第六章 线性空间
第六章 线性空间与线性变换
![第六章 线性空间与线性变换](https://img.taocdn.com/s3/m/155b661014791711cc79174a.png)
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠
.
(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换
高等代数第六章
![高等代数第六章](https://img.taocdn.com/s3/m/2696e3ea0975f46527d3e10f.png)
数域P上的线性空间.
例5 全体正实数R+,
1) 加法与数量乘法定义为: a, b R , k R
a b log
b a
k a ak
a , b R , k R 2) 加法与数量乘法定义为:
a b ab
k aa
k
判断 R+是否构成实数域 R上的线性空间 .
为数域 P上的次数小于 n 的多项式的全体,再添上 零多项式作成的集合,按多项式的加法和数量乘法
构成数域 P上的一个线性空间。
例3 线性空间 P mn
数域 P上 m n矩阵的全体作成的集合,按矩阵的乘法 和数量乘法,构成数域 P上的一个线性空间。
例4 任一数域 P 按照本身的加法与乘法构成一个
3)如果 σ 、τ都是双射,那么 g 也是双射,并且
g 1 ( ) 1 1 1
§2.线性空间的定义和简单性质
线性空间的定义 线性空间的简单性质
引例1 对于数域P上的n维向量空间Pn,定义了两个向 量的加法和数量乘法: (a1 , a2 , , an ) (b1 , b2 , , bn ) (a1 b1 , a2 b2 , , an bn )
定义:集合是一些事物汇集到一起组成的一个整
体;组成集合的这些事物称为集合的元素。
集合用大写字母A、B、C 等表示; 集合的元素用小写字母a、b、c 等表示.
Note “集合”概念没有一个严谨的数学定义,只是有一个 描述性的说明. 集合论的创始人--19世纪中期德国数学家康托尔 (Cantor)把集合描述为:所谓集合是指我们直觉 中或思维中确定的,彼此有明确区别的那些事物作为 一个整体来考虑的结果. 集合中的元素具有:确定性、互异性、无序性.
第六章 线性空间 习题答案
![第六章 线性空间 习题答案](https://img.taocdn.com/s3/m/3ad06410a300a6c30c229fc1.png)
第六章 线性空间3.检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n (1n ≥)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设A 是一个n n ⨯实矩阵,A 的实系数多项式()f A 的全体,对于矩阵的加法和数量乘法; 3)全体n 级实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算:1122121212(,)(,)(,)a b a b a a b b a a ⊕=+++,211111(1)(,)(,)2k k k a b ka kb a -=+; 6)平面上全体向量,对于通常的加法和如下定义的数量乘法:k =0 α;7)集合与加法同6),数量乘法定义为:k = αα;8)全体正实数+R ,加法与数量乘法定义为:a b ab ⊕=,k k a a = .解 1)不能构成实数域上的线性空间.因为两个n 次多项式相加不一定是n 次多项式,所以对加法不封闭. 2)能构成实数域上的线性空间.事实上,{()|()[]}V f f x x =∈R A 即为题目中的集合,显然,对任意的(),()f g V ∈A A ,及k ∈R ,有()()()f g h V +=∈A A A ,()()()kf kf V =∈A A ,其中()()()h x f x g x =+.这就说明V 对于矩阵的加法和数量乘法封闭.容易验证,这两种运算满足线性空间定义的1~8条,故V 构成实数域上的线性空间.3)能构成实数域上的线性空间.由于矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,故只需证明对称(反对称,上三角)矩阵对加法与数量乘法是否封闭即可.而两个对称(反对称,上三角)矩阵的和仍为对称(反对称,上三角)矩阵,一个数k 乘对称(反对称,上三角)矩阵也仍为对称(反对称,上三角)矩阵.于是,n 级实对称(反对称,上三角)矩阵的全体,按照矩阵的加法和数量乘法,都构成实数域上的线性空间.4)不能构成实数域上的线性空间.因为,两个不平行与某一向量α的两个向量的和可能平行于α,例如:以α为对角线的任意两个向量的和都平行于α,从而不属于题目中的集合.5)能构成实数域上的线性空间.事实上,{(,)|,}V a b a b =∈R 即为题目中的集合.显然,按照题目中给出的加法和数量乘法都封闭.容易验证,对于任意的(,)a b ,(,)i i a b V ∈,1,2,3i =;,k l ∈R ,有①由于两个向量的分量在加法中的位置是对称的,故加法交换律成立; ②直接验证,可知加法的结合律也成立;③由于(,)(0,0)(0,00)(,)a b a b a b ⊕=+++=,故(0,0)是V 中加法的零元素;④如果11111(,)(,)(,)(0,0)a b a b a a b b aa ⊕=+++=,则有211(,)(,)a b a a b =--,即2(,)aa b --为(,)a b 的负元素;⑤21(11)1(,)(1,1)(,)2a b a b a a b -=+= ; ⑥222(1)(1)(1)((,))(,)(,[]())222l l l l k k k l a b k la lb a kla k lb a la ---=+=++ 2(1)(,)()(,)2kl kl kla klb a kl a b -=+= ; ⑦22(1)(1)(,)(,)(,)(,)22k k l l k a b l a b ka kb a la lb a --⊕=+⊕+ 222(1)(1)(,)22k k l l ka la kb a lb a kla --=+++++2(1)(1)[(),()]2k k l k l a k l b a ++-=+++()(,)k l a b =+ ;⑧1122121212[(,)(,)](,)k a b a b k a a b b a a ⊕=+++212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++, 而221122111222(1)(1)(,)(,)(,)(,)22k k k k k a b k a b ka kb a ka kb a --⊕=+⊕+ 22212112212(1)(1)(,)22k k k k ka ka kb a kb a k a a --=+++++212121212(1)[(),()()]2k k k a a k b b a a a a -=+++++, 即11221122[(,)(,)](,)(,)k a b a b k a b k a b ⊕=⊕ .于是,这两种运算满足线性空间定义的1~8条,所以V 构成实数域上的一个线性空间.6)不能构成实数域上的线性空间.因为1=≠0 αα,故不满足定义的第5条规律. 7)不能构成实数域上的线性空间.因为()2k l k l αα+=≠=+=+ ααααα,故不满足定义的第7条规律. 8)能构成实数域上的线性空间.由于两个正实数相乘还是正实数,正实数的指数还是正实数,故+R 对定义的加法和数量乘法都是封闭的.