二)(含答案解析)
(二)立体几何与空间向量1.(2017·全国Ⅰ)如图,在四棱锥P —ABCD 中,AB ∥CD ,且∠BAP=∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,求二面角A —PB —C 的余弦值.(1)证明 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD ,因为AB ∥CD ,所以AB ⊥PD .又AP ∩DP =P ,AP ,DP ⊂平面PAD ,所以AB ⊥平面PAD .因为AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)解 在平面PAD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面PAD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以点F 为坐标原点,FA →的方向为x 轴正方向,|AB →|为单位长度建立如图所示的空间直角坐标系Fxyz .由(1)及已知可得A ⎝ ⎛⎭⎪⎫22,0,0,P ⎝ ⎛⎭⎪⎫0,0,22,B ⎝ ⎛⎭⎪⎫22,1,0,C ⎝ ⎛⎭⎪⎫-22,1,0,所以PC →=⎝ ⎛⎭⎪⎫-22,1,-22,CB →=(2,0,0),PA →=⎝ ⎛⎭⎪⎫22,0,-22,AB →=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则⎩⎪⎨⎪⎧ n ·PC →=0,n ·CB →=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2).设m =(x 2,y 2,z 2)是平面PAB 的一个法向量,则⎩⎪⎨⎪⎧ m ·PA →=0,m ·AB →=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33.易知A —PB —C 为钝二面角,所以二面角A -PB -C 的余弦值为-33.2.(2017·泉州质检)如图,在三棱锥A —BCD 中,平面ABD ⊥平面BCD ,AB =AD ,∠CBD =60°,BD =2BC =4,点E 在CD 上,DE =2EC .(1)求证:AC ⊥BE ;(2)若二面角E —BA —D 的余弦值为155,求三棱锥A —BCD 的体积.(1)证明 取BD 的中点O ,连接AO ,CO ,EO .因为AB =AD ,BO =OD ,所以AO ⊥BD ,又平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AO ⊂平面ABD ,所以AO ⊥平面BCD .又BE ⊂平面BCD ,所以AO ⊥BE .在△BCD 中,BD =2BC ,DE =2EC , 所以BD BC =DE EC=2, 由角平分线定理,得∠CBE =∠DBE .又BC =BO =2,所以BE ⊥CO ,又因为AO ∩CO =O ,AO ⊂平面ACO ,CO ⊂平面ACO ,所以BE ⊥平面ACO ,又AC ⊂平面ACO ,所以AC ⊥BE .(2)解 在△BCD 中,BD =2BC =4,∠CBD =60°,由余弦定理,得CD =23,所以BC 2+CD 2=BD 2,即∠BCD =90°,所以∠EBD =∠EDB =30°,BE =DE ,所以EO ⊥BD ,结合(1)知,OE ,OD ,OA 两两垂直,以O 为原点,分别以OE →,OD →,OA →的方向为x 轴,y 轴,z轴的正方向建立空间直角坐标系Oxyz (如图),设AO =t (t >0),则A (0,0,t ),B (0,-2,0),E ⎝ ⎛⎭⎪⎫233,0,0, 所以BA →=(0,2,t ),BE →=⎝ ⎛⎭⎪⎫233,2,0, 设n =(x ,y ,z )是平面ABE 的一个法向量,则⎩⎪⎨⎪⎧ n ·BA →=0,n ·BE →=0,即⎩⎪⎨⎪⎧ 2y +tz =0,233x +2y =0,整理,得⎩⎪⎨⎪⎧ x =-3y ,z =-2t y , 令y =-1,得n =⎝ ⎛⎭⎪⎫3,-1,2t . 因为OE ⊥平面ABD ,所以m =(1,0,0)是平面ABD 的一个法向量.又因为二面角E —BA —D 的余弦值为155, 所以|cos 〈m ,n 〉|=33+1+4t 2=155, 解得t =2或t =-2(舍去).又AO ⊥平面BCD ,所以AO 是三棱锥A —BCD 的高,故V A —BCD =13·AO ·S △BCD =13×2×12×2×23=433. 3.如图,在四棱锥P —ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD=π2,PA =AD =2,AB =BC =1. (1)求平面PAB 与平面PCD 所成锐二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为 B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧ x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD→||m |=33,所以平面PAB 与平面PCD 所成锐二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1), 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255. 