重庆万州第三中学2014-2015学年八年级上学期期中考试数学试题(含答案)

合集下载

重庆市上学期初中八年级期中联考数学试卷

重庆市上学期初中八年级期中联考数学试卷

重庆市上学期初中八年级期中联考数学试卷(全卷共五个大题,满分150分,时间120分钟) 注意事项:1. 试题的答案书写在答题卡上,不得在试卷上直接作答.2. 作答前认真阅读答题卡上的注意事项.3. 作图,请一律用黑色签字笔完成.4. 考试结束,由监考人员将答题卡收回.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代 号为久B 、C 、0的四个答案,其中只有一个是正确的.请将答题卡上对应题目的正确答 案标号涂黑.2. 7的平方根是(3. 下列说法正确的是4. 下列计算正确的是5. 估算J 劳一3介于哪两个整数之间(6.下列计算正确的是( )A. ( — 2.Y 3y)- 6-Y 9yB. — 3-Y * • x- —C.A. 3a • (-2^) =6aB ・ a (a~ —1) -a —1C ・(廿b) (a —2b) -a — ab —2UD. —2a • (a") z-~2aJx + 38.若代数式x_2在实数范用内有意义,则x 的取值范围为()7.下列计算正确的是()A. x 〈一 3B ・ x^-3C. x>21. 在实数一2, 2、0, 一1中,最小的数是(A. —2B.C. 0D. -1 A.^7B. 49C. ±49D. ±7?B. 0的倒数是0C. 4的平方根是2D. 一3的相反数是3A. 一丨一炯=住5丽=±7C. ^8=2D. ±^4=±2A. 1-2B. 2-3C. 3-4D. 4-5(—-Y° )二一文 D.D. x2-3,且 xH29.若有理数①b 满足£+歹二5, (a+b )匚9,则一4訪的值为()11.已知实数y,血满足心耗+3v+y+也=0,且y 为负数,则”的取值范用是() A. m>6B ・ zz?<6C ・ m> —6C ・ m<—612.如图1,已知长方形的纸片的长为決4,宽为卅2,现从长方形纸片剪下一个边长为m 的 正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2, 则另一边长是()二、填空题(本大题6个小题,每小题4分,共24分).请将每小题的答案直接填在答题15•在如图2所示的日历中,任意划出一竖列上相邻的三个数,设中间的一个数为a,则这三个数中最小的与最大的积为 __________ (用含a 的代数式表示)・日 一 二 三 四 五六1 2 3 4 0 678 910 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30图216.已知一个三角形的而积为8f#—4斤几一条边长为8A 2,则这条边上的髙为 _______________ 17•图3是一个长方形,请你仔细观察图形,写岀图3所表示的整式的乘法关系式为B. -2C.8D. -8若用含罕b 的式子表示,则下列表示正确的是(B. 3abC. 0. labD. 0. la 3bA. 3/o+4B. 6/ZT +8 A. 0.m+4m +m2C. 12 才D. zzf+3卡中对应的横线上.14.多项式lQ/n — 25/nn 的公因式ba b18. 规左:用符号[x ]表示一个不大于实数y 的最大整数,例如:[3. 69]=3,[萌+ 1]=2,[一2.56] = —3,[—迈]=一2.按这个规定,[一血一 1]= _____ •三、解答题(本大题2个小题,每小题8分,共16分〉解答时每小题必须给出必要的演 算过程或推理步骤.请将解答书写在答题卡中对应的位置上.19. 计算:20. 求下列各式中的尤四. 解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演 算过程或推理步骤.请将解答书写在答题卡中对应的位置上.21・因式分解:⑴一3如~+12加一12加: (2) n (zz?—2) +4 (2—ni):22. 计算题(1) (3/F ・(4〃')2 一(6")2 (2) (2x + y)2-(2x + 3y)(2x-3y)23. 先化简再求值:(a + 2”)(2a — 〃)— (“ + 2b)2 — (" — 2/?X" + 2b),H'l 1ci = — — , b = —3 • k_24. 沙坪坝三峡广场原有一块长为(4d + 2Z?)米,宽为(3a —小米的长方形地块,现在政府⑵(屈2)⑼6(75+2严+3俪+巧⑴ 25(-Y +1)3=16:⑵±6-1尸=1・(1)(77)2■网+对广场进行改造,计划将如图四周阴影部分进行绿化,中间将保留边长为(a + b)米的正方形雕像,则绿化的而积是多少平方米?并求出当d=20Q=10时的绿化而积.五. 解答题:(本大题2个小题,第25题10分,第26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.请将解答书写在答题卡中对应的位置上.25•阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2^2=(1+0)1善于思考的小明进行了以下探索:设a+b 二(m+n )2(其中a、b、m、n 均为整数),则有a+b=m::+2n::+2mn y/2 . .\a=m=+2n:, b二2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b x/5 = (m+n、,$)',用含m、n的式子分别表示a、b,得:a= ____________ , b= ___________ :(2)利用探索的结论,找一组正整数a、b、m、n (a、b都不超过20)填空:_____ +—\厅=(_________ + _____ V7)=;(3)若a+6y/3=(m^ny/3)2f且a、m、n均为正整数,求a的值?26•如图①所示是一个长为2加宽为2刀的长方形. 沿图中虚线用剪刀均分成四个小长方形,图②是边长为m_n的正方形.m-n2n图②(1)请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画岀示意图(要求连接处既没有重叠,也没有空隙):(2)请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积;(3)请直接写出(加+刃‘,伽一以尸,M这三个代数式之间的等疑关系:⑷根据⑶中的等量关系,解决如下问题:若&+Z>=6,必=4,求(a-b)2的值.八年级数学试题参考答案题号 1 2 3 4 LO6 7 8 9 10 11 12 答案ADDDBDCDDAAA1620. 解:(l)25(jr+l)3=16, (JT +-1)3=25,16 4•••x+l=±2" *+l = ±5,• 9 1• • •出=—5, x :=—5:1 3(2)27(x-l)3=b (x-l)3=27, Ax-1=27, % —1 = 3, :.x=4.四、解答题21. 解:(1)原式=—3zn(a —2)1(2)原式=Go — 2)(刀+2)(刀一2); 22. (1)解:原式二不涉口矽"6出护二必加(2)解:原式二 4x 2+ 4xy+/ -0? - 9^2) = 4x 24-4^y +/ - 4x 2+ 9y 2 = 4^-1-lOj ;2(»2E)(2—3)-@ + 2硏_(—2&)@ + 2切-2a" — abr^ab —2b" — (a 1 +4b~ +4ab)—(『—4b~) =2a" — abr^ab —2b" ——4b" —Aab — a" +4b~二—ab —2 当…3时25:15.才一49 ; 16. 2 ~y ; 17. (a+b) (a+2Z>) -a+3ab+2l) : 18. —5・ 4. IX1原式二一 (-3 )x(-3)-2X(-3) 2 =-l-2X9=-l-18=-1924.解:由题意得:绿化的而积为:(也+ 2叭(%-可十+研=12盼一4必+ 6必一力2 _(&2 +2必+沪)=12dt $ + 2ab— 2护—dt $ —2ab — f当a = 20』=100寸原式=11x202-3x102= 4400-300= 4100五.解答题(2) 8, 2, 1, 1 (答案不唯一)(3) 12 或28. 26•解:(1)如图所示::0:n w(2)方法1: (22?—n)' +4/22/2 :方法2: Gn+力)■:(3)(zn+n):=(227—/?):+4/zzn:(4)(a-b)2= (a+6)2-4aZ>=6:-4X4 = 36-16 = 20.25. ( 1〉ni2 +5n2,2mn。

重庆万州第三中学14-15学年八年级上期中试题--历史

重庆万州第三中学14-15学年八年级上期中试题--历史

重庆万州第三中学2014-2015学年八年级历史上学期期中试题(政史合堂,90分钟。

历史总分50分)一、单项选择题(每题1分,共15分。

请把每题正确答案的字母序号填写在下表相应的空内)1.下图是某历史兴趣小组自制的一把近代列强侵华大事年代尺示意图,“?”(问号)处没有完成。

请根据图示帮他们完成正确选项( )A.中法战争B.鸦片战争C.抗日战争D.解放战争2. 2005年,有关部门在圆明园湖底铺设防水渗漏薄膜,由于这一做法可能对圆明园的生态环境有影响,从而在一片反对声中下马,这一事件之所以引起人们普遍关注,主要是因为()A.这项工程投资太大B.圆明园承载着中国近代沧桑历史的回忆C.防渗漏薄膜质量不过关D. 这项工程影响有没有的旅游收入3. 最早允许外国在中国开办工厂的条约是A.《南京条约》B.《北京条约》C.《天津条约》D.《马关条约》4.“这中国,哪一点,我还有份?这朝廷,原是个名存实亡!替洋人,做一个,守土官长。

”材料主要揭露了A.《南京条约》的危害B.中俄《北京条约》的危害C.《马关条约》的危害D.《辛丑条约》的危害5. 19世纪60-90年代,洋务派掀起了向西方学习的洋务运动,其活动不包括...()A. 创办近代军事工业B. 学习西方政治制度C. 创办一批新式学堂D. 筹建中国近代海军6.戊戌变法的历史作用表现在()A.推翻了封建君主专制制度B.促进了思想解放,在社会上起了思想启蒙作用C.创建了近代第一批机器工业员D.挽救了民族危亡,使中国走上了资本主义道路7. 辛亥革命和国民革命失败的最根本的表现是()A. 没有建立起真正的资产阶级共和国B. 没有完成反帝反封建的民主革命任务C. 被独裁者篡夺了革命果实D. 导致革命转入低潮8.胡适说:“北大是因为三只兔子而成名的,一是老兔子蔡元培,二是中兔子陈独秀,三是小兔子胡适本人(三人年有长序,但都属兔)。