容易验证,对于任意的,a b +∈R ,,k l ∈R ,有①a b ab ba b a ⊕===⊕;②()()()()a b c ab c abc a bc a b c ⊕⊕=⊕==⊕=⊕⊕; ③11a a a ⊕==,即1是定义的加法⊕的零元素; ④111a a a a ⊕==,即1a是a 的负元素; ⑤11a a a == ;⑥()()()()ll klkklk l a k a a a a kl a ===== ; ⑦()()()k lk l k l a aa a k a l a ++===⊕⑧()()()()()kk kk a b k ab ab a b k a k b ⊕====⊕ .于是,这两种运算满足线性空间定义的1~8条,所以+R 构成实数域上的一个线性空间. 『方法技巧』直接根据定义逐条验证即可,但是也要注意验证所给的加法和数量乘法是封闭的. 4.在线性空间中,证明:1)k =00;2)()k k k -=-αβαβ.『解题提示』利用线性空间定义的运算所满足的规律和性质.证明 1)证法1 由于对任意的向量α,存在负向量-α,使得()+-=0αα,故(())()(1)(())0k k k k k k k k =+-=+-=+-=+-==00αααααααα;证法2 对于任意的向量α,有()k k k k +=+=00ααα,左右两边再加上k α的负向量k -α,即可得k =00;2)利用数量乘法对加法的分配律,得到()()k k k k -+=-+=αββαββα,等式两边再加上k β的负向量k -β,即可得()k k k -=-αβαβ. 5.证明:在实函数空间中,21,cos ,cos2t t 是线性相关的.『解题提示』只需要说明其中一个向量可以由其他向量线性表出即可.证明 由于在实函数空间中,有1cos 22cos 2-=t t ,即cos 2t 可由另外两个向量线性表出,故21,cos ,cos 2t t 是线性相关的.7.在4P 中,求向量ξ在基1234,,,εεεε下的坐标,设2)1234(1,1,0,1),(2,1,3,1),(1,1,0,0),(0,1,1,1),(0,0,0,1)====--=εεεεξ. 解法1 设ξ在基1234,,,εεεε下的坐标为1234(,,,)k k k k ',则有11223344k k k k =+++ξεεεε.2)将向量等式按分量写出,得12312342412420,0,30,1.k k k k k k k k k k k k ++=⎧⎪+++=⎪⎨-=⎪⎪+-=⎩ 解方程组,得12341,0,1,0k k k k ===-=,即为ξ在基1234,,,εεεε下的坐标.解法2 将1234,,,εεεε和ξ作为矩阵的列构成一个矩阵()1234,,,,=εεεεξA ,对A 进行初等行变换,将其化成最简阶梯形矩阵,从而确定ξ与1234,,,εεεε的线性关系.2)对A 进行初等行变换,得到1210010001111100100003010001011101100010⎛⎫⎛⎫⎪ ⎪⎪⎪=→→ ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭A ,于是13=-ξεε.『方法技巧』解法1,利用了待定坐标法,将线性关系转化成线性方程组,解线性方程组即可;解法2,利用了初等行变换不改变列向量之间的线性关系,将向量组构成的矩阵化成最简阶梯形矩阵,从而观察出向量的坐标.8.求下列线性空间的维数与一组基: 1)数域P 上的空间n nP ⨯;2)n nP⨯中全体对称(反对称,上三角)矩阵作成的数域P 上的空间;『解题提示』根据各个线性空间的特点,构造出这些线性空间的一组基,同时也可以给出它们的维数. 解 1)n nP⨯是数域P 上全体n 级矩阵的全体,按照矩阵的加法和数量乘法,构成的线性空间.对于任意的1,i j n ≤≤,令ij E 表示第i 行第j 列的元素为1,其余元素均为0的n 级矩阵.根据矩阵的线性运算以及矩阵相等的定义,容易验证ij E ,,1,2,,i j n =是线性无关的,且任意n 级矩阵A 均可由它们线性表出,从而为n nP⨯的一组基.于是n nP⨯的维数为2n .2)仍然使用1)中的符号,并记{|}n n S P ⨯'=∈=A A A ,{|}n n T P ⨯'=∈=-A A A ,{()|0,}n n ij ij N a P a i j ⨯==∈=>A .则,按照矩阵的加法和数量乘法,,,S T N 分别表示n nP ⨯中全体对称、反对称、上三角矩阵全体构成的线性空间.容易验证①ii E ,1,2,,i n = ;ij ji +E E ,1i j n ≤<≤,构成线性空间S 的一组基,其维数为(1)122n n n ++++=. ②ij ji -E E ,1i j n ≤<≤,构成线性空间T 的一组基,其维数为(1)12(1)2n n n -+++-=. ③ii E ,1,2,,i n = ;ij E ,1i j n ≤<≤,构成线性空间N 的一组基,其维数为(1)122n n n ++++=. 『方法技巧』求已知线性空间的基和维数,构造出它的一组基尤为关键,这需要注意观察线性空间元素的特征,利用线性空间中元素之间的关系进行分析.9.在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下的坐标.设1)1234(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),=⎧⎪=⎪⎨=⎪⎪=⎩εεεε1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3),=-⎧⎪=⎪⎨=⎪⎪=⎩ηηηη 1234(,,,)x x x x =ξ在1234,,,ηηηη下的坐标; 2)1234(1,2,1,0),(1,1,1,1),(1,2,1,1),(1,1,0,1),=-⎧⎪=-⎪⎨=-⎪⎪=--⎩εεεε1234(2,1,0,1),(0,1,2,2),(2,1,1,2),(1,3,1,2),=⎧⎪=⎪⎨=-⎪⎪=⎩ηηηη (1,0,0,0)=ξ在1234,,,εεεε下的坐标; 『解题提示』由于题目是在4维向量空间4P 中讨论,这里可以采用定义法或借助第三组基求过渡矩阵;对于求ξ在指定基下的坐标可以采用待定系数法,也可以采用坐标变换法.解 1)由于1234,,,εεεε为4维单位向量,故i η,1,2,3,4i =在基1234,,,εεεε下的坐标向量即为iη本身,故123420561336(,,,)11211013⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭ηηηηA 即为由基1234,,,εεεε到1234,,,ηηηη的过渡矩阵.又由于1234(,,,)x x x x =ξ在基1234,,,εεεε下的坐标向量即为ξ本身,根据坐标变换公式,可知ξ在1234,,,ηηηη下的坐标为111222133344412927331129231900182773926y x x y x x y x x y x x ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A , 即1123421234314412344111,93914123,27932712,3371126.279327y x x x x y x x x x y x x y x x x x ⎧=+--⎪⎪⎪=+--⎪⎨⎪=-⎪⎪⎪=--++⎩2)由于这一题目是在4维向量空间4P 中讨论,故根据本章教材内容全解的基变换一节求过渡矩阵方法(3)可知,由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵为112341234(,,,)(,,,)-=A εεεεηηηη111112021212111131110021101111222----⎛⎫⎛⎫⎪ ⎪--⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 令12341234(,,,),(,,,)==B C εεεεηηηη,则根据初等矩阵与初等变换的对应,可以构造2n n ⨯矩阵=()P B C ,对矩阵P 实施初等行变换,当把B 化成单位矩阵E 时,矩阵C 就化成了1-B C :1111202121211113=1110021101111222---⎛⎫ ⎪-- ⎪ ⎪- ⎪⎝⎭P 10001001010011010010011101010⎛⎫ ⎪ ⎪→→ ⎪ ⎪⎝⎭1()-=E B C 于是,由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵为11001110101110010-⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭A B C . 