4.(2017届锦州质检)如图,在四棱锥P —ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD = 3.(1)求证:平面PQB ⊥平面PAD ;(2)若二面角M —BQ —C 的大小为30°,设PM =tMC ,试确定t 的值. (1)证明 ∵AD ∥BC ,BC =12AD ,Q 为AD 的中点, ∴QD ∥BC 且QD =BC ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ .∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD .又∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,BQ ⊂平面ABCD ,∴BQ ⊥平面PAD .∵BQ ⊂平面PQB ,∴平面PQB ⊥平面PAD .(2)解 ∵PA =PD ,Q 为AD 的中点,∴PQ ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD,PQ ⊂平面PAD ,∴PQ ⊥平面ABCD ,∴PQ ,QA ,QB 两两垂直,如图,以Q 为原点建立空间直角坐标系,则平面BQC 的法向量为n =(0,0,1),Q (0,0,0),P (0,0,3),B (0,3,0),C (-1,3,0),设M (x ,y ,z ),则PM →=(x ,y ,z -3),MC →=(-1-x ,3-y ,-z ),∵PM →=tMC →,∴⎩⎨⎧ x =t (-1-x ),y =t (3-y ),z -3=t (-z ),∴⎩⎪⎨⎪⎧ x =-t1+t ,y =3t1+t ,z =31+t ,在平面MBQ 中,QB →=(0,3,0),QM →=⎝ ⎛⎭⎪⎫-t 1+t ,3t 1+t ,31+t .∴平面MBQ 的法向量为m =(3,0,t ).∵二面角M —BQ —C 为30°,∴cos 30°=n·m|n||m |=t3+0+t 2=32,∴t =3.5.(2017届北京市朝阳区模拟)如图1,在Rt△ABC 中,∠C =90°,AC =4,BC =2,D ,E 分别为边AC ,AB 的中点,点F ,G 分别为线段CD ,BE 的中点.将△ADE 沿DE 折起到△A 1DE 的位置,使∠A 1DC =60°.点Q 为线段A 1B 上的一点,如图2.(1)求证:A 1F ⊥BE ; (2)线段A 1B 上是否存在点Q ,使得FQ ∥平面A 1DE ?若存在,求出A 1Q 的长,若不存在,请说明理由;(3)当A 1Q →=34A 1B →时,求直线GQ 与平面A 1DE 所成角的大小. (1)证明 因为A 1D =DC ,∠A 1DC =60°,所以△A 1DC 为等边三角形.又因为点F 为线段CD 的中点,所以A 1F ⊥DC .由题可知ED ⊥A 1D ,ED ⊥DC ,A 1D ∩DC =D ,A 1D ,DC ⊂平面A 1DC ,所以ED ⊥平面A 1DC .因为A 1F ⊂平面A 1DC ,所以ED ⊥A 1F .又ED ∩DC =D ,ED ,DC ⊂平面BCDE ,所以A 1F ⊥平面BCDE .所以A 1F ⊥BE .(2)解 由(1)知,A 1F ⊥平面BCDE ,FG ⊥DC ,如图,建立空间直角坐标系,则F (0,0,0),D (0,-1,0),C (0,1,0),E (1,-1,0),A 1(0,0,3),B (2,1,0).设平面A 1DE 的一个法向量为n =(x ,y ,z ),A 1D →=(0,-1,-3),DE →=(1,0,0),所以⎩⎪⎨⎪⎧ n ·A 1D →=0,n ·DE →=0, 即⎩⎨⎧ y +3z =0,x =0.令z =1,则y =-3,所以n =(0,-3,1).假设在线段A 1B 上存在点Q ,使得FQ ∥平面A 1DE .设A 1Q →=λA 1B →,λ∈(0,1).又A 1B →=(2,1,-3),所以A 1Q →=(2λ,λ,-3λ).所以Q (2λ,λ,3-3λ).则FQ →=(2λ,λ,3-3λ). 所以FQ →·n =-3λ+3-3λ=0,解得λ=12.所以在线段A 1B 上存在中点Q ,使FQ ∥平面A 1DE ,且A 1Q = 2.(3)解 因为A 1Q →=34A 1B →,又A 1B →=(2,1,-3),所以A 1Q →=⎝ ⎛⎭⎪⎫32,34,-334.所以Q ⎝ ⎛⎭⎪⎫32,34,34.又因为G ⎝ ⎛⎭⎪⎫32,0,0,所以GQ →=⎝ ⎛⎭⎪⎫0,34,34.因为n =(0,-3,1),设直线GQ 与平面A 1DE 所成的角为θ, 则sin θ=|GQ →·n ||GQ →||n |=⎪⎪⎪⎪⎪⎪0-334+342×234=12.所以直线GQ 与平面A 1DE 所成的角为30°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.数 列
1.(2017·原创押题预测卷)已知S n =na 1+(n -1)a 2+…+2a n -1+a n ,n ∈N *. (1)若{a n }是等差数列,且S 1=5,S 2=18,求a n ; (2)若{a n }是等比数列,且S 1=3,S 2=15,求S n .
解 (1)设{a n }的公差为d ,则S 1=a 1=5,S 2=2a 1+a 2=10+a 2=18, 所以a 2=8,d =a 2-a 1=3,a n =5+3(n -1)=3n +2.
