第六章 线性空间 习题答案

合集下载

线性空间习题解答

线性空间习题解答

第六章 线性空间习题解答P267.1设,,M N MN M MN N ⊆==证明:证明: 一方面.M N M ⊆ 另一方面, 由于M M ⊆,,N M ⊆ 得.N M M ⊆2 证明: (1))()()(L M N M L N M =. (2))()()(L M N M L N M = 证明:(1).),(L N x M x L N M x ∈∈∈且则设 即.M x N x M x ∈∈∈或且 L x ∈且. 于是有)()(L M N M x ∈.另一方面,因为)(,)(L N M L M L N M N M ⊆⊆,所以)()()(L N M L M N M ⊆.(2) 一方面,))(,)(L M L N M N M L N M ⊆⊆,所以)()()(L M N M L N M ⊆.另一方面,.),()(L M x N M x L M N M x ∈∈∈∀且则若).(,L N M x M x ∈∈则 若∈∈∈∉x L x N x M x 所以且则.,.L N 总之有)()()(),(L N M L M N M L N M x ⊆∈所以.3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间. (1) 次数等于n(n 1)的实系数多项式的全体,对于多项式的加法和数量乘法.(2) 设A 是n n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法.(3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法. (4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法.(5) 全体实数的二元数列,对于下面定义的运算:),(),(),(2121212211a a b b a a b a b a +++=⊕, )2)1(,(),(211111a k k kb ka b a k -+= . (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k =0. (7) 集合与加法同(6), 数量乘法为 k =.(8) 全体正实数R +,加法和数量乘法定义为: a b=ab , ka=a k .(1) 否. ,因为2个n 次多项式相加不一定是n 次多项式. 取f (x )=x n , g (x )=x n -1. 则f (x )+g (x )=-1不再是n 次多项式.(2) 是. 因为集合]}[)(|)({x R x f A f V ∈=作为n 级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3) 是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称(反对称,上三角)矩阵.(4) 否. 设{}|V ααβ=为平面上不平行的向量, =(a,b)0. 取=(a+1,b), =(a-1, b), 则, V, 但是, + V.(5) 证明: 10显然V 非空. 02 2个代数运算封闭.03 先设R t k b a r b a b a ∈===,),,(),,(),,(332221及βα2121211231212312312312323123122323123(1)(,)(2)()((),()()......................(,()....()((),(()().....................a a b b a a r a a a b b a a b a a a a a a b b b a a r a a a b b b b a a a a a αββααβαβ⊕=⊕=+++⊕+=+++++++=+++++⊕⊕=++=+++++=12312323121311111211121111111211111(,)()(3)0(0,0),0(0,00)(,)(4)(,)...........())(),()())(0,0)01(5)1(1,11(11))(,)2a a ab b b a a a a a a r a b a a b a a b a a b a b a a a b a a b αβααααααα+++++++=++=+=+++==-=--⊕-=+-+-+-===+-==的负为21112211111(6)()(,(1)211...............(,((1))(1)())22k l k la lb l l a kla k lb k k a k k la αα=+-=+-+-2111((1(1))2kla klb kla l k =++-+-=(kla 1,klb 1+211((1))2kl k a -=kl α(7)(k+l)α =((k+1)a1,(k+l)b 1+211()(1))2k l k l a ++-=((k+1)a 1,(k+l)b 1+ 22211(2))2k l kl k l a ++--221111111111(,(1)()(1))22ka la kb k k a b l l a ka la =++-++-+⋅k l αα=⊕(8)2121212121212121()(,)((),((1)())2k k a a b b a a k a a k b b a a k k a a αβ⊕=+++=++++-+ 22121122121211(,(1)(1)(1))22ka ka kb k k a kb k k a ka a k k a a =++-++-++-2221211221211(,((1))((1)())22ka ka kb k k a kb k k a k a a =++-++-+2212122211(,(1))((1))22ka kb k k a ka kb k k a αβ=+-⊕+-=⊕满足3,故V 是一个线性空间(6) 否. 不满足定义3之(5): 1100αααα==≠,但这里。

第6章 线性空间(解答题)(65题)

第6章 线性空间(解答题)(65题)