另外,设1234,,,e e e e 为4P 的单位向量组成的自然基,那么12341234(,,,)(,,,)=e e e e B εεεε.于是1123412341100(1,0,0,0)(,,,)(,,,)0000-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭e e e e B ξεεεε, 因此,ξ在1234,,,εεεε下的坐标为112134111111021210011100001110y y y y ----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭B . 类似地,构造矩阵=()'P Bξ,并对其进行初等行变换,将B 化成单位矩阵E 时,矩阵'ξ就化成了1-'B ξ: 11111110003/132121001005/13=()1110000102/130111000013/13---⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪'→→= ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭P EB ξ,所以,(1,0,0,0)=ξ在1234,,,εεεε下的坐标为12343512133y y y y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭. 『方法技巧』利用n 维向量空间中的向量构成矩阵,将求过渡矩阵问题转化成求一个矩阵的逆与另一个矩阵(或向量)的乘积问题,注意在计算这样的矩阵乘法时,利用初等变换与初等矩阵的对应,构造一个新的矩阵,利用初等行变换就可求得.10.继第9题1),求一非零向量ξ,它在基1234,,,εεεε与1234,,,ηηηη下有相同的坐标. 解 根据上一题的讨论可知,由1234,,,εεεε到1234,,,ηηηη的过渡矩阵为123420561336(,,,)11211013⎛⎫ ⎪ ⎪== ⎪- ⎪⎝⎭ηηηηA . 设所求向量为1234(,,,)x x x x '=ξ,由于1234,,,εεεε为4维单位向量,故ξ在基1234,,,εεεε下的坐标向量即为ξ本身,故根据坐标变换公式,可知ξ在1234,,,ηηηη下的坐标为1-A ξ.因此,如果ξ在两组基下的坐标相同,那么1-=A ξξ.左右两边乘以A ,可得=A ξξ,即()-=0A E ξ,也就是说ξ是齐次线性方程组()-=0A E X 的解.利用消元法求得方程组的解为12341111x x k x x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 其中k 是任意常数.于是(,,,)k k k k '=ξ,k 是非零常数,即为所求向量.『特别提醒』利用坐标变换公式,将求向量问题转化成了求解线性方程组问题.12.设12,V V 都是线性空间V 的子空间,且12V V ⊂,证明:如果1V 的维数与2V 的维数相等,那么12V V =.证明 设12dim dim V V r ==.那么①如果0r =,则1V 与2V 都是零空间,从而,12V V =.②如果0r >,任取1V 的一组基12,,,r ααα,由于21V V ⊂,且12,V V 的维数相等,故,根据基的定义,12,,,r ααα也是2V 的一组基,于是1122(,,,)r V L V == ααα.『方法技巧』这个题目的结论,在证明两个线性空间相等时经常使用. 14.设100010312⎛⎫⎪= ⎪ ⎪⎝⎭A ,求33P⨯中全体与A 可交换的矩阵所成子空间的维数和一组基.『解题提示』可以待定所求矩阵的元素,利用交换关系、矩阵的相等以及解线性方程组,即可求得.解 设111213212223313233x x x x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭X 是与A 交换的任意一个矩阵.首先将矩阵A 分解成100000010000001311⎛⎫⎛⎫ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A EB .由于单位矩阵E 与任何矩阵都可交换,故X 与A 可交换当且仅当X 与B 可交换.事实上,由()=+=+=+AX E B X EX BX X BX ,()=+=+=+XA X E B XE XB X XB可知=AX XA 当且仅当=BX XB .将=BX XB 按元素写出,即为131313232323333333112131122232132333300030003333x x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭, 从而132311213133122232330,33,3,x x x x x x x x x x ==⎧⎪++=⎨⎪++=⎩ 即132331331121323312220,33,3.x x x x x x x x x x ==⎧⎪=--⎨⎪=--⎩ 这是一个含有9个未知数的线性方程组,取1112212233,,,,x x x x x 为自由未知量,依次取值为5维单位向量,得线性方程组的一个基础解系为1100000300⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,2010000030⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,3000100100⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,4000010010⎛⎫ ⎪= ⎪ ⎪-⎝⎭X ,5000000311⎛⎫⎪= ⎪ ⎪⎝⎭X .于是12345,,,,X X X X X 即为所求空间的一组基,且这个空间的维数为5.『方法技巧』本题中,利用单位矩阵的良好性质,将求与A 交换的矩阵的形式转化成一个与相对简单的矩阵B 可交换的形式,这能够给计算带来简便.19.设1V 与2V 分别是齐次方程组120n x x x +++= 与121n n x x x x -==== 的解空间,证明12n P V V =⊕.证法1 由于齐次方程组120n x x x +++= 的一组基础解系为111111100,,,010001n ----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα,即为其解空间的一组基,从而1121(,,,)n V L -= ααα.另外,齐次方程组12n x x x === 的一组基础解系为(1,1,,1)'= β,即为其解空间的一组基,从而2()V L =β.又由于向量组121,,,,n - αααβ组成的n 级矩阵的行列式111111001(1)0010110011n n +---=-≠, 故121,,,,n - αααβ线性无关,从而121dim (,,,,)n L n -= αααβ,而121(,,,,)n n L P -⊂ αααβ,所以,根据习题12可知,121(,,,,)n n P L -= αααβ.