(2)设{a n }的公比为q ,则S 1=a 1=3,S 2=2a 1+a 2=6+a 2=15, 所以a 2=9,q =a 2
a 1
=3,a n =3×3n -1=3n ,
所以S n =n ×3+(n -1)×32+…+2×3n -1+3n , ① 3S n =n ×32+(n -1)×33+…+2×3n +3n +1,
②
②-①,得2S n =-3n +(32+33+…+3n )+3n +1
=-3n +32(1-3n -1)1-3+3n +1=-3n -92+3n +12+3n +1=3n +2-6n -92,
所以S n =3n +2-6n -9
4
.
2.(2017届黑龙江虎林一中月考)已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 3=9.
(1)求数列{a n }的通项公式;
(2)设等比数列{b n }的前n 项和为T n ,若q>0且b 3=a 5,T 3=13,求T n ; (3)设c n =
1
a n a n +1
,求数列{c n }的前n 项和S n . 解
(1)⎩
⎨⎧
a 3
=a 1
+2d =5,S 3
=3a 1
+3×2
2d =9,
解得⎩⎨
⎧
a 1=1,
d =2,
所以a n =a 1+(n -1)d =2n -1.
(2)由题意可知,b 3=a 5=9,T 3=13,所以公比q =3, 从而b 1=1,
所以T n =b 1(1-q n )1-q =1×(1-3n )1-3=12
(3n
-1).
(3)由(1)知,a n =2n -1. 所以c n =
1a n a n +1=1(2n -1)(2n +1)=12⎝
⎛⎭
⎪⎫12n -1-12n +1, 所以S n =c 1+c 2+…+c n
=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1
2n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.
3.(2017·广东七校联考)设数列{a n }的前n 项之积为T n ,且log 2T n =n (n -1)
2
,n ∈N *. (1)求数列{a n }的通项公式;
(2)设b n =λa n -1(n ∈N *),数列{b n }的前n 项之和为S n .若对任意的n ∈N *,总有S n
+1
>S n ,求实数λ的取值范围.
解 (1)由log 2T n =n (n -1)2
,n ∈N *
,得T n =(1)
22n n -,
所以T n -1=(1)(2)
2
2
n n --(n ∈N *,n ≥2),
所以a n =T n T n -1
=(1)(1)(1)(2)
2
22
(1)(2)2
222n n n n n n n n -------==2n -1,n ∈N *,n ≥2.
又a 1=T 1=20=1,所以a n =2
n -1
,n ∈N *
.
(2)由b n =λa n -1=λ2n -1-1, 得S n =λ·1-2n 1-2-n =()2n
-1λ-n ,
所以S n +1>S n ⇔()2
n +1
-1λ-()n +1>()2n -1λ-n ⇔2n λ>1⇔λ>1
2
n ,
因为对任意的n ∈N *,12n ≤1
2,
故所求的λ的取值范围是⎝ ⎛⎭
⎪⎫
12,+∞.
4.(2017·湖北黄冈质检)已知数列{a n }的前n 项和为S n ,向量a =(S n ,n),b =(9n -7,2),且a 与b 共线. (1)求数列{}a n 的通项公式;
(2)对任意m ∈N *,将数列{a n }中落入区间(9m ,92m )内的项的个数记为b m ,求数列{b m }的前m 项和T m .
解 (1)a 与b 共线,S n =n (9n -7)2=92n 2-7
2
n ,a 1=1,a n =S n -S n -1=9n -8,n ≥2, 所以a n =9n -8,n ∈N *.
(2)对m ∈N *,若9m <a n <92m , 则9m +8<9n <92m +8. 因此9m -1+1≤n ≤92m -1. 故得b m =92m -1-9m -1. 于是T m =b 1+b 2+…+b m
=(9+93+…+92m -1)-(1+9+…+9m -1) =9(1-81m )1-81-1-9m 1-9=9×92m +1-10×9m
80
.
5.(2017·原创押题预测卷)已知数列{a n }的通项公式为a n =n ·3n
3n -1(n ≥1,n ∈N *).
(1)求a 1,a 2,a 3的值;
(2)求证:对任意的自然数n ∈N *,不等式a 1·a 2·…·a n <2·n !成立. (1)解 将n =1,2,3代入可得a 1=32,a 2=94,a 3=8126.
(2)证明 由a n =n ·3n 3n -1=n
1-1
3n
(n ≥1,n ∈N *)可得
a 1·a 2·…·a n =
n !
⎝
⎛
⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪
⎫1-13n ,因此欲证明不等式a 1·a 2·…·a n <2·n !成立,
只需要证明对任意非零自然数n ,不等式⎝ ⎛
⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13n >12恒成立即可,
显然左端每个因式都为正数,因为1-⎝ ⎛⎭⎪⎫13+1
3
2+…+13n =1-13⎝ ⎛
⎭⎪⎫1-13n 1-13=1-12⎝ ⎛⎭⎪
⎫1-13n >1-12=12
.
故只需证明对每个非零自然数,不等式⎝
⎛
⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-132…⎝ ⎛⎭⎪⎫1-13n ≥1-。