1.什么是线性空间?答:设V 是一个非空集合,P 是一个数域,在V 中定义了一个加法运算,在P 和V 的元素之间定义了一个数量乘法运算.如果上述两种运算满足以下规则,那么就称V 为P 上的一个线性空间(或称向量空间).1).+=+αββα;2).++=++αβγαβγ()(); 3).V 中有一个元素0,V α∀∈都有+0=αα,0称为V 的零元素; 4).V α∀∈,存在V β∈,使得+=0αβ,β称为α的负元素; 5).1=αα; 6).()()k l kl αα=; 7).()k l k l ααα+=+; 8).(+)=+k k k αβαβ;其中α,β,γ表示V 中的任意元素;k ,l 表示P 中的任意数.2.非空集合V在定义了加法和数乘运算之后成为P 上的一个线性空间,V 能否再定义另外的加法和数乘运算成为P 上的另一个线性空间? 答:有可能.例如,全体二元实数列构成的集合{(,)|,}V a b a b R =∈.1).定义(,)(,)(,),(,)(,)a b c d a c b d k a b ka kb ⊕=++=,则V 成为R 上的一个线性空间 2).定义2(1)(,)(,)(,),(,)(,)k k a b c d a c b d ac k a b ka kb a z+⊕=+++=+,则V 成为R 上的另一个线性空间.3.线性空间V 有哪些简单性质与结论? 答:1)零元素是唯一的;2)α的负元素是唯一的;3)000k k αα=⇔==或;4)=αα--(); 5)=k k k ααα-=--()()(); 6)()k a b ka kb -=-;7),V αβ∀∈,存在唯一的V γ∈,使得=αγβ+.证明:容易验证1)—3),4)因为+=0αα-(),所以α为(α-)的负元,即=αα--().5)()(()0,()()k k k k k k ααααα+-=+-=∴-=-.另一式子可类似证明.6)()(())()=()=k k k k k k k k αβαβαβαβαβ-=+-=+-+--. 7)(),+=αβαβγβααχβ+-=∴=-是方程的解.又若1γ也是+=αχβ的解,则1+=+αγαγ.两边左加α-,有1=γγ.所以方程+=αχβ在V 中有唯一解.4.判断一个非空集合M 不是线性空间有哪些基本方法? 答:1)M 是至少含两个元的有限集;2)M 关于定义的某一运算不封闭; 3)M 不满足8条规则中的任一条.5.线性空间的例子.答:1)数域P 按照数的加法和乘法构成自身上的一个线性空间.特别的,实数域R 和复数域 C 按照数的加法和乘法都是自身上的线性空间.2)已知数域⊆P 数域P ,按照数的加法和乘法,P 构成P 上的线性空间.3)三维空间中与已知向量的全体再添加零向量,对于向量的加法与数乘运算构成一个 实线性空间.4)分量属于数域P 的全体n 元数组,对于n 元数组的加法与数乘构成P 上的一个线性 空间,记作nP .5)无穷实数列的全体:12={()|1,2}i I x x x i ∞∈=,,R ,,对于121211221212()()()=(),x x y y x y x y k x x kx x k R +=++∈,,,,,,,(,,),k ,构成一个实线性空间.6)n 元齐次线性方程组0x =A 的解向量的全体,对于n 维向量的加法和数乘构成P 上的线性空间(为nP 的子空间).7)元素属于数域P 的m n ⨯矩阵的全体,对于矩阵的加法与数乘构成P 上的线性空间.8)数域P 上全体n 阶对称(反对称,上三角)矩阵对于矩阵的加法与数乘构成P 上的线性空间.9)设m n ⨯∈A P,则全体与A 可交换的矩阵的集合,对于矩阵的加法与数乘构成m n⨯P的一个线性空间.10)数域P 上全体满足条件trA=0(trA 表示A 的迹,即A 的主对角线元素之和)的n 阶矩阵的集合,对于矩阵的加法和数乘构成P 上的一个线性空间.11)数域P 上全体一元多项式的集合,对于多项式的加法和数与多项式的乘法构成P 上的线性空间,记作x P[].12)次数小于n 的一元多项式及零多项式的集合,对于多项式的加法和数与多项式的乘法构成P 上的线性空间,记作n x P[].13)集合W={()|()(1)0}n f x f x x f ∈=R[]且对于多项式的加法和数与多项式的乘法构成R 上的线性空间.14)数域P 上形如352113521n n a x a x a x a x ++++++的多项式的全体,对于多项式的加法和数与多项式的乘法构成P 上的线性空间.15)数域P 上多项式()g x 的倍式的全体:W={()|()|()}f x g x f x ,对于多项式的加法和数与多项式的乘法构成P 上的线性空间. 16)由0及数域P 上的m 元n 次多项式121211212(,)()m m m k k k m k k k m k k nf x x x a x xx k ++==∑,,为正整数的全体,对于多项式的加法及数与多项式的乘法构成P 上的线性空间,其中12mk k k a P ∈.17)对于在区间[,]a b 上的实函数的全体,对于函数的和及数与函数的积,构成R 上的线性空间.[,]a b 上的连续实函数全体为其子空间,记作[,]C a b .18)全体形如1122sin cos sin 2cos 2sin cos 2n n a a t b t a t b t a nt b nt +++++++的实函数,对于函数的和及数与函数的积,构成R 上的线性空间.6.下列集合关于指定运算均不构成线性空间:1)起点在原点,终点在不经过原点的直线上的空间向量的全体,按向量的加法与数乘运算;2)非齐次线性方程组AX=b(b ≠0)的解向量的全体,按向量的加法与数乘运算; 3)数域P 上次数不低于定数n 的多项式的全体并添上零多项式,按多项式的加法与数乘运算;4)有理数域定义运算:,;2k k βαβ∂∂⊕=+∂= 5)设P 为有理数域,对整数集定义运算:1,k βαβ∂⊕=+-∂=∂.证:1)集合不含零向量,所以不是线性空间.2)如果集合是空集,则不是线性空间. 如果集合非空,则由于不含零向量,所以也 不是线性空间.3)因两个次数不低于n 的多项式之和的次数可能低于n ,即关于多项式的加法不封闭,所以不是线性空间.4)因1(0)2∂∂=≠∂∂≠不满足线性空间定义中的规则5),所以不是自身上的线性空间.5)取3,1,k l ∂===则()3,k l +∂=而5k l ∂⊕∂=.故()k l +∂≠(k l ∂⊕∂),不满足线性空间定义中的规则7),所以集合不是线性空间.7.什么叫做向量的线性相关和线性无关? 答:设V 是数域P 上的线性空间,且()1,,,1i a V i s s ∈=≥,如果存在一组不全为零的数()1,,i k P i s ∈=,使得()11220s s k a k a k a +++=, (1)那么称向量组1,,s a a 是线性相关的,否则,称它们是线性无关的.注 ○1一个向量不是线性相关,就一定是线性无关,两者必居其一且仅居其一. ○21,,s a a 线性无关 ⇔(1)式仅当10s k k ===成立.8.设1,,n αα线性相关,是否对任意一组不全为零的1,,n k k 都有110n n k k αα++=?答:不一定,比如0α=是线性相关的,它对一切非零数k 都有0k α=.而()()1,0,2,0βγ==就不可能对一切非零数12,k k 使得120k k βγ+=.9.什么叫线性表出?什么叫做两个向量等阶? 答:设12,,,,m αααβ都是数域P 上的n 维向量,如果有P 中的m 个数1,,m k k ,使1122m m k k k βααα=+++,那么称β是12,,,m ααα的线性组合,或称β可以由12,,,m ααα线性表出(线性表示).如果向量组12,,,r ααα中每个向量都可以由向量组12,,,s βββ线性表出,且12,,,s βββ中的每个向量都可以由12,,,r ααα线性表出,那么称向量组12,,,r ααα与向量组12,,,s βββ是等价的.10.向量组之间的等价是不是一种等价关系? 答:是的.不难证明以下三条成立:1) 反身性:每一个向量组都与自身等价. 2) 对称性:如果12,,,r ααα与12,,,s βββ等价,那么12,,,s βββ也与12,,,r ααα等价.3) 传递性:如果12,,,r ααα与12,,,s βββ等价,而12,,,s βββ与12,,,t γγγ等价,那么12,,,r ααα与12,,,t γγγ等价.11.向量的线性相关性有哪些主要性质? 答:容易证明的有:1) 零向量是线性相关的.含零向量的向量组也是线性相关的 2) 单个非零向量是线性无关的. 3) 设向量组()12,,,2m m ααα≥,则它们线性相关⇔至少存在一个向量,它可以由其余向量线性表出.4) 向量组()I 中如果有部分向量线性相关,则()I 一定线性相关. 5) 向量组()I 线性无关,则()I 的任意一个部分组必线性无关. 6) 向量组12,,,r ααα可以由向量组12,,,s βββ线性表出,则12,,,r ααα线性无关r s ⇔≤.7) 任意1n +个n 维向量必线性相关.8) 两个线性无关的等价向量组,必含有相同个数的向量. 12.(){}12,,,|.n n i P c c c c P =∈()1,,,1,2,,n i i in a a P i mα=∈=,则12,,,m ααα线性相关'0A x ⇔=有非零解,其中()()'1,,ij m m n A a x x x ⨯==.7.设()()1,1,,,,,1,2,,n i i ik i k in a a a a P i m α+=∈=,令()1,,i ik βαα=()1,2,,i m =则 1)若12,,,m ααα线性相关⇒12,,,m βββ线性相关;2)若12,,,m ααα线性无关⇒12,,,m βββ线性无关.证:1)若存在不全为零的数1,,m l l ,使110m m l a l a ++=,则当然有110m m l l ββ++=.2)用反证法.若12,,,m ααα线性相关,则由1)知12,,,m βββ也线性相关,矛盾.13.如果12,,,m ααα线性无关,但12,,,,m αααβ线性相关,那么β可由12,,,m ααα线性表出,且表示法唯一.证:由假设存在一组不全为零的数11,,m k k +使1110m m m k k k ααβ++++=.若10m k +=,则由110m m k k αα++=,可证10m k k ===.这与假设矛盾,故10m k +≠,于是11m m l a l a β=++,其中1/,1,2,,i i m l k k i m +=-=.即β可由12,,,m ααα线性表出. 若1111m m m m l a l a s a s a β=++=++,则()()1110m mm l s ls αα-++-=.由12,,,m ααα线性无关,得()1,2,,i i l s i m ==,即表示法是唯一的.14.什么叫做极大线性无关组? 答:如果向量组的一个部分组满足 1) 此部分组线性无关;2) 原向量组每个向量都可由这个部分组线性表出,则称此部分组是原向量组的一个极大线性无关组.注:向量组与极大线性无关组是等价的.15.一个向量组的极大线性无关组是否唯一?答:一般不唯一.比如,()()()0,0,1,0,2,0αβγ===,则β是,,αβγ的极大线性无关组;γ也是,,αβγ的一个极大线性无关组.注:○1一个向量组有多个极大线性无关组时,这些极大线性无关组之间也互相等价.○2由5.可知两个极大线性无关组虽可不同,但它们所含向量的个数相等.16.什么叫做向量组的秩? 答:向量组的一个极大线性无关组所含向量的个数,称为向量组的秩.只含零向量的向量组,规定它的秩为0.17.设V 是数域P 上的线性空间,1,,n αα,1,,s V ββ∈,且1,,n αα线性无关,()()11,,,,s n A ββαα=,其中(),i j i j n s A P αα⨯=∈,再设()1,,s A c c =,其中1,,s c c 为A 的n 维向量.若A k =秩,且1,,i ik c c 为()1,,s A c c =的一个极大线性无关组,则1)由(1)式知()12,,,,1,2,,i n i c i s βααα==. (2)○1先证1,,i ik ββ线性无关.设110i k ik l l ββ++=,那么110i k ik l l ββ=++()()112112,,,,,,n i k n ikl c l c αααααα=++()()1211,,,,,.n i k ik l c l c ααα= (3)因为12,,,n ααα线性无关,由(3)知11,,0i k ik l c l c = (4) 在nP 中,1,,i ik c c 线性无关,由(4)知10k l l ===.○2其次,再任取{}12,,,s ββββ∈,那么i c 可由1,,i ik c c 线性表出,即11i i k ik c m c m c =++,于是()12,,,i n i c βααα= ()()1211,,,n i k ik m c m c ααα=++()()112112,,,,,,n i k n ik m c m c αααααα=++11i k ik m m ββ=++.综合○1、○2,即知1,,i ik ββ为1,,s ββ的一个极大线性无关组.2)由1)即得{}1,,=s k A ββ=秩秩.注:这解决了求抽象线性空间V 的向量组的秩的问题.同时还把求极大线性无关组的问题转化为求nP 中一个向量组的极大线性无关组的问题(而这是已知的). 18.设()4321642f x x x x x =++-+,()422234f x x x x =++-,()4323491622f x x x x x =+--+,()43473f x x x x =+-+,求()1f x ,()2f x ,()3f x ,()4f x 的极大线性无关组.解:把()i f x 都看成[]5P x 中元素,取[]5P x 中一组基2341,,,,x x x x ,那么()()234123461174041,,,1,,,,12901316124223f f f f x x x x ⎛⎫ ⎪ ⎪⎪=- ⎪--- ⎪ ⎪-⎝⎭(1)令123461174041,,,,12901316124223C C C C ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪====- ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭可求出1234,,,C C C C 的一个极大线性无关组为234,,C C C .于是(1)式中相应的()()()234,,f x f x f x 为()()()()1234,,,f x f x f x f x 的一个极大线性无关组.19.设1103301121,,,,24127142056A B C D F --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=====⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭为线性空间22R ⨯的一组基,那么()()111221221031213011,,,,,,,.21725421406A B C D F E E E E ⎛⎫ ⎪--⎪= ⎪ ⎪⎝⎭而1031213011321725421406⎛⎫ ⎪--⎪= ⎪ ⎪⎝⎭秩,所以向量组,,,,A B C D F 的秩等于3. 20.设1,,s αα的秩为r ,1,,r i i αα是1,,s αα中r 个向量,使得1,,s αα中每个向量都可被它们线性表出,则1,,ri iαα是1,,s αα的一个极大线性无关组.证:由假设可知1,,s αα可由1,,r i i αα线性表出,但1,,r i i αα可由1,,s αα线性表出是显然的,从而彼此等价.那么{}{}11,,=,,=r i i s r αααα秩秩.1,,r i i αα∴线性无关.21.如果向量组()I 可以由向量组()II 线性表出,那么()I 的秩不超过()II 的秩.证:当向量组()II 的秩为无穷时,结论显然成立.当()II m =秩时,由假设()I 的极大线性无关组也可由()II 的极大线性无关组线性表出,那么由5.之6)可证()()I II m ≤=秩秩. 注:由此可知等价的向量组具有相同的秩.22.设12,,,n n P ααα∈,n 维标准单位向量()()11,0,,0,,0,0,,1n εε==可被它们线性表出,则12,,,n ααα线性无关.证:1,,n αα显然可被1,,n εε线性表出,又1,,n εε可被1,,n αα线性表出,从而它们等价,于是由15.的注知()()11,,=,,=n n n ααεε秩秩.即知1,,n αα线性无关.注:○1这个命题的逆命题也是对的.○2在抽象的n 维线性空间V 中,此命题可改为:设1,,n ββ为V 的一组基,1,,r V αα∈且1,,n ββ可由1,,n αα线性表出,则1,,n αα也是V 的一组基.○3也可改述为:设1,,n αα是线性空间V 中的一组n 维向量,则1,,n αα线性无关⇔V 中任一n 维向量都可被它们线性表出.23.证明:向量组的任何一个线性无关组都可以扩充成一个极大线性无关组. 证:设n 维向量组()I 中一个线性无关组()12II :,,,s ααα,如果()I 中每个向量可经()II 线性表出,则()II 为()I 的一个极大无关组.否则至少有一个向量()I α∈不能由()II 线性表出,将添到()II 中成为向量组()III ,则()III 中向量是线性无关的.这样继续下去,经过有限步(不大于n )后,向量组()II 即可扩充为()I α∈的一个极大无关组.24.设向量组12,,,m ααα线性无关,12,,,,,m αααβγ线性相关.证明:或者β与γ中至少有一个可由12,,,m ααα线性表出,或者12,,,,m αααβ与12,,,,m αααγ等价.证:因12,,,,,m αααβγ线性相关,所以存在不全为零的数12,,,,,m k k k b c 使110m m k k b c ααβγ++++=.显然,,b c 不全为零,否则与12,,,m ααα线性无关矛盾.当0,0b c ≠=时,β可由12,,,m ααα线性表出;当0,0b c ≠≠时,β可由12,,,,m αααγ线性表出,γ可由12,,,,m αααβ线性表出,因而12,,,,m αααβ与12,,,,m αααγ等价.25.设12,,,n n P ααα∈且线性无关,则12,,,n A A A ααα线性无关⇔()=A n 秩.其中A是数域P 上的n n ⨯矩阵. 证:令()12,,,n B ααα=.因1,,n αα线性无关,所以0B ≠.必要性 设12,,,n A A A ααα线性无关,即()()11,,,,0n n A A A AB A B αααα===≠.所以0A ≠,即()=A n 秩.充分性 设()=A n 秩,即0A ≠,从而()()11,,,,0n n A A A AB A B αααα===≠.所以12,,,n A A A ααα线性无关.26. 设向量组12,,,s ααα的秩为r ,在其中任取m 个向量12,,,mi i i ααα,则{}12,,,m i i i r m s ααα≥+-秩.证:设12,,,m i i i ααα的秩为t ,现将它的一极大无关组(含t 个向量)扩充为1,,s αα的一个极大无关组(含s 个向量).因此扩充的线性无关向量的个数为r t -.因1,,s αα除向量组1,,m i i αα外,还有s m -个向量,因此,r t s m -≤-,即t r m s ≥+-.27.设123r βααα=+++,213r βααα=+++,,121r r βααα-=+++,则1)1,,r ββ与1,,r αα有相同的秩;2)1,,r αα的任意一个极大线性无关组也是11,,,,,r r ααββ的极大线性无关组.证:1)由假设知1,,r ββ可由1,,r αα线性表出.但是()()1212+=1r r r βββααα++-+++()()12121=+1r r r αααβββ+++++- (1)用(1)式减去假设的每一个式子,可得11221212211,111121,111112.111r r r r r r r r r r r r r r r r αβββαβββαβββ-⎧=+++⎪---⎪-⎪=+++⎪---⎨⎪⎪-⎪=+++⎪⎩--- 即1,,r αα也可由1,,r ββ等价,所以{}{}11,,,,r r r ββαα=≤秩秩.2) 由1)知1,,r αα与11,,,,,r r ααββ等价,可知1,,r αα的一个极大线性无关组就是11,,,,,r r ααββ的一个极大线性无关组.28.设向量组1,,s αα中10α≠且每个()2,3,,i i s α=都不能由11,,i αα-线性表出,则1,,s αα线性无关.证:用反证法.如果1,,s αα线性相关,那么有不全为零的数12,,,s k k k 使1122=0s s k k k ααα+++ (1)从右至左,设第一个不为零的数是l k ,而10l s k k +===,则(1)式为1122=0l l k k k ααα+++.因10α≠,所以1l ≠,故112121111l l l k k kk k k αααα--=----.即l α可由121,,,l ααα-线性表出,此与题设矛盾.所以1,,s αα线性无关.29.如果()()()123,,f x f x f x 是线性空间[]P x 中三个互素的多项式,但其中任意两个都不互素,那么它们线性无关.证:用反证法.如果它们线性相关,即存在不全为零的数123,,k k k ,使()()()1122330k f x k f x k f x ++=.不妨设10k ≠,则()()()3212311=k k f x f x f x k k --+. 此式说明()()23,f x f x 的最大公因式就是()1f x 的因式,即()()()()()()()12323,=,f x f x f x f x f x .此与()()()()123,=1f x f x f x 及()()()23,1f x f x ≠矛盾,所以()()()123,,f x f x f x 线性无关.30.设12,,,m ααα线性无关,则122311,,,,m m m αααααααα-++++线性无关的充分必要条件是m 为奇数.证:令112223111,,,,m m m m m βααβααβααβαα--=+=+=+=+,由题设得()()1212,,,,,,m m A βββααα=,其中10110011n mA ⨯⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 按第一行展开,()12,110,m m A m +⎧=+-=⎨⎩为奇数;为偶数,而12,,,m βββ线性无关的充分必要条件是0A ≠,即m 为奇数31.设向量组12,,,m ααα线性相关,但其中任意1m -个向量都线性无关,则 1)等式1122=0m m k k k ααα+++中的系数()1,,i k i m =或者全为0,或者全不为0.2)当存在两个等式1122=0m m k k k ααα+++ (1) 1122=0m m l l l ααα+++ (2)其中10l ≠时,(1),(2)的对应系数成比例:1212mmk k k l l l ===. 证:1)当()1,,i k i m =全为0时,恒为等式的解.以下设有一个i k 不等于0,不失一般性,设10k =.此时其余的()2,,i k i m =都不为0.若等式化为()100j j j ik k α≠=≠∑,于是这1m -个向量线性相关,此与题设矛盾.2) 由于10l ≠,由1)知: 2,,m l l 均不为0.如果()1,,i k i m =全为0,那么结论成立.否则i k 全不为0,()()112i l k ⨯-⨯,得()()11212211100m m r l k k l l k k l ααα-+-++-=.由1),因1α的系数为0,所以2,,m αα的系数全为0,即121210m m l k k l l k k l =-==-,即1212mmk k k l l l ===.32.求向量组()11,2,2,3α=-,()22,4,1,3α=--,()31,2,0,3α=-,()40,6,2,3α=,()52,6,3,4α=-的一个极大线性无关组.解1(初等变换法)以12345,,,,ααααα为列作矩阵A ,对A 施行初等变换为阶梯型矩阵B :1210212102242660322121023000313333400000A B ----⎛⎫⎛⎫⎪ ⎪---⎪ ⎪=→= ⎪ ⎪---⎪ ⎪⎝⎭⎝⎭. 由B 可知:124,,ααα;134,,ααα;125,,ααα;135,,ααα均为原向量组的极大无关组. 注:用这种方法可以找到向量间的全部极大无关组.解2(子式法)因矩阵A 的4阶子式均为0,而3阶子式11022612022--=-≠,所以134,,ααα为一极大无关组.解3(逐一扩充法)因10α≠,所以1α线性无关,又因12,αα对应分量不成比例,故12,αα线性无关.因123,,ααα线性相关(这可由123,,ααα作成的矩阵的所有3阶子式为0看出),所以3α不收入.再观察124,,ααα,由于124,,ααα作成的矩阵有非零的3阶子式,所以124,,ααα线性无关,又因1245,,,αααα线性相关,所以124,,ααα为一极大无关组.33.什么叫做线性空间的基于维数?答:如果数域P 上的线性空间V 有n 个线性无关的向量12,,,n ααα,而且V 中每个向量都可以由它们线性表出,那么称这组向量为V 的一组基(基底).也称12,,,n ααα生成(或张成)线性空间V .12,,,n ααα为V 的一组生成元.基中所含向量的个数n 称为V 的维数,记作dim V n =或()V n =维.称V 为维线性空间.如果V 中有任意多个线性无关的向量,那么称V 为无限维线性空间,记为dim V =∞.如果{}0V =,那么称V 是零维的,记为dim 0V =.注:○1线性空间V 的基,实际上就是V 的一个极大线性无关组.○2一个线性空间V 有一组基1,,n αα,取()ij n nA α⨯=,当0A ≠时,令,其中为的列向量,令()1,,n A c c =,其中1,,n c c 为A 的列向量,令()1,,i n i c βαα=()1,2,,i n =则可知1,,n ββ也是V 的一组基.由此可知V 的基不是唯一的.○3两组基之间是互相等价的,因为向量组的两个极大线性无关组是互相等价的.34.几类重要的线性空间的维数与基是什么?答:1)数域P 看成自身上的线性空间,则1是它的一组基,dim 1P =. 2)复数域C 看成实数域R 上的线性空间,1,i 是C 的一组基,dim 2P =.3)实数域R 看成有理数域Q 上的线性空间,则dim P =∞.事实上,21,,,ππ是线性无关的.因为如果21,,,,n πππ线性相关的话,那么π是代数数了,而π是超越数.故对一切自然数n ,向量组21,,,,n πππ都线性无关,由n 的任意性,故dim P =∞.4)全体正实数R +,定义a b ab ⊕=,kk a a =,则R +为R 上的1维线性空间.任何一个非零向量都是其一组基.因1是其零向量,取定(),1,1R Ra ββα++∈≠∀∈≠,有()log log βαβαβαβ==,即α可由β线性表出,所以是一维的.5)数域P 上的全体n 元数组构成的线性空间nP 是n 维的,()11,0,,0ε=,()20,1,,0ε=,,()0,,0,1n ε=是一组基.6)n 元齐次线性方程组0Ax =(A 为m n ⨯矩阵,()=A r 秩)的解空间是n r -维的,其基础解系是它的一组基.7)元素属于数域P 的m n ⨯矩阵的全体m nP⨯的维数是mn .以ij E 表示第i 行第j 列元素为1,其余元素为0的m n ⨯矩阵,则()1,2,,;1,2,,ij E i m j n ==为m n P ⨯的一组基.8)实数域上全体n 级实对称矩阵构成的线性空间的维数是()12n n +.()1ij ij E E i j n +≤≤≤为一组基. 9)实数域上全体n 级反对称矩阵构成的线性空间的维数是()12n n -.()1ij ij E E i j n -≤≤≤为一组基. 10)实数域上全体n 级上三角矩阵构成的线性空间的维数是()12n n +.()1ij E i j n ≤≤≤为一组基.11)全体形如1230n nX P X X ⨯⎛⎫∈⎪⎝⎭的矩阵(1X 为r r ⨯矩阵)构成的线性空间,因零块有()r n r -个元素,所以线性空间的维数是()2n r n r --.(),;,1,2,,ij E i r j r i r j n ≤≤≥=为一组基.12)全体n nA P⨯∈且满足0trA =(A 的迹为0)的矩阵构成的线性空间的维数是()()2211nn n n -+-=-,除nn E 外的一切,,1,2,,ij E i j n =为一组基.13)次数小于n 的一元多项式的全体加上零多项式构成的线性空间[]n P x 的维数是n ,且211,,,,n x x x -为一组基.14)线性空间()()[](){}|10n W f x f x R x f =∈=且的维数是1n -.且121,1,,1n n x x x -----是W 的一组基.15)数域P 上m 元n 次齐次多项式()()121211212,,,mmm k k k m k kk m i k k nfx x x x x x k α++==∑为正整数和零多项式构成的线性空间的维数是()()()()1211n n n m m +++--!,1212mk k k mx x x 1m i i k n =⎛⎫= ⎪⎝⎭∑为一组基.事实上,上述向量组线性无关是显然的,它的个数实际上是从m 种元素中每次取n 个元素的有重复的组合数,即()12nm x x x +++展开后不同类的项数:()()()()1111211n n m m n m n m n n n m C C C m -+-+-+++-===-!.16)分量属于复数域的全体n 元数组构成实数域R 上的线性空间的维数是2n .()11,0,,0ε=,()20,1,,0ε=,,()0,,0,1n ε=,()11,0,,0η=,()20,1,,0η=,,()0,,0,1n η=为一组基(为虚数单位).17)线性空间V 中m 个向量生成的子空间()1,,m L αα的维数等于1,,m αα的秩,1,,m αα的任一极大无关组都是()1,,m L αα的一组基.36.V 为矩阵A 的实系数多项式的全体构成的线性空间,求V 的维数及一组基,其中210000,00A ωωω⎛⎫⎪== ⎪ ⎪⎝⎭解:因为212ω-=,31ω=,所以21,3;,31;,3 2.nn k n k n k ωωω=⎧⎪==+⎨⎪=+⎩从而2232100,3;00,,,31;00,3 2.n E n k A A E A A n k A n k ωω=⎛⎫⎧⎪ ⎪====+⎨ ⎪⎪ ⎪=+⎝⎭⎩设21230k A k A k E ++=,得1232123212300,0.k k k k k k k k k ωωωω++=⎧⎪++=⎨⎪++=⎩,(1)因系数行列式不为零,所以方程组(1)只有零解:1230k k k ===.说明2,,E A A 线性无关.由于A 的实系数多项式()f A 是2,,E A A 的线性组合,所以V 的维数是3. 2,,E A A 是V 的一组基.37.V 为矩阵A 的实系数多项式的全体构成的线性空间,求V 的维数及一组基,其中()120,,0i j in a a A a a i j a R a ⎛⎫⎪⎪=≠≠∈ ⎪ ⎪⎝⎭.解:易证对正整数k ,有11201100k kn n k n a a A k E k A k A a --⎛⎫ ⎪⎪==+++ ⎪ ⎪ ⎪⎝⎭. (1)事实上,由矩阵的相等得,101111110121221011,,.n k n n kn n k n n n n k k a k a a k k a k a a k k a k a a ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ (2)(2)式的系数行列式D 是范德蒙行列式,故()10ji i j nD aa ≤≤≤=-≠∏.所以方程组有唯一解011,,,n k k k -.这就证明了(1).再令10110n n k E k A k A --+++= (3)(3)式为(2)式右端为零的情形.由于0D ≠,所以只有零解:0110n k k k -====,说明1,,,n E A A -线性无关.由于A 的实系数多项式()f A 是21,,,,n E A A A -的线性组合,所以dim V n =,21,,,,n E A A A -为一组基.38.设V 为数域P 上的线性空间,V 为从V 中任取m 个元素组成的向量()12,,,m ααα的集合.1)按向量的加法和数乘运算,V 为P 上的线性空间; 2)当V 为无限维时,V 也是无限维; 3)当V 为n 维时,求V 的维数和一组基. 证:1)()0=00V ∈,,,V ∴非空.另外,V 关于加法和数乘运算封闭,且满足定义中的8条规则,所以V 是域P 上的线性空间. 2)当V 是无限维时,取12,,,n βββ为V 的n 个线性无关的向量,令(),0,,0i i ηβ=()1,2,,i n =,则12,,,n ηηη线性无关.由n 的任意性知,V 有任意个线性无关的向量,即V 是无限维的.3)当dim V n =,可推得dim V mn =. 事实上,设12,,,n εεε为V 的一组基.令()1,0,,0i i ηε=,()20,,,0i i ηε=,,()0,0,,ni i ηε=,1,2,,i n =,则这个m n ⨯个向量均线性无关.()12,,,m V αααα∀=∈,因()11,2,,nj ij i i k j m αε=∀==∑,所以()1212111,,,,,,m nnnm i i i i i i i i i k k k αααεεε===⎛⎫= ⎪⎝⎭∑∑∑()()()12111,0,,00,,,00,0,,nnni i i i i i im i i i i i k k k εεεεεε====+++∑∑∑1122111nnni i i i im im i i i k k k ηηη====+++∑∑∑.即α可由mn 个向量()1,,;1,,ij i n j m η==线性表出,所以它们是V 的一组基,dim V mn =.39.什么叫做向量的坐标?答:设V 为数域P 上的n 维线性空间,1,,n αα为V 的一组基.设V β∈,则()111221,,n n n n k k k k k βααααα⎛⎫ ⎪=+++= ⎪ ⎪⎝⎭.称()1,,n k k 为β在基1,,n αα下的坐标.注:○1同一个向量β,在不同基下的坐标一般是不相同的.○2同一个β,当基1,,n αα排列顺序不同时,坐标也不同.比如V 的一组基为123,,ααα,令12335βααα=++,那么β在基123,,ααα下的坐标为()1,3,5,而在下的坐标为()1,5,3.○3这里的坐标概念是解析几何中坐标概念的推广.在平面解析几何中,相当于取基()11,0e =,()20,1e =,在空间解析几何里,相当于取基()11,0,0η=,()20,1,0η=,()30,0,1η=.而代数中是把它们抽象化,并把上述情形作为特例. V 中的基1,,n αα相当于建立一个坐标系.β的坐标()12,,,n n k k k P ∈,相当于β在坐标系12,,,n ααα下的坐标.40.什么叫过渡矩阵?答:过渡矩阵相当于n 维线性空间V 的两组基之间的变换公式.下面给出定义.设1,,n αα与1,,n ββ为V 的两组基,那么()1,,i n i c βαα=,1,2,,k n =. (1)其中12,,1,2,,i i i ki ni c P k n αααα⎛⎫ ⎪ ⎪=∈= ⎪ ⎪⎝⎭.把(1)式改写为()()11,,,,n n A ββαα=. (2)其中()()1,,n n ij n n nA c c P α⨯⨯==∈.称A 为基1,,n αα到基1,,n ββ的过渡矩阵,并称(2)为基变换公式.注:○1如果0A ≠,即A 为可逆矩阵.○2由(2)式知()()111,,,,n n A ααββ-=, (3)即1A -为基1,,n ββ到基1,,n αα的过渡矩阵.○3求1,,n αα到1,,n ββ的过渡矩阵A ,只要求出每个i β在基1,,n αα下的坐标(1)即可.41.什么叫坐标变换公式? 答:设1,,n αα与1,,n ββ为V 的两组基,由基1,,n αα到基1,,n ββ的过渡矩阵为A .向量γ在基1,,n αα下的坐标为()1,,n x x .设γ在基1,,n ββ下的坐标为()1,,n y y ,那么111n n y x A y x -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (1) 公式(1)称为坐标变换公式.42.设1,,n αα为线性空间V 的一组基.1)1121212,,,n n βαβααβααα==+=+++也是V 的一组基.2)当向量α在基1,,n αα下的坐标为(),1,,2,1n n -时,求α在基1,,n ββ下的坐标.证:1)因为()()11,,,,n n A ββαα=,其中1101A ⎛⎫ ⎪=⎪ ⎪⎝⎭,1A =, 所以1,,n ββ线性无关,从而为V 的一组基.2)设α在基1,,n ββ下的坐标为()1,,n x x ,由坐标变换公式知121110111112201111n n n x n n x A x -⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭. 43.在[]3P x 中,求221,,x x x x ++到基221,,x x x x -+的过渡矩阵. 解:因为21,,x x 为[]3P x 的基,所以()()()22221001,,1,,1101,,111x x x x x x x x A ⎛⎫⎪++=-= ⎪ ⎪-⎝⎭. (1) 于是()()()2221221001,,1,,=1,,110111x x x x x x A x x x x -⎛⎫⎪=++++- ⎪ ⎪-⎝⎭. (2) 又()()()22221001,,1,,0111,,011x x x x x x x x B ⎛⎫⎪-+== ⎪ ⎪-⎝⎭, (3) 将(2)代入(3)得()()()22221221001,,1,,1,,111120x x x x x x x x A B x x x x -⎛⎫⎪-+=++=++- ⎪ ⎪-⎝⎭. 所以100111120C ⎛⎫⎪=- ⎪ ⎪-⎝⎭为所求的过渡矩阵.44.已知()()()()12341,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,εεεε=⎧⎪=--⎪⎨=--⎪⎪=--⎩()()()()12341,2,3,1,2,1,0,1,1,1,0,1,2,1,1,2,ηηηη=⎧⎪=⎪⎨=--⎪⎪=-⎩分别是4P 的两组基,求i ε到()1,2,3,4i i η=的过渡矩阵.并求()1,1,0,1δ=-关于基1234,,,ηηηη的坐标.解:因为()11,0,0,0δ=,()20,1,0,0δ=,()30,0,1,0δ=,()40,0,0,1δ=是4P 的基,由i δ到()1,2,3,4i i ε=的过渡矩阵A 以及由δ到()1,2,3,4i i η=的过渡矩阵B 分别为1111111111111111A ⎛⎫ ⎪--⎪= ⎪-- ⎪--⎝⎭, 1212211130011112B ⎛⎫⎪- ⎪= ⎪ ⎪--⎝⎭由i ε到()1,2,3,4i i η=的过渡矩阵为1A B C -=,1741212141103443212C A B --⎛⎫⎪- ⎪==⎪ ⎪--⎝⎭. 令δ关于基()1,2,3,4i i η=的坐标为()1234,,,x x x x ,则121341112105413x x B x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. 45.什么叫做线性子空间?答:设W 是数域P 上线性空间V 的非空子集,如果W 对于V 的两种运算(加法和数量乘法)也构成线性空间,则称W 为V 的一个线性子空间,简称子空间.46.什么叫做V 的平凡子空间?答:V 中仅含单个零向量的子空间称为零子空间,V 本身也是V 的一个子空间,这两个子空间称为V 的平凡子空间,V 除平凡子空间外的子空间(如果存在的话),称为V 的非平凡子空间.47.什么叫做生成子空间?答:V 中任意m 个向量的所有可能的线性组合(){}111,,|,1,2,,m m m i L k k k P i m αααα=++∈=构成V 的一个子空间,称为由1,,m αα张成(或生成)的子空间.注:这一记号非常重要.设V 是n 维的,若()1,,n V L αα=,则1,,n αα为V 的一组基.48.怎样判别子空间?答:设W 是V 的一个非空子集,则W 为V 的子空间的充要条件是:W 对于V 的两种运算是封闭的,即○1,W αβ∀∈都有W αβ+∈; ○2,W k P α∀∈∀∈,都有k W α∈. 条件○1与○2可以合并成一条:,W αβ∀∈及12,k k P ∀∈都有12k k W αβ+∈.49.生成子空间有哪些主要结论? 答:1)()()11,,,,s t L L ααββ=的充分必要条件是1,,s αα与1,,t ββ等价.2)()()()1111,,,,,,,,,s t s t L L L ααββααββ+=.3)()1,,s L αα的维数{}1,,s αα=秩4)n 维线性空间V 的子空间的一组基必可扩充为V 的一组基.50.常见到子空间有哪些?答:1)V 的两个平凡子空间.2)全体实函数组成的线性空间中,由所有实系数多项式组成一个子空间.3)[]n P X 是线性空间[]P X 的n 维子空间.4)线性变换:V V σ→的值域V σ是V 的子空间.设线性变换在某一组基下矩阵为A ,则其维数等于A 秩,σ的核()10σ-是V的子空间,其维数等于dim V A -秩5)线性变换:V V σ→的属于特征值λ的特征向量的全体添上零向量是V 的特征子空间,记作V λ.若dim V n =,设σ在某一组基下的矩阵为A ,则()dim V n E A λλ=--秩6)数域P 上n 元齐次线性方程组0AX =的解空间W 是nP 的子空间,dim W n A =-秩.7. 设1,,n εε为数域P 上线性空间V 的一组基,m n A P ⨯∈,A r =秩,()'11,,n n c c Pα⨯=∈则()'11|,,0ni i n i W c A c c ε=⎧⎫==⎨⎬⎩⎭∑是V 的n r -维子空间.证:1)先证W 是V 的子空间.其0W ∈知W 非空(这时取()()1,,0,,0n c c =即可).任取()11,,n n c c βεε⎛⎫ ⎪= ⎪ ⎪⎝⎭,()11,,n n d W d γεε⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭,那么10n c A c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,10n d A d ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 12,k k P ∀∈,则()1112112,,n n n c d k k k k c d βγεε⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=+ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,111112120n n n n c d c d A k k k A k A c d c d ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.所以12k k W βγ+∈,从而W 为V 的子空间.2)设0Ax =的解空间为1W ,则1dim dim W W n A n r ==-=-秩.51.什么叫做交空间?答:设V 是数域P 上的线性空间,()V I λλ∈都是V 的子空间,则IV λλ∈⋂也是V 的子空间,并称它为()V I λλ∈的交空间. 注:○1显然IV λλ∈⋂也是V λ的子空间.○2子空间的交是线性空间的一种运算.52. 子空间的交有哪些性质?答:1)适合交换律:1221V V V V ⋂=⋂;2)适合结合律:()()123123V V V V V V ⋂⋂=⋂⋂;3)A ,B 分别为m n ⨯与s n ⨯矩阵,A C B ⎛⎫= ⎪⎝⎭.设123,,V V V 分别为0Ax =,0Bx =,0Cx =的解空间,则312V V V =⋂.53.什么叫做和空间?答:子空间的和是线性空间的第二种运算.设1V ,2V 都是V 的子空间,则{}121122|,V V ααααα=+∈∈也是V 的子空间,记作12V V +.一般的,设1,,n V V 都是V 的子空间,它们的和空间定义为{}1212++|,1,2,,n n i i V V V V i n ααααα+++==+∈=.注:○112112V V V V V ⋂⊆⊆+,12212V V V V V ⋂⊆⊆+.○2设W 是线性空间,且()W V I λλ⊆∈,则IW V λλ∈⊆⋂.○3设1V W ⊆,2V W ⊆,W 是线性空间,则12V V W +⊆.54.子空间的和有什么性质? 答:1)1221V V V V +=+;2)()()123123V V V V V V ++=++; 3)下面三条等价 (i )12V V ⊆,(ii)121V V V ⋂=, (iii )122V V V +=,55设1V ,2V 是V 的两个子空间,则1V È2V =1V +2V Û1V Í2V 或2V Í1V 。