于是,12121121(,,,)()(,,,,)n n n V V L L L P --+=+== αααβαααβ,且12dim dim dim n P V V =+,故12n P V V =⊕.证法2 由于齐次方程组120n x x x +++= 的一组基础解系为111111100,,,010001n ----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα, 即为其解空间的一组基,从而1121(,,,)n V L -= ααα.另外,齐次方程组12n x x x === 的一组基础解系为(1,1,,1)'= β,即为其解空间的一组基,从而2()V L =β.对于任意的12V V ∈ ξ,不妨设112211n n k k k l --=+++= ξαααβ,则112211n n k k k l --+++-=0 αααβ,按分量写开,即为1211210,0,0,0.n n k k k l k l k l k l -------=⎧⎪-=⎪⎪-=⎨⎪⎪-=⎪⎩ 直接解得1210n k k k l -===== ,从而=0ξ.因此12{}V V =0 .所以1212dim()dim dim V V V V n +=+=,而显然12n V V P +⊂,根据习题12可知,12n V V P +=,结合12{}V V =0 ,有12n P V V =⊕.证法3 设1212(,,,)n a a a V V =∈ ξ,即1V ∈ξ且2V ∈ξ,那么12120,.n n a a a a a a +++=⎧⎨===⎩ 直接解得120n a a a ==== ,即=0ξ.因此12{}V V =0 .另外,对于任意的12(,,,)n n x x x P =∈ η,显然有1212(,,,)(,,,)(,,,)n n x x x x x x x x x x x x ==---+ η, 其中121()n x x x x n=+++ ,且121(,,,)n x x x x x x V ---∈ ,2(,,,)x x x V ∈ .所以12n P V V =+. 结合12{}V V =0 ,有12n P V V =⊕.『方法技巧』证法3的证明更为直接和简便.20.证明:如果12V V V =⊕,11112V V V =⊕,那么21211V V V V ⊕⊕=.证法1 由题设知,11122V V V V =++.由于12V V V =⊕,故12dim dim dim V V V =+.又因为11112V V V =⊕,所以11112dim dim dim V V V =+.于是11122dim dim dim dim V V V V =++.因此21211V V V V ⊕⊕=.证法2 由题设知,11122V V V V =++.设11122=++0ααα,其中11112223,,V V V ∈∈∈ααα,那么,由11122()=++0ααα及12V V V =⊕,可得11122,+==00ααα.再由11112V V V =⊕可得1112==0αα,于是,零向量的表示法唯一,从而21211V V V V ⊕⊕=.。
第六章 线性空间
![第六章 线性空间](https://img.taocdn.com/s3/m/905f5d2d580216fc700afdf3.png)
n 唯一确定的, 这组数就称为 在基 1 , 2 , … , n 下的坐标,记为 ( a1, a2 , … , an ) .
(2) 维与基的关系
如果在线性空间 V 中有 n 个线性无关的向
量 1, 2 , …, n ,且 V 中任一向量都可以
用它们线性表出,那么 V 是 n 维的,而 1, 2 , …
线性表出,则称r为这个向量组的秩,又称i1 , i2 , …,
ir是这个向量组的一个极大线性无关组.
(2) 秩与极大线性无关组有以下一些结论 1) 每一个不全由零向量组成的向量组都有极大线性
无关组;
2) 向量组与它的任一极大线性无关组等价;一个
向量组的任意两个极大线性无关组等价;
3) 如果向量组可由线性表出,则前一向量组的秩
3) 如果向量组1 , 2 , …, r 线性无关,但向量 组 1 , 2 , …, r , 线性相关,那么 可以被 1 ,
2 , …, r 线性表出,而且表法是唯一的.
5 秩与极大线性无关组
(1) 设V是数域P上的线性空间,1 , 2 , …, s是V中 一组向量, 如果该向量组中有r个向量i1 , i2 , …, ir 线性无关,且每个j (j=1,2,...,s)都可由i1 , i2 , …, ir
向量的加法和数乘构成的数域P上的线性空间. 2) Pm×n:数域P上m×n矩阵的全体,按通常矩阵的 加法和数乘构成的数域P上的线性空间. 3) P[x]: 数域P上一元多项式的全体,按通常的多 项式的加法和数乘构成的数域P上的线性空间.
4) P[x]n: 数域P上次数小于n的一元多项式的全体, 再添上零多项式,按通常的多项式的加法和数乘构成的 数域P上的线性空间. 5) 数域P按数的加法与乘法构成数域P上的线性空 间. 复数域C按数的加法与乘法构成数域R上的线性空 间,也构成复数域C上的线性空间.
高等代数考研复习[线性空间]
![高等代数考研复习[线性空间]](https://img.taocdn.com/s3/m/988c69e4e009581b6bd9ebdc.png)
1.2 常用线性空间
n P (1)n维向量空间: {(a1, a2,
, an ) | ai , P}
Pn 空间的基 1, 2 , , n 其中 i (0
n dim P n. 空间维数 P
1
i
0)
n
nm P (2)矩阵空间: Anm | A (aij ), aij P.
3 1 1 3 3 0 1 1 F1 , F2 , F3 , F4 . 1 1 1 1 2 1 0 2
(1)求由 F1, F2 , F3 , F4到 E11, E12 , E21, E22 的过渡矩阵.
1 线性空间概念、基维数与坐标
1.1
线性空间的定义: 设V是一个非空集合,P是一个数域.在V的元 素之间定义了两种运算:加法与数乘,并且 两种运算满足8条性质.则称集合V是数域P上 的线性空间. 简单地说:带有线性运算的集合,同时运算 满足8条性质的集合称为线性空间. 线性空间中的元素称为向量,线性空间也称 为向量空间.
y1 y 2 A . yn
(1 , 2 ,
y1 y , n ) 2 , yn
那么,
x1 x 2 xn
题型分析:1)确定空间的基与维数
nn V { A | A A , A P }, 求V的基与维数. 例1 设
过渡矩阵都是可逆的!并且由 1, 2 , , n 到
1 坐标变换:设 1, 2 , , n 与 1, 2 , , n 都是
n维空间V的基,对V中任一向量,有
x1 x , n ) 2 ( 1 , 2 , xn
线性空间及线性变换
![线性空间及线性变换](https://img.taocdn.com/s3/m/5d795c808762caaedd33d4fd.png)
是V1的一组基, 1 , 2 , , l 是V2的一组基.
(1) V1+V2的基与维数. 令矩阵 A ( 1 , 2 , , k , 1 , 2 , , l ) ,求A的秩,则 V1+V2的维数等于A的秩r,A中r个线性无关的列即为 V1+V2的基. (2) V1∩V2的基与维数. 令 x 1 1 x 2 2 x k k y 1 1 y 2 2 y l l ,解这 个方程组求它的一个基础解系: (xi1,xi2,…,xik,yi1,yi2,…,yil)/,i=1,2,…,d,d=k+l-r,则 z y i=1,2,…,d是V1∩V2的一组基, V1∩V2的维数等于 d=k+l-r. 4.线性变换的值域与核 线性变换/A的值域 / AV { y | y V , y / A , V } ,/A的 核/A-1(0)={y|y∈V,/Ay=0}.