”“三只兔子”因高举哪两面大旗而闻名?A.自强与求富B.维新与变法C.自由与平等D.民主与科学9. 五四运动中,最能体现运动性质的口号是()A. “外争国权,内惩国贼”B. “还我山东”C. “拒绝和约签字”D. “废除二十一条”10.将五四运动作为中国新民主主义革命开端的最主要的依据是()A.斗争的性质是反帝反封建B.是当时世界无产阶级革命的一部分C.先进知识分子起了领导作用D.中国无产阶级登上了历史舞台11. 北伐战争取得的最主要的成果是()A. 完成了全国的统一B. 消灭了吴佩孚,孙传芳的主力C. 基本上推翻了北洋军阀的统治D. 完成了反帝反封建的任务12. 我党从南昌起义秋收起义中得出的最突出的教训是必须()A. 建立人民政权B. 把工作重点从城市转移到农村C. 建立一支新型的人民军队D. 武装反抗国民党的反动统治13. “星星之火,可以燎原”,这里的“星星之火”指的是哪一革命根据地()A.井冈山根据地B.陕甘宁根据地C.左右江根据地D.中央根据地14.以下哪次会议是中国共产党历史上生死攸关的转折点()A.八七会议B.七届二中全会C.遵义会议D.十一届三中全会15.某旅游团要组织一次重走长征路的“红色旅游”,下列设计的路线正确的是(A. 瑞金赤水河遵义泸定桥 B. 赤水河瑞金遵义泸定桥C 遵义瑞金赤水河泸定桥 D. 瑞金遵义赤水河泸定桥二、填表与填图:(本大题共3小题,共11分)16.近代中国随着列强侵略的不断加深,中国社会一步步沦为半殖民地半封建社会。

【精品】2015年重庆市万州二中八年级上学期期中数学试卷带解析答案

【精品】2015年重庆市万州二中八年级上学期期中数学试卷带解析答案

2014-2015学年重庆市万州二中八年级(上)期中数学试卷一、精心选一选,把唯一正确的答案填入括号内!(每题4分,共48分)1.(4.00分)下列运算中正确的是()A.a2•a3=a6 B.(a2)3=a5C.a6÷a2=a3D.(a2•b)2=a4b22.(4.00分)下列为(﹣3)2的算术平方根的是()A.3 B.9 C.﹣3 D.±33.(4.00分)已知a m=3,a n=5,则a m+n=()A.243 B.125 C.15 D.84.(4.00分)已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或255.(4.00分)下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)6.(4.00分)等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.647.(4.00分)所给的数据:、,π,0,0.585588558885588885…(相邻两个5之间的8的个数逐次增加1个),其中无理数的个数有()个.A.2个 B.3个 C.4个 D.5个8.(4.00分)若△ABC的三边a、b、c满足条件(a﹣b)(a2+b2﹣c2)=0,则△ABC为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形9.(4.00分)马大哈同学完成了如下的计算题:①x3•x2=2x3,②x4•x=x4,③(x5)3=x15,④(3x6)2=6x12,其中结果正确的是()A.①B.②④C.③D.④10.(4.00分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(a+b)(﹣a﹣b)C.(﹣x﹣b)(x﹣b)D.(b+m)(m﹣b)11.(4.00分)下列结论错误的是()A.三个角度之比为1:2:3的三角形是直角三角形B.三条边长之比为::的三角形是直角三角形C.三条边长之比为1::2的三角形是直角三角形D.三个之角度比为1:1:2的三角形是直角三角形12.(4.00分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P 是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①△PFA ≌△PEB,②EF=AP,③BE2+CF2=EF2,④S四边形AEPF=S△ABC,⑤PF2﹣AF2=AE2﹣PE2,当∠EPF在▵ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确有()A.2个 B.3个 C.4个 D.5个二、认真填一填.(每空4分,共24分)13.(4.00分)16的平方根是.14.(4.00分)等腰三角形的一内角为80°,则一腰上的高与底边的夹角为.15.(4.00分)若+(y﹣3)2=0,则x2﹣xy=.16.(4.00分)如图,∠ABC=∠DCB,请补充一个条件:,使△ABC≌△DCB.17.(4.00分)如图,DE是△ABC中AC边的垂直平分线,若BC=10cm,AB=8cm,则△ABD的周长为.18.(4.00分)如图,在万三中的“创造节”上,数学兴趣小组长小明想要知道旗杆的直径.苦于身边没有直尺和测量工具,只有一根已知长为30厘米的细线,他用这个细线刚好将旗杆缠了三圈,每缠一圈,细线上升6厘米,请你帮助小明算出旗杆的直径是.三、细心算一算.解答应写出必要的计算过程或文字说明.(共24分)19.(16.00分)计算:(1)﹣+2(2)(﹣a)2•a+a4÷(﹣a)(3)(3a2b)2+(8a6b3)÷(﹣2a2b)(4)(x+2y﹣z)(x﹣2y+z)20.(8.00分)因式分解:(1)﹣5a3b3+20a2b2﹣20ab(2)2a2﹣8b2.21.先化简,再求值:a(2﹣a)﹣(a+1)(a﹣1)+(a﹣1)2,其中a=.22.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的平方根和立方根.23.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.如图,在笔直的某公路上有A、B两点相距50km,C、D为两村庄,DA⊥AB 于点A,CB⊥AB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?五、解答题(共22分)25.(12.00分)细心观察下列各式,然后解答下面的问题:()2+1=2 S1=()2+1=3 S2=()2+1=4 S3=…(1)请用含有n(n是正整数)的等式表示上述变化规律.(2)求出S12+S22+S32+…+S102的值.26.(12.00分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2014-2015学年重庆市万州二中八年级(上)期中数学试卷参考答案与试题解析一、精心选一选,把唯一正确的答案填入括号内!(每题4分,共48分)1.(4.00分)下列运算中正确的是()A.a2•a3=a6 B.(a2)3=a5C.a6÷a2=a3D.(a2•b)2=a4b2【解答】解:A、a2•a3=a5,计算错误;B、(a2)3=a6,计算错误;C、a6÷a2=a4,计算错误;D、(a2•b)2=a4b2,计算正确.故选:D.2.(4.00分)下列为(﹣3)2的算术平方根的是()A.3 B.9 C.﹣3 D.±3【解答】解:∵(﹣3)2=9,∴(﹣3)2的算术平方根是3.故选:A.3.(4.00分)已知a m=3,a n=5,则a m+n=()A.243 B.125 C.15 D.8【解答】解:a m+n=a m×a n=15.故选:C.4.(4.00分)已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25【解答】解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选:D.5.(4.00分)下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+)D.2x2﹣8y2=2(x+2y)(x﹣2y)【解答】解:A、没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、没把一个多项式转化成几个整式积的形式,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.6.(4.00分)等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.64【解答】解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选:B.7.(4.00分)所给的数据:、,π,0,0.585588558885588885…(相邻两个5之间的8的个数逐次增加1个),其中无理数的个数有()个.A.2个 B.3个 C.4个 D.5个【解答】解:无理数有:π,0.585588558885588885…(相邻两个5之间的8的个数逐次增加1个)共有2个.故选:A.8.(4.00分)若△ABC的三边a、b、c满足条件(a﹣b)(a2+b2﹣c2)=0,则△ABC为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形【解答】解:∵(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2.当只有a=b成立时,是等腰三角形.当只有第二个条件成立时:是直角三角形.当两个条件同时成立时:是等腰直角三角形.故选:C.9.(4.00分)马大哈同学完成了如下的计算题:①x3•x2=2x3,②x4•x=x4,③(x5)3=x15,④(3x6)2=6x12,其中结果正确的是()A.①B.②④C.③D.④【解答】解:①x3•x2=x2+3≠2x3,②x4•x=x4+1=x5≠x4,③(x5)3=x15,④(3x6)2=9x12≠6x12,正确的有③.故选:C.10.(4.00分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(a+b)(﹣a﹣b)C.(﹣x﹣b)(x﹣b)D.(b+m)(m﹣b)【解答】解:A、C、D符合平方差公式的特点,故能运用平方差公式进行运算;B、两项都互为相反数,故不能运用平方差公式进行运算.故选:B.11.(4.00分)下列结论错误的是()A.三个角度之比为1:2:3的三角形是直角三角形B.三条边长之比为::的三角形是直角三角形C.三条边长之比为1::2的三角形是直角三角形D.三个之角度比为1:1:2的三角形是直角三角形【解答】解:A、因为根据三角形内角和定理可求出三个角分别为30°,60°,90°,所以该结论正确;B、因为其三边不符合勾股定理的逆定理,所以该结论错误;C、因为其三边符合勾股定理的逆定理,所以该结论正确;D、因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以该结论正确.故选:B.12.(4.00分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P 是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①△PFA ≌△PEB,②EF=AP,③BE2+CF2=EF2,④S四边形AEPF=S△ABC,⑤PF2﹣AF2=AE2﹣PE2,当∠EPF在▵ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确有()A.2个 B.3个 C.4个 D.5个【解答】解:∵P为BC中点,∴AP=PB,AP⊥BC,∵∠EPF=90°,∴∠FPA+∠APE=∠APE+∠BPE,∴∠FPA=∠BPE,在△PFA和△PEB中,,∴△PFA≌△PEB(ASA),∴①正确;当F旋转到点A时,EF=AB>AP,∴②不正确;∵△PFA≌△PEB,∴AF=BE,且AB=AC,∴AE=CF,在Rt△AEF中,AE2+AF2=EF2,∴BE2+CF2=EF2,∴③正确;∵△PFA≌△PEB,=S△PEB,∴S△PFA∴S=S△ABP=S△ABC,四边形AEPF∴④正确;又在Rt△PEF和Rt△AEF中,EF2=PE2+PF2=AE2+AF2,∴PF2﹣AF2=AE2﹣PE2,∴⑤正确;综上可知正确的为①③④⑤共四个,故选:C.二、认真填一填.(每空4分,共24分)13.(4.00分)16的平方根是±4.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.14.(4.00分)等腰三角形的一内角为80°,则一腰上的高与底边的夹角为10°或40°.【解答】解:①如图一,当底角为80°时,∵∠BDC=90°,∠C=80°,∴∠DBC=90°﹣80°=10°;②如图二,当顶角为80°时,∵∠A=80°,∴∠C=∠ABC==50°,在直角△DBC中,∵∠BDC=90°,∴∠DBC=90°﹣50°=40°.故答案为:10°或40°.15.(4.00分)若+(y﹣3)2=0,则x2﹣xy=10.【解答】解:∵+(y﹣3)2=0,∴,解得:,∴x2﹣xy=(﹣2)2﹣(﹣2)×3=4﹣(﹣6)=10.故答案为10.16.(4.00分)如图,∠ABC=∠DCB,请补充一个条件:AB=DC或者∠A=∠D,使△ABC≌△DCB.【解答】解:∵∠ABC=∠DCB,BC=BC,∴当AB=DC(SAS)或∠A=∠D(ASA)或∠BCA=∠DBC(AAS)时,∴△ABC≌△DCB.故填AB=DC或∠A=∠D.17.(4.00分)如图,DE是△ABC中AC边的垂直平分线,若BC=10cm,AB=8cm,则△ABD的周长为18cm.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AD=CD,∴AD+BD=CD+BD=BC=10cm,∴△ABD的周长=AB+(AD+BD)=AB+BC=10+8=18cm.故答案为:18cm.18.(4.00分)如图,在万三中的“创造节”上,数学兴趣小组长小明想要知道旗杆的直径.苦于身边没有直尺和测量工具,只有一根已知长为30厘米的细线,他用这个细线刚好将旗杆缠了三圈,每缠一圈,细线上升6厘米,请你帮助小明算出旗杆的直径是厘米.【解答】解:如图所示,∵细线长为30厘米,∴BC==10厘米.∵BD=6厘米,∴CD===8(厘米),∴2πR=8,解得2R=(厘米).故答案为:厘米.三、细心算一算.解答应写出必要的计算过程或文字说明.(共24分)19.(16.00分)计算:(1)﹣+2(2)(﹣a)2•a+a4÷(﹣a)(3)(3a2b)2+(8a6b3)÷(﹣2a2b)(4)(x+2y﹣z)(x﹣2y+z)【解答】解:(1)原式=5﹣(﹣2)+2×=5+2+1=8;(2)原式=a2•a+(﹣a3)=a3﹣a3=0;(3)原式=9a4b2+(﹣4a4b2)=5a4b2;(4)原式=[x+(2y﹣z)][x﹣(2y﹣z)]=x2﹣4y2﹣z2+4yz.20.(8.00分)因式分解:(1)﹣5a3b3+20a2b2﹣20ab(2)2a2﹣8b2.【解答】解:(1)原式=﹣5ab(ab﹣2)2;(2)原式=2(a+2b)(a﹣2b).21.先化简,再求值:a(2﹣a)﹣(a+1)(a﹣1)+(a﹣1)2,其中a=.【解答】解:原式=2a﹣a2﹣(a2﹣1)+(a2﹣2a+1)=2a﹣a2﹣a2+1+a2﹣2a+1=2﹣a2,当a=时,原式=2﹣()2=﹣1.22.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的平方根和立方根.【解答】解:由题意得2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,则a+2b=9,则9的平方根为3或﹣3;9的立方根为.23.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.24.如图,在笔直的某公路上有A、B两点相距50km,C、D为两村庄,DA⊥AB 于点A,CB⊥AB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【解答】解:设AE=x,则BE=50﹣x,在直角△ADE中,DE2=302+x2,在直角△CBE中,CE2=202+(50﹣x)2,解得x=20km,即AE=20km.答:收购站E应建在离A点20km的位置.五、解答题(共22分)25.(12.00分)细心观察下列各式,然后解答下面的问题:()2+1=2 S1=()2+1=3 S2=()2+1=4 S3=…(1)请用含有n(n是正整数)的等式表示上述变化规律.(2)求出S12+S22+S32+…+S102的值.【解答】解:(1)=n+1,S;(2)S+S+S+…+S=…+=.26.(12.00分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