第六章线性空间自测练习及答案

第六章线性空间自测练习及答案

第六章 线性空间—自测答案一.判断题1.两个线性子空间的和(交)仍是子空间。

2.两个线性子空间的并仍是子空间。

3.n 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。

4.线性空间中两组基之间的过渡阵是可逆的。

5.两个线性子空间的和的维数等于两个子空间的维数之和。

6.同构映射的逆映射仍是同构映射。

7.两个同构映射的乘积仍是同构映射。

8.同构的线性空间有相同的维数。

9.数域P 上任意两个n 维线性空间都同构。

10.每个n 维线性空间都可以表示成n 个一维子空间的和。

答案:错:2.5.8 对:1.3.4.6.7.9.10 二.计算与证明1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维数。

解:(1)0f =0110n a a a -∴++=……+ 0121n a a a a -∴=----……设11a k =,22a k =,…,11n n ak --=,故0121n a k k k -=----……,21121121()n n n f t k k k k t k t k t ---∴=---+++ 21121(1)(1)(1)n n t k t k tk --=-+-++-因此,W 中任一多项式可写成211,1,,1n t t t ---- 的线性组合,易知211,1,,1n t t t---- 线性无关,故为W 的一组基,且W 的维数为n -1. 2. 求22P ⨯中由矩阵12113A ⎛⎫= ⎪-⎝⎭,21020A ⎛⎫= ⎪⎝⎭,33113A ⎛⎫= ⎪⎝⎭,41133A ⎛⎫= ⎪-⎝⎭生成的子空间的基与维数。

解:取22P ⨯的一组基11122122,,,E E E E ,则有 12341112212221311011,,,)(,,,)12133033A A A A E E E E ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦( 设213110111213333A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,即为1234,,,A A A A 在11122122,,,E E E E 下的坐标矩阵,对其作初等行变换得矩阵1011011-1000000B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1234dim (,,,)2L A A A A rankB ∴==,12,A A 为一组基。

第六章线性空间练习题参考答案

第六章线性空间练习题参考答案

第六章 线性空间练习题参考答案一、填空题1.已知0000,,00V a bc a b c R c b ⎧⎫⎛⎫⎪⎪ ⎪=+∈⎨⎬ ⎪⎪⎪ ⎪+⎝⎭⎩⎭是33R ⨯的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零).3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2,,}n i W a x x x P i n =∈=是P n+1的一个子空间,则a = 0 ,而维(W)=n 4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++.5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123,,εεε到基231,,εεε的过渡矩阵T =001100010⎛⎫⎪⎪ ⎪⎝⎭,而α在基321,,εεε下的坐标是321(,,)x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110⎛⎫⎪ ⎪ ⎪⎝⎭. 6.数域P 上n 级对称矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上(1)2n n -维线性空间,数域P 上n 级上三角矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级对交矩阵全体构成数域P 上n 维线性空间,数域P 上n 级数量矩阵全体构成数域P 上 1 维线性空间.二、判断题1.设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.错.行列式为零的两个方阵的和的行列式未必为零,因此W 中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2.已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间,且维(V )=2. 错.是子空间,但是是4维的,其基为(1,0),(,0),(0,1),(0,)i i .3.设,n n A B P ⨯∈,V 是0A X B ⎛⎫= ⎪⎝⎭的解空间,V 1是AX =0的解空间,V 2是(A+B)X =0的解空间,则12V V V =.正确. 12V V 中的向量既满足AX =0,又满足(A +B)X =0,因此也满足BX=0,即满足0A X B ⎛⎫= ⎪⎝⎭,即为V 中的向量.反之,V 中的向量既在1V 中,又在2V 中,即为12V V 中的向量.因此12V V V =.4.设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,s ααα线性表出,则维(W)=s.正确.根据定理1.5.设W 是线性空间V 的子空间,如果,,V αβ∈但,W W αβ∉∉且则必有.W αβ+∉错误.可能.W αβ+∈如取,αβ为一对互为负向量,则0.W αβ=+∈6. }0|),,{(33321=∈=x R x x x W 是3R 的子空间. 正确. 基为(1,0,0),(0,1,0),维数为2.7.}1|),,{(23321=∈=x R x x x W 是3R 的子空间. 错误.不包含零向量.8.}|),,{(3213321x x x R x x x W ==∈= 是3R 的子空间. 正确.基为(1,1,1),维数为1.9.}|),,{(3213321x x x R x x x W -=∈= 是3R 的子空间. 正确. 基为(1,1,0),(1,0,-1),维数为2. 三、计算题1.求所有与A 可交换的矩阵组成的nn P ⨯的子空间()C A 的维数与一组基,其中100020003A ⎛⎫⎪= ⎪ ⎪⎝⎭.解:设矩阵33()ij B b ⨯=与A 可交换,即有AB BA =.即111213111213212223212223313233313233100100020020003003b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.111213111213212223212223313233313233232222333323b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 所以有,()0,,1,2,3.ij ij ij ib b j i j b i j =-==当i j ≠时,0ij b =,因此11223300()0000b C A b b ⎧⎫⎛⎫⎪⎪⎪=⎨⎬ ⎪⎪⎪ ⎪⎝⎭⎩⎭维数为3,基为112233,,E E E .2.在线性空间P 4中,求由基1234,,,αααα到基1234,,,ββββ的过渡矩阵,并求(1,4,2,3)α=在基1234,,,αααα下的坐标,其中1234(1,0,0,0),(4,1,0,0),(3,2,1,0),(2,3,2,1)αααα===-=- 1234(1,1,8,3),(0,3,7,2),(1,1,6,2),(1,4,1,1).ββββ====--- 解:令过渡矩阵为T ,则有10111432131401238761001232210001T --⎛⎫⎛⎫⎪⎪- ⎪ ⎪= ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭因此1143210112379801231314633100128761232100132213221T ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎪ ⎪ ⎪==⎪ ⎪ ⎪- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭. 令1234114324012320012301x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭112341432114113611010123401274210012200122400013000133x x x x -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (1,4,2,3)α=在基1234,,,αααα下的坐标为(-101,21,-4,3) 四、证明题为定义在实数域上的函数构成的线性空间,令12{()(),()()},{()(),()()}W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--证明:W 1、W 2皆为V 的子空间,且12.V W W =⊕证明:W 1、W 2 分别为偶函数全体及奇函数全体构成的集合,显然W 1、W 2均为非空的.由奇偶函数的性质可得W 1、W 2皆为V 的子空间.()()()()(),()22f x f x f x f x f x V f x +---∀∈=+. 而12()()()(),22f x f x f x f x W W +---∈∈,因此12.V W W =+又12{0}.W W =所以12.V W W =⊕2.设W 是P n 的一个非零子空间,若对于W 的每一个向量12(,,,)n a a a 来说,或者120n a a a ====,或者每一个i α都不等于零,证明:维(W)=1.证明:由W 是P n 的一个非零子空间,可得W 中含有非零向量设1212(,,,),(,,,)n n a a a b b b αβ==是W 中的任二个非零向量,由题意可得每一个,i i a b 都不等于零.考虑向量11112112121211(,,,)(,,,)(0,,,)n n n n b a b a a a a b b b b a a b b a a b Wαβ-=-=--∈.由题设条件有1212110n n b a a b b a a b -==-=,即有1212nna a ab b b ===.即W 中的任二个非零向量均成比例,因此维(W)=1.。

(完整版)第六章线性空间练习题参考答案

(完整版)第六章线性空间练习题参考答案

第六章 线性空间练习题参考答案一、填空题1.已知0000,,00V a bc a b c R c b ⎧⎫⎛⎫⎪⎪ ⎪=+∈⎨⎬ ⎪⎪⎪ ⎪+⎝⎭⎩⎭是33R ⨯的一个子空间,则维(V ) = 3 , V 的一组基是000000000100,100,010*********⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.在P 4中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3k ≠(以1234,,,αααα为行或者列构成的行列式不为零). 3.已知a 是数域P 中的一个固定的数,而1{(,,,),1,2,,}n i W a x x x P i n =∈=是P n+1的一个子空间,则a = 0 ,而维(W)=n 4.维数公式为12dim dim V V +=1212dim()dim()V V V V ++.5.设123,,εεε是线性空间V 的一组基,112233x x x αεεε=++,则由基123,,εεε到基231,,εεε的过渡矩阵T =001100010⎛⎫⎪⎪ ⎪⎝⎭,而α在基321,,εεε下的坐标是321(,,)x x x 由基123,,εεε到基233112,,εεεεεε+++的过渡矩阵为T =011101110⎛⎫⎪⎪ ⎪⎝⎭.6.数域P 上n 级对称矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级反对称矩阵全体构成数域P 上(1)2n n -维线性空间,数域P 上n 级上三角矩阵全体构成数域P 上(1)2n n +维线性空间,数域P 上n 级对交矩阵全体构成数域P 上n 维线性空间,数域P 上n 级数量矩阵全体构成数域P 上 1 维线性空间.二、判断题1.设n n V P ⨯=,则{,0}n n W A A P A ⨯=∈=是V 的子空间.错.行列式为零的两个方阵的和的行列式未必为零,因此W 中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2.已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间,且维(V )=2. 错.是子空间,但是是4维的,其基为(1,0),(,0),(0,1),(0,)i i .3.设,n n A B P ⨯∈,V 是0A X B ⎛⎫= ⎪⎝⎭的解空间,V 1是AX =0的解空间,V 2是(A +B)X =0的解空间,则12V V V =.正确. 12V V 中的向量既满足AX =0,又满足(A +B)X =0,因此也满足BX =0,即满足0A X B ⎛⎫= ⎪⎝⎭,即为V 中的向量.反之,V 中的向量既在1V 中,又在2V 中,即为12V V 中的向量.因此12V V V =.4.设线性空间V 的子空间W 中每个向量可由W 中的线性无关的向量组12,,,s ααα线性表出,则维(W)=s.正确.根据定理1.5.设W 是线性空间V 的子空间,如果,,V αβ∈但,W W αβ∉∉且则必有.W αβ+∉错误.可能.W αβ+∈如取,αβ为一对互为负向量,则0.W αβ=+∈ 6. }0|),,{(33321=∈=x R x x x W 是3R 的子空间.正确. 基为(1,0,0),(0,1,0),维数为2. 7.}1|),,{(23321=∈=x R x x x W 是3R 的子空间. 错误.不包含零向量.8.}|),,{(3213321x x x R x x x W ==∈= 是3R 的子空间. 正确.基为(1,1,1),维数为1.9.}|),,{(3213321x x x R x x x W -=∈= 是3R 的子空间. 正确. 基为(1,1,0),(1,0,-1),维数为2. 三、计算题1.求所有与A 可交换的矩阵组成的nn P ⨯的子空间()C A 的维数与一组基,其中100020003A ⎛⎫⎪= ⎪ ⎪⎝⎭.解:设矩阵33()ij B b ⨯=与A 可交换,即有AB BA =.即111213111213212223212223313233313233100100020020003003b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.111213111213212223212223313233313233232222333323b b b b b b b b b b b b b b b b b b ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 所以有,()0,,1,2,3.ij ij ij ib b j i j b i j =-==当i j ≠时,0ij b =,因此11223300()0000b C A b b ⎧⎫⎛⎫⎪⎪⎪=⎨⎬ ⎪⎪⎪ ⎪⎝⎭⎩⎭ 维数为3,基为112233,,E E E .2.在线性空间P 4中,求由基1234,,,αααα到基1234,,,ββββ的过渡矩阵,并求(1,4,2,3)α=在基1234,,,αααα下的坐标,其中1234(1,0,0,0),(4,1,0,0),(3,2,1,0),(2,3,2,1)αααα===-=- 1234(1,1,8,3),(0,3,7,2),(1,1,6,2),(1,4,1,1).ββββ====--- 解:令过渡矩阵为T ,则有10111432131401238761001232210001T --⎛⎫⎛⎫⎪⎪- ⎪ ⎪=⎪ ⎪- ⎪⎪-⎝⎭⎝⎭因此1143210112379801231314633100128761232100132213221T ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--⎪ ⎪ ⎪==⎪ ⎪ ⎪- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭. 令1234114324012320012301x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭112341432114113611010123401274210012200122400013000133x x x x -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪===⎪ ⎪ ⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (1,4,2,3)α=在基1234,,,αααα下的坐标为(-101,21,-4,3) 四、证明题1.V 为定义在实数域上的函数构成的线性空间,令12{()(),()()},{()(),()()}W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--证明:W 1、W 2皆为V 的子空间,且12.V W W =⊕证明:W 1、W 2 分别为偶函数全体及奇函数全体构成的集合,显然W 1、W 2均为非空的.由奇偶函数的性质可得W 1、W 2皆为V 的子空间.()()()()(),()22f x f x f x f x f x V f x +---∀∈=+. 而12()()()(),22f x f x f x f x W W +---∈∈,因此12.V W W =+又12{0}.W W =所以12.V W W =⊕2.设W 是P n 的一个非零子空间,若对于W 的每一个向量12(,,,)n a a a 来说,或者120n a a a ====,或者每一个i α都不等于零,证明:维(W)=1.证明:由W 是P n 的一个非零子空间,可得W 中含有非零向量设1212(,,,),(,,,)n n a a a b b b αβ==是W 中的任二个非零向量,由题意可得每一个,i i a b 都不等于零.考虑向量11112112121211(,,,)(,,,)(0,,,)n n n n b a b a a a a b b b b a a b b a a b W αβ-=-=--∈.由题设条件有1212110n n b a a b b a a b -==-=,即有1212n na a ab b b ===.即W 中的任二个非零向量均成比例,因此维(W)=1.。

线性空间习题解答

线性空间习题解答

第六章 线性空间习题解答P267.1设,,M N M N M M N N ⊆==I U 证明: 证明: 一方面.M N M ⊆I 另一方面, 由于M M ⊆,,N M ⊆ 得.N M M I ⊆ 2 证明: (1))()()(L M N M L N M I Y I Y I =.(2))()()(L M N M L N M Y I Y I Y =证明: (1) .),(L N x M x L N M x Y Y I ∈∈∈且则设 即.M x N x M x ∈∈∈或且L x ∈且. 于是有)()(L M N M x I Y I ∈.另一方面,因为 )(,)(L N M L M L N M N M Y I I Y I I ⊆⊆,所以)()()(L N M L M N M Y I I Y I ⊆.(2) 一方面, ))(,)(L M L N M N M L N M Y I Y Y I Y ⊆⊆,所以)()()(L M N M L N M Y I Y I Y ⊆.另一方面, .),()(L M x N M x L M N M x Y Y Y I Y ∈∈∈∀且则若).(,L N M x M x I Y ∈∈则 若∈∈∈∉x L x N x M x 所以且则.,.L N I 总之有)()()(),(L N M L M N M L N M x I Y I I Y I Y ⊆∈所以.3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间. (1) 次数等于n(n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法.(2) 设A 是n ⨯n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法.(3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法.(4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法.(5) 全体实数的二元数列,对于下面定义的运算:),(),(),(2121212211a a b b a a b a b a +++=⊕,)2)1(,(),(211111a k k kb ka b a k -+=ο. (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k ⋅α=0. (7) 集合与加法同(6), 数量乘法为k ⋅α=α.(8) 全体正实数R +,加法和数量乘法定义为: a ⊕b=ab , ka=a k .(1) 否. ,因为2个n 次多项式相加不一定是n 次多项式. 取f (x )=x n , g (x )=x n -1. 则f (x )+g (x )=-1不再是n 次多项式.(2) 是. 因为集合]}[)(|)({x R x f A f V ∈=作为n 级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3) 是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称(反对称,上三角)矩阵.(4) 否. 设{}|V ααβ=为平面上不平行的向量, β=(a,b)≠0. 取α=(a+1,b), γ=(a-1, b), 则α, γ∈V , 但是, α+ γ ∉V . (5) 证明: 10显然V 非空.02 2个代数运算封闭.03 先设R t k b a r b a b a ∈===,),,(),,(),,(332221及βα2121211231212312312312323123122323123(1)(,)(2)()((),()()......................(,()....()((),(()().....................a a b b a a r a a a b b a a b a a a a a a b b b a a r a a a b b b b a a a a a αββααβαβ⊕=⊕=+++⊕+=+++++++=+++++⊕⊕=++=+++++=12312323121311111211121111111211111(,)()(3)0(0,0),0(0,00)(,)(4)(,)...........())(),()())(0,0)01(5)1(1,11(11))(,)2a a ab b b a a a a a a r a b a a b a a b a a b a b a a a b a a b αβααααααα+++++++=++=+=+++==-=--⊕-=+-+-+-===+-==o o o o 的负为21112211111(6)()(,(1)211...............(,((1))(1)())22k l k la lb l l a kla k lb k k a k k la αα=+-=+-+-o o o2111((1(1))2kla klb kla l k =++-+-=(kla 1,klb 1+211((1))2kl k a -=kl o α(7)(k+l)o α =((k+1)a 1,(k+l)b 1+211()(1))2k l k l a ++-=((k+1)a 1,(k+l)b 1+ 22211(2))2k l kl k l a ++--221111111111(,(1)()(1))22ka la kb k k a b l l a ka la =++-++-+⋅k l αα=⊕o o (8)2121212121212121()(,)((),((1)())2k k a a b b a a k a a k b b a a k k a a αβ⊕=+++=++++-+o o 22121122121211(,(1)(1)(1))22ka ka kb k k a kb k k a ka a k k a a =++-++-++-2221211221211(,((1))((1)())22ka ka kb k k a kb k k a k a a =++-++-+2212122211(,(1))((1))22ka kb k k a ka kb k k a αβ=+-⊕+-=⊕满足3,故V 是一个线性空间(6) 否. 不满足定义3之(5): 1100αααα==≠Q ,但这里。

高等代数第6章习题参考答案

高等代数第6章习题参考答案
xM
(N
L),故(M
N)
(M
L) M
(N
L),
于是M
(N
L) (M
N)
(M
L)。
若x M
U(N
I L),则x M
,x
N I L。
在前一情形Xx
M UN,
且X
M
UL,因而x
(M
U N)I(MU L)。
在后一情形,

即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:
1)次数等于n(n1)的实系数多项式的全体,对于多项式的加法和数量乘法;
1
系数多项式组成的空间,其中A=0
0
解1)Pn n的基是Eij}(i, j 1,2,..., n),且dim( Pn n) n2。
... ... ... 1 ...
2) i)
F11,..
令Fij
1
.., Fnn
., 即aijaji1,其 余 元 素 均 为 零,则
.,F1n,F22,..
., F2n,.
n(n 1)维的。
2
3)任一不等于1的正实数都是线性无关的向量,例如取2,且对于任一正实数a,可经2线性
表出,即
.a (log2a)
2,所以此线性空间是
一维的,

2是它的一组基。
4)因为
1 3i
31,所以n
1,n ,n
3q
3q
1,
2
2
,n
3q
2
1
1
E,n
3q
当A,B为反对称矩阵,k为任意一实数时,有
(A+B)=A+B=-A-B=-(A+B),A+B仍是反对称矩阵。(KA)KA K(A) (KA),所以kA是反对称矩阵。 故反对称矩阵的全体构成线性空间。