二、基本方法 1.V1,V2是线性空间V的两个子空间,证明V=V1△V2 只要证明以下两点: (1)V1∩V2={0}; (2)dimV=dimV1+dimV2. 2.求线性空间V的基与维数,可先找到V的一个生成 元组 , , , ,然后证明 , , , 线性无关.
f ( ) ( 1 ) ( 2 )
r1 r2
生成
( s )
rs
则V可分解为A的不变子空间的直和
V=V1 △V2△…△Vs,其中: V i
是A属于 i 的根子空间.
{ X | ( i I A) i X 0, X V }
r
2.子空间的性质 我们用dimV表示线性空间V的维数. (1) 设V1和V2是线性空间V的子空间,则 dimV1+dimV2=dim(V1+V2)+dim(V1∩V2). (2) 设V1,V2,…,Vm是线性空间V的真子空间,则必存 在 V ,使 V ,1 i m , (3) 设V1=L(u1,u2,…,um),v1,v2,…,vr是V1中的r个线性 无关的向量,且r<m,则可以从u1,u2,…,um中去掉r个向 量,使剩下的m-r个向量与v1,v2,…,vr合在一起仍生成 子空间V1. 3.子空间的和与交的基与维数的求法 设V1和V2是线性空间V的子空间, 1 , 2 , , k
高等代数第六章线性空间小结太原理工大学
![高等代数第六章线性空间小结太原理工大学](https://img.taocdn.com/s3/m/197b4a34de80d4d8d15a4f67.png)
返回
上页 下页
本章的重点是线性空间的概念,子空间的和, 基与维数;
难点是线性空间定义的抽象性,线性相关和子 空间的直和.
本章的基本题型主要有:线性空间,子空间的 判定或证明,线性相关与无关的判定或证明,基与 维数的确定,过渡矩阵和坐标的求法,直和及同构 的判内容及其内在联系可用下图来说明: 线性空间
④ dim(W)=∑dim(Vi) .
返回
上页 下页
3. 同构映射的基本性质:
(1) 线性空间的同构映射保持零元,负元,线性组 合,线性相关性;
(2) 同构映射把子空间映成子空间; (3) 线性空间的同构关系具有反身性,对称性和传 递性;
(4) 数域P上两个有限维线性空间同构<=>它们有相 同的维数,因而,数域P上的每一个n维线性空间都 与n元数组所成的线性空间Pn同构.
线性空间 小结
线性空间是线性代数的中心内容,是几何空 间的抽象和推广,线性空间的概念具体展示了代 数理论的抽象性和应用的广泛性.
一、线性空间 1. 线性空间的概念 2. 线性空间的性质 (1) 线性空间的零元,每个元素的负元都是唯一的;
(2) (–1)α=-α,kα=0<=>k=0,或α=0
返回
上页 下页
返回
上页 下页
(3) 若在线性空间 V 中有 n 个线性无关的向量
α1,α2,…,αn,且V 中任意向量都可由它线性表示, 则V是n维的,而α1,α2,…,αn就是V的一个基.
(4) 设α1,α2,…,αn和β1,β2,…,βn是n维线性空间V的两 个基,A是由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩 阵,(x1,x2,…,xn)和(y1,y2,…,yn)分别是向量α在这两 个基下的坐标,则A是可逆的,且坐标关系为.
线性代数_第六章
![线性代数_第六章](https://img.taocdn.com/s3/m/908c1053168884868762d6c5.png)
成立, 则称这组有序数x1, x2, …, xn 为元素a 在 基a1, a2, …, an下的坐标,记作(x1, x2, …, xn )T , 称
为坐标向量.
例4 求四维线性空间R2╳2中矩阵a在基{E11,
E12, E21, E22}下的坐标。
试求P[x]2中向量在这两个基下的坐标变换公式。
§6.3 欧氏空间
线性空间中,只定义了加法与数乘两种 运算;
在线性空间中引入度量的概念后,成为 欧几里德空间;
6.3.1 内积的概念与性质
定义1 设V是实数域R上的线性空间,若在V上定义了一个二元
实函数(a, b),它满足以下条件: 1)对称性 (a, b) (b, a) 2)齐次性 (ka, b) k(a, b) 3)可加性 (ab,g)(a, b)(a, g) 4)非负性 (a, a)≥0, 当且仅当a0时(a, a)0 其中, a,b,g为V中任意元素,则称此二元实函数(a, b)为元素a与 b的内积;定义了内积的线性空间称为内积空间.
例7 齐次线性方程组
AX=0 的全部解向量构成线性空间Rn的一个子 空间,称为(1)的解空间.
例8 设C[a,b]是闭区间[a,b]上所有连续实函 数组成的线性空间,P[x][a,b]是 [a,b]上所有的 实系数多项式集合;
则C[a,b]中的定义加法与数乘, P[x][a,b]构成 C[a,b]的一个子空间.
R, R2, Rn 都是有限维线性空间; P[x]是无限维线性空间;
例1 求齐次线性方程组的解空间N(A)的维数.