重庆万州第三中学2014-2015学年八年级上学期期中考试物理试题

重庆万州第三中学2014-2015学年八年级上学期期中考试物理试题

2014年秋季初二年级期中考试物理试题 考试时间:90分钟 总分100分 选择题(每小题3分,共36分,将答案填在对应的题号内)1、在站台前有甲.乙两列原来静止的火车,在甲车开动后,乙车的乘客觉得自己向相反方向运动,这是因为他所选择的参照物是 A.甲车 B.乙车 C.船 D.树木2、 "纳米"是一种长度单位,1nm=10-9m ,纳米技术是以0.1-100nm 这样的尺度为研究对象的前沿科学,目前我国在对纳米技术的研究方面已经跻身世界前列,1.76×109nm 可能 A .一个人的身高 B .物理课本的长度 C .一座山的高度 D .一个篮球场的长度3、甲、乙两车通过的路程之比为5:2,运动的时间之比为2:1,则甲、乙两车的速度之比是 A.5:1 B.3:5 C.7:3 D.5:4 4、物体沿直线运动,每10分钟通过的路程是150m ,则物体 A. 一定是匀速直线运动 B. 一定是变速直线运动 C. 每10分钟的平均速度一定是0.25m/s D. 每秒钟的平均速度一定是0.25m/s 5、如右图,一束入射光线与水平面成70°角,要使反射光线沿水平方向射出,则平面镜与水平面的夹角是 A.55° B.35° C.70°或20° D.55°或35° 6、晚上,在桌面上铺一张白纸,把一小块平面镜平放在纸上,让手电筒的光正对着平面镜照射,如右图所示,则从侧面看去 A .镜子比较亮,它发生了镜面反射 B .镜子比较暗,它发生了镜面反射 C .白纸比较亮,它发生了镜面反射 D .白纸比较暗,它发生了漫反射7、今年5月23日,蓬莱阁附近海域上空出现了极为罕见的“海市蜃楼”奇观。

产生这一现象的原因是( )A .光沿直线传播B .景物经水面成像C .光经过密度不均匀的空气发生漫反射D .光经过密度不均匀的空气发生折射 。

八年级上期中数学试卷及答案解析

八年级上期中数学试卷及答案解析

2014-2015学年重庆市梁山中学八年级(上)期中数学试卷一、选择题(本大题12个小题,每题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.(4分)(2014秋•重庆校级期中)下列实数:,3.14,﹣,,,﹣0.1010010001,,无理数有()2.(4分)(2014秋•重庆校级期中)在下列各式中能因式分解的是()4.(4分)(2014秋•忠县校级期末)已知a=8131,b=2741,c=961,则a,b,c的大小关系是()26.(4分)(2007春•招远市期末)已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()7.(4分)(2012•西青区一模)已知a、b是实数,x=a2+b2+20,y=4(2b﹣a).则x、y的8.(4分)(2014秋•重庆校级期中)已知|b﹣4|+(a﹣1)2=0,则的平方根是()..10.(4分)(2014秋•重庆校级期中)已知(a+b)2=16,(a﹣b)2=4,则a2+b2与ab的值分别是(),11.(4分)(2012•和平区一模)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()12.(4分)(2014秋•重庆校级期中)将图1中的正方形剪开得到图2,图2中共有4个正方形;将图2中一个正方形剪开得到图3,图3中共有7个正方形;将图3中一个正方形剪开得到图4,图4中共有10个正方形;…;如此下去.则图中正方形的个数是2014个的是图()二、填空题:(本大题6个小题,每小题3分,共18分)请将每小题的答案直接填在对应的横线上.13.(3分)(2014•恩施州模拟)81的平方根是.14.(3分)(2014秋•鹿城区校级期末)计算:(0.5)2012×(﹣2)2013=.15.(3分)(2005•重庆)把4x2+1加上一个单项式,使其成为一个完全平方式.请你写出所有符合条件的单项式.16.(3分)(2008秋•监利县期末)某正数的平方根为和,则这个数是.17.(3分)(2014秋•重庆校级期中)已知x2﹣3x+1=0,则x﹣=.18.(3分)(2013•成都模拟)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)三.计算题(每小题10分,共20分)19.(10分)(2014秋•重庆校级期中)计算:(1)﹣+|﹣1|;(2)已知x、y是有理数,且|x﹣6|与(x﹣2y)2互为相反数,求的值;(3)(x+3)2﹣(x﹣1)(x﹣2).20.(10分)(2006•嘉兴)如图,已知∠1=∠2,∠C=∠D,求证:AC=BD.四.(共35分)21.(7分)(2014秋•重庆校级期中)先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x+2)2,其中x=3.22.(8分)(2014秋•重庆校级期中)因式分解.23.(10分)(2014•重庆)某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a 的最大值是多少?24.(10分)(2014秋•重庆校级期中)已知:如图,∠ABC=90°,DE⊥AC于点D,交BC 于点G,交AB的延长线于点E,且AE=AC.求证:(1)AB=AF;(2)BG=DG.五.(本大题3小题,(12+12+5分,共29分)25.(12分)(2014秋•重庆校级期中)(1)已知:a2﹣b2=(a﹣b)(a+b);a3﹣b3=(a﹣b)(a2+ab+b2);a4﹣b4=(a﹣b)(a3+a2b+ab2+b3);按此规律,则:①a5﹣b5=(a﹣b)();②若a﹣=2,你能根据上述规律求出代数式a3﹣的值吗?(2)观察下列各式:(x2﹣1)÷(x﹣1)=x+1(x3﹣1)÷(x﹣1)=x2+x+1(x4﹣1)÷(x﹣1)=x3+x2+x+1(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1…③能得到一般情况下(x n﹣1)÷(x﹣1)=④根据公式计算:1+2+22+23+…+262+263=.26.(12分)(2014秋•重庆校级期中)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,求证:DC=DF;(2)如图2,在(1)的条件下,过点F作FG∥BC,交AB于点G,则FG、DC、AD之间满足的数量关系式是;(不需要证明)(3)如图3,若∠ABC=135°,过点F作FG∥BC,交AB的延长线于点G,则FG、DC、AD之间满足什么样的数量关系,并加以证明.27.(5分)(2014秋•重庆校级期中)已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM 交BC于D,交BM于E,求证:∠AMB=∠DMC.2014-2015学年重庆市梁山中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题12个小题,每题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.(4分)(2014秋•重庆校级期中)下列实数:,3.14,﹣,,,﹣0.1010010001,,无理数有()=2,﹣实数:,,﹣,,,无理数有:,﹣2.(4分)(2014秋•重庆校级期中)在下列各式中能因式分解的是()4.(4分)(2014秋•忠县校级期末)已知a=8131,b=2741,c=961,则a,b,c的大小关系是()26.(4分)(2007春•招远市期末)已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()7.(4分)(2012•西青区一模)已知a、b是实数,x=a2+b2+20,y=4(2b﹣a).则x、y的大小关系是()8.(4分)(2014秋•重庆校级期中)已知|b﹣4|+(a﹣1)2=0,则的平方根是().再代入代数式求出所以,=,)=∴9.(4分)(2014秋•重庆校级期中)下列命题中的假命题是().10.(4分)(2014秋•重庆校级期中)已知(a+b)2=16,(a﹣b)2=4,则a2+b2与ab的值分别是(),11.(4分)(2012•和平区一模)已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()12.(4分)(2014秋•重庆校级期中)将图1中的正方形剪开得到图2,图2中共有4个正方形;将图2中一个正方形剪开得到图3,图3中共有7个正方形;将图3中一个正方形剪开得到图4,图4中共有10个正方形;…;如此下去.则图中正方形的个数是2014个的是图()二、填空题:(本大题6个小题,每小题3分,共18分)请将每小题的答案直接填在对应的横线上.13.(3分)(2014•恩施州模拟)81的平方根是±9.14.(3分)(2014秋•鹿城区校级期末)计算:(0.5)2012×(﹣2)2013=﹣2.15.(3分)(2005•重庆)把4x2+1加上一个单项式,使其成为一个完全平方式.请你写出所有符合条件的单项式±4x、4x4.16.(3分)(2008秋•监利县期末)某正数的平方根为和,则这个数是1.首先根据平方根的定义可以列出方程最后代入为解:依题意得:+∴﹣17.(3分)(2014秋•重庆校级期中)已知x2﹣3x+1=0,则x﹣=±.﹣=3)﹣﹣±18.(3分)(2013•成都模拟)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)三.计算题(每小题10分,共20分)19.(10分)(2014秋•重庆校级期中)计算:(1)﹣+|﹣1|;(2)已知x、y是有理数,且|x﹣6|与(x﹣2y)2互为相反数,求的值;(3)(x+3)2﹣(x﹣1)(x﹣2).2+1==720.(10分)(2006•嘉兴)如图,已知∠1=∠2,∠C=∠D,求证:AC=BD.证明:∵四.(共35分)21.(7分)(2014秋•重庆校级期中)先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x+2)2,其中x=3.22.(8分)(2014秋•重庆校级期中)因式分解.23.(10分)(2014•重庆)某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a 的最大值是多少?24.(10分)(2014秋•重庆校级期中)已知:如图,∠ABC=90°,DE⊥AC于点D,交BC 于点G,交AB的延长线于点E,且AE=AC.求证:(1)AB=AF;(2)BG=DG.中中五.(本大题3小题,(12+12+5分,共29分)25.(12分)(2014秋•重庆校级期中)(1)已知:a2﹣b2=(a﹣b)(a+b);a3﹣b3=(a﹣b)(a2+ab+b2);a4﹣b4=(a﹣b)(a3+a2b+ab2+b3);按此规律,则:①a5﹣b5=(a﹣b)(a4+a3b+a2b2+ab3+b4);②若a﹣=2,你能根据上述规律求出代数式a3﹣的值吗?(2)观察下列各式:(x2﹣1)÷(x﹣1)=x+1(x3﹣1)÷(x﹣1)=x2+x+1(x4﹣1)÷(x﹣1)=x3+x2+x+1(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1…③能得到一般情况下(x n﹣1)÷(x﹣1)=x n﹣1+x n﹣2+…+x+1④根据公式计算:1+2+22+23+…+262+263=264﹣1.和﹣﹣)+)))﹣26.(12分)(2014秋•重庆校级期中)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°,求证:DC=DF;(2)如图2,在(1)的条件下,过点F作FG∥BC,交AB于点G,则FG、DC、AD之间满足的数量关系式是FG=DC+AD;(不需要证明)(3)如图3,若∠ABC=135°,过点F作FG∥BC,交AB的延长线于点G,则FG、DC、AD之间满足什么样的数量关系,并加以证明.27.(5分)(2014秋•重庆校级期中)已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM 交BC于D,交BM于E,求证:∠AMB=∠DMC.。