线性代数习题答案 第六章

线性代数习题答案 第六章

1第六章 线性空间与线性变换1. 验证所给矩阵集合对于矩阵的加法和乘数运算构成线性空间, 并写出各个空间的一个基. (1) 2阶矩阵的全体S 1;解 设A , B 分别为二阶矩阵, 则A , B ∈S 1. 因为(A +B )∈S 1, kA ∈S 1,所以S 1对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε, ⎪⎭⎫ ⎝⎛=10004ε是S 1的一个基.(2)主对角线上的元素之和等于0的2阶矩阵的全体S 2;解 设⎪⎭⎫ ⎝⎛-=a c b a A , ⎪⎭⎫ ⎝⎛-=d f e d B , A , B ∈S 2. 因为 2)(S d a a c b c d a B A ∈⎪⎭⎫ ⎝⎛++++-=+, 2S ka kc kb ka kA ∈⎪⎭⎫ ⎝⎛-=, 所以S 2对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛-=10011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε 是S 2的一个基.(3) 2阶对称矩阵的全体S 3.解 设A , B ∈S 3, 则A T =A , B T =B . 因为 (A +B )T =A T +B T =A +B , (A +B )∈S 3,(kA )T =kA T =kA , kA ∈S 3,所以S 3对于加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=01102ε, ⎪⎭⎫ ⎝⎛=10003ε是S 3的一个基.2. 验证: 与向量(0, 0, 1)T 不平行的全体3维数组向量, 对于数组向量的加法和乘数运算不构成线性空间.解 设V ={与向量(0, 0, 1)T 不平行的全体三维向量}, 设r 1=(1, 1, 0)T , r 2=(-1, 0, 1)T , 则r 1, r 2∈V , 但r 1+r 2=(0, 0, 1)T ∉V , 即V 不是线性空间.3. 设U 是线性空间V 的一个子空间, 试证: 若U 与V 的维数相等, 则U =V .证明 设ε1, ε2, ⋅⋅⋅, εn 为U 的一组基, 它可扩充为整个空间V 的一个基, 由于dim(U )=dim(V ), 从而ε1, ε2, ⋅⋅⋅, εn 也为V 的一个基, 则: 对于x ∈V 可以表示为x =k 1ε1+k 2ε2+ ⋅⋅⋅ +k r εr . 显然, x ∈U , 故V ⊆U , 而由已知知U ⊆V , 有U =V .4. 设V r 是n 维线性空间V n 的一个子空间, a 1, a 2, ⋅⋅⋅, a r 是V r 的一个基. 试证: V n 中存在元素a r +1, ⋅⋅⋅, a n , 使a 1, a 2, ⋅⋅⋅, a r , a r +1, ⋅⋅⋅, a n 成为V n 的一个基.证明 设r <n, 则在V n 中必存在一向量a r +1∉V r , 它不能被a 1, a 2, ⋅⋅⋅, a r 线性表示, 将a r +1添加进来, 则a 1, a 2, ⋅⋅⋅, a r +1是线性无关的. 若r +1=n , 则命题得证, 否则存在a r +2∉L (a 1, a 2, ⋅⋅⋅, a r +1), 则a 1, a 2, ⋅⋅⋅, a r +2线性无关, 依此类推, 可找到n 个线性无关的向量a 1, a 2, ⋅⋅⋅, a n , 它们是V n 的一个基.5. 在R 3中求向量α=(3, 7, 1)T 在基α1=(1, 3, 5)T , α2=(6, 3, 2)T ,α3=(3, 1, 0)T 下的坐标.解 设ε1, ε2, ε3是R 3的自然基, 则 (α1, α2, α3)=(ε1, ε2, ε3)A , (ε1, ε2, ε3)=(α1, α2, α3)A -1,其中⎪⎪⎭⎫ ⎝⎛=025133361A , ⎪⎪⎭⎫⎝⎛-----=-1528981553621A .因为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-173) , ,(173) , ,(1321321A αααεεεα⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----=173152898155362) , ,(321ααα⎪⎪⎭⎫⎝⎛-=1548233) , ,(321ααα,所以向量α在基α1, α2, α3下的坐标为(33, -82, 154)T .6. 在R 3取两个基α1=(1, 2, 1)T , α2=(2, 3, 3)T , α3=(3, 7, 1)T ; β1=(3, 1, 4)T , β2=(5, 2, 1)T , β3=(1, 1, -6)T .试求坐标变换公式.解 设ε1, ε2, ε3是R 3的自然基, 则 (β1, β2, β1)=(ε1, ε2, ε3)B , (ε1, ε2, ε3)=(β1, β2, β1)B -1,(α1, α2, α1)=(ε1, ε2, ε3)A =(β1, β2, β1)B -1A ,其中 ⎪⎪⎭⎫ ⎝⎛=131732121A , ⎪⎪⎭⎫⎝⎛-=614121153B .设任意向量α在基α1, α2, α3下的坐标为(x 1, x 2, x 3)T , 则⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=-3211321321321) , ,() , ,(x x x A B x x x βββαααα,故α在基β1, β2, β3下的坐标为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛'''-3211321x x x A B x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32149910726313941811913x x x .7. 在R 4中取两个基e 1=(1,0,0,0)T , e 2=(0,1,0,0)T , e 3=(0,0,1,0)T , e 4=(0,0,0,1)T ; α1=(2,1,-1,1)T , α2=(0,3,1,0)T , α3=(5,3,2,1)T , α3=(6,6,1,3)T . (1)求由前一个基到后一个基的过渡矩阵; 解 由题意知⎪⎪⎪⎭⎫⎝⎛-=3101121163316502) , , ,() , , ,(43214321e e e e αααα, 从而由前一个基到后一个基的过渡矩阵为⎪⎪⎪⎭⎫⎝⎛-=3101121163316502A . (2)求向量(x 1, x 2, x 3, x 4)T 在后一个基下的坐标; 解 因为⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-43211432143214321) , , ,() , , ,(x x x x A x x x x αααααe e e e ,向量α在后一个基下的坐标为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-4321143213166123501301112x x x x y y y y ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=432126937180092391213327912271x x x x . (3)求在两个基下有相同坐标的向量.解 令⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------4321432126937180092391213327912271x x x x x x x x ,解方程组得⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛11114321k x x x x (k 为常数).8. 说明xOy 平面上变换⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛y x A y x T 的几何意义, 其中(1)⎪⎭⎫ ⎝⎛-=1001A ; 解 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛y x y x y x T 1001, 所以在此变换下T (α)与α关于y 轴对称.(2)⎪⎭⎫ ⎝⎛=1000A ; 解 因为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛y y x y x T 01000, 所以在此变换下T (α)是α在y 轴上的投影.(3)⎪⎭⎫ ⎝⎛=0110A ; 解 因为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛x y y x y x T 0110, 所以在此变换下T (α)与α关于直线y =x 对称.(4)⎪⎭⎫ ⎝⎛-=0110A . 解 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛x y y x y x T 0110, 所以在此变换下T (α)是将α顺时针旋转2π.9. n 阶对称矩阵的全体V 对于矩阵的线性运算构成一个2)1(+n n 维线性空间. 给出n 阶矩阵P , 以A 表示V 中的任一元素, 变换T (A )=P T AP 称为合同变换. 试证合同变换T 是V 中的线性变换.证明 设A , B ∈V , 则A T =A , B T =B . T (A +B )=P T (A +B )P =P T (A +B )T P =[(A +B )P ]T P =(AP +BP )T P=(P T A +P T B )P =P T AP +P T BP =T (A )+T (B ), T (kA )=P T (kA )P =kP T AP =kT (A ), 从而, 合同变换T 是V 中的线性变换.10. 函数集合V 3={α=(a 2x 2+a 1x +a 0)e x | a 2, a 1, a 0 ∈R }对于函数的线性运算构成3维线性空间, 在V 3中取一个基α1=x 2e x , α2=xe x , α3=e x .求微分运算D 在这个基下的矩阵.解 设β1=D (α1)=2xe x +x 2e x =2α2+α1, β2=D (α2)=e x +xe x =α3+α2, β3=D (α3)=e x =α3. 易知β1, β2, β3线性无关, 故为一个基.由 ⎪⎪⎭⎫⎝⎛=110012001) , ,() , ,(321321αααβββ,知即D 在基α1, α2, α3下的矩阵为⎪⎪⎭⎫⎝⎛=110012001P .11. 2阶对称矩阵的全体},,|{32132213R x x x x x x x A V ∈⎪⎭⎫⎝⎛==对于矩阵的线性运算构成3维线性空间. 在V 3中取一个基⎪⎭⎫ ⎝⎛=00011A , ⎪⎭⎫ ⎝⎛=01102A , ⎪⎭⎫ ⎝⎛=10003A .在V 3中定义合同变换⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=10111101)(A A T ,求T 在基A 1, A 2, A 3下的矩阵. 解 因为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=101100011101)(1A T 3211111A A A ++=⎪⎭⎫ ⎝⎛=,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=101111101101)(2A T 3222110A A +=⎪⎭⎫ ⎝⎛=,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=101110001101)(3A T 31000A =⎪⎭⎫ ⎝⎛=,故 ⎪⎪⎭⎫⎝⎛=121011001) , ,())( ),( ),((321321A A A A T A T A T ,从而, T 在基A 1, A 2, A 3下的矩阵⎪⎪⎭⎫⎝⎛=121011001A .。

高等代数课后习题答案(山东大学出版社第二版)第六章线性空间

高等代数课后习题答案(山东大学出版社第二版)第六章线性空间

第六章 线性空间第一节 映射∙代数运算1.(1)双射. (2)非单射也非满射. (3)非单射也非满射. (4)满射. 2.(1)由b a b gf a gf =⇒=)()(.(2)C c ∈∀,B b ∈∃使c b g =)((因为g 为满射),对于b ,又A a ∈∃使b a f =)((因为f 为满射),即c a gf=)(.3.由2知gf为双射,且C I g gff=--11,C I gf g f=--11,因此111)(---=g fgf .4.A b a ∈∀,,若)()(b f a f =,则)()(b gf a gf =,由b a I gf A =⇒=,故f为单射.B b a f A a ∈=∃∈∀)(,,使a a gf b g ==)()(.第二节 线性空间的定义1. (1),(2)不是线性空间;(3),(4),(5),(6)是线性空间.2. 否.因为R i i ∉=⋅1.4. 设α为非零向量,F l k ∈∀,,当l k ≠时, ααl k ≠,因此V中含有无限个向量.5. 因为φ≠∈V )0,0(,显然⊕是V 上的代数运算,"" 为V V R →⨯的代数运算.且容易验证(1)——(8)条运算律均成立.6. 若在nF 中,通常的加法及如下定义的数量乘法: 0=⋅αk .容易验证当0≠α时,αα≠=⋅01,但其余7条运算律均成立.第三节 基维数坐标1. 提示:反证法.2.(1)一个基为),,2,1(n i E ij =,)(j i E E ji ij ≠+,维数为2)1(+n n .(2)一个基为)(j i E E ji ij≠-,维数2)1(-n n .(3)一个基为2,维数为1. (4)一个基2,,A A E ,维数为3.3. 易证n n n l ααααααα,,,,,,2121 +↔,由l 的任意性及当l k ≠时n n k l αααα+≠+11,可得结论.4.易知C x x x a x a x a xn n ),,,,1())(,,)(,,1(1212--=--- ,其中⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-------10)(100)(210)(133122112n n n n n n n a C a C a a a a C且01≠=C .其坐标为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1101n a a a C . 5. (1))3,4,1,4(--. (2) )0,1,0,1(-.6. 22n 维.一个基为),,2,1,(,n j k i E E kj kj =.第四节 基变换和坐标变换1.(1) 过渡矩阵为 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001100001000010 .(2) 过渡矩阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛100010000100001 k .3. 非零向量=ξ),,,(k k k k -,F k ∈且0≠k .4. 易知C n n ),,,(),,,(2113221ααααααααα =+++,其中C 的行列式为1)1(1+-=+n C N k k n k n ∈⎩⎨⎧-===12,22,0. 因此当n 为偶数时不为V 的基;当n 为奇数时为V的基.第五节 线性子空间1. (1),(2)是nF 的 子空间,(3)不是nF 的 子空间. 2. (1) 一个基为1,12--x x ,维数为2.(2)一个基为421,,ααα,维数为3.3. (1)φ≠)(A C ,且)(,21A C B B ∈∀,易证AB B B B A )()(2121+=+,因此)(21A C B B ∈+,又Fk ∈∀,有A kB kB A )()(11=,所以n F kB ∈1,从而)(AC 是n F 子空间.(2)n n F A C ⨯=)(.(3) 一个基为),,2,1(n i E ii =,维数为n .4. 只证3221,,αααα↔.5.若1dim >W ,必V ∈∃βα,,对F k ∈∀均有βαk ≠.令),,,(),,,,(2121n n b b b a a a ==βα且11kb a =,当2≥n 时至少有一个i使i ikb a ≠,于是βαk -的第一个分量为0,但是第i个分量不为0的向量,矛盾.6. 只证V ∈∃α,但1W ∉α且2W ∉α.由1W 为真子空间知,V ∈∃α但1W ∉α,若2W ∉α则结论成立.若2W ∈α,则由2W 为真子空间知V∈∃β但2W ∉β,若则结论成立.若1W ∈β则V ∈+βα但1W ∉+βα,且2W ∉+βα.第六节 子空间的和与直和2.取V 的基n εεε,,,21 ,易证)()()(21n L L L V εεε⊕⊕⊕= .3.显然21211W W W V ++=,设21211=++ααα,其中2211),2,1(,W i W i i ∈=∈αα,则)(21211=++ααα及21W W V ⊕=,可得0,021211==+ααα,再由12111W W W ⊕=知01211==αα,故21211W W W V ⊕⊕=.4.必要性∑-=⋂∈∀11i j ji i W W α,则∑-=∈11i j ji W α于是令121-+++=i i αααα 从而由000121=+++-+++- i i αααα及∑=ti iW 1为直和可知0=i α.充分性 假设21=+++t ααα 中最后一个不为的是iα,即)1(,01>===+i t i αα ,则{}011121≠⋂∈----=∑-=-i j j i i i W W αααα 矛盾.5. 首先21W W Fn+=,其次2121),,,(W W a a a n ⋂∈=∀ α,由n a a a === 21及021=+++n a a a ,可知0=i a 即0=α.6.nF ∈∀α,由αααA E A +--=)(,易证21,)(W A W E A ∈∈--αα,故21W W +∈α,即21W W F n +⊆且n F W W ⊆+21,于是21W W F n +=.21W W +∈∀β,可得0=β,从而21W W F n ⊕=.7. 充分性n F X ∈∀,由X AE X X E X 22-++=,易证21W W Fn+⊆.且21W W ⋂∈∀α由 ⎝⎛=+=-0)(0)(ααE A E A ,可得0=α,故21W W F n ⊕=.必要性 由21W W F n ⊕=可知,nF X ∈∀有21X X X +=,且由⎪⎩⎪⎨⎧-==+=-21210)(0)(XX X X E A X E A ,可得X A E X X A E X 2,221-=+=.故0)(212)(2=-=+-X E A X A E E A ,由X 的任意性可知E A =2. 8. 余子空间为),(43εεL ,其中)1,0,0,0(),0,1,0,0(43==εε.9. 取W 的基r ααα,,,21 ,将其扩充成V 的基n r r ααααα,,,,,,121 +,取F k k L W n r r k ∈+=++),,,,(211αααα ,则k W 为W 的余子空间,且当l k ≠时,l k W W ≠.10.)3()2(),2()1(⇒⇒,显然.)4()3(⇒利用维数公式对t 用数学归纳法; )5()4(⇒只证i W 的基的联合是线性无关的即可; )1()5(⇒∑=∈∀ti iW 1α,设t t βββαααα+++=+++= 2121,其中ti W i i i ,,2,1,, =∈βα,令iiirir i i i i i b b b αααα+++= 2211,iiirir i i i i i c c c αααβ+++= 2211,其中iiri i ααα,,,21为iW 的基.由0)()()(2211=+++-+-t t βαβαβα 得0)()()()(111111*********=-++-++-++-t t t tr tr tr t t t r r r c b c b c b c b αααα于是0,,01111=-=-t t tr tr c b c b ,即t i i i ,,2,1, ==βα.第七节 线性空间的同构2.R x ∈∀,令x x 2)(=σ即可.3. 二者维数相同.n m ij F a A ⨯∈∈∀)(,令),,,,,,,,()(2111211mn m m n a a a a a a A =σ4.112210)(--++++=∀n n x a x a x a a x f ,令),,,())((110-=n a a a x f σ.5. 基为4321,,,ββββ,维数为4.6. 基为D C B A ,,,,维数为4.7. 令b a V V →:σ, )()(()()(x h b x x h a x x f -→-=a V x h a x x f x h a x x f ∈-=-=∀)()()(),()()(2211,若)()()()(21x hb x x h b x -=-则)()(21x h x h =,从而)()(21x f x f =,即σ为单射.)()()(1x g b x x g -=∀,有)()()(1x g a x x f -=使)())((x g x f =σ,即σ为满射.a V x f x f ∈∀)(),(21及F l k ∈∀,,易证)()(),()()((22121x f l x f x f k x lf x kf σσσ+=+.补充题六1.),,,(21 ++n n n x x x L .2. 设F 作为K 上的线性空间的维数为n ,其一个基为n e e e ,,,21 ,设E 作为F 上的线性空间的维数为m ,其一个基为n εεε,,,21 ,则{}m j n i e j i ,,2,1;,,2,1| ==ε为E 作为K 上的线性空间的一个基.事实上,E ∈∀α,可设m i F b e b i ni i i ,,2,1,,1 =∈=∑=α.而F 是K 上的线性空间,可设n j m i K a a a a b ij n in i i i ,,2,1;,,2,1,,2211 ==∈+++=εεε.故∑∑===mi nj j i ij e a 11)(εα.令0)(11=∑∑==mi nj i j ije kε,n j m i K k ij ,,2,1;,,2,1, ==∈,则0))(11=∑∑==m i nj i j ij e k ε,故j nj ijkε∑=1,进而n j m i k ij ,,2,1;,,2,1,0 ===.故{}m j n i e j i ,,2,1;,,2,1| ==ε是其一个基.3. 设1V 的基为r εεε,,,21 ,将其扩充为V的基n r r εεεεε,,,,,,121 +,令),,(11n r L W εε +=,则11W V V⊕=,又令),,,(22112r n n r r L W -+++++=εεεεεε这里r r n ≤-,易证r εεε,,,21 ,r n n r r -+++++εεεεεε,,,2211 线性无关,从而21W V V ⊕=.设21W W ⋂∈α,则n n r r r n n n r r l l k k εεεεεεα++=++++=++-++ 11111)()(,得到01===+n r k k ,进而0=α,即{}021=⋂W W .若2n r<上述问题不成立,用反证法,设2111W V W V V ⊕=⊕=,而{}021=⋂W W ,令n r r εεε,,,21 ++是1W 的基,''1,,n r εε +是2W 的基,则n r r εεε,,,21 ++,''1,,n r εε +线性无关.事实上,考察n n r r k k εε++++ 110''11=+++++nn r r l l εε 所以n n r r k k εε++++ 11{}021''11=⋂∈---=++W W l l nn r r εε 因此011=++++n n r r k k εε进而0,011====+=++n r n r l l k k ,而''11,,,,,n r n r εεεε ++共有)2(r n n r n r n -+=-+-个向量,因为2nr <,所以02,2>->r n r n ,故n r n r n >-+-,矛盾.4. 解 设)(x m A 为A 的最小多项式,令)(x m A 的次数m ,则1,,,-m A A E线性无关,从而m W =dim .事实上,首先1,,,-m A A E线性无关,否则存在110,,-m k k k 不全为零,使01110=+++--m m A k A k E k ,而令0,011===≠-+m i ik k k ,即10,010-≤<=+++m i A k A k E k i i ,与)(x m A 为A 的最小多项式矛盾,从而它们线性无关. ][)(x P x f ∈∀,则存在)(),(x r x q ,使,)(deg 0)(),()()()(m x r or x r x r x q x m x f A <=+=故 )()(A r A f =即)(A f 可由 1,,,-m A A E 线性表示.故 1,,,-m A A E 为W 的基.5. 参考本章第五节练习题6.6. 证 对用数学归纳法.当2=s 时,由上题知,结论成立;假定对1-s 个非平凡的子空间结论成立,即在V中存在向量α,使1,,2,1,-=∉s i V i α对第s 个子空间s V ,若s V ∉α,结论已对;若s V ∈α,则由于s V 为非平凡子空间,故存在s V ∉β.对任意数k ,向量s V k ∉+βα,且当21k k ≠时向量βαβα++21,k k 不属于同一个)11(-≤≤s i V i .今取s 个互不相同的数s k k k ,,,21 ,则s 个向量βαβαβα+++s k k k ,,,21中至少有一个不属于任何121,,,-s V V V ,这样的向量即满足要求.7. 只证0=X AA T 与0=X A T 同解即可.8. 设012=X A 与012=X B 的解空间分别为1V 与2V .1V ∈∀α,则⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-ααααα2222222222121000A B A B A B A A ,故222V A ∈α.令αασ22:A →,易证σ是1V 到2V 的同构映射.9. 由维数公式)dim(dim )dim())dim((k j i k j i k j i W W W W W W W W W ++-++=⋂+得)dim ()dim (dim )dim (j i k j i k j i k W W W W W W W W d ⋂+++-++=)dim(dim dim dim k j i k j i W W W W W W ++-++=从而321d d d ==.10. 证 设齐次方程组0=AX 的解空间为1W ,齐次方程组0=BX 的解空间为2W .任取21W W ⋂∈α,则0,0==ααB A ,从而0=⎪⎪⎭⎫⎝⎛αB A ,由⎪⎪⎭⎫ ⎝⎛=B A C可逆,所以0=α,即{}021=+W W ,因此n F n W W dim )dim (21==+,且n F W W ⊆+21,因此21W W F n⊕=. 11. 证 任取)(AB N X ∈,由n I BD AC =+,则 BDX ACX X +=由0)()(==ABX C ACX B ,所以)(B N A C X ∈,由)()(==ABX D BDX A ,所以)(A N B D X ∈,从而)()()(B N A N AB N +=.任取)()(B N A N X ⋂∈,则)(A N X ∈,从而)(,0NB X AX ∈=,从而0=BX ,于是0)()(=+=+=BX D AX C BDX ACX X 即)()()(B N A N AB N ⊕=.12. 证法同上题. 13. (1)证 例如,取)1,,1,1( =α,则由α的一切倍数)(F k k ∈α作成的子空间W 中,每个非零向量0),,,,(≠=k k k k k α的分量都不是零.(2) 见习题6.5中的题5. 14. 证 必要性 显然; 充分性 设221121,,0V V ∈∈=+ββββ,则21ααα+=,由α的分解唯一可知021==ββ,故21V V +是直和. 15. 若n ααα,,,21 是V 作为C 上的线性空间的基,则n n i i ααααα,,,,,,121 是V作为R 上的线性空间的基.16. 若{}0=W ,则n n F A ⨯∈∀且0,0||=≠AX A 的解空间即为W ;若{}0≠W,且设r W =dim ,取其一个基r ααα,,,21 ,令r i in i i i ,,2,1),,,,(21 ==αααα则以n r ij a A ⨯=)(为系数矩阵的齐次方程组0=AX 的基础解系为r n -βββ,,,21 ,且令r n j b b b jn j j j -==,,2,1),,,,(21 β.则齐次方程组0=BY 的解空间为r 维,且r ααα,,,21 为其一个基础解系.即),,(21r L W ααα =,其中n r n ij b B ⨯-=)()(.17. 令121dim )dim(V t V V =+⋂,221dim )dim (V l V V =+⋂而1)dim ()dim (dim dim dim )dim (2121212121+⋂=+++=⋂-+=+V V t l V V V V V V V V于是1,01==⇒=+t l t l或者0,1==t l .当0=l时,221V V V =⋂,此时12V V ⊆.当0=t时,121V V V =⋂,此时21V V ⊆.18. 取基为n n αααα,,,21 ++.19. 设A 为半正定的,故存在秩为r 的矩阵B ,使B B A '=,由此'S S =.其中{}|'==xAx x S{}|'1==Ax x S 此时构成线性空间,维数为r n -.设A 为半负定的,则A -为半正定的.令 {}0|'==xAx x S {}0|'1==Ax x S若A 不定,则存在可逆矩阵Q 使 ⎪⎪⎪⎭⎫⎝⎛=0'qp E E QAQ 那么经过线性变换YQ X =,)(x f 化为221221'')(q p p p y y y y Y YQAQ x f ++---++==取1,111==+p y y ,其它0=i y ,得)0,,0,1,0,,0,1(1 =x ,从而0)(1=x f ,取1,111=-=+p y y ,其它0=i y ,得)0,,0,1,0,,0,1(2 -=x ,从而0)(2=x f ,但是)0,,0,2,0,,0,0(21 =+x x ,04)(21≠-=+x x f ,所以此时不能构成线性空间.20. (1) 用定义直接验证; (2) 维数为n ,基:1,,,-n A A E .。