x1 x1
2x2 3x2
3x3 x4 10x3 5x4
0
第六章_线性空间
![第六章_线性空间](https://img.taocdn.com/s3/m/7c1e4af0910ef12d2af9e7ae.png)
第六章 线 性 空 间例6.1 设线性空间V 的两组基分别为12,,,n ααα;12,,,n βββ.(1) 证明:任给{}1,2,,i n ∈,则存在{}1,2,,i j n ∈使111,,,,,,i i j i n ββαββ-+为V 的一组基.(2) 若3n =,对于任意{}1,2,3i ∈,是否存在{},1,2,3,j k j k ∈≠,使,,i j k βαα为V 的一组基?说明理由.解 (1) 令()111,,,,,i i i n V L ββββ-+=,则dim 1i V n =-,因此12,,,n ααα中必存在向量不在i V 中,所以存在{}1,2,,i j n ∈使i j i V α∉,则111,,,,,,i i j i n ββαββ-+线性无关,构成V 的一组基.(2) 对于任意{}1,2,3i ∈,则存在{},1,2,3,j k j k ∈≠,使得,,i j k βαα为V 的一组基. 我们采用反证的方法说明:对于i β,假设123,,ααα中每两个向量与i β合并均不构成V 的一组基,则()12,i L βαα∈,()13,i L βαα∈,()23,i L βαα∈,那么()()(){}121323,,,0i L L L βαααααα∈=,所以0i β=,矛盾.例6.2 设V 是n 维线性空间,12,,W W W 均为V 的子空间,并且21W W ⊂,12W W W W =,21W W W W +=+.证明:21W W =.证 由题目假设,则必有21dim()dim()W W W W =,)dim()dim(12W W W W +=+;那么11dim()dim()W W W W ++22dim()dim()W W W W =++.由维数公式,则12dim()dim()dim()dim()W W W W +=+,因此)dim()dim(21W W =. 但21W W ⊂,则1W 的基也必然构成2W 的基,所以21W W =.例6.3 (s 个子空间的维数公式)设V 为线性空间,且12,,,s V V V 均是V 的有限维子空间. 证明:()11121dim dim dim ()s s si i i ik i i i k V V V V -====⎛⎫⎛⎫=-I ⎪ ⎪⎝⎭⎝⎭∑∑∑∑证 由维数公式,则有211212dim()dim()dim()dim()V V V V V V =+-+,()312312123dim ()dim()dim()dim()V V V V V V V V V +=++-++,22111111dim dim()dim dim s s s s k s k k k k k V V V V V -----===⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑, 11111dim dim()dim dim s s s sk s k k k k k V V V V V --===⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. 将上述各式左右两边分别相加,即得()12111dim dim dim si s s i k i i i k i i V V V V -====⎛⎫⎛⎫⋂=- ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 所以)(I 式成立.例6.4 设12,,,s V V V 为线性空间V 的有限维子空间,证明:下述结论等价:1){}111()0,1,2,,ii i s V V V V V i s -++++++=∀=;2)1212dim()dim dim dim s s V V V V V V +++=+++.证 1)2)⇒ 对s 作归纳. 2s =时,由维数公式得到121212dim()dim dim dim()V V V V V V +=+-12dim dim V V =+.假设1s -时成立(3)s ≥. 下证s 时也成立.12dim()s V V V +++[]121121dim dim()dim ()s s s s V V V V V V V V --=++++-+++121dim dim(),s s V V V V -=++++而当1,2,,1i s =-时,均有1111()i i i s V V V V V -+-+++++111(){0}i i i s V V V V V -+⊆+++++=;那么由归纳假设,则可以得到1212dim()dim dim dim s s V V V V V V +++=+++.2)1)⇒当1,2,,1i s =-时,均有[]111dim ()ii i s V V V V V -++++++1111dim()dim()dim 0si i i s i i V V V V V V -+==++++++-≤∑所以111(){0}ii i s V V V V V -++++++=.例6.5 设V 为n 维线性空间,1V 为其非平凡子空间. 证明:存在不只一个V 的子空间W ,使W V V ⊕=1.证 设s ααα,,,21 为1V 的一组基)(n s <,由基扩充定理,则可将其扩充为V 的一组基s ααα,,,21 n s s ααα,,,,21 ++. 令1W ),,(1n s L αα +=,由于1V ),,(1s L αα =,那么11W V V ⊕=.由于1V ,1W 均为V 的非平凡子空间,则存在V ∈1β,使得11V ∉β,11W ∉β,那么121,,,,βαααs 线性无关(否则1β可由s ααα,,,21 线性表出,矛盾),将此组扩充成V的一组基s ααα,,,21 s n -βββ,,,,21 ,取2W ),,,(21s n L -=βββ ,则21W V V ⊕=,由于11W ∉β,21W ∈β,所以有21W W ≠.提示 仍利用基扩充定理,则121(,,,)(,,)s s n V L L ααααα+=⊕.易知向量组12111,,,,,,s s n ααααααα+++与向量组121,,,,,,s s n ααααα+等价,则向量组12111,,,,,,s s n ααααααα+++也线性无关,所以也有12111(,,,)(,,)s s n V L L ααααααα+=⊕++.但是111(,,)s s n L αααα+++∉.问题 设V 为n 维线性空间,1V 是V 的非零子空间,若存在唯一的子空间2V ,使得21V V V ⊕=,证明:V V =1.补1 1)证明:在[]n P x 中,多项式)())(()(111n i i i a x a x a x a x f ----=+- ,n i ,,2,1 =是一组基,其中n a a a ,,,21 是互不相同的数;2)在1)中, 取n a a a ,,,21 是全体n 次单位根, 求由基1,,,1-n x x 到基n f f f ,,,21 的的过渡矩阵.证 1)记)())(()(21n a x a x a x x F ---= ,则)()()(x f a x x F f i i i =-=.n x P x g ][)(∈∀,设0111)(b x b x b x g n n +++=-- ,记i i d a g =)(),2,1(n i =,则)()(')(')()()(11x f a F d a F a x x F d x g i iini i i i ni ∑∑===-=.