2014-2015学年新人教版八年级上期中数学试卷及答案解析

2014-2015学年新人教版八年级上期中数学试卷及答案解析

2014-2015学年八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±87.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣38.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为__________.14.分解因式:ab2﹣4ab+4a=__________.15.若3x=4,9y=7,则3x﹣2y的值为__________.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=__________.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是__________.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为__________,图③中,∠AFB的度数为__________;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.2014-2015学年四川省绵阳中学八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能【考点】三角形的外角性质.【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【解答】解:∵三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,∴与它相邻的这个内角是一个大于90°的角即钝角,∴这个三角形就是一个钝角三角形.故选C.【点评】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=【考点】负整数指数幂;整式的除法.【分析】根据负整数指数幂、同底数幂的乘法以及整式的除法运算法则进行计算.【解答】解:A、原式=9,故本选项错误;B、原式=m(1﹣2+3)=m2,故本选项错误;C、原式=(﹣1)﹣2•a﹣1×(﹣2)•b(﹣3)×(﹣2)=a2b6,故本选项错误;D、原式==,故本选项正确.‘故选:D.【点评】本题考查了负整数指数幂、整式的除法.掌握运算法则的解题的关键.6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±8【考点】完全平方式.【专题】常规题型.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定b的值.【解答】解:16x2+bx+1=(4x)2+bx+1,∴bx=±2×4x×1,解得b=±8.故选D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.7.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣3【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到当x2﹣9=0且x+3≠0时,分式的值为零,然后解方程和不等式即可得到x的值.【解答】解:∵分式的值为零,∴x2﹣9=0且x+3≠0,∴x=3.故选C.【点评】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.也考查了解方程与不等式.8.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】轴对称的性质.【分析】作出图形,根据轴对称的性质可得∠BAC=∠DAC,∠ACB=∠ACD,然后求出∠BAC+∠ACB,再根据三角形的内角和定理求出∠B,然后判断三角形的形状即可.【解答】解:如图,∵△ABC和△ADC关于直线AC轴对称,∴∠BAC=∠DAC,∠ACB=∠ACD,∴∠BAC+∠ACB=(∠BAD+∠BCD)=×160°=80°,在△ABC中,∠B=180°﹣(∠BAC+∠ACB)=180°﹣80°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查了轴对称的性质,根据成轴对称的两个图形能够完全重合得到相等的角是解题的关键,作出图形更形象直观.9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm【考点】线段垂直平分线的性质;含30度角的直角三角形;三角形中位线定理.【专题】计算题.【分析】过A作AF∥DE交BD于F,则DE是△CAF的中位线,根据线段垂直平分线的性质,即可解答.【解答】解:过A作AF∥DE交BD于F,则DE是△CAF的中位线,∴AF=2DE=2,又∵DE⊥AC,∠C=30°,∴FD=CD=2DE=2,在△AFB中,∠1=∠B=30°,∴BF=AF=2,∴BD=4.故选D.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段两个端点的距离相等.10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选C.【点评】本题考查的是正方形的性质和轴对称﹣最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为1.02×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.若3x=4,9y=7,则3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据3x﹣2y=3x÷32y=3x÷9 y即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.【点评】本题考查了同底数的幂的除法运算,正确理解3x﹣2y=3x÷32y=3x÷9 y是关键.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=70°或20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情况进行讨论.【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故答案为:70°或20°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是①③④.【考点】矩形的性质;全等三角形的判定与性质.【分析】由矩形的性质得出∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,由SAS 证明△ABC≌△CDA,①正确;由△ABF的面积=△ABC的面积,得出△AEF的面积=△BCE的面积,②不正确;证明A、E、F、D四点共圆,得出∠DAE+∠DFE=180°,③正确;延长AF交矩形ABCD的外接圆于G,连接BG,由圆周角定理得出∠AGB=∠ACB,由三角形的外角性质得出∠AFB>∠AGB,得出∠AFB>∠ACB,④正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴①正确;∵△ABF的面积=△ABC的面积=AB•BC,∴△AEF的面积=△BCE的面积,∴②不正确;∵BE⊥AC,∴∠AEF=90°,∴∠AEF+∠D=180°,∴A、E、F、D四点共圆,∴∠DAE+∠DFE=180°,∴③正确;∵A、B、C、D四点共圆,如图所示:延长AF交矩形ABCD的外接圆于G,连接BG,则∠AGB=∠ACB,∵∠AFB>∠AGB,∴∠AFB>∠ACB,∴④正确;正确的代号是①③④;故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、四点共圆、圆周角定理、圆内接四边形的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.【考点】整式的混合运算;解分式方程;解一元一次不等式.【分析】(1)直接利用完全平方公式化简求出即可;(2)首先去分母进而合并同类项求出即可.【解答】解:(1)(2x﹣5)2+(3x+1)2>13(x2﹣10)去括号得:4x2+25﹣20x+9x2+1+6x>13x2﹣130整理得:﹣14x>﹣156解得:x<11;(2)去分母得:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),x2+2x﹣(x2+2x﹣x﹣2)=3x﹣3,则﹣2x=﹣5,解得:x=,检验:当x=时,(x﹣1)(x+2)≠0,则x=是原方程的根.【点评】此题主要考查了整式的混合运算以及分式方程的解法,正确利用乘法公式是解题关键.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【考点】分式的化简求值.【专题】开放型.【分析】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意化简后,代入的数不能使分母的值为0.【解答】解:原式=÷==,∵a≠0、a≠±1,∴答案不唯一.当a=2时,原式=1.【点评】本题主要考查分式的化简求值,式子化到最简是解题的关键.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.【考点】三角形内角和定理.【分析】利用AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,得出∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,再利用三角形的外角意义得出∠BPD=∠BAD+∠ABE 等量代换得出∠BPD=90°﹣∠ACB;再利用PG⊥BC,得出三角形CPG是直角三角形,利用三角形的内角和表示出∠CPG=90°﹣∠ACB,证明结论成立.【解答】∠BPD=∠CPG证明:∵AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,∴∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,∴∠BPD=∠BAD+∠ABE=(∠BAC+∠ABC),∵∠BAC+∠ABC=180﹣∠ACB,∴∠BPD=(180﹣∠ACB)=90°﹣∠ACB;∵PG⊥BC,∴∠PGC=90°,∴∠BCP+∠CPG=180°﹣∠PGC=90°,∴∠CPG=90°﹣∠BCP=90°﹣∠ACB,∴∠BPD=∠CPG.【点评】此题考查角平分线的性质,三角形内角和定理,三角形外角的意义,垂直的性质等知识点.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动47m所用时间相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,根据时间相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x,由题意得,=,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB 的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为90°,图③中,∠AFB的度数为108°;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.【考点】正多边形和圆;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先根据等边三角形的性质得出∠AC=60°,再由补角的定义可得出∠ABE与∠BCD的度数,根据△ABE与△BCD能相互重合可得出∠E=∠D,∠DBC=∠BAE,由三角形外角的性质可得出结论;(2)根据(1)中的方法可得出△BEF∽△BDC,进而可得出结论;(3)根据(1)(2)的结论找出规律即可.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABE=∠BCD=120°.∵△ABE与△BCD能相互重合,∴∠E=∠D,∠DBC=∠BAE.∵∠FBE=∠CBD,∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°;(2)图②中,∵△ABE与△BCD能相互重合,∴∠E=∠D.∵∠FBE=∠CBD,∠D+∠CBD=90°,∴∠AFB=∠E+∠FBE=∠D+∠CBD=90°;同理可得,图③中∠AFB=108°.故答案为:90°,108°;(3)由(1)(2)可知,在正n边形中,∠AFB=.【点评】本题考查的是正多边形和圆,在解答此题时要注意正三角形、正四边形及正五边形的性质的应用,根据题意找出规律是解答此题的关键.。