高等代数(北大版)第6章习题参考答案

高等代数(北大版)第6章习题参考答案

高等代数(北大版)第6章习题参考答案第六章线性空间1?设 MuN,证明:MRN = M、MUN = N。

证任取a eM,由MuN,得awN,所以awMDN,即证又因 MflNuM,故Mp|N = M。

再证第二式,任取a^M或a已N,但MuN,因此无论哪一种情形,都有aeN,此即。

但N uMU N,所以MUN = N °2.证明 Mp|(NUD = (MriN)U(MrU), MU(NfU) = (MUN)n(MUD。

证 VxwMCl(NUD,则在后一情形,于是 xeMflN佥所以xe(MC\N)\J(MC\L),由此得 MCl(NUD = (MnN)U(Mri 厶)。

反之,若 xw(MnN)U(MfU),则XW MCIN或iwMCl L.在前一情形,x 已M、x已N、因此X^N\JL.故得xeMCl(NUE),在后一情形,因而xeM,xeL, x^N\jL ,得 xwMCl(NU 厶),故(MnN)U(MClDuMri(N U 厶),于是 Mn(NUD=(MriN)u(Mru)。

若xwMU(NDZJ ,贝ijxe M, xeNf)厶。

在前一情形 XxwMUN,且X wMU厶,因而xw(MUN)n(MUL)。

在后一情形,xwN,xwL,因而xiWUN,且XwMU厶,即Xw(MUN)n(MUL)所以(MUN)n(MUL)uMU(NUL)故MU(Np|L) = (MUN)pl(MUL)即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n (n>l)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设A是一个nXn实数矩阵,A的实系数多项式f (A)的全体,对于矩阵的加法和数呈乘法;3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4)平面上不平行于某一向量所成的集合,对于向疑的加法和数量乘法;5)全体实数的二元数列,对于下面定义的运算:(?,勺2(。

第六章线性空间综合练习题及解答

第六章线性空间综合练习题及解答

第六章 线性空间(综合练习题)一.填空题1.在4P 中,若1234(1,2,0,1),(1,1,1,1),(1,,1,1),(0,1,,1)k k αααα===-=线性无关,则k 的取值范围是3≠k .2.设V 是有限维线性空间,21,V V 是V 的两个子空间,则它们的维数满足等式)dim (dim dim )dim (212121V V V V V V -+=+.3.线性子空间中最小的子空间是 _____{0}__ _ . 4.生成子空间),,,(21r L ααα 的维数等于 ),,,(21r R ααα .5.(){}123123,,,0i W a a a a F a a a =∈++=,则dim W =__2__ .基是 )1,0,1(,)0,1,1(-- 6.设W 是齐次线性方程组054321=++++x x x x x 的解空间,则维(W )= ___4_____ ,W 的一组基是)1,0,0,0,1(,)0,1,0,0,1(,)0,0,1,0,1(,)0,0,0,1,1(----.7.设V 与W 都是P 上的两个有限维线性空间,则⇔≅W V W V dim dim =. 8.()()()()()()121,1,0,1,0,1,0,1,1,1,2,3W L W L ==,则()=+21dim W W ____3____. 9.设1W .2W 都是V 的子空间,且1W +2W 为直和,那么()12dim W W =___0____. 10. 数域P 上任一n 维线性空间V 都与线性空间____n P ____同构. 11.下列集合有____3____个是n R 的子空间; 11212{(,,)|,0}n i n W x x x x R x x x α==∈+++=; 21212{(,,)|,}n i n W x x x x R x x x α==∈===;3{(,,,,,,)|,}W a b a b a b a b R α==∈; 412{(,,)|}n i W x x x x α==为整数.二.选择题1.线性空间V 是零线性空间,则V 中所含向量的个数是( B ). A .0个; B . 1 个 ; C .n 个; D .无穷多个. 2.设V 是线性空间,V ∈γβα,,,则一定有( B ).A .βαγ+=;B .)(γαβγβα++=++ ;C .γββα+=+;D .γβα,,线性无关. 3.12,,,s ααα线性无关的充要条件是( C ). A .12,,,s ααα均非零向量; B .12,,,s ααα的任两个向量分量成比例;C .12,,,s ααα中任一向量不能由其余的向量线表示;D .12,,,s ααα中有一部分线性无关.4.设1V ,2V 是数域P 上n 维线性空间V 的两个非零子空间,则 12dim dim V V +=( B ). A .1212dim()dim()V V V V +-⋂; B .1212dim()dim()V V V V ++⋂ ; C .12dim()V V +; D . 0.5.下列关于子空间21V V 与是直和的描述中不正确的是( C ). A .任一向量21ααα+分解式是唯一的; B .零元素表示法唯一 ; C .φ=21V V ; D .2121dim dim )dim (V V V V +=+. 三.计算题1、在4P 中,求向量ζ在基4321,,,εεεε下的坐标。

第6章 线性空间(解答题)(65题)

第6章 线性空间(解答题)(65题)