设0)()()(2211=++x f k x f k x f k n n ,1a x =令代入,则0)()(112===a f a f n ,因此0)(111=a f k ,但0)(11≠a f ,则01=k ,同理02===n k k ,所以多项式组n f f f ,,,21 线性无关,则构成一组基.2)当n a a a ,,,121 =为全体n 次单位根时,1)(-=nx x F 则,由综合除法,则121111--++++=--=n n n x x x a x x f1221222221n n n n n x f a a x a x x x a -----==++++-12211----++++=--=n n n n n n n nn n x x a x a a a x x f则基1,,,1-n x x 到基n f f f ,,,21 的的过渡矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----1111112222112 n n n n n nn a a a a a a . 说明 1)也可根据dim []n P x n =,且n f f f ,,,21 线性无关来证. 补2 设n ααα,,,21 是n 维线性空间V 的一组基,A 是一s n ⨯矩阵,且()()1212,,,,,,s n A βββααα=.证明:()12dim ,,,()s L R A βββ=证1 设()12,,,s A A A A =,即A 由s 个n 维列向量构成,记r A R =)(,不妨设部分组12,,,r A A A 为组12,,,s A A A 的一极大无关组,那么()()()11111,,,,,,,,,,n r n r s n s A A A βααβααβαα===.设011=++r r k k ββ ,即()()1111,,,,0n r n r k A k A αααα++=,则有()()111,,0n r r k A k A αα++=,但n ααα,,,21 为V 的一组基,则011=++r r A k A k ,因此01===r k k ,所以r βββ,,,21 线性无关.当1,,j r s =+时,可设1rj i i i A c A ==∑,那么()()()111111,,,,,,r rrj n j n i i i n i i i i i i A c A c A c βααααααβ=====∑=∑=∑,说明部分组r βββ,,,21 是s βββ,,,21 的一个极大线性无关组,因此r βββ,,,21 为生成空间()12,,,s L βββ一组基,所以()12dim ,,,()s L R A βββ=.证2 设r A R =)(,则存在n 阶可逆矩阵P 和s 阶可逆矩阵Q 使000r E A P Q ⎛⎫=⋅⋅ ⎪⎝⎭,那么()()12120,,,,,,()00rs n E P Q βββααα⎛⎫=⋅⋅I⎪⎝⎭令()()1212,,,,,,n n P δδδααα=,由于矩阵P 可逆,则12,,,n δδδ也是V 的一组基.由()I ,则()()()121210,,,,,,,,,0,,000rs n r E Q Q βββδδδδδ⎛⎫=⋅=⎪⎝⎭,因此向量组12,,,s βββ与1,,r δδ等价,从而r βββ,,,21 的秩为r ,所以()12dim ,,,()s L R A βββ=.证3 任给V β∈,则可设1122n n x x x βααα=+++,记()12,,,n X x x x '=,则有()12,,,n X βααα=,建立映射:,()n V P X ϕϕβ→=,则ϕ是V 到nP 的同构映射. 记()12,,,s A A A A =,由题设,则(),1,2,,i i A i s ϕβ==,由于同构映射保持对应向量组的线性相关性,因此()()1212,,,,,,s s R R A A A βββ=,所以()12dim ,,,()s L R A βββ=.补3 设),,,(21n x x x f 为一实二次型,秩n f =)(,符号差s f =)(,记()1||2t n s =-.证明:存在nR 的一个t 维子空间1V ,使0)~,,~,~(,)~,,~,~(21121=∈∀n n x x x f V x x x .证 对于实二次型),,,(21n x x x f ,存在非退化线性替换CY X =,其中C 为实可逆矩阵,使得),,,(21n x x x f 222222111(1)(1)t t nt s t s y y y y y y δδ++++=+++-++----. 其中1δ=或1-.令t i Y i n i i ,,2,1,1 =+=+-εε,其中()0,,0,1,0,,0i ε'=(第i 分量为1的单位列向量),则t Y Y Y ,,,21 线性无关,令t i CY X i i ,,2,1, ==,那么组t X X X ,,,21 也线性无关. 取()112,,,t V L X X X '''=(行向量组所生成),则t V =1dim .1V α∀∈,设1122t t k X k X k X α'=+++,则()1122t t C k Y k Y k Y α'=+++,但是()11221221,,,,0,,0,,,,t t t t k Y k Y k Y k k k k k k '+++=,所以有2222221221()0t t f k k k k k k α=+++----=.补4 设21,V V 是线性空间V 的两个非平凡的子空间,证明:存在V ∈α使1V α∉,2V α∉同时成立.证 由于1V 为V 的非平凡子空间,则存在1V ∉α,若2V ∉α,则结论成立,可设2V ∈α;同理存在2V ∉β,且1V ∈β,那么必有21,V V ∉+∉+βαβα.其实,若1V ∈+βα,则1)()(V ∈-++ββα,即1V ∈α,矛盾;另一关系也同理可得.补5 设s V V V ,,,21 是线性空间V 的s 个非平凡子空间. 证明:V 中至少有一向量不属于s V V V ,,,21 中任何一个.证 对s 作归纳.1=s 时,结论显然成立.假定k s =时成立.下证1+=k s 时也成立.设1+k 个非平凡子空间为121,,,,+k k V V V V ,对于k V V V ,,,21 ,由归纳假设,则存在V ∈α使得α不属于k V V V ,,,21 中任何一个.若1+∉k V α,则结论成立.下设1+∈k V α,由于1+k V 为V 的非平凡子空间,则存在1,+∉∈k V V ββ,考虑如下1+k 个向量:)()1(,,,2,I +++++ βαβαβαβαk k .若有某两个向量属于同一个i V )1(k i ≤≤,则必有m V m i (∈α为自然数),那么)1(k i V i ≤≤∈α,矛盾.所以)(I 中必有一个向量不属于k V V V ,,,21 中的任何一个.设向量βα+l 不属于k V V V ,,,21 中的任何一个.若1+∈+k V l βα, 则有1)(+∈-+=k V l l αβαβ,此与β的取法矛盾.所以121,,,,+∉+k k V V V V l βα.得证. 问题1 设12,,,s W W W 是向量空间n P 的s 个线性子空间,12s W W W W =. 证明:W 为nP 的线性子空间的充分必要条件是,存在(1)i i s ≤≤,使i W W =.证 充分性显然. 下证必要性. 对s 作归纳. 当1=s 时,结论显然成立. 假定1s -时成立,考察12s W W W W =. 如果s W W ≠,则存在\s W W β∈. 任给s W α∈,则必有\s k W W αβ+∈. 当1,2,,k s =时,s 个向量中必有两个向量属于同一个i W (11)i s ≤≤-. 此两个向量相减后可得i W α∈,因此11s s W W W -⊂,于是11s W W W -=. 利用归纳假设,则可得一个,11i i s ≤≤-使得i W W =. 结论成立.问题2 设dim V n =,证明:任给正整数m n ≥,V 中必有m 个向量12,,,m ααα使得其中任意n 个向量均构成V 的一组基.证 我们对正整数m 作归纳,当m n =时,结论显然成立. 假设()m k k n =≥时结论成立,即V 中存在向量组12,,,k ααα使得其中任意n 个向量均构成V 的一组基,则其中任意1n -个向量均线性无关,令其中每1n -个向量生成子空间记为()11,2,,n i k V i C -=,并记1n k C t -=. 由于子空间12,,,t V V V 均非平凡,由补充题5知,必存在()11,1,2,,k k i V V i t αα++∈∉=,那么121,,,,k k αααα+中每n 个向量均线性无关,可构成V 的一组基. 这说明1m k =+时结论也成立.。