万州八年级上册数学测试卷

万州八年级上册数学测试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 3D. -52. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 13. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 120°C. 135°D. 150°4. 下列哪个图形是轴对称图形?()A. 矩形B. 正方形C. 三角形D. 圆5. 若方程2x - 3 = 0的解为x,则方程3x + 6 = 0的解为()A. xB. 2xC. 3xD. -2x6. 下列哪个数是有理数?()A. √2B. πC. 0.1010010001...D. 1/37. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点是()A. (2,3)B. (-2,-3)C. (-2,6)D. (2,-3)8. 若a、b、c是三角形的三边,且a + b = c,则这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形9. 下列哪个函数是单调递增函数?()A. y = x^2B. y = 2x + 1C. y = -xD. y = x^310. 若|a| = 5,|b| = 3,则|a + b|的最大值是()A. 8B. 10C. 12D. 15二、填空题(每题3分,共30分)11. 若x - 2 = 5,则x = _______。

12. 在△ABC中,∠A = 45°,∠B = 90°,则∠C的度数是 _______。

13. 若方程3x - 4 = 0的解为x,则方程6x - 8 = 0的解为 _______。

14. 下列哪个数是无理数?()A. √2B. πC. 0.1010010001...D. 1/315. 在平面直角坐标系中,点P(3,-2)关于x轴的对称点是 _______。

重庆市八年级(上)期中数学试卷-(含答案)

重庆市八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.如图图案不是轴对称图形的有()个.A. 2个B. 3个C. 4个D. 5个2.如果等腰三角形的两边长是10cm和5cm,那么它的周长为()A. 20cmB. 25cmC. 20cm或25cmD. 15cm3.如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为()A. 0B. 1C. 2D. 34.√16的平方根是()A. 4B. ±4C. 2D. ±25.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A. 80∘B. 40∘C. 60∘D. 120∘6.下列各数中:π3,−0.3⋅,227,√25,√93,是无理数的有()A. 1个B. 2个C. 3个D. 4个7.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A. ∠B=∠E,BC=EFB. BC=EF,AC=DFC. ∠A=∠D,∠B=∠ED. ∠A=∠D,BC=EF8.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A. 750米B. 1000米C. 1500米D. 2000米9.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于D,交BC于E,若BE=8cm,则AC的长为()A. 4cmB. 5cmC. 6cmD. 8cm10.如图所示,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是()A. HLB. SAS或AASC. ASAD. SSS11.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=2.5cm,点D到AB的距离为()A. 10cmB. 7.5cmC. 2.5cmD. 12.5cm12.下列语句中,正确的是()A. 一个实数的平方根有两个,它们互为相反数B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个二、填空题(本大题共8小题,共24.0分)13.使√2−x有意义的x的取值范围是______.14.一辆汽车的车牌号在水中的倒影是,那么它的实际车牌号是:______.15.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是______ .16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是______(填SSS,SAS,AAS,ASA中的一种).17.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B=______ 度.18.满足-√3<x<√23的整数x有______ .19.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= ______ .20.如图,AD和EF分别是△ABC中BC与AB垂直平分线,且BE+CE=20cm,则AB= ______ .三、解答题(本大题共8小题,共60.0分)21.计算:32×√4+12×√144−√10003______ .22.解方程(1)x3-125=0(2)x2-24=1.23.已知√x−2+|2y-x|=0,求x2+4y的立方根.24.如图所示,两条笔直的公路AO与BO相较于点O,村庄D和E在公路AO的两侧,现要在公路AO和BO之间修一个供水站P向D、E两村供水,使供水站P到两公路的距离相等,且到D、E两村的距离也相等.请你在图中画出P点的位置.25.如图,已知∠1=∠2,∠C=∠D,求证:OC=OD.26.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.27.如图,AD是等边三角形BC边上的高,以AD为边作等边三角形△ADE,连结BE.求证:BE⊥AE.28.如图,△DAC和△EBC均是等边三角形,A、C、B三点在一条直线上,AE、BD分别与CD、CE交于点M、N.现有如下结论:①AM=DN;②EM=BN;③∠CAM=∠CDN;④∠CME=∠CNB.(1)上述结论正确的有______ .(2)选出一个你认为正确的结论,并证明这个结论.你选的结论是:______ .证明:______ .答案和解析1.【答案】B【解析】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形不是轴对称图形;第四个图形不是轴对称图形;共3个图案不是轴对称图形;故选:B.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.【答案】B【解析】解:当腰为5cm时,5+5=10,不能构成三角形,因此这种情况不成立.当腰为10cm时,10-5<10<10+5,能构成三角形;此时等腰三角形的周长为10+10+5=25cm.故选:B.题目给出等腰三角形有两条边长为10cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.此题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.【答案】C【解析】解:∵AB=AC,∴∠B=∠C,又BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形的对应边相等),∴∠AEB=∠ADC,∴△ABE≌△ACD(AAS).故选C.根据AB=AC,得∠B=∠C,再由BD=CE,得△ABD≌△ACE,进一步推得△ABE≌△ACD本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.4.【答案】D【解析】解:=4,4的平方根是±2.故选:D.先化简=4,然后求4的平方根.本题考查平方根的求法,关键是知道先化简.5.【答案】C【解析】解:∵∠A=80°,∠B=40°,∴∠C=180°-∠A-∠B=60°,∵△ABC≌△DEF,∴∠F=∠C=60°,故选C.根据三角形内角和定理求出∠C,根据全等三角形性质推出∠F=∠C,即可得出答案.本题考查了三角形内角和定理,全等三角形性质的应用,主要考查学生的推理能力,难度不大.6.【答案】B【解析】解:,是无理数;-是无限循环小数,是有理数;是分数,是有理数;=5,是整数,是有理数.故选B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.7.【答案】D【解析】解:(1)在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故A正确;(2)在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);故B正确;(3)在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误;故选D.分别对各选项中给出条件证明△ABC≌△DEF,进行一一验证即可解题.本题考查了全等三角形的判定,常用判定三角形全等方法有SSS,SAS,ASA,AAS,本题中对各选项进行验证是解题的关键.8.【答案】B【解析】解:作A关于CD的对称点A′,连接A′B,交CD于M,∴CA′=AC,∵AC=DB,∴CA′=BD,由分析可知,点M为饮水处,∵AC⊥CD,BD⊥CD,∴∠ACD=∠A′CD=∠BDC=90°,又∵∠A′MC=∠BMD,在△CA′M和△DBM中,,∴△CA′M≌△DBM(AAS),∴A′M=BM,CM=DM,即M为CD中点,∴AM=BM=A′M=500,所以最短距离为2AM=2×500=1000米,故选B.如图,连接B和A关于CD对称的对称点,交CD于M,因此从A到M再到B 点为最短距离.本题涉及最短路径问题和全等三角形的知识,难度一般.9.【答案】A【解析】解:∵DE是线段AB的垂直平分线,∴AD=DB=8cm,∴∠DAE=∠B=15°,∴∠ADC=∠DAE+∠B=30°,∵∠ACB=90°,∴AC=AD=4cm.故选A.由线段AB的垂直平分线DE交BC于D,交AB于E,E为垂足,根据线段垂直平分线的性质,可求得DB=AD,继而求得∠DAE=∠B=15°,则可求得∠ADC 的度数,然后由含30°的直角三角形的性质,求得答案.此题考查了线段垂直平分线的性质以及含30°的直角三角形的性质.注意求得∠ADC=30°是关键.10.【答案】C【解析】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选C.根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.11.【答案】B【解析】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=BC-BD=7.5,即点D到AB的距离为7.5cm.故选B.过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.12.【答案】D【解析】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;B、负数有立方根,故选项B错误,C、一个数的立方根不是正数可能是负数,还可能是0,故选项C错误,D、立方根是这个数本身的数共有三个,0,1,-1,故D正确.故选D.A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据立方根的定义即可判定.本题主要考查平方根和立方根的知识点,比较简单.13.【答案】x≤2【解析】解:由题意得:2-x≥0,解得:x≤2.故答案为:x≤2.根据二次根式的被开方数为非负数即可得出答案.本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的被开方数为非负数.14.【答案】MT9527【解析】解:实际车牌号是:MT9527.故答案为:MT9527.关于倒影,相应的数字应看成是关于倒影下边某条水平的线对称.本题考查了镜面反射的性质;解决本题的关键是得到对称轴,进而得到相应数字.15.【答案】(-3,4)【解析】解:∵点P关于x轴对称的点是(3,-4),则P点的坐标是(3,4).∴点P关于y轴对称的点的坐标是(-3,4)关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.这一类题目是需要识记的基础题.能够结合平面直角坐标系和对称的性质进行记忆.16.【答案】SSS【解析】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.利用全等三角形的判定方法判断即可.此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.17.【答案】72【解析】解:∵∠E=36°,AE∥DC,∴∠E=∠BCD=36°,∵CD平分∠ACB,∴∠ACB=72°;∵AB=AC,∴∠B=∠ACB=72°.先利用平行线的性质求出∠E=∠BCD=36°,再利用角平分线的性质和等边对等角计算.考查平行线及角平分线的有关性质.18.【答案】-1,0,1【解析】解:∵-2<-<-1,1<<2,∴满足-<x<的整数x有-1,0,1,故答案为:-1,0,1.先估算出-和的范围,即可得出答案.本题考查了估算无理数的大小,能估算出-和的范围是解此题的关键.19.【答案】11【解析】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.根据已知条件分清对应边,结合全的三角形的性质可得出答案.本题考查了全等三角形的性质及对应边的找法;根据两个三角形中都有2找对对应边是解决本题的关键.20.【答案】20cm【解析】解:∵EF是线段AB的垂直平分线,∴AE=BE,∵BE+CE=20cm,∴AE+CE=AC=20cm,∵AD是线段BC的垂直平分线,∴AB=AC=20cm.故答案为20cm.先由EF是线段AB的垂直平分线得出AE=BE,代入BE+CE=20cm,得到AE+CE=AC=20cm,再由AD是线段BC的垂直平分线,得出AB=AC=20cm.本题考查了线段垂直平分线的性质:线段垂直平分线上的任意一点到线段两端点的距离相等.得出AC=20cm是解题的关键.21.【答案】=-1【解析】解:原式=×2+×12-10=3+6-10=-1.故答案为:=-1.先根据数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可.本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.22.【答案】解:(1)移项得:x3=125.两边直接立方得:x=5,∴方程的解为:x=5;(2)移项得:x2=25.两边直接开平方得:x=±5,∴方程的解为:x1=5,x2=-5,【解析】(1)经过观察,发现将常数项移到方程的右边后等式两边可以直接开立方即可.(2)经过观察,发现将常数项移到方程的右边后等式两边可以直接开平方方即可.此题主要考查了立方根和平方根的知识,可利用数的开方直接求解的方程形式有:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.23.【答案】解:∵√x−2+|2y-x|=0,∴x-2=0,2y-x=0,∴x=2,y=1,∴x2+4y=8,∴x2+4y的立方根是2.【解析】先根据非负数的性质求出x、y的值,再求出x2+4y的立方根即可.本题考查的是非负数的性质及立方根的定义,能根据非负数的性质求出x、y 的值是解答此题的关键.24.【答案】解:如图所示,点P即为所求.【解析】根据P到两公路的距离相等,且到D、E两村的距离也相等,先作∠AOB的平分线,再作线段ED的垂直平分线,两线的交点P就是所求的点.此题主要考查了角平分线、线段垂直平分线的性质的应用以及作法,解决问题的关键是熟练掌握角平分线、线段垂直平分线的基本作图方法.解题时要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.25.【答案】证明:在△ABC与△BAD中,{∠1=∠2∠C=∠D AB=BA,∴△ABC≌△BAD(AAS).∴AD=BC,∵∠1=∠2,∴AO=BO,∴AD-AO=BC-BO,即OC=OD.【解析】首先利用AAS判定△ABC≌△BAD,再根据全等三角形的对应边相等求得AD=BC,再由∠1=∠2,可得AO=BO,从而求得OC=OD.本题主要考查三角形全等的判定方法及等腰三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.本题比较简单,做题时要找准对应关系.26.【答案】解:∵ED是线段BC的垂直平分线,∴BE=CE,∴BE+AE=CE+AE=AC=9cm,∵△ABE的周长为16cm,∴AB=16-(BE+AE)=16-9=7cm.【解析】先根据线段垂直平分线的性质求出BE+AE的长,再根据△ABE的周长为16cm,即可求出AB的长.本题比较简单,应用的知识点为:线段垂直平分线上的点到线段两端的距离相等.27.【答案】解:∵△ABC与△ADE是等边三角形,∴AE=AD,AB=AC,∠BAC=∠DAE=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,{AE=AD∠EAB=∠DAC AB=AC,∴△AEB≌△ADC,∴∠AEB=∠ADC,∵AD是等边三角形BC边上的高,∴∠ADC=90°,∴∠AEB=90°,∴BE⊥AE.【解析】根据等边三角形的性质得到AE=AD,AB=AC,∠BAC=∠DAE=60°,于是得到∠EAB=∠DAC,推出△AEB≌△ADC,得到∠AEB=∠ADC=90°,即可得到结论.本题考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.28.【答案】①②③④;③;∵△DAC和△EBC均是等边三角形,∴AC=CD,∠ACD=∠BCE=60°,CE=CB,∵A、C、B三点在一条直线上,∴∠DCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,∵{AC=CD∠ACE=∠DCB EC=BC∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN,【解析】解:(1)上述结论正确的有:①②③④;故答案为:①②③④;(2)选③,证明:∵△DAC和△EBC均是等边三角形,∴AC=CD,∠ACD=∠BCE=60°,CE=CB,∵A、C、B三点在一条直线上,∴∠DCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB,在△ACE和△DCB中,∵,∴△ACE≌△DCB(SAS),∴∠CAM=∠CDN,所以③正确;选①,证明:在△ACM和△DCN中,∵,∴△ACM≌△DCN(ASA),∴AM=DN,所以①正确;选②,证明:∵△ACE≌△DCB,∴∠MEC=∠NBC,在△MCE和△NCB中,∵,∴△MCE≌△NCB(ASA),∴EM=BN,∠CME=∠CNB.所以②和④都正确.(1)4个选项都正确;(2)证明△ACE≌△DCB,得∠CAM=∠CDN,证明△ACM≌△DCN得:AM=DN,再证明△MCE≌△NCB(ASA),得EM=BN,∠CME=∠CNB.本题考查了三角形全等的性质和判定、等边三角形的性质,是常考题型,此类题变化多样,熟练掌握等边三角形的性质是关键,利用等边三角形的性质得出三角形全等的条件即可得出结论.。