1.什么是线性空间?答:设V 是一个非空集合,P 是一个数域,在V 中定义了一个加法运算,在P 和V 的元素之间定义了一个数量乘法运算.如果上述两种运算满足以下规则,那么就称V 为P 上的一个线性空间(或称向量空间).1).+=+αββα;2).++=++αβγαβγ()(); 3).V 中有一个元素0,V α∀∈都有+0=αα,0称为V 的零元素; 4).V α∀∈,存在V β∈,使得+=0αβ,β称为α的负元素; 5).1=αα; 6).()()k l kl αα=; 7).()k l k l ααα+=+; 8).(+)=+k k k αβαβ;其中α,β,γ表示V 中的任意元素;k ,l 表示P 中的任意数.2.非空集合V在定义了加法和数乘运算之后成为P 上的一个线性空间,V 能否再定义另外的加法和数乘运算成为P 上的另一个线性空间? 答:有可能.例如,全体二元实数列构成的集合{(,)|,}V a b a b R =∈.1).定义(,)(,)(,),(,)(,)a b c d a c b d k a b ka kb ⊕=++=,则V 成为R 上的一个线性空间 2).定义2(1)(,)(,)(,),(,)(,)k k a b c d a c b d ac k a b ka kb a z+⊕=+++=+,则V 成为R 上的另一个线性空间.3.线性空间V 有哪些简单性质与结论? 答:1)零元素是唯一的;2)α的负元素是唯一的;3)000k k αα=⇔==或; 4)=αα--(); 5)=k k k ααα-=--()()(); 6)()k a b ka kb -=-;7),V αβ∀∈,存在唯一的V γ∈,使得=αγβ+.证明:容易验证1)—3), 4)因为+=0αα-(),所以α为(α-)的负元,即=αα--().5)()(()0,()()k k k k k k ααααα+-=+-=∴-=-.另一式子可类似证明.6)()(())()=()=k k k k k k k k αβαβαβαβαβ-=+-=+-+--. 7)(),+=αβαβγβααχβ+-=∴=-是方程的解.又若1γ也是+=αχβ的解,则1+=+αγαγ.两边左加α-,有1=γγ.所以方程+=αχβ在V 中有唯一解.4.判断一个非空集合M 不是线性空间有哪些基本方法? 答:1)M 是至少含两个元的有限集;2)M 关于定义的某一运算不封闭; 3)M 不满足8条规则中的任一条.5.线性空间的例子.答:1)数域P 按照数的加法和乘法构成自身上的一个线性空间.特别的,实数域R 和复数域 C 按照数的加法和乘法都是自身上的线性空间.2)已知数域⊆P 数域P ,按照数的加法和乘法,P 构成P 上的线性空间.3)三维空间中与已知向量的全体再添加零向量,对于向量的加法与数乘运算构成一个 实线性空间.4)分量属于数域P 的全体n 元数组,对于n 元数组的加法与数乘构成P 上的一个线性 空间,记作nP .5)无穷实数列的全体:12={()|1,2}i I x x x i ∞∈=,,R ,,对于121211221212()()()=(),x x y y x y x y k x x kx x k R +=++∈,,,,,,,(,,),k ,构成一个实线性空间.6)n 元齐次线性方程组0x =A 的解向量的全体,对于n 维向量的加法和数乘构成P 上的线性空间(为nP 的子空间).7)元素属于数域P 的m n ⨯矩阵的全体,对于矩阵的加法与数乘构成P 上的线性空间.8)数域P 上全体n 阶对称(反对称,上三角)矩阵对于矩阵的加法与数乘构成P 上的线性空间.9)设m n ⨯∈A P,则全体与A 可交换的矩阵的集合,对于矩阵的加法与数乘构成m n⨯P的一个线性空间.10)数域P 上全体满足条件trA=0(trA 表示A 的迹,即A 的主对角线元素之和)的n 阶矩阵的集合,对于矩阵的加法和数乘构成P 上的一个线性空间.11)数域P 上全体一元多项式的集合,对于多项式的加法和数与多项式的乘法构成P 上的线性空间,记作x P[].12)次数小于n 的一元多项式及零多项式的集合,对于多项式的加法和数与多项式的乘法构成P 上的线性空间,记作n x P[].13)集合W={()|()(1)0}n f x f x x f ∈=R[]且对于多项式的加法和数与多项式的乘法构成R 上的线性空间.14)数域P 上形如352113521n n a x a x a x a x ++++++的多项式的全体,对于多项式的加法和数与多项式的乘法构成P 上的线性空间.15)数域P 上多项式()g x 的倍式的全体:W={()|()|()}f x g x f x ,对于多项式的加法和数与多项式的乘法构成P 上的线性空间. 16)由0及数域P 上的m 元n 次多项式121211212(,)()m m m k k k m k k k m k k nf x x x a x xx k ++==∑,,为正整数的全体,对于多项式的加法及数与多项式的乘法构成P 上的线性空间,其中12mk k k a P ∈.17)对于在区间[,]a b 上的实函数的全体,对于函数的和及数与函数的积,构成R 上的线性空间.[,]a b 上的连续实函数全体为其子空间,记作[,]C a b .18)全体形如1122sin cos sin 2cos 2sin cos 2n n a a t b t a t b t a nt b nt +++++++的实函数,对于函数的和及数与函数的积,构成R 上的线性空间.6.下列集合关于指定运算均不构成线性空间:1)起点在原点,终点在不经过原点的直线上的空间向量的全体,按向量的加法与数乘运算;2)非齐次线性方程组AX=b(b ≠0)的解向量的全体,按向量的加法与数乘运算; 3)数域P 上次数不低于定数n 的多项式的全体并添上零多项式,按多项式的加法与数乘运算;4)有理数域定义运算:,;2k k βαβ∂∂⊕=+∂= 5)设P 为有理数域,对整数集定义运算:1,k βαβ∂⊕=+-∂=∂.证:1)集合不含零向量,所以不是线性空间.2)如果集合是空集,则不是线性空间. 如果集合非空,则由于不含零向量,所以也 不是线性空间.3)因两个次数不低于n 的多项式之和的次数可能低于n ,即关于多项式的加法不封闭,所以不是线性空间.4)因1(0)2∂∂=≠∂∂≠不满足线性空间定义中的规则5),所以不是自身上的线性空间.5)取3,1,k l ∂===则()3,k l +∂=而5k l ∂⊕∂=.故()k l +∂≠(k l ∂⊕∂),不满足线性空间定义中的规则7),所以集合不是线性空间.7.什么叫做向量的线性相关和线性无关? 答:设V 是数域P 上的线性空间,且()1,,,1i a V i s s ∈=≥,如果存在一组不全为零的数()1,,i k P i s ∈=,使得()11220s s k a k a k a +++=, (1)那么称向量组1,,s a a 是线性相关的,否则,称它们是线性无关的.注 ○1一个向量不是线性相关,就一定是线性无关,两者必居其一且仅居其一. ○21,,s a a 线性无关 ⇔(1)式仅当10s k k ===成立.8.设1,,n αα线性相关,是否对任意一组不全为零的1,,n k k 都有110n n k k αα++=?答:不一定,比如0α=是线性相关的,它对一切非零数k 都有0k α=.而()()1,0,2,0βγ==就不可能对一切非零数12,k k 使得120k k βγ+=.9.什么叫线性表出?什么叫做两个向量等阶? 答:设12,,,,m αααβ都是数域P 上的n 维向量,如果有P 中的m 个数1,,m k k ,使1122m m k k k βααα=+++,那么称β是12,,,m ααα的线性组合,或称β可以由12,,,m ααα线性表出(线性表示).如果向量组12,,,r ααα中每个向量都可以由向量组12,,,s βββ线性表出,且12,,,s βββ中的每个向量都可以由12,,,r ααα线性表出,那么称向量组12,,,r ααα与向量组12,,,s βββ是等价的.10.向量组之间的等价是不是一种等价关系? 答:是的.不难证明以下三条成立:1) 反身性:每一个向量组都与自身等价. 2) 对称性:如果12,,,r ααα与12,,,s βββ等价,那么12,,,s βββ也与12,,,r ααα等价.3) 传递性:如果12,,,r ααα与12,,,s βββ等价,而12,,,s βββ与12,,,t γγγ等价,那么12,,,r ααα与12,,,t γγγ等价.11.向量的线性相关性有哪些主要性质? 答:容易证明的有:1) 零向量是线性相关的.含零向量的向量组也是线性相关的 2) 单个非零向量是线性无关的. 3) 设向量组()12,,,2m m ααα≥,则它们线性相关⇔至少存在一个向量,它可以由其余向量线性表出.4) 向量组()I 中如果有部分向量线性相关,则()I 一定线性相关. 5) 向量组()I 线性无关,则()I 的任意一个部分组必线性无关. 6) 向量组12,,,r ααα可以由向量组12,,,s βββ线性表出,则12,,,r ααα线性无关r s ⇔≤.7) 任意1n +个n 维向量必线性相关.8) 两个线性无关的等价向量组,必含有相同个数的向量. 12.(){}12,,,|.n n i P c c c c P =∈()1,,,1,2,,n i i in a a P i mα=∈=,则12,,,m ααα线性相关'0A x ⇔=有非零解,其中()()'1,,ij m m nA a x x x ⨯==.7.设()()1,1,,,,,1,2,,n i i ik i k in a a a a P i m α+=∈=,令()1,,i ik βαα=()1,2,,i m =则 1)若12,,m ααα线性相关⇒12,,,m βββ线性相关;2)若12,,,m ααα线性无关⇒12,,,m βββ线性无关.证:1)若存在不全为零的数1,,m l l ,使110m m l a l a ++=,则当然有110m m l l ββ++=.2)用反证法.若12,,,m ααα线性相关,则由1)知12,,,m βββ也线性相关,矛盾.13.如果12,,,m ααα线性无关,但12,,,,m αααβ线性相关,那么β可由12,,,m ααα线性表出,且表示法唯一.证:由假设存在一组不全为零的数11,,m k k +使1110m m m k k k ααβ++++=.若10m k +=,则由110m m k k αα++=,可证10m k k ===.这与假设矛盾,故10m k +≠,于是11m m l a l a β=++,其中1/,1,2,,i i m l k k i m +=-=.即β可由12,,,m ααα线性表出. 若1111m m m m l a l a s a s a β=++=++,则()()1110m mm l s ls αα-++-=.由12,,,m ααα线性无关,得()1,2,,i i l s i m ==,即表示法是唯一的.14.什么叫做极大线性无关组? 答:如果向量组的一个部分组满足 1) 此部分组线性无关;2) 原向量组每个向量都可由这个部分组线性表出,则称此部分组是原向量组的一个极大线性无关组.注:向量组与极大线性无关组是等价的.15.一个向量组的极大线性无关组是否唯一?答:一般不唯一.比如,()()()0,0,1,0,2,0αβγ===,则β是,,αβγ的极大线性无关组;γ也是,,αβγ的一个极大线性无关组.注:○1一个向量组有多个极大线性无关组时,这些极大线性无关组之间也互相等价.○2由5.可知两个极大线性无关组虽可不同,但它们所含向量的个数相等.16.什么叫做向量组的秩? 答:向量组的一个极大线性无关组所含向量的个数,称为向量组的秩.只含零向量的向量组,规定它的秩为0.17.设V 是数域P 上的线性空间,1,,n αα,1,,s V ββ∈,且1,,n αα线性无关,()()11,,,,s n A ββαα=,其中(),i j i j n s A P αα⨯=∈,再设()1,,s A c c =,其中1,,s c c 为A 的n 维向量.若A k =秩,且1,,i ik c c 为()1,,s A c c =的一个极大线性无关组,则1)由(1)式知()12,,,,1,2,,i n i c i s βααα==. (2)○1先证1,,i ik ββ线性无关.设110i k ik l l ββ++=,那么110i k ik l l ββ=++()()112112,,,,,,n i k n ikl c l c αααααα=++()()1211,,,,,.n i k ik l c l c ααα= (3)因为12,,,n ααα线性无关,由(3)知11,,0i k ik l c l c = (4) 在n P 中,1,,i ik c c 线性无关,由(4)知10k l l ===.○2其次,再任取{}12,,,s ββββ∈,那么i c 可由1,,i ik c c 线性表出,即11i i k ik c m c m c =++,于是()12,,,i n i c βααα= ()()1211,,,n i k ik m c m c ααα=++ ()()112112,,,,,,n i k n ik m c m c αααααα=++11i k ik m m ββ=++.综合○1、○2,即知1,,i ik ββ为1,,s ββ的一个极大线性无关组.2)由1)即得{}1,,=s k A ββ=秩秩.注:这解决了求抽象线性空间V 的向量组的秩的问题.同时还把求极大线性无关组的问题转化为求nP 中一个向量组的极大线性无关组的问题(而这是已知的). 18.设()4321642f x x x x x =++-+,()422234f x x x x =++-,()4323491622f x x x x x =+--+,()43473f x x x x =+-+,求()1f x ,()2f x ,()3f x ,()4f x 的极大线性无关组.解:把()i f x 都看成[]5P x 中元素,取[]5P x 中一组基2341,,,,x x x x ,那么()()234123461174041,,,1,,,,12901316124223f f f f x x x x ⎛⎫ ⎪ ⎪⎪=- ⎪--- ⎪ ⎪-⎝⎭(1)令123461174041,,,,12901316124223C C C C ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪====- ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭可求出1234,,,C C C C 的一个极大线性无关组为234,,C C C .于是(1)式中相应的()()()234,,f x f x f x 为()()()()1234,,,f x f x f x f x 的一个极大线性无关组.19.设1103301121,,,,24127142056A B C D F --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=====⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭为线性空间22R ⨯的一组基,那么()()111221221031213011,,,,,,,.21725421406A B C D F E E E E ⎛⎫⎪--⎪= ⎪ ⎪⎝⎭ 而1031213011321725421406⎛⎫ ⎪--⎪= ⎪ ⎪⎝⎭秩,所以向量组,,,,A B C D F 的秩等于3. 20.设1,,s αα的秩为r ,1,,r i i αα是1,,s αα中r 个向量,使得1,,s αα中每个向量都可被它们线性表出,则1,,ri i αα是1,,s αα的一个极大线性无关组.证:由假设可知1,,s αα可由1,,ri i αα线性表出,但1,,ri i αα可由1,,s αα线性表出是显然的,从而彼此等价.那么{}{}11,,=,,=r i i s r αααα秩秩.1,,r i i αα∴线性无关.21.如果向量组()I 可以由向量组()II 线性表出,那么()I 的秩不超过()II 的秩.证:当向量组()II 的秩为无穷时,结论显然成立.当()II m =秩时,由假设()I 的极大线性无关组也可由()II 的极大线性无关组线性表出,那么由5.之6)可证()()I II m ≤=秩秩. 注:由此可知等价的向量组具有相同的秩.22.设12,,,n n P ααα∈,n 维标准单位向量()()11,0,,0,,0,0,,1n εε==可被它们线性表出,则12,,,n ααα线性无关.证:1,,n αα显然可被1,,n εε线性表出,又1,,n εε可被1,,n αα线性表出,从而它们等价,于是由15.的注知()()11,,=,,=n n n ααεε秩秩.即知1,,n αα线性无关.注:○1这个命题的逆命题也是对的.○2在抽象的n 维线性空间V 中,此命题可改为:设1,,n ββ为V 的一组基,1,,r V αα∈且1,,n ββ可由1,,n αα线性表出,则1,,n αα也是V 的一组基.○3也可改述为:设1,,n αα是线性空间V 中的一组n 维向量,则1,,n αα线性无关⇔V 中任一n 维向量都可被它们线性表出.23.证明:向量组的任何一个线性无关组都可以扩充成一个极大线性无关组. 证:设n 维向量组()I 中一个线性无关组()12II :,,,s ααα,如果()I 中每个向量可经()II 线性表出,则()II 为()I 的一个极大无关组.否则至少有一个向量()I α∈不能由()II 线性表出,将添到()II 中成为向量组()III ,则()III 中向量是线性无关的.这样继续下去,经过有限步(不大于n )后,向量组()II 即可扩充为()I α∈的一个极大无关组.24.设向量组12,,,m ααα线性无关,12,,,,,m αααβγ线性相关.证明:或者β与γ中至少有一个可由12,,,m ααα线性表出,或者12,,,,m αααβ与12,,,,m αααγ等价.证:因12,,,,,m αααβγ线性相关,所以存在不全为零的数12,,,,,m k k k b c 使110m m k k b c ααβγ++++=.显然,,b c 不全为零,否则与12,,,m ααα线性无关矛盾.当0,0b c ≠=时,β可由12,,,m ααα线性表出;当0,0b c ≠≠时,β可由12,,,,m αααγ线性表出,γ可由12,,,,m αααβ线性表出,因而12,,,,m αααβ与12,,,,m αααγ等价.25.设12,,,n n P ααα∈且线性无关,则12,,,n A A A ααα线性无关⇔()=A n 秩.其中A是数域P 上的n n ⨯矩阵. 证:令()12,,,n B ααα=.因1,,n αα线性无关,所以0B ≠.必要性 设12,,,n A A A ααα线性无关,即()()11,,,,0n n A A A AB A B αααα===≠.所以0A ≠,即()=A n 秩.充分性 设()=A n 秩,即0A ≠,从而()()11,,,,0n n A A A AB A B αααα===≠.所以12,,,n A A A ααα线性无关.26. 设向量组12,,,s ααα的秩为r ,在其中任取m 个向量12,,,mi i i ααα,则{}12,,,m i i i r m s ααα≥+-秩.证:设12,,,m i i i ααα的秩为t ,现将它的一极大无关组(含t 个向量)扩充为1,,s αα的一个极大无关组(含s 个向量).因此扩充的线性无关向量的个数为r t -.因1,,s αα除向量组1,,m i i αα外,还有s m -个向量,因此,r t s m -≤-,即t r m s ≥+-.27.设123r βααα=+++,213r βααα=+++,,121r r βααα-=+++,则1)1,,r ββ与1,,r αα有相同的秩;2)1,,r αα的任意一个极大线性无关组也是11,,,,,r r ααββ的极大线性无关组.证:1)由假设知1,,r ββ可由1,,r αα线性表出.但是()()1212+=1r r r βββααα++-+++()()12121=+1r r r αααβββ+++++- (1)用(1)式减去假设的每一个式子,可得11221212211,111121,111112.111r r r r r r r r r r r r r r r r αβββαβββαβββ-⎧=+++⎪---⎪-⎪=+++⎪---⎨⎪⎪-⎪=+++⎪⎩--- 即1,,r αα也可由1,,r ββ等价,所以{}{}11,,,,r r r ββαα=≤秩秩.2) 由1)知1,,r αα与11,,,,,r r ααββ等价,可知1,,r αα的一个极大线性无关组就是11,,,,,r r ααββ的一个极大线性无关组.28.设向量组1,,s αα中10α≠且每个()2,3,,i i s α=都不能由11,,i αα-线性表出,则1,,s αα线性无关.证:用反证法.如果1,,s αα线性相关,那么有不全为零的数12,,,s k k k 使1122=0s s k k k ααα+++ (1)从右至左,设第一个不为零的数是l k ,而10l s k k +===,则(1)式为1122=0l l k k k ααα+++.因10α≠,所以1l ≠,故112121111l l l k k kk k k αααα--=----.即l α可由121,,,l ααα-线性表出,此与题设矛盾.所以1,,s αα线性无关.29.如果()()()123,,f x f x f x 是线性空间[]P x 中三个互素的多项式,但其中任意两个都不互素,那么它们线性无关.证:用反证法.如果它们线性相关,即存在不全为零的数123,,k k k ,使()()()1122330k f x k f x k f x ++=.不妨设10k ≠,则()()()3212311=k k f x f x f x k k --+. 此式说明()()23,f x f x 的最大公因式就是()1f x 的因式,即()()()()()()()12323,=,f x f x f x f x f x .此与()()()()123,=1f x f x f x 及()()()23,1f x f x ≠矛盾,所以()()()123,,f x f x f x 线性无关.30.设12,,,m ααα线性无关,则122311,,,,m m m αααααααα-++++线性无关的充分必要条件是m 为奇数.证:令112223111,,,,m m m m m βααβααβααβαα--=+=+=+=+,由题设得()()1212,,,,,,m m A βββααα=,其中10110011n mA ⨯⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 按第一行展开,()12,110,m m A m +⎧=+-=⎨⎩为奇数;为偶数, 而12,,,m βββ线性无关的充分必要条件是0A ≠,即m 为奇数31.设向量组12,,,m ααα线性相关,但其中任意1m -个向量都线性无关,则 1)等式1122=0m m k k k ααα+++中的系数()1,,i k i m =或者全为0,或者全不为0.2)当存在两个等式1122=0m m k k k ααα+++ (1) 1122=0m m l l l ααα+++ (2)其中10l ≠时,(1),(2)的对应系数成比例:1212mmk k k l l l ===. 证:1)当()1,,i k i m =全为0时,恒为等式的解.以下设有一个i k 不等于0,不失一般性,设10k =.此时其余的()2,,i k i m =都不为0.若等式化为()100j j j ik k α≠=≠∑,于是这1m -个向量线性相关,此与题设矛盾.2) 由于10l ≠,由1)知: 2,,m l l 均不为0.如果()1,,i k i m =全为0,那么结论成立.否则i k 全不为0,()()112i l k ⨯-⨯,得()()11212211100m m r l k k l l k k l ααα-+-++-=.由1),因1α的系数为0,所以2,,m αα的系数全为0,即121210m m l k k l l k k l =-==-,即1212mmk k k l l l ===.32.求向量组()11,2,2,3α=-,()22,4,1,3α=--,()31,2,0,3α=-,()40,6,2,3α=,()52,6,3,4α=-的一个极大线性无关组.解1(初等变换法)以12345,,,,ααααα为列作矩阵A ,对A 施行初等变换为阶梯型矩阵B :121212102242660322121023000313333400000A B ----⎛⎫⎛⎫⎪ ⎪---⎪ ⎪=→= ⎪ ⎪---⎪ ⎪⎝⎭⎝⎭. 由B 可知:124,,ααα;134,,ααα;125,,ααα;135,,ααα均为原向量组的极大无关组. 注:用这种方法可以找到向量间的全部极大无关组.解2(子式法)因矩阵A 的4阶子式均为0,而3阶子式11022612022--=-≠,所以134,,ααα为一极大无关组.解3(逐一扩充法)因10α≠,所以1α线性无关,又因12,αα对应分量不成比例,故12,αα线性无关.因123,,ααα线性相关(这可由123,,ααα作成的矩阵的所有3阶子式为0看出),所以3α不收入.再观察124,,ααα,由于124,,ααα作成的矩阵有非零的3阶子式,所以124,,ααα线性无关,又因1245,,,αααα线性相关,所以124,,ααα为一极大无关组.33.什么叫做线性空间的基于维数?答:如果数域P 上的线性空间V 有n 个线性无关的向量12,,,n ααα,而且V 中每个向量都可以由它们线性表出,那么称这组向量为V 的一组基(基底).也称12,,,n ααα生成(或张成)线性空间V .12,,,n ααα为V 的一组生成元.基中所含向量的个数n 称为V 的维数,记作dim V n =或()V n =维.称V 为维线性空间.如果V 中有任意多个线性无关的向量,那么称V 为无限维线性空间,记为dim V =∞.如果{}0V =,那么称V 是零维的,记为dim 0V =.注:○1线性空间V 的基,实际上就是V 的一个极大线性无关组.○2一个线性空间V 有一组基1,,n αα,取()ij n nA α⨯=,当0A ≠时,令,其中为的列向量,令()1,,n A c c =,其中1,,n c c 为A 的列向量,令()1,,i n i c βαα=()1,2,,i n =则可知1,,n ββ也是V 的一组基.由此可知V 的基不是唯一的.○3两组基之间是互相等价的,因为向量组的两个极大线性无关组是互相等价的.34.几类重要的线性空间的维数与基是什么?答:1)数域P 看成自身上的线性空间,则1是它的一组基,dim 1P =. 2)复数域C 看成实数域R 上的线性空间,1,i 是C 的一组基,dim 2P =.3)实数域R 看成有理数域Q 上的线性空间,则dim P =∞.事实上,21,,,ππ是线性无关的.因为如果21,,,,n πππ线性相关的话,那么π是代数数了,而π是超越数.故对一切自然数n ,向量组21,,,,n πππ都线性无关,由n 的任意性,故dim P =∞.4)全体正实数R +,定义a b ab ⊕=,k k a a =,则R +为R 上的1维线性空间.任何一个非零向量都是其一组基.因1是其零向量,取定(),1,1R Ra ββα++∈≠∀∈≠,有()log log βαβαβαβ==,即α可由β线性表出,所以是一维的.5)数域P 上的全体n 元数组构成的线性空间nP 是n 维的,()11,0,,0ε=,()20,1,,0ε=,,()0,,0,1n ε=是一组基.6)n 元齐次线性方程组0Ax =(A 为m n ⨯矩阵,()=A r 秩)的解空间是n r -维的,其基础解系是它的一组基.7)元素属于数域P 的m n ⨯矩阵的全体m nP⨯的维数是mn .以ij E 表示第i 行第j 列元素为1,其余元素为0的m n ⨯矩阵,则()1,2,,;1,2,,ij E i m j n ==为m n P ⨯的一组基.8)实数域上全体n 级实对称矩阵构成的线性空间的维数是()12n n +.()1ij ij E E i j n +≤≤≤为一组基. 9)实数域上全体n 级反对称矩阵构成的线性空间的维数是()12n n -.()1ij ij E E i j n -≤≤≤为一组基. 10)实数域上全体n 级上三角矩阵构成的线性空间的维数是()12n n +.()1ij E i j n ≤≤≤为一组基.11)全体形如1230n nX P X X ⨯⎛⎫∈⎪⎝⎭的矩阵(1X 为r r ⨯矩阵)构成的线性空间,因零块有()r n r -个元素,所以线性空间的维数是()2n r n r --.(),;,1,2,,ij E i r j r i r j n ≤≤≥=为一组基.12)全体n nA P⨯∈且满足0trA =(A 的迹为0)的矩阵构成的线性空间的维数是()()2211nn n n -+-=-,除nn E 外的一切,,1,2,,ij E i j n =为一组基.13)次数小于n 的一元多项式的全体加上零多项式构成的线性空间[]n P x 的维数是n ,且211,,,,n x x x -为一组基.14)线性空间()()[](){}|10n W f x f x R x f =∈=且的维数是1n -.且121,1,,1n n x x x -----是W 的一组基.15)数域P 上m 元n 次齐次多项式()()121211212,,,mmm k k k m k kk m i k k nfx x x x x x k α++==∑为正整数和零多项式构成的线性空间的维数是()()()()1211n n n m m +++--!,1212m k k k m x x x1m i i k n =⎛⎫= ⎪⎝⎭∑为一组基.事实上,上述向量组线性无关是显然的,它的个数实际上是从m 种元素中每次取n 个元素的有重复的组合数,即()12nm x x x +++展开后不同类的项数:()()()()1111211n n m m n m n m n n n m C C C m -+-+-+++-===-!.16)分量属于复数域的全体n 元数组构成实数域R 上的线性空间的维数是2n .()11,0,,0ε=,()20,1,,0ε=,,()0,,0,1n ε=,()11,0,,0η=,()20,1,,0η=,,()0,,0,1n η=为一组基(为虚数单位).17)线性空间V 中m 个向量生成的子空间()1,,m L αα的维数等于1,,m αα的秩,1,,m αα的任一极大无关组都是()1,,m L αα的一组基.36.V 为矩阵A 的实系数多项式的全体构成的线性空间,求V 的维数及一组基,其中2100100,200A ωωω⎛⎫-+ ⎪== ⎪ ⎪⎝⎭.解:因为2ω=,31ω=,所以21,3;,31;,3 2.n n k n k n k ωωω=⎧⎪==+⎨⎪=+⎩从而2232100,3;00,,,31;00,3 2.n E n k A A E A A n k A n k ωω=⎛⎫⎧⎪ ⎪====+⎨ ⎪⎪ ⎪=+⎝⎭⎩设21230k A k A k E ++=,得1232123212300,0.k k k k k k k k k ωωωω++=⎧⎪++=⎨⎪++=⎩,(1)因系数行列式不为零,所以方程组(1)只有零解:1230k k k ===.说明2,,E A A 线性无关.由于A 的实系数多项式()f A 是2,,E A A 的线性组合,所以V 的维数是3. 2,,E A A 是V 的一组基.37.V 为矩阵A 的实系数多项式的全体构成的线性空间,求V 的维数及一组基,其中()120,,0i j in a a A a a i j a R a ⎛⎫⎪⎪=≠≠∈ ⎪ ⎪⎝⎭.解:易证对正整数k ,有11201100k kn n k n a a A k E k A k A a --⎛⎫ ⎪⎪==+++ ⎪ ⎪ ⎪⎝⎭. (1)事实上,由矩阵的相等得,101111110121221011,,.n k n n kn n k n n n n k k a k a a k k a k a a k k a k a a ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ (2)(2)式的系数行列式D 是范德蒙行列式,故()10ji i j nD aa ≤≤≤=-≠∏.所以方程组有唯一解011,,,n k k k -.这就证明了(1).再令10110n n k E k A k A --+++= (3)(3)式为(2)式右端为零的情形.由于0D ≠,所以只有零解:0110n k k k -====,说明1,,,n E A A -线性无关.由于A 的实系数多项式()f A 是21,,,,n E A A A -的线性组合,所以dim V n =,21,,,,n E A A A -为一组基.38.设V 为数域P 上的线性空间,V 为从V 中任取m 个元素组成的向量()12,,,m ααα的集合.1)按向量的加法和数乘运算,V 为P 上的线性空间; 2)当V 为无限维时,V 也是无限维; 3)当V 为n 维时,求V 的维数和一组基. 证:1)()0=00V ∈,,,V ∴非空.另外,V 关于加法和数乘运算封闭,且满足定义中的8条规则,所以V 是域P 上的线性空间. 2)当V 是无限维时,取12,,,n βββ为V 的n 个线性无关的向量,令(),0,,0i i ηβ=()1,2,,i n =,则12,,,n ηηη线性无关.由n 的任意性知,V 有任意个线性无关的向量,即V 是无限维的.3)当dim V n =,可推得dim V mn =. 事实上,设12,,,n εεε为V 的一组基.令()1,0,,0i i ηε=,()20,,,0i i ηε=,,()0,0,,ni i ηε=,1,2,,i n =,则这个m n ⨯个向量均线性无关.()12,,,m V αααα∀=∈,因()11,2,,nj ij i i k j m αε=∀==∑,所以()1212111,,,,,,m nnnm i i i i i i i i i k k k αααεεε===⎛⎫= ⎪⎝⎭∑∑∑()()()12111,0,,00,,,00,0,,nnni i i i i i im i i i i i k k k εεεεεε====+++∑∑∑1122111nnni i i i im im i i i k k k ηηη====+++∑∑∑.即α可由mn 个向量()1,,;1,,ij i n j m η==线性表出,所以它们是V 的一组基,dim V mn =.39.什么叫做向量的坐标?答:设V 为数域P 上的n 维线性空间,1,,n αα为V 的一组基.设V β∈,则()111221,,n n n n k k k k k βααααα⎛⎫ ⎪=+++= ⎪ ⎪⎝⎭.称()1,,n k k 为β在基1,,n αα下的坐标.注:○1同一个向量β,在不同基下的坐标一般是不相同的.○2同一个β,当基1,,n αα排列顺序不同时,坐标也不同.比如V 的一组基为123,,ααα,令12335βααα=++,那么β在基123,,ααα下的坐标为()1,3,5,而在下的坐标为()1,5,3.○3这里的坐标概念是解析几何中坐标概念的推广.在平面解析几何中,相当于取基()11,0e =,()20,1e =,在空间解析几何里,相当于取基()11,0,0η=,()20,1,0η=,()30,0,1η=.而代数中是把它们抽象化,并把上述情形作为特例. V 中的基1,,n αα相当于建立一个坐标系.β的坐标()12,,,n n k k k P ∈,相当于β在坐标系12,,,n ααα下的坐标.40.什么叫过渡矩阵?答:过渡矩阵相当于n 维线性空间V 的两组基之间的变换公式.下面给出定义.设1,,n αα与1,,n ββ为V 的两组基,那么()1,,i n i c βαα=,1,2,,k n =. (1)其中12,,1,2,,i i i ki ni c P k n αααα⎛⎫ ⎪ ⎪=∈= ⎪ ⎪⎝⎭.把(1)式改写为()()11,,,,n n A ββαα=. (2)其中()()1,,n n ij n n nA c c P α⨯⨯==∈.称A 为基1,,n αα到基1,,n ββ的过渡矩阵,并称(2)为基变换公式.注:○1如果0A ≠,即A 为可逆矩阵.○2由(2)式知()()111,,,,n n A ααββ-=, (3)即1A -为基1,,n ββ到基1,,n αα的过渡矩阵.○3求1,,n αα到1,,n ββ的过渡矩阵A ,只要求出每个i β在基1,,n αα下的坐标(1)即可.41.什么叫坐标变换公式? 答:设1,,n αα与1,,n ββ为V 的两组基,由基1,,n αα到基1,,n ββ的过渡矩阵为A .向量γ在基1,,n αα下的坐标为()1,,n x x .设γ在基1,,n ββ下的坐标为()1,,n y y ,那么111n n y x A y x -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (1) 公式(1)称为坐标变换公式.42.设1,,n αα为线性空间V 的一组基.1)1121212,,,n n βαβααβααα==+=+++也是V 的一组基.2)当向量α在基1,,n αα下的坐标为(),1,,2,1n n -时,求α在基1,,n ββ下的坐标.证:1)因为()()11,,,,n n A ββαα=,其中1101A ⎛⎫ ⎪=⎪ ⎪⎝⎭,1A =, 所以1,,n ββ线性无关,从而为V 的一组基.2)设α在基1,,n ββ下的坐标为()1,,n x x ,由坐标变换公式知121110111112201111n n n x n n x A x -⎛⎫⎛⎫-⎛⎫⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭. 43.在[]3P x 中,求221,,x x x x ++到基221,,x x x x -+的过渡矩阵. 解:因为21,,x x 为[]3P x 的基,所以()()()22221001,,1,,1101,,111x x x x x x x x A ⎛⎫⎪++=-= ⎪ ⎪-⎝⎭. (1) 于是()()()2221221001,,1,,=1,,110111x x x x x x A x x x x -⎛⎫⎪=++++- ⎪ ⎪-⎝⎭. (2) 又()()()22221001,,1,,0111,,011x x x x x x x x B ⎛⎫⎪-+== ⎪ ⎪-⎝⎭, (3) 将(2)代入(3)得()()()22221221001,,1,,1,,111120x x x x x x x x A B x x x x -⎛⎫⎪-+=++=++- ⎪ ⎪-⎝⎭. 所以100111120C ⎛⎫⎪=- ⎪ ⎪-⎝⎭为所求的过渡矩阵.44.已知()()()()12341,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,εεεε=⎧⎪=--⎪⎨=--⎪⎪=--⎩()()()()12341,2,3,1,2,1,0,1,1,1,0,1,2,1,1,2,ηηηη=⎧⎪=⎪⎨=--⎪⎪=-⎩分别是4P 的两组基,求i ε到()1,2,3,4i i η=的过渡矩阵.并求()1,1,0,1δ=-关于基1234,,,ηηηη的坐标.解:因为()11,0,0,0δ=,()20,1,0,0δ=,()30,0,1,0δ=,()40,0,0,1δ=是4P 的基,由i δ到()1,2,3,4i i ε=的过渡矩阵A 以及由δ到()1,2,3,4i i η=的过渡矩阵B 分别为1111111111111111A ⎛⎫ ⎪--⎪= ⎪-- ⎪--⎝⎭, 1212211130011112B ⎛⎫⎪- ⎪= ⎪⎪--⎝⎭由i ε到()1,2,3,4i i η=的过渡矩阵为1A B C -=,1741212141103443212C A B --⎛⎫ ⎪-⎪== ⎪ ⎪--⎝⎭. 令δ关于基()1,2,3,4i i η=的坐标为()1234,,,x x x x ,则121341112105413x x B x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. 45.什么叫做线性子空间?答:设W 是数域P 上线性空间V 的非空子集,如果W 对于V 的两种运算(加法和数量乘法)也构成线性空间,则称W 为V 的一个线性子空间,简称子空间.46.什么叫做V 的平凡子空间?答:V 中仅含单个零向量的子空间称为零子空间,V 本身也是V 的一个子空间,这两个子空间称为V 的平凡子空间,V 除平凡子空间外的子空间(如果存在的话),称为V 的非平凡子空间.47.什么叫做生成子空间?答:V 中任意m 个向量的所有可能的线性组合(){}111,,|,1,2,,m m m i L k k k P i m αααα=++∈=构成V 的一个子空间,称为由1,,m αα张成(或生成)的子空间.注:这一记号非常重要.设V 是n 维的,若()1,,n V L αα=,则1,,n αα为V 的一组基.48.怎样判别子空间?答:设W 是V 的一个非空子集,则W 为V 的子空间的充要条件是:W 对于V 的两种运算是封闭的,即○1,W αβ∀∈都有W αβ+∈; ○2,W k P α∀∈∀∈,都有k W α∈. 条件○1与○2可以合并成一条:,W αβ∀∈及12,k k P ∀∈都有12k k W αβ+∈.49.生成子空间有哪些主要结论? 答:1)()()11,,,,s t L L ααββ=的充分必要条件是1,,s αα与1,,t ββ等价.2)()()()1111,,,,,,,,,s t s t L L L ααββααββ+=.3)()1,,s L αα的维数{}1,,s αα=秩4)n 维线性空间V 的子空间的一组基必可扩充为V 的一组基.50.常见到子空间有哪些?答:1)V 的两个平凡子空间.2)全体实函数组成的线性空间中,由所有实系数多项式组成一个子空间.3)[]n P X 是线性空间[]P X 的n 维子空间.4)线性变换:V V σ→的值域V σ是V 的子空间.设线性变换在某一组基下矩阵为A ,则其维数等于A 秩,σ的核()10σ-是V 的子空间,其维数等于dim V A -秩5)线性变换:V V σ→的属于特征值λ的特征向量的全体添上零向量是V 的特征子空间,记作V λ.若dim V n =,设σ在某一组基下的矩阵为A ,则()dim V n E A λλ=--秩6)数域P 上n 元齐次线性方程组0AX =的解空间W 是n P 的子空间,dim W n A =-秩.7. 设1,,n εε为数域P 上线性空间V 的一组基,m n A P ⨯∈,A r =秩,()'11,,n n c c Pα⨯=∈则()'11|,,0ni i n i W c A c c ε=⎧⎫==⎨⎬⎩⎭∑是V 的n r -维子空间.证:1)先证W 是V 的子空间.其0W ∈知W 非空(这时取()()1,,0,,0n c c =即可).任取()11,,n n c c βεε⎛⎫ ⎪= ⎪ ⎪⎝⎭,()11,,n n d W d γεε⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭,那么10n c A c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,10n d A d ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 12,k k P ∀∈,则()1112112,,n n n c d k k k k c d βγεε⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=+ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,111112120n n n n c d c d A k k k A k A c d c d ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.所以12k k W βγ+∈,从而W 为V 的子空间.2)设0Ax =的解空间为1W ,则1dim dim W W n A n r ==-=-秩.51.什么叫做交空间?答:设V 是数域P 上的线性空间,()V I λλ∈都是V 的子空间,则IV λλ∈⋂也是V 的子空间,并称它为()V I λλ∈的交空间. 注:○1显然IV λλ∈⋂也是V λ的子空间.○2子空间的交是线性空间的一种运算.52. 子空间的交有哪些性质?答:1)适合交换律:1221V V V V ⋂=⋂;2)适合结合律:()()123123V V V V V V ⋂⋂=⋂⋂;3)A ,B 分别为m n ⨯与s n ⨯矩阵,A C B ⎛⎫= ⎪⎝⎭.设123,,V V V 分别为0Ax =,0Bx =,0Cx =的解空间,则312V V V =⋂.53.什么叫做和空间?答:子空间的和是线性空间的第二种运算.设1V ,2V 都是V 的子空间,则{}121122|,V V ααααα=+∈∈也是V 的子空间,记作12V V +.一般的,设1,,n V V 都是V 的子空间,它们的和空间定义为{}1212++|,1,2,,n n i i V V V V i n ααααα+++==+∈=.注:○112112V V V V V ⋂⊆⊆+,12212V V V V V ⋂⊆⊆+.○2设W 是线性空间,且()W V I λλ⊆∈,则I W V λλ∈⊆⋂. ○3设1V W ⊆,2V W ⊆,W 是线性空间,则12V V W +⊆.54.子空间的和有什么性质? 答:1)1221V V V V +=+;2)()()123123V V V V V V ++=++; 3)下面三条等价 (i )12V V ⊆,(ii)121V V V ⋂=, (iii )122V V V +=,55设1V ,2V 是V 的两个子空间,则1V È2V =1V +2V Û1V Í2V 或2V Í1V 。