初中数学重庆市万州区万州中学八年级数学上学期期中考模拟试题考试卷及答案 新部编版.docx

初中数学重庆市万州区万州中学八年级数学上学期期中考模拟试题考试卷及答案 新部编版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:与数轴上的点一一对应的是()A、有理数B、整数C、无理数D、实数试题2:的平方根是()A.9 B.C.D.3试题3:下列各题的计算,正确的是()A. B.C. D.试题4:如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.5试题5:在,,,,,-0.2020020002…,中,无理数有()个A.2B.3C.4D.5试题6:如果,那么p、q的值是()A. B. C. D.试题7:在△ABC和△A′B′C′中,①AB=A′B′;②B C=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′()A. ①②③B. ①②⑤C. ①⑤⑥D.①②④试题8:若正数a的算术平方根比它本身大,则()A. 0<a<1B. a>0C.a<1 D. a>1试题9:下列分解因式正确的是()A.B.C.D .试题10:若,则的值为()A. B.-2 C. D.试题11:在边长为的正方形中挖去一个边长为的小正方形()(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.试题12:如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个A.1B.2C.3D.4试题13:若=1,则_________.试题14:_______________. 试题15:分解因式:.试题16:若b为常数,且是完全平方式,那么b=.试题17:如图所示,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= .试题18:已知,则____________.试题19:试题20:试题21:试题22:试题23:解方程:试题24:因式分解:试题25:化简求值:,其中.试题26:如图, 已知:AB⊥BC , DC∥AB , DE⊥AC于点F , AB=EC.求证:AC=DE.试题27:已知,求的立方根.试题28:某家装公司的员工在安装玻璃时,不小心将一块三角形玻璃打碎. 要求他只带其中一块碎片到玻璃店去,就能配一块与原来一样的回来. 请根据图形回答问题:(1)碎片如图1,他应该带去,原因是.(2)碎片如图2,他应该带去,原因是.(图1)(图2)试题29:探索题:先填空,再解答,解答需要写出恰当的过程.……①运用以上方法求:的值;②运用以上方法求:的个位数字是多少?试题30:已知:如图,点E在△ABC的边AC上,且∠AEB=∠ABC.(1) 求证:∠ABE=∠C;(2) 若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=6,AC=10,求DC的长;(3) 若BE平分∠ABC,AF平分∠BAC,且FD∥BC交AC于点D,连接FC,则△DFC是什么三角形?为什么?试题1答案:DC试题3答案: C试题4答案: B试题5答案:B试题6答案: C试题7答案:D试题8答案: A试题9答案:C试题10答案:A试题11答案:C试题12答案: C试题13答案:,,试题15答案:,试题16答案:,试题17答案: 55°,试题18答案:或试题19答案:试题20答案:试题21答案: 9200试题22答案:试题23答案:,试题25答案:化简得:,因为所以,所以原式试题26答案:证明:∵ AB⊥BC,∴∠ABC=90°,,∵ DC∥AB ,∴∠ABC+∠ECD=180°,∴∠ECD=90°,∴∠ABC=∠ECD,∠BCA+∠FCD=90°,∵ DE⊥AC于点F ,∴∠DFC=90°,∴∠CDE+∠FCD=90°,∴∠BCA=∠CDE,∵ AB=EC,∴△ABC≌△ECD(AAS),∴ AC=DE.试题27答案:解:化为,又∵,,,∴,,,∴,,,∴,试题28答案:(1)带 B 去,原因是两角及其夹边对应相等的两个三角形全等(ASA).(2)带 A 去,原因是两边及其夹角对应相等的两个三角形全等(SAS).试题29答案:探索题:先填空,再解答,解答需要写出恰当的过程.解:……①;②∵,,,,,,,…∴的各位数字按照规律:2,4,8,6;2,4,8,6循环出现,∴的个位数字是7.试题30答案:(1)证明:∵∠AEB=∠ABC,且∠AEB=∠EBC+∠C,∠ABC=∠EBC+∠ABE,∴∠EBC+∠C=∠EBC+∠ABE,∴∠ABE=∠C;(2)解:∵∠BAE的平分线AF交BE于F,∴∠BAF=∠DAF,∵ FD∥BC交AC于D,∴∠ADF=∠C,∵∠ABE=∠C,∴∠ADF=∠ABE,即∠ADF=∠ABF,∵ AF=AF,∴△BAF≌△DAF,∴ AD=AB=6,∴ DC=AC-AD=10-6=4.(3)解:△DFC是等腰三角形.理由是:过点F分别作FH⊥AB,FN⊥BC,FM⊥AC,易证:△AFH≌△AFM(AAS),从而知FH=FM,△BFH≌△BFM(AAS),从而知FH=FN,∴FM=FN,又FC=FC,可证Rt△CFM≌Rt△CFN(HL)∴∠MCF=∠NCF,∵FD∥BC,∴∠DFC=∠BCF,∴∠DFC=∠MCF,∴DF=DC,∴△DFC是等腰三角形.。

重庆市万州区万州中学八年级数学上学期期中试题 新人教版

重庆市万州区万州中学八年级数学上学期期中试题 新人教版

重庆市万州区万州中学2014-2015学年八年级数学上学期期中试题(满分:150分,时间:120分钟)一、选择题(每小题4分,共48分) 1. 与数轴上的点一 一对应的是( )A 、有理数B 、整数C 、无理数D 、实数 2.81的平方根是( )A .9B . 9±C .3±D .3 3. 下列各题的计算,正确的是( )A. 523)(a a = B. ()63293a a-=-C. ()()54a a a -=-•- D. 6332a a a =+4.如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A.2 B.3 C.5 D.2.5 5.在33,1-,4,722,π,-0.2020020002…,3216-中,无理数有( )个 A.2 B.3 C.4 D.5 6.如果q px x x x -+=+-2)3)(2(,那么p 、q 的值是( )A. 6,1-==q pB. 6,5==q pC.6,1==q pD. 6,5-==q p7. 在△ABC 和△A′B′C′中,①AB=A′B′;②B C=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′( ) A. ①②③ B. ①②⑤ C. ①⑤⑥ D. ①②④ 8.若正数a 的算术平方根比它本身大,则( )A. 0<a<1B. a>0C. a<1D. a>1 9.下列分解因式正确的是( )A .)1(222--=--y x x x xy x B .)32(322---=-+-x xy y y xy xy C .2)()()(y x y x y y x x -=--- D . 3)1(32--=--x x x x 10.若54,32==yx,则y x 22-的值为( )A.53 B.-2 C. 553 D.5611.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩(第2题)FECBA第4题形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b -=+-D .22(2)()2a b a b a ab b +-=+-12.如图,在不等边△ABC 中,PM ⊥AB 于点M ,PN ⊥AC 于点N ,且PM=PN ,Q 在AC 上,PQ=QA ,MP =3,△AMP 的面积是6,下列结论:① AM <PQ+QN ,②QP ∥AM ,③△BMP ≌△PQC ,④∠QPC +∠MPB =90°,⑤△PQN 的周长是7,其中正确的有( )个A.1B.2C.3D.4二、填空题(每小题4分,共24分)13. 若2x =1,则=x _____ ____.14. 32)(2mx mx -•_______________.15. 分解因式:=-a ax 42.16. 若b 为常数,且1412+-bx x 是完全平方式,那么b = .17. 如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A= .18. 已知2122=+aa ,则=++-1122a a a ____________.三、解答题(每小题4分,共24分) 19. 计算:⑴ 3238)3(27-+- ⑵ ()()222332ca bc b a -÷-•⑶ 23991012322⨯-⨯ ⑷)2)(2(y x x y ---第11题A BCA ′B ′D第17题20.按要求解答: (1) 解方程:02)3(212=-+x (2) 因式分解:)12(422+--b b a四、解答题(每小题8分,共32分)21. 化简求值:22))(()32(y y x y x x --+--,其中0142=--x x .22. 如图, 已知:AB ⊥BC , DC ∥AB , DE ⊥AC 于点F , AB =EC .求证:AC =DE .23. 已知 0441|2|2=+-+++-y y z x ,求4-xyz 的立方根.24. 某家装公司的员工在安装玻璃时,不小心将一块三角形玻璃打碎. 要求他只带其中一块碎片到玻璃A B CDE F店去,就能配一块与原来一样的回来. 请根据图形回答问题:(1)碎片如图1,他应该带去,原因是 . (图1)(2)碎片如图2,他应该带去,原因是 . (图2)五、解答题(共22分)25.(10分)探索题:先填空,再解答,解答需要写出恰当的过程.___;__________1)(1(=+-)xx____;__________)1)(1(2=++-xxx____;__________)1)(1(23=+++-xxxx……____;__________)1)(1(21=++⋯+++---xxxxx nnn①运用以上方法求:122222223456++++++的值;②运用以上方法求:1222222201220132014+++⋯+++的个位数字是多少?26.(12分)已知:如图,点E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=6,AC=10,求DC的长;(3)若BE平分∠ABC,AF平分∠BAC,且FD∥BC交AC于点D,连接FC,则△DFC是什么三角形?为什么?AB万州中学初2016级八年级(上)中期考试数学试题(参考答案)一、选择题:(每小题4分,共48分) 1—12: D C C B B C D A C A C C 二、填空题: (每小题4分,共24分)13、1±, 14、542x m - , 15、)2)(2(-+x x a , 16、1±, 17、55°, 18、21或23三、解答题:(每小题4分,共24分) 19、(1)2- (2)c ab 36 (3)9200 (4)224y x -20、(1)5,121-=-=x x , (2))12(12(+--+b a b a 四、解答题:(每小题8分,共32分)21、化简得:9123))(()32(222+-=--+--x x y y x y x x ,因为0142=--x x 所以142=-x x ,所以原式129139)4(32=+⨯=+-=x x22. 证明:∵ AB ⊥BC , 23. 解: 0441|2|2=+-+++-y y z x ,∴ ∠ABC =90°, 化为,0)2(1|2|2=-+++-y z x ,∵ DC ∥AB , 又∵0|2|≥-x ,01≥+z ,0)2(2≥-y ,∴ ∠ABC +∠ECD =180°, ∴02=-x ,01=+z ,02=-y , ∴ ∠ECD =90°, ∴2=x ,1-=z ,2=y , ∴ ∠ABC =∠ECD, ∴334)1(224--⨯⨯=-xyz , ∠BCA +∠FCD =90°, 38-=∵ DE ⊥AC 于点F , 2-= ∴ ∠DFC =90°, ∴ ∠CDE +∠FCD =90°, ∴ ∠BCA =∠CDE, ∵ AB =EC,∴ △ABC ≌△ECD (AAS ), ∴ AC =DE.24.(1)带 B 去,原因是两角及其夹边对应相等的两个三角形全等(ASA ). (2)带 A 去,原因是两边及其夹角对应相等的两个三角形全等(SAS ).五、解答题(共22分)25.(10分)探索题:先填空,再解答,解答需要写出恰当的过程. 解:);1(1)(1(2-=+-x x x ) ;)1()1)(1(32-=++-x x x x;)1()1)(1(423-=+++-x x x x x ……;)1()1)(1(121-=++⋯+++-+--n n n n x x x x x x①12712)1222222)(12(122222272345623456=-=++++++-=++++++;②∵221=,422=,823=,1624=,3225=,6426=,12827=,,25628=…∴是整数)n n n ,,3,2,1(2⋯⋯=的各位数字按照规律:2,4,8,6;2,4,8,6循环出现, ∴1212222220152201220132014-=+++⋯+++的个位数字是7.26. (12分)(1)证明:∵ ∠AEB=∠ABC ,且∠AEB=∠EBC +∠C ,∠ABC=∠EBC +∠ABE , ∴ ∠EBC +∠C =∠EBC +∠ABE , ∴ ∠ABE =∠C ;(2)解: ∵ ∠BAE 的平分线AF 交BE 于F ,∴ ∠BAF =∠DAF , ∵ FD ∥BC 交AC 于D , ∴ ∠ADF =∠C , ∵ ∠ABE =∠C ,∴ ∠ADF =∠ABE ,即∠ADF =∠ABF ,∵ AF =AF ,∴ △BAF ≌△DAF , ∴ AD =AB =6,∴ DC =AC -AD =10-6=4. (3)解: △DFC 是等腰三角形.理由是:过点F 分别作FH ⊥AB ,FN ⊥BC ,FM ⊥AC , 易证:△AFH ≌△AFM (AAS ),从而知FH =FM , △BFH ≌△BFM (AAS ),从而知FH =FN ,∴FM =FN ,又FC =FC ,可证Rt △CFM ≌Rt △CFN (HL ) ∴∠MCF =∠NCF , ∵FD ∥BC ,∴∠DFC =∠BCF , ∴∠DFC =∠MCF , ∴DF =DC ,∴△DFC 是等腰三角形.HMN。

万州初二数学试题及答案

万州初二数学试题及答案

万州初二数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 已知一个直角三角形的两个直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 如果一个数的平方等于16,那么这个数是?A. 4B. -4C. 4或-4D. 都不是4. 以下哪个是二次根式?A. √3xB. 3x√2C. √x²D. √x5. 一个数的立方等于-8,这个数是?A. -2B. 2C. -8D. 8二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是______。

7. 如果a和b互为相反数,那么a+b=______。

8. 一个数的立方根是2,那么这个数是______。

9. 一个数的平方根是4,那么这个数是______。

10. 一个数的倒数是1/3,那么这个数是______。

三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) (-2)³(2) √4912. 解下列方程:(1) 2x + 5 = 11(2) 3x - 7 = 2x + 813. 化简下列二次根式:(1) √75(2) √(2/9)四、解答题(每题10分,共20分)14. 一个长方形的长是宽的两倍,如果周长是24厘米,求长和宽。