线性空间习题解答

线性空间习题解答

第六章 线性空间习题解答P267.1设,,M N M N M M N N ⊆==I U 证明: 证明: 一方面.M N M ⊆I 另一方面, 由于M M ⊆,,N M ⊆ 得.N M M I ⊆ 2 证明: (1))()()(L M N M L N M I Y I Y I =.(2))()()(L M N M L N M Y I Y I Y =证明: (1) .),(L N x M x L N M x Y Y I ∈∈∈且则设 即.M x N x M x ∈∈∈或且L x ∈且. 于是有)()(L M N M x I Y I ∈.另一方面,因为 )(,)(L N M L M L N M N M Y I I Y I I ⊆⊆,所以)()()(L N M L M N M Y I I Y I ⊆.(2) 一方面, ))(,)(L M L N M N M L N M Y I Y Y I Y ⊆⊆,所以)()()(L M N M L N M Y I Y I Y ⊆.另一方面, .),()(L M x N M x L M N M x Y Y Y I Y ∈∈∈∀且则若).(,L N M x M x I Y ∈∈则 若∈∈∈∉x L x N x M x 所以且则.,.L N I 总之有)()()(),(L N M L M N M L N M x I Y I I Y I Y ⊆∈所以.3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间.(1) 次数等于n(n 1)的实系数多项式的全体,对于多项式的加法和数量乘法. (2) 设A 是n n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法.(3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法.(4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法.(5) 全体实数的二元数列,对于下面定义的运算:),(),(),(2121212211a a b b a a b a b a +++=⊕,)2)1(,(),(211111a k k kb ka b a k -+=ο. (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k =0. (7) 集合与加法同(6), 数量乘法为k =.(8) 全体正实数R +,加法和数量乘法定义为: a b=ab , ka=a k .(1) 否. ,因为2个n 次多项式相加不一定是n 次多项式. 取f (x )=x n , g (x )=x n -1. 则f (x )+g (x )=-1不再是n 次多项式.(2) 是. 因为集合]}[)(|)({x R x f A f V ∈=作为n 级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3) 是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称(反对称,上三角)矩阵.(4) 否. 设{}|V ααβ=为平面上不平行的向量, =(a,b)0. 取=(a+1,b),=(a-1, b), 则 , V, 但是,+V.(5) 证明: 10显然V 非空.02 2个代数运算封闭.03 先设R t k b a r b a b a ∈===,),,(),,(),,(332221及βα2121211231212312312312323123122323123(1)(,)(2)()((),()()......................(,()....()((),(()().....................a a b b a a r a a a b b a a b a a a a a a b b b a a r a a a b b b b a a a a a αββααβαβ⊕=⊕=+++⊕+=+++++++=+++++⊕⊕=++=+++++=12312323121311111211121111111211111(,)()(3)0(0,0),0(0,00)(,)(4)(,)...........())(),()())(0,0)01(5)1(1,11(11))(,)2a a ab b b a a a a a a r a b a a b a a b a a b a b a a a b a a b αβααααααα+++++++=++=+=+++==-=--⊕-=+-+-+-===+-==o o o o 的负为21112211111(6)()(,(1)211...............(,((1))(1)())22k l k la lb l l a kla k lb k k a k k la αα=+-=+-+-o o o2111((1(1))2kla klb kla l k =++-+-=(kla 1,klb 1+211((1))2kl k a -=kl o α(7)(k+l)o α =((k+1)a 1,(k+l)b 1+211()(1))2k l k l a ++-=((k+1)a 1,(k+l)b 1+22211(2))2k l kl k l a ++-- 221111111111(,(1)()(1))22ka la kb k k a b l l a ka la =++-++-+⋅k l αα=⊕o o (8)2121212121212121()(,)((),((1)())2k k a a b b a a k a a k b b a a k k a a αβ⊕=+++=++++-+o o 22121122121211(,(1)(1)(1))22ka ka kb k k a kb k k a ka a k k a a =++-++-++-2221211221211(,((1))((1)())22ka ka kb k k a kb k k a k a a =++-++-+2212122211(,(1))((1))22ka kb k k a ka kb k k a αβ=+-⊕+-=⊕满足3,故V 是一个线性空间(6) 否. 不满足定义3之(5): 1100αααα==≠Q ,但这里。

《线性代数》第6章习题解答(r)new2_1

《线性代数》第6章习题解答(r)new2_1

习题六(P251-256)1. 已知向量空间的一个基为1(110)Tα=,2(11)Tα=,3(011)Tα=,试求(20)Tu =在上述基下的坐标。

解. 设u =()321ααα⎪⎪⎪⎭⎫ ⎝⎛321x x x , ()321ααα=⎪⎪⎪⎭⎫ ⎝⎛110101011()321ααα-1=⎪⎪⎪⎭⎫ ⎝⎛---11111111121 所以⎪⎪⎪⎭⎫ ⎝⎛321x x x =()321ααα-1 u =⎪⎪⎪⎭⎫ ⎝⎛---11111111121⎪⎪⎪⎭⎫ ⎝⎛002=⎪⎪⎪⎭⎫⎝⎛-111 2. 验证为1(110)Tα=-,2(213)Tα=,3(312)T α=为R 3的一个基,并把(57)Tα=,(9813)Tβ=---用这个基线性表示。

解. 因为321ααα= 23111321-= -6 ≠0,所以α1,α2,α3为R 3的一个基。

设α=()321ααα⎪⎪⎪⎭⎫⎝⎛321x x x , β=()321ααα⎪⎪⎪⎭⎫⎝⎛321y y y 由()123A αααα==⎪⎪⎪⎭⎫ ⎝⎛-723001115321→⎪⎪⎪⎭⎫ ⎝⎛-2254305321 得α=()321ααα⎪⎪⎪⎭⎫⎝⎛321x x x =()321ααα⎪⎪⎪⎭⎫ ⎝⎛-132=12323ααα+- , 又有()123A αααβ==⎪⎪⎪⎭⎫ ⎝⎛----1323081119321→⎪⎪⎪⎭⎫⎝⎛---420174309321得β=()321ααα⎪⎪⎪⎭⎫ ⎝⎛321y y y =()321ααα⎪⎪⎪⎭⎫ ⎝⎛--233= 123332ααα--。

3. 下列n 阶方阵的集合,关于矩阵的加法和数乘矩阵两种运算是否构成线性空间?(1)n 阶对称矩阵全体所成之集合S ; (2)n 阶可逆矩阵全体所成之集合R ;(3)主对角线上各元素之和等于零的n 阶矩阵全体所成之集合T 。

解.(1)S 构成线性空间。

因为∀A ,B ,C ∈S ,λ,μ∈R , A+B ∈S , λA ∈S 且满足 1°.A+B=B+A2°(A+B )+C=A+(B+C ) 3° 零元素为0,满足0+A=A 4°负元素为-A ,使A+(-A )=0 5°1A=A6°λ(μA )=(λμ)A 7°λ(A+B )=ΛA+ΛB 8°(λ+μ)A=λA+μA(2)R 不构成线性空间,因为若A ∈R ,但0A=O 不可逆,即R 关于数乘法不封闭。

2020年同济大学线性代数第六版第六章《线性空间与线性变换》同步练习与解析

2020年同济大学线性代数第六版第六章《线性空间与线性变换》同步练习与解析

第六章 线性空间与线性变换1. 验证所给矩阵集合对于矩阵的加法和乘数运算构成线性空间, 并写出各个空间的一个基.(1) 2阶矩阵的全体S 1;解 设A , B 分别为二阶矩阵, 则A , B ∈S 1. 因为(A +B)∈S 1, kA ∈S 1,所以S 1对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε, ⎪⎭⎫ ⎝⎛=10004ε 是S 1的一个基.(2)主对角线上的元素之和等于0的2阶矩阵的全体S 2;解 设⎪⎭⎫⎝⎛-=a c b a A , ⎪⎭⎫ ⎝⎛-=d f e d B , A , B ∈S 2. 因为 2)(S d a a c b c d a B A ∈⎪⎭⎫ ⎝⎛++++-=+,2S ka kc kb ka kA ∈⎪⎭⎫ ⎝⎛-=, 所以S 2对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛-=10011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε是S 2的一个基.(3) 2阶对称矩阵的全体S 3. 解 设A , B ∈S 3, 则A T=A , B T=B . 因为 (A +B)T=A T+B T=A +B , (A +B)∈S 3, (kA)T=kA T =kA , kA ∈S 3,所以S 3对于加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=01102ε, ⎪⎭⎫ ⎝⎛=10003ε是S 3的一个基.2. 验证: 与向量(0, 0, 1)T不平行的全体3维数组向量, 对于数组向量的加法和乘数运算不构成线性空间.解 设V ={与向量(0, 0, 1)T不平行的全体三维向量}, 设r 1=(1, 1, 0)T, r 2=(-1, 0, 1)T, 则r 1, r 2∈V , 但r 1+r 2=(0, 0, 1)T∉V , 即V 不是线性空间.3.在线性空间P[x]3中,下列向量组是否为一个基? (1)Ⅰ:1+x,x+x 2,1+x 3,2+2x+x 2+x 3(2)Ⅱ:-1+x,1-x 2,-2+2x+x 2,x 34. 在R 3中求向量α=(3, 7, 1)T在基α1=(1, 3, 5)T, α2=(6, 3, 2)T, α3=(3, 1, 0)T下的坐标. 解 设ε1, ε2, ε3是R 3的自然基, 则 (α1, α2, α3)=(ε1, ε2, ε3)A , (ε1, ε2, ε3)=(α1, α2, α3)A -1,其中⎪⎪⎭⎫ ⎝⎛=025133361A , ⎪⎪⎭⎫ ⎝⎛-----=-1528981553621A .因为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-173) , ,(173) , ,(1321321A αααεεεα⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----=173152898155362) , ,(321ααα⎪⎪⎭⎫⎝⎛-=1548233) , ,(321ααα,所以向量α在基α1, α2, α3下的坐标为(33, -82, 154)T.5. 在R 3取两个基α1=(1, 2, 1)T, α2=(2, 3, 3)T, α3=(3, 7, 1)T; β1=(3, 1, 4)T, β2=(5, 2, 1)T, β3=(1, 1, -6)T. 试求坐标变换公式.解 设ε1, ε2, ε3是R 3的自然基, 则 (β1, β2, β1)=(ε1, ε2, ε3)B , (ε1, ε2, ε3)=(β1, β2, β1)B -1,(α1, α2, α1)=(ε1, ε2, ε3)A =(β1, β2, β1)B -1A ,其中 ⎪⎪⎭⎫ ⎝⎛=131732121A , ⎪⎪⎭⎫⎝⎛-=614121153B .设任意向量α在基α1, α2, α3下的坐标为(x 1, x 2, x 3)T, 则⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-3211321321321) , ,() , ,(x x x A B x x x βββαααα,故α在基β1, β2, β3下的坐标为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛'''-3211321x x x A B x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32149910726313941811913x x x .6. 在R 4中取两个基e 1=(1,0,0,0)T, e 2=(0,1,0,0)T, e 3=(0,0,1,0)T, e 4=(0,0,0,1)T; α1=(2,1,-1,1)T, α2=(0,3,1,0)T, α3=(5,3,2,1)T, α3=(6,6,1,3)T. (1)求由前一个基到后一个基的过渡矩阵; 解 由题意知⎪⎪⎪⎭⎫⎝⎛-=3101121163316502) , , ,() , , ,(43214321e e e e αααα, 从而由前一个基到后一个基的过渡矩阵为⎪⎪⎪⎭⎫⎝⎛-=3101121163316502A . (2)求向量(x 1, x 2, x 3, x 4)T在后一个基下的坐标; 解 因为⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-43211432143214321) , , ,() , , ,(x x x x A x x x x αααααe e e e ,向量α在后一个基下的坐标为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-4321143213166123501301112x x x x y y y y ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=432126937180092391213327912271x x x x . (3)求在两个基下有相同坐标的向量.解 令⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------4321432126937180092391213327912271x x x x x x x x ,解方程组得⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛11114321k x x x x (k 为常数).7.设线性空间S1中向量(2阶矩阵的全体S 1),a 1=(1210),a 2=(−1−111),b 1=(1331),b 2=(2−141),(1).问b 1能否由a 1, a 2线性表示;b 2能否由a 1, a 2线性表示;(2).求由向量组a 1, a 2 ,b 1 ,b 2所生成的向量空间L 的维数和一个基。