15. 一个数列的前三项是2, 4, 6,这个数列是等差数列,求第10项的值。

五、证明题(每题15分,共15分)16. 证明:对于任意实数a和b,(a+b)² = a² + 2ab + b²。

六、附加题(每题5分,共5分)17. 一个圆的半径是5厘米,求这个圆的面积。

答案:一、选择题1. D2. A3. C4. A5. A二、填空题6. ±57. 08. 89. ±410. 3三、计算题11. (1) -8 (2) 712. (1) x = 3 (2) x = 513. (1) 5√3 (2) 2√2/3四、解答题14. 长为8厘米,宽为4厘米。

重庆万州第三中学2014年八年级上学期期中考试语文试题及答案

重庆万州第三中学2014年八年级上学期期中考试语文试题及答案

2014-2015学年度八年级上期期中考试语文试卷考试范围:八年级上册一二三五单元;考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卷上姓名:一、累运用(共41分)1.下列各组词语中,加线字读音有错的一组是()(3分)A.寒jìn噤地jiào窖晨xī曦瞥piē见B、涎xián水诘jié问琐屑xiè愧怍zuòC、鉴jiàn赏蔷qiǎng薇丘壑(hè)轩榭(xiè)D.伧cāng俗斟酌(zhēn)镂空(lòu)仄.歪(zè)2.下列各项中词语书写有错的一项是()(3分)A、督战狼藉疟子铺砌B、蹒跚颓唐琐屑尴尬C、焦灼荒僻击磬颠沛D、帷幕屏嶂嶙峋飒飒3.下面语段空白处一次填入一组句子,正确的一项是()(3分)映日荷花,接天莲叶,亭亭莲蓬,柔嫩玉藕,无不牵惹诗情,引人遐思。

让我们学做荷花的事业吧,;让我们学做莲叶的事业吧,;让我们学做莲子的事业吧,;让我们学做藕的事业吧,。

①把寂寞留给自己②把芬芳献给他人③以苦心孕育未来④以宽阔拥抱生活A、②①④③B、①④③②C、③②④①D、②④③①4.下列有关表述,有误的一项是:()(3分)A.杜甫的诗“三吏”“三别”,真实反映了唐朝安史之乱时期,战乱给人民带来的巨大痛苦,以及对社会造成的极大破坏,《石壕吏》便是其中一首。

B.《阿长与〈山海经〉》的作者是我国现代文学的奠基人鲁迅,本文选自小说集《朝花夕拾》。

C.“四书”是公认的儒学经典,其中《大学》《中庸》是《礼记》中的两个篇章。

选自其中的文章《大道之行也》提出古代大同社会的纲领是:天下为公,选贤与能,讲信修睦。

D.《桃花源记》《陋室铭》《核舟记》是按照朝代先后排列的作家的作品。

5.下列句子中没有语病....的一项是()(3分)A、通过老师的一番教育,使我认识到了自己的错误。

万州初二数学试题及答案

万州初二数学试题及答案

万州初二数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角是直角的一半,那么这个角是:A. 45°B. 90°C. 180°D. 360°答案:A4. 一个等腰三角形的两边长分别为3和4,那么第三边的长度是:A. 3B. 4C. 5D. 7答案:B5. 计算下列式子的结果:2x + 3x - 5xA. 0B. -xC. 1xD. -3x答案:B6. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 9答案:C7. 一个圆的半径是5cm,那么它的周长是:A. 10π cmB. 15π cmC. 20π cmD. 25π cm答案:C8. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 3D. -3答案:B9. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24 cm³B. 26 cm³C. 28 cm³D. 30 cm³答案:A10. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或0答案:C二、填空题(每题4分,共20分)1. 一个数的绝对值是它本身,那么这个数可以是___________。

答案:正数或02. 如果一个角的补角是120°,那么这个角是___________。

答案:60°3. 一个数的平方根是它本身,那么这个数可以是___________。

答案:1或04. 一个数的立方根是它本身,那么这个数可以是___________。

答案:1,-1,05. 一个三角形的两边长分别为5和12,第三边长x满足的条件是___________。

万州区八年级数学期中试卷

万州区八年级数学期中试卷

考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,无理数是()A. 3.14B. $$ \sqrt{9} $$C. $$ \pi $$D. $$ \frac{1}{3} $$2. 如果a、b、c是等差数列,且a+b+c=0,那么$$ a^2+b^2+c^2 $$的值是()A. 0B. 1C. -3D. -23. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a>0B. a>-2C. a<0D. a<24. 在平面直角坐标系中,点A(-1,2)关于原点对称的点的坐标是()A.(1,-2)B.(-1,-2)C.(-1,2)D.(2,-1)5. 一个正方形的对角线长为10cm,则该正方形的面积是()A. 25cm^2B. 50cm^2C. 100cm^2D. 125cm^26. 如果a、b、c、d是等比数列,且a+b+c+d=10,那么$$ abc^2d $$的值是()A. 10B. 20C. 40D. 807. 在等腰三角形ABC中,AB=AC,AD是BC的中线,那么∠ADB的度数是()A. 45°B. 60°C. 90°D. 120°8. 已知函数y=kx+b(k≠0),如果k=2,b=3,那么该函数的图像经过的象限是()A. 第一、二、四象限B. 第一、二、三象限C. 第一、三、四象限D. 第一、二、三、四象限9. 一个等腰三角形的底边长为6cm,腰长为8cm,那么该三角形的面积是()A. 24cm^2B. 28cm^2C. 32cm^2D. 36cm^210. 已知函数y=2x-1,当x=3时,y的值是()A. 5B. 6C. 7D. 8二、填空题(每题2分,共20分)11. 若a、b、c成等差数列,且a+b+c=18,则b=______。

12. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点的坐标是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年秋季八年级期中考试
数学试题
考试时间120分钟 总分150分
第I 卷(选择题48分)
一、选择题(每小题4分,共48分)
1.、16
1的平方根是( ) A 、41 B 、41- C 、4
1± D 、4± 2.下列命题中,真命题是( )
A.、相等的角是直角
B.、不相交的两条线段平行
C.、两直线平行,同位角互补 D 、.经过两点有且只有一条直线
3、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是根据三角形的全等判定( )
A 、SAS 带③
B 、SSS 带③
C 、ASA 带③
D 、AAS 带③
4. 在实数02
0.20200200843.143073,,,,,,,π-…中,无理数的个数是( )
A 、1
B 、2
C 、3
D 、4
5.在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌△A B C ''',则补充的这个条件是( )
A .BC =
B
C '' B .∠A =∠A ' C .AC =A C ''
D .∠C =∠C '
6.下列运算中,正确的是( ) A. B. C. D.
7.已知实数x ,y 满足
,则以x ,y 的值为两边长的等腰三角形的周长是( )
A . 20或16
B . 20
C . 16
D . 以上答案均不对
8..下列从左边到右边的变形,属于因式分解的是 ( )
A 、 1)1)(1(2-=-+x x x
B 、1)2(122+-=+-x x x x
C 、)4)(4(422y x y x y x -+=-
D 、)3)(2(62-+=--x x x x
9.设一个正方形的边长为错误!未找到引用源。

,若边长增加3cm ,则新正方形的面积增加了( )
A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.无法确定
10.已知:4,2x y xy +==,则22x y +=( )
A .10
B .12
C .16
D .18
11.一个正数的算术平方根是a,那么比这个这个正数大2的数的算术平方根是( )
A 、 a 2+2
B 、±22+a
C 、22+a
D 、2+a
12.如图所示,在△ABC 中,AQ =PQ ,PR =PS ,PR ⊥
AB 于点R ,PS ⊥AC 于点S ,则下列三个结论:①
AS =AR ;②QP ∥AR ;③△BPR ≌△QPS 中( )
A.全部正确
B.仅①和②正确
C.仅①正确
D.仅①和③正确
第II 卷(非选择题102分)
二、填空题(每小题4分,共24分)
13.比较大小:3
1_____315-(填“>”“<”或“=”). 14.如果9Mx x 2+-是一个完全平方式,则M 的值是
15.在△ABC 中,AB=AC ,点D 为BC 边的中点,∠BAD=20°,则∠C= .
16.若错误!未找到引用源。

3x m+5y 2与错误!未找到引用源。

的和是单项式,则m n =_________.
17.若︱x+y+1错误!未找到引用源。

与错误!未找到引用源。

互为相反数,则错误!未找到引用源。

的值为
18.有一轮船由东向西航行,在A 处测得西偏北15°有一灯塔,继续航行20海里
后到B 处时,又测得灯塔P 在西偏北30°,此时灯塔与船之间的距离是 海里.
三、解答题(共78分)
19.计算题(每小题4分,共16分) (1)()031825---π (2)()()()
222b 3ab 6 b a 2-÷∙- (3)()()()2x x 62x 31x 2--+- (4))y 2x 3)(y 2x 3()y x 3(2-+--
20.将下列各式因式分解:(每小题4分,共8分)
(1) x x 3- (2) (a-3)(a+1)+4
第12题图
b
0a c
21、(6分) 已知3m =6,9n =2,求32m ﹣4n 的值.
22.(6分)先化简再求值:()()()2222a b a b a b +--+-
()22b a -,其中
3,31-=-=b a .
23.(6分)如图,某市有一块长为(3a+b) 米,宽为 (2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像。

⑴试用含a ,b
的代数式表示绿化的面积是多少平方米? ⑵若a=3,b=2,请求出绿化面积。

24.(6分)实数a 、b 、c 在数轴上的位置如图所示,化简
b a
c a c b ---+-22)(
25. (6分)如图,在△ABC 和△DCB 中,AC 与BD 相交于点O .AB=DC ,AC=BD .
(1)求证:△ABC ≌△DCB ;
(2)△OBC 的形状是 .(直接写出结论,不需证明)
26. (6分)已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AC ,
DF ⊥AB ,垂足分别是E 、F ,且BF=CE.
求证:△ABC 是等腰三角形;
2a+b a+b a+b 3a+b
27、(6分)已知△ABC 中,∠C=90°,按下列语句
作图.(尺规作图,保留作图痕迹,不比写作法)
(1) 作AB 边的垂直平分线,交AC 于点E ,
交AB 于点F ;
(2)连结CF .
(3)作∠BFC 的平分线,交BC 于G .
28、 (12分)已知:如图1,点C 为线段AB 上一点,△ACM ,△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .
(1)求证:AN=BM ;
(2)求证:△CEF 为等边三角形;
(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
A
B
C。

相关文档
最新文档