线性空间习题解答

线性空间习题解答

第六章 线性空间习题解答 P267.1 设M N,证明 :MNM ,M N N证明 : 一方面 M NM . 另一方面 , 由于 M M ,M N, 得 MM N.2 证明: (1) M (N L) (M N ) (M L).(2) M (N L) (M N) (M L)证明: (1) 设x M (N L), 则x M 且x N L. 即 x M 且x N 或 x M且 x L. 于是有x(M N ) (M L).另一方面 , 因为 MN M (NL), M L M (N L), 所以(M N) (M L) M (N L).(2) 一方面, M (N L) M N, M (N L) M L), 所以M (N L) (M N) (M L).另一方面 , x (M N) (M L), 则x M N 且x M L.若 x M ,则x M (N L). 若 x M ,则x N 且x L. 所以 x N L. 总之有x M (N L),所以 (M N ) (M L) M (N L) .3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间 . (1) 次数等于 n(n 1)的实系数多项式的全体 ,对于多项式的加法和数量乘法 . (2) 设 A 是 n n 实矩阵, A 的实系数多项式 f(A)的全体, 对于矩阵的加法和数量乘 法. (3) 全体 n 级实对称 (反对称 ,上三角)矩阵, 对于矩阵的加法和数量乘法 . (4) 平面上不平行于某一向量的全体向量所成的集合 ,对于向量的加法和数量乘 法. (5) 全体实数的二元数列 ,对于下面定义的运算 :(a 1,b 1) (a 2,b 2) (a 1 a 2,b 1 b 2 a 1a 2 ),k (a 1,b 1) (ka 1,kb 1 k(k 1)a 12).2(6)平面上全体向量,对于通常的加法和如下定义的数量乘法:k =0.(7)集合与加法同(6), 数量乘法为k = .(8)全体正实数R+, 加法和数量乘法定义为: a b=ab, ka=a k.(1)否. ,因为2个n次多项式相加不一定是n次多项式. 取f(x)=x n, g(x)=x n-1. 则f(x)+g(x)=-1 不再是n次多项式.(2)是. 因为集合V { f (A)| f (x) R[ x]}作为n级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3)是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称( 反对称,上三角)矩阵.(4)否. 设V | 为平面上不平行的向量, =(a,b) 0. 取=(a+1,b),=(a-1, b), 则, V, 但是, + V.(5)证明: 1 0显然V非空.20 2 个代数运算封闭.30先设(a1, b2 ), (a2,b2 ),r (a3,b3 ),及k,t R(1) (a2 a1,b2 b1 a2a1)(2) ()r ((a1 a2) a3 ,( b1 b2 a1a2) b3 (a1 a2)a3 (a1 a2 a3,b1 (b2 b 3 a2a3)( r) (a1 (a2 a3),b(b2 (b2 b3 a2a3) a1(a2 a3) (a1 a2 a3,b1 b2 b3 a2a3 a1a2 a1a3) ( )2(3) 0 (0,0), 0 (a1 0,b1 0 a10)(a1,b1)(4) 的负为(a1,a 12b1). ( ) )a1 ( a1), b1 22 b1) a1( a1)) (0,0) 012(5)1 (1 a1,1 b1 21 (1 1)a12) (a1,b1)12(6)k (l ) k (la1,lb12l(l 1)a121 2 1 2...... (kla1,k(lb1 k(k 1)a12) k(k 1)(la1)2)1 12121121 2 2 2=((k+1)a1,(k+l)b 1+ (k2 l2 2kl k l)a12)(kla1 klb kla12 (l 1 (k 1))12=(kla1,klb1+ kl((k 1)a12)=kl12(7)(k+l) =((k+1)a1,(k+l)b1+ (k l)(k l 1)a12)(1) a b=b a=ba (2) (a b) c=(ab)c=a(bc)= a (b c) (3) 零元 0=1, a 0=a1=a11 (4) 负元 -a= ,a (-a)=a =1=0. aa1(5) 1 a=a 1=a (6) k (l a)=k (a 1)=(a 1)k =a lk =(lk) a (7) (k+l) a=a (k+l) =a k a l =a k a l =k a l a (8) k (a b)=k (ab)=(ab)k =a k b k = a k b k= k a k b 故 R +关于 做成 R 上的向量空间 .4. 在线性空间中 , 证明: (1) k0=0. (2) k( ) k k证明: (1) 设 是线性空间的任一个向量 ,由零向量的性质 +0= ,再由分配律 : k( +0)=k = k +k0, 所以 k0=0.(2) 由(1)得 k( +( ))=k0=0=k +k( ), 得 k( )= k . 所以 k( )=k( +( ))=k + k(- )=k k .5. 证明: 在实函数空间中 , 0, cos 2t, cos2t 是线性相关的 . 证明:cos2t=2cos 2t 1, 所以1 2cos 2t cos2t=0. ∴ 1.cos 2t ,cos 2t 线性相关6. 如果是 f 1,f 2,f 3 线性空间 P[x]中的三个互素的多项式 , 但是其中(ka 1k(8)k( la 1, kb 1 12k(k 1)a 12(b 112)l(ll 2 22 1)a 1 ka 1 la 1) (ka 1 (ka 1 ) k (a 1 a 2,b 1 b 21k(k 2 1k(k 2 2ka 2, kb 1 ka 2,( kb 11)a 121)a 12) 12a 1a 2) (k(a 1 a 2 ), k(b 1 b 2 a 1a 2 2k(k 1)(a 1 a 2)2) 12(ka 1,kb 2 2k(k 1)a 12) 满足 3,故 V 是一个线性空间否. 不满足定义 3 之(5): 1 (ka 2kb 2 12 kb 2 k(k 1)a 2212 (kb 2 k(k 1)a 2212ka 1a 2 k(k (k 2a 1a 2)) 1)a 1a 2 ) (6),但这里 1 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 线性空间3.检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于()的实系数多项式的全体,对于多项式的加法和数量乘法;n 1n ≥2)设是一个实矩阵,的实系数多项式的全体,对于矩阵的加法和数量乘A n n ⨯A ()f A 法;3)全体级实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;n 4)平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法;5)全体实数的二元数列,对于下面定义的运算:,1122121212(,)(,)(,)a b a b a a b b a a ⊕=+++;211111(1)(,)(,)2k k k a b ka kb a -=+6)平面上全体向量,对于通常的加法和如下定义的数量乘法:;k =0 α7)集合与加法同6),数量乘法定义为:;k = αα8)全体正实数,加法与数量乘法定义为:+R ,.a b ab ⊕=k k a a = 解 1)不能构成实数域上的线性空间.因为两个次多项式相加不一定是次多项式,所以对加法不封闭.n n 2)能构成实数域上的线性空间.事实上,即为题目中的集合,显然,对任意的,及{()|()[]}V f f x x =∈R A (),()f g V ∈A A ,有k ∈R ,,()()()f g h V +=∈A A A ()()()kf kf V =∈A A其中.这就说明对于矩阵的加法和数量乘法封闭.容易验证,这两种运算()()()h x f x g x =+V 满足线性空间定义的1~8条,故构成实数域上的线性空间.V 3)能构成实数域上的线性空间.由于矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,故只需证明对称(反对称,上三角)矩阵对加法与数量乘法是否封闭即可.而两个对称(反对称,上三角)矩阵的和仍为对称(反对称,上三角)矩阵,一个数乘对称(反对称,上三角)矩阵也仍为对称(反对称,上三k 角)矩阵.于是,级实对称(反对称,上三角)矩阵的全体,按照矩阵的加法和数量乘法,都构n 成实数域上的线性空间.4)不能构成实数域上的线性空间.因为,两个不平行与某一向量的两个向量的和可能平行于,例如:以为对角线的任ααα意两个向量的和都平行于,从而不属于题目中的集合.α5)能构成实数域上的线性空间.事实上,即为题目中的集合.显然,按照题目中给出的加法和数量乘{(,)|,}V a b a b =∈R 法都封闭.容易验证,对于任意的,,;,有(,)a b (,)i i a b V ∈1,2,3i =,k l ∈R ①由于两个向量的分量在加法中的位置是对称的,故加法交换律成立;②直接验证,可知加法的结合律也成立;③由于,故是中加法的零元素;(,)(0,0)(0,00)(,)a b a b a b ⊕=+++=(0,0)V ④如果,则有,即11111(,)(,)(,)(0,0)a b a b a a b b aa ⊕=+++=211(,)(,)a b a a b =--为的负元素;2(,)a a b --(,)a b ⑤;21(11)1(,)(1,1)(,)2a b a b a a b -=+= ⑥222(1)(1)(1)((,))(,)(,[]())222l l l l k k k l a b k la lb a kla k lb a la ---=+=++ ;2(1)(,)()(,)2kl kl kla klb a kl a b -=+=⑦22(1)(1)(,)(,)(,)(,)22k k l l k a b l a b ka kb a la lb a --⊕=+⊕+ 222(1)(1)(,)22k k l l ka la kb a lb a kla --=+++++2(1)(1)[(),()]2k k l k l a k l b a ++-=+++;()(,)k l a b =+ ⑧1122121212[(,)(,)](,)k a b a b k a a b b a a ⊕=+++ ,212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++而221122111222(1)(1)(,)(,)(,)(,)22k k k k k a b k a b ka kb a ka kb a --⊕=+⊕+ 22212112212(1)(1)(,)22k k k k ka ka kb a kb a k a a --=+++++,212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++即.11221122[(,)(,)](,)(,)k a b a b k a b k a b ⊕=⊕ 于是,这两种运算满足线性空间定义的1~8条,所以构成实数域上的一个线性空间.V 6)不能构成实数域上的线性空间.因为,故不满足定义的第5条规律.1=≠0 αα7)不能构成实数域上的线性空间.因为,故不满足定义的第7条规律.()2k l k l αα+=≠=+=+ ααααα8)能构成实数域上的线性空间.由于两个正实数相乘还是正实数,正实数的指数还是正实数,故对定义的加法和数量+R 乘法都是封闭的.容易验证,对于任意的,,有,a b +∈R ,k l ∈R ①;a b ab ba b a ⊕===⊕②;()()()()a b c ab c abc a bc a b c ⊕⊕=⊕==⊕=⊕⊕③,即是定义的加法的零元素;11a a a ⊕==1⊕④,即是的负元素;111a a a a ⊕==1aa⑤;11a a a == ⑥;()()()()l l k lk kl k l a k a a a a kl a ===== ⑦()()()k l k l k l a a a a k a l a ++===⊕ ⑧.()()()()()k k k k a b k ab ab a b k a k b ⊕====⊕ 于是,这两种运算满足线性空间定义的1~8条,所以构成实数域上的一个线性空间.+R 『方法技巧』直接根据定义逐条验证即可,但是也要注意验证所给的加法和数量乘法是封闭的.4.在线性空间中,证明:1);k =002).()k k k -=-αβαβ 『解题提示』利用线性空间定义的运算所满足的规律和性质.证明 1)证法1 由于对任意的向量,存在负向量,使得,故α-α()+-=0αα;(())()(1)(())0k k k k k k k k =+-=+-=+-=+-==00αααααααα证法2 对于任意的向量,有,左右两边再加上的负向量α()k k k k +=+=00αααk α,即可得;k -αk =002)利用数量乘法对加法的分配律,得到,()()k k k k -+=-+=αββαββα等式两边再加上的负向量,即可得.k βk -β()k k k -=-αβαβ 5.证明:在实函数空间中,是线性相关的.21,cos ,cos 2t t 『解题提示』只需要说明其中一个向量可以由其他向量线性表出即可.证明由于在实函数空间中,有,即可由另外两个向量线性表出,故1cos 22cos 2-=t t cos 2t 是线性相关的.21,cos ,cos 2t t 7.在中,求向量在基下的坐标,设4P ξ1234,,,εεεε2).1234(1,1,0,1),(2,1,3,1),(1,1,0,0),(0,1,1,1),(0,0,0,1)====--=εεεεξ解法1 设在基下的坐标为,则有ξ1234,,,εεεε1234(,,,)k k k k '.11223344k k k k =+++ξεεεε2)将向量等式按分量写出,得12312342412420,0,30,1.k k k k k k k k k k k k ++=⎧⎪+++=⎪⎨-=⎪⎪+-=⎩解方程组,得,即为在基下的坐标.12341,0,1,0k k k k ===-=ξ1234,,,εεεε解法2 将和作为矩阵的列构成一个矩阵1234,,,εεεεξ,()1234,,,,=εεεεξA 对进行初等行变换,将其化成最简阶梯形矩阵,从而确定与的线性关系.A ξ1234,,,εεεε2)对进行初等行变换,得到A ,1210010001111100100003010001011101100010⎛⎫⎛⎫⎪ ⎪⎪⎪=→→ ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭A 于是.13=-ξεε『方法技巧』解法1,利用了待定坐标法,将线性关系转化成线性方程组,解线性方程组即可;解法2,利用了初等行变换不改变列向量之间的线性关系,将向量组构成的矩阵化成最简阶梯形矩阵,从而观察出向量的坐标.8.求下列线性空间的维数与一组基:1)数域上的空间;P n n P ⨯2)中全体对称(反对称,上三角)矩阵作成的数域上的空间;n n P ⨯P 『解题提示』根据各个线性空间的特点,构造出这些线性空间的一组基,同时也可以给出它们的维数.解1)是数域上全体级矩阵的全体,按照矩阵的加法和数量乘法,构成的线性空间.对于n n P ⨯P n 任意的,令表示第行第列的元素为1,其余元素均为0的级矩阵.根据矩阵的1,i j n ≤≤ij E i j n 线性运算以及矩阵相等的定义,容易验证,ij E ,1,2,,i j n= 是线性无关的,且任意级矩阵均可由它们线性表出,从而为的一组基.于是的维n A n n P ⨯n n P ⨯数为.2n 2)仍然使用1)中的符号,并记,,.{|}n n S P ⨯'=∈=A A A {|}n n T P ⨯'=∈=-A A A {()|0,}n n ij ij N a P a i j ⨯==∈=>A 则,按照矩阵的加法和数量乘法,分别表示中全体对称、反对称、上三角矩阵全体,,S T N n n P ⨯构成的线性空间.容易验证①,;,,构成线性空间的一组基,其维数为ii E 1,2,,i n = ij ji +E E 1i j n ≤<≤S .(1)122n n n ++++=②,,构成线性空间的一组基,其维数为ij ji -E E 1i j n ≤<≤T .(1)12(1)2n n n -+++-=③,;,,构成线性空间的一组基,其维数为ii E 1,2,,i n = ij E 1i j n ≤<≤N .(1)122n n n ++++=『方法技巧』求已知线性空间的基和维数,构造出它的一组基尤为关键,这需要注意观察线性空间元素的特征,利用线性空间中元素之间的关系进行分析.9.在中,求由基到基的过渡矩阵,并求向量在所指基下的坐4P 1234,,,εεεε1234,,,ηηηηξ标.设1) 在下的坐标;1234(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),=⎧⎪=⎪⎨=⎪⎪=⎩εεεε1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3),=-⎧⎪=⎪⎨=⎪⎪=⎩ηηηη1234(,,,)x x x x =ξ1234,,,ηηηη 2) 在下的坐标;1234(1,2,1,0),(1,1,1,1),(1,2,1,1),(1,1,0,1),=-⎧⎪=-⎪⎨=-⎪⎪=--⎩εεεε1234(2,1,0,1),(0,1,2,2),(2,1,1,2),(1,3,1,2),=⎧⎪=⎪⎨=-⎪⎪=⎩ηηηη(1,0,0,0)=ξ1234,,,εεεε『解题提示』由于题目是在4维向量空间中讨论,这里可以采用定义法或借助第三组基求过4P 渡矩阵;对于求在指定基下的坐标可以采用待定系数法,也可以采用坐标变换法.ξ解1)由于为4维单位向量,故,在基下的坐标向量即为本1234,,,εεεεi η1,2,3,4i =1234,,,εεεεi η身,故123420561336(,,,)11211013⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭ηηηηA 即为由基到的过渡矩阵.1234,,,εεεε1234,,,ηηηη又由于在基下的坐标向量即为本身,根据坐标变换公式,1234(,,,)x x x x =ξ1234,,,εεεεξ可知在下的坐标为ξ1234,,,ηηηη,111222133344412927331129231900182773926y x x y x x y x x y x x ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A 即1123421234314412344111,93914123,27932712,3371126.279327y x x x x y x x x x y x x y x x x x ⎧=+--⎪⎪⎪=+--⎪⎨⎪=-⎪⎪⎪=--++⎩2)由于这一题目是在4维向量空间中讨论,故根据本章教材内容全解的基变换一节求4P 过渡矩阵方法(3)可知,由基到基的过渡矩阵为1234,,,εεεε1234,,,ηηηη112341234(,,,)(,,,)-=A εεεεηηηη.111112021212111131110021101111222----⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪= ⎪ ⎪- ⎪⎪⎝⎭⎝⎭令,则根据初等矩阵与初等变换的对应,可以构造12341234(,,,),(,,,)==B C εεεεηηηη2n n ⨯矩阵,对矩阵实施初等行变换,当把化成单位矩阵时,矩阵就化成了=()P B C P B E C :1-B C 1111202121211113=1110021101111222---⎛⎫ ⎪-- ⎪ ⎪- ⎪⎝⎭P 10001001010011010010011100110⎛⎫ ⎪⎪→→ ⎪ ⎪⎝⎭1()-=E B C 于是,由基到基的过渡矩阵为1234,,,εεεε1234,,,ηηηη.11001110101110010-⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭A B C 另外,设为的单位向量组成的自然基,那么1234,,,e e e e 4P.12341234(,,,)(,,,)=e e e e B εεεε于是,1123412341100(1,0,0,0)(,,,)(,,,)0000-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭e e e e B ξεεεε因此,在下的坐标为ξ1234,,,εεεε.112134111111021210011100001110y y y y ----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭B 类似地,构造矩阵,并对其进行初等行变换,将化成单位矩阵时,矩阵就化=()'P B ξB E 'ξ成了:1-'B ξ,11111110003/132121001005/13=()1110000102/130111000013/13---⎛⎫⎛⎫⎪ ⎪-- ⎪⎪'→→= ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭P EB ξ所以,在下的坐标为.(1,0,0,0)=ξ1234,,,εεεε12343512133y y y y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭『方法技巧』利用维向量空间中的向量构成矩阵,将求过渡矩阵问题转化成求一个矩阵n 的逆与另一个矩阵(或向量)的乘积问题,注意在计算这样的矩阵乘法时,利用初等变换与初等矩阵的对应,构造一个新的矩阵,利用初等行变换就可求得.10.继第9题1),求一非零向量,它在基与下有相同的坐标.ξ1234,,,εεεε1234,,,ηηηη解 根据上一题的讨论可知,由到的过渡矩阵为1234,,,εεεε1234,,,ηηηη.123420561336(,,,)11211013⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭ηηηηA设所求向量为,由于为4维单位向量,故在基下的1234(,,,)x x x x '=ξ1234,,,εεεεξ1234,,,εεεε坐标向量即为本身,故根据坐标变换公式,可知在下的坐标为.因此,如ξξ1234,,,ηηηη1-A ξ果在两组基下的坐标相同,那么ξ.1-=A ξξ左右两边乘以,可得,即,也就是说是齐次线性方程组A =A ξξ()-=0A E ξξ()-=0A E X 的解.利用消元法求得方程组的解为,12341111x x k x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭其中是任意常数.k 于是,是非零常数,即为所求向量.(,,,)k k k k '=ξk 『特别提醒』利用坐标变换公式,将求向量问题转化成了求解线性方程组问题.12.设都是线性空间的子空间,且,证明:如果的维数与的维数相等,12,V V V 12V V ⊂1V 2V 那么.12V V =证明 设.那么12dim dim V V r ==①如果,则与都是零空间,从而,.0r =1V 2V 12V V =②如果,任取的一组基,由于,且的维数相等,故,根据0r >1V 12,,,r ααα21V V ⊂12,V V 基的定义,也是的一组基,于是.12,,,r ααα2V 1122(,,,)r V L V == ααα『方法技巧』这个题目的结论,在证明两个线性空间相等时经常使用.14.设,100010312⎛⎫⎪= ⎪ ⎪⎝⎭A 求中全体与可交换的矩阵所成子空间的维数和一组基.33P ⨯A『解题提示』可以待定所求矩阵的元素,利用交换关系、矩阵的相等以及解线性方程组,即可求得.解 设是与交换的任意一个矩阵.首先将矩阵分解成111213212223313233x x x x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭X A A .100000010000001311⎛⎫⎛⎫ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A EB 由于单位矩阵与任何矩阵都可交换,故与可交换当且仅当与可交换.事实上,由E X A X B ,()=+=+=+AX E B X EX BX X BX ()=+=+=+XA X E B XE XB X XB可知当且仅当.=AX XA =BX XB 将按元素写出,即为=BX XB ,131313232323333333112131122232132333300030003333x x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭从而 即132311213133122232330,33,3,x x x x x x x x x x ==⎧⎪++=⎨⎪++=⎩132331331121323312220,33,3.x x x x x x x x x x ==⎧⎪=--⎨⎪=--⎩这是一个含有9个未知数的线性方程组,取为自由未知量,依次取值为5维单1112212233,,,,x x x x x 位向量,得线性方程组的一个基础解系为,,,,.1100000300⎛⎫ ⎪= ⎪ ⎪-⎝⎭X 2010000030⎛⎫ ⎪= ⎪ ⎪-⎝⎭X 3000100100⎛⎫ ⎪= ⎪ ⎪-⎝⎭X 4000010010⎛⎫ ⎪= ⎪ ⎪-⎝⎭X 5000000311⎛⎫ ⎪= ⎪ ⎪⎝⎭X 于是即为所求空间的一组基,且这个空间的维数为5.12345,,,,X X X X X 『方法技巧』本题中,利用单位矩阵的良好性质,将求与交换的矩阵的形式转化成一个与相A 对简单的矩阵可交换的形式,这能够给计算带来简便.B19.设与分别是齐次方程组与的解空间,证1V 2V 120n x x x +++= 121n n x x x x -==== 明.12n P V V =⊕证法1 由于齐次方程组的一组基础解系为120n x x x +++= ,111111100,,,010001n ----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα即为其解空间的一组基,从而.1121(,,,)n V L -= ααα另外,齐次方程组的一组基础解系为,即为其解空间的一组12n x x x === (1,1,,1)'= β基,从而.2()V L =β又由于向量组组成的级矩阵的行列式121,,,,n - αααβn ,111111001(1)0010110011n n +---=-≠故线性无关,从而,而,所121,,,,n - αααβ121dim (,,,,)n L n -= αααβ121(,,,,)n n L P -⊂ αααβ以,根据习题12可知,.121(,,,,)n n P L -= αααβ于是,,且12121121(,,,)()(,,,,)n n n V V L L L P --+=+== αααβαααβ,12dim dim dim n P V V =+故.12n P V V =⊕证法2 由于齐次方程组的一组基础解系为120n x x x +++= ,111111100,,,010001n ----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα即为其解空间的一组基,从而.1121(,,,)n V L -= ααα另外,齐次方程组的一组基础解系为,即为其解空间的一组12n x x x === (1,1,,1)'= β基,从而.2()V L =β对于任意的,不妨设,则12V V ∈ ξ112211n n k k k l --=+++= ξαααβ,112211n n k k k l --+++-=0 αααβ按分量写开,即为1211210,0,0,0.n n k k k l k l k l k l -------=⎧⎪-=⎪⎪-=⎨⎪⎪-=⎪⎩ 直接解得,从而.因此.1210n k k k l -===== =0ξ12{}V V =0 所以,而显然,根据习题12可知,,1212dim()dim dim V V V V n +=+=12n V V P +⊂12n V V P +=结合,有.12{}V V =0 12n P V V =⊕证法3 设,即且,那么1212(,,,)n a a a V V =∈ ξ1V ∈ξ2V ∈ξ12120,.n n a a a a a a +++=⎧⎨===⎩ 直接解得,即.因此.120n a a a ==== =0ξ12{}V V =0 另外,对于任意的,显然有12(,,,)n n x x x P =∈ η,1212(,,,)(,,)(,n n x x x x x x x x x x x x ==---+ η其中,且,.所以121()n x x x x n=+++ 121(,,,n x x x x x x V ---∈ 2(,x x x V ∈ 12n P V V =+.结合,有.12{}V V =0 12n P V V =⊕ 『方法技巧』证法3的证明更为直接和简便.20.证明:如果,,那么.12V V V =⊕11112V V V =⊕21211V V V V ⊕⊕=证法1 由题设知,.由于,故.又因为11122V V V V =++12V V V =⊕12dim dim dim V V V =+,所以.于是.因此11112V V V =⊕11112dim dim dim V V V =+11122dim dim dim dim V V V V =++.21211V V V V ⊕⊕=证法2 由题设知,.设,其中,那么,由11122V V V V =++11122=++0ααα11112223,,V V V ∈∈∈ααα及,可得.再由可得11122()=++0ααα12V V V =⊕11122,+==00ααα11112V V V =⊕1112==0αα,于是,零向量的表示法唯一,从而.21211V V V V ⊕⊕=病假条模版,病假单范文 45no15Qb8owa。

相关文档
最新文档