第六章线性空间
![第六章线性空间](https://img.taocdn.com/s3/m/534b021977c66137ee06eff9aef8941ea76e4b9e.png)
第六章线性空间[教学目标]1理解集合与映射的概念和运算,掌握单射、满射和可逆映射的条件与判别。
2深刻理解线性空间的定义,掌握线性空间的性质。
3理解线性组合、向量组的等价、线性相关、线性无关、基、维数和坐标的定义,掌握线性相(无)关和基的性质,会求向量关于给定基的坐标。
4理解过渡矩阵的概念和性质,掌握向量在不同基下的坐标公式。
5理解子空间、生成子空间和线性方程组的解空间的概念,掌握子空间和生成子空间的性质。
6理解和子空间的和概念,掌握维数定理。
7了解直和的概念和充要条件。
8理解同构和同构映射的概念,掌握同构的充要条件。
[教学重难点]线性空间的定义,线性相(无)关和基的性质,过渡矩阵和向量关于给定基的坐标的求法,线性方程组的解空间,子空间的交、和与直和的概念。
[教学方法]讲授[教学时间]22学时。
[教学内容]集合与映射,线性空间的定义和简单性质,维数、基与坐标,基变换与坐标变换,线性子空间,子空间的交与和,子空间的直和,线性空间的同构[考核目标]会判断一个集合是否为线性空间。
会求向量关于给定基的坐标和两组基的过渡距阵。
会判断和证明向量组线性相(无)关或是基。
教学过程:§1 集合·映射一集合的相关概念1、集合:若干个固定事物的全体,简称集。
一般用大写拉丁字母A,,表示。
把不包含任何元素的集合叫空集,记为BC∅。
2、元素:集合中的每一个事物,简称元。
一般用小写拉丁字母a,,表示。
bc二者关系:元素属于或不属于某个集合。
记为a∈A,a∉A.3、子集、真子集及其表示方法。
(集合与集合之间是包含或不包含的关系),.⊂⊆A B A B4、集合相等:BA=等价于A与B互相包含。
5、交集{}B=∈A∈xxBAorx6、并集{}B∈=,A∈xAxxB7、性质A 的子集。
A 是A、B的子集,A与B是BB二映射1、定义:B A ,是两个集合,σ是A 到B 的对应法则,如果A a ∈∀,按照这个对应法则,在B 中存在唯一的元素B b ∈与之对应,我们称σ是A 到B 的映射,记为:A B σ→, b 叫a 在σ下的象,a 叫b 在σ下的一个原象。
高等代数第六章 线性空间
![高等代数第六章 线性空间](https://img.taocdn.com/s3/m/24cb790c9b89680202d82538.png)
线性空间的维数
定义7 如果在线性空间V中有n个线性无关 的向量,但是没有更多数目的线性无关的向 量,那么V就称为n维的;如果在V中可以找 到任意多个线性无关的向量,那么V就称为 无限维的。
按照这个定义,几何空间中向量所成的 线性空间是三维的;n元数组所成的空间是n 维的;
由所有实系数多项式所成的线性空间是 无限维的,因为对于任意的N,都有N个线
线性空间的元素也称为向量. 当然,这里 所谓向量比几何中所谓向量的涵义要广泛得 多。线性空间有时也称为向量空间。以下我 们经常是用小写的希腊字母 , , ,代表线 性空间V中的元素,用小写的拉丁字母 k,l, p, 代表数域F中的数
线性空间的性质
1.零元素是唯一的。 假设01,02是线性空间V中的两个元素。
(1,0,,0),
显然
2 (0,1,,0),
n (0,0,,1)
是一组基。对每一个向量 (a1, a2,, an ) ,
都有 a11 a22 ann
所以
(a , 1
a 2
,,
a n
)
就是向量
在这组基下的坐
标。不难证明,
1 ' (1,1,,1), 2 '(0,1,,1), n ' (0,0,,1)
2.如果向量组
线性无关,而且
可以被
线1,性2 ,表出,,r 那么
。
, ,,
1
2
s
rs
由此推出,两个等价的线性无关的向量
组,必定含有相同个数的向量。
3.如果向量组
1
,
2
,,
r
线性无关,但向
量组
1
,
2
,,
r
第六章 线性空间
![第六章 线性空间](https://img.taocdn.com/s3/m/15764fd7aa00b52acfc7cacf.png)
第六章 线性空间§1基本知识§1. 1 基本概念1、集合的相关概念:2、映射:3、单射:4、满射:5、双射(一一映射):6、可逆映射及其逆映射:7、线性空间:8、向量的线性组合: 9、向量组的等价:10、向量的线性相关与无关:11、线性空间的维数(有限维与无限维线性空间): 12、线性空间的基与坐标: 13、过渡矩阵:14、线性空间的子空间: 15、生成子空间: 16、子空间的和:17、两个子空间的直和: 18、有限个子空间的直和: 19、线性空间的同构:§1. 2 基本定理1、基与维数的判定定理:设n ααα,,,21 是线性空间V 上n 个线性无关的向量,如果V 上任何一个向量都可以由它线性表出,那么V 是n 维的,n ααα,,,21 是它的一组基.2、子空间的判定定理:设W 是线性空间V 的一个非空子集,如果W 关于V 的两种运算是封闭的,那么W 是V 的一个子空间.3、生成子空间的相等与维数的判定定理:(1)两个向量组生成相同的子空间的充分必要条件是这两个向量组等价; (2)),,,(),,,(dim 2121r r R L αααααα =.4、基的扩充定理:设m ααα,,,21 是n 维线性空间V 上任意m 个线性无关的向量,如果n m <,那么在V 上必定可以找到m n -个向量n m m ααα,,,211 ++,使得n ααα,,,21 是V 的一组基.5、子空间的交的性质定理:设21,V V 都是线性空间V 的子空间,那么21V V ⋂也是V 的子空间.6、子空间的和的性质定理:设21,V V 都是线性空间V 的子空间,那么21V V +也是V 的子空间.7、维数定理:设21,V V 都是线性空间V 的子空间,那么)dim(dim dim )dim(212121V V V V V V ⋂-+=+.推论:设21,V V 都是线性空间V 的子空间,如果2121dim dim )dim(V V V V +<+,那么{}021≠⋂V V .8、直和的判定定理:设21,V V 都是线性空间V 的子空间,那么如下条件是等价的 (1)21V V +是直和;(2)若221121,,0V V ∈∈=+αααα,则021==αα;(3){}021=⋂V V ;(4)2121dim dim )dim(V V V V +=+9、直和的判定定理续:设m V V V ,,,21 都是线性空间V 的子空间,那么如下条件是等价的(1)m V V V +++ 21是直和;(2)若m i V i i m ,,2,1,,021 =∈=+++αααα,则021====m ααα ;(3){}m i V V ij j i ,,2,1,0 ==⋂∑≠;(4)∑==++m i i m V V V V 121dim )dim(10、直和的存在性定理:设W 是线性空间V 的任何一个子空间,那么一定存在V 的一个子空间U ,使得W U V ⊕=. 11、有限维线性空间同构的判定定理:(1)数域P 任何一个n 维线性空间都同构于n P ;(2)有限维线性空间同构的充分必要条件是,它们的维数相等. §1. 3 基本性质1、线性空间的性质: (1)零元素是唯一的; (2)负元素是唯一的; (3)ααα-=-==)1(;00;00k ; (4)000==⇔=αα或k k .2、过渡矩阵的性质:(1)过渡矩阵都是可逆矩阵;(2)设基n ααα,,,21 到基n βββ,,,21 的过渡矩阵是A ,则基n βββ,,,21 到基n ααα,,,21 的过渡矩阵是1-A ;(3)设基n ααα,,,21 到基n βββ,,,21 的过渡矩阵是A ,n βββ,,,21 到基n γγγ,,,21 的过渡矩阵是B ,则基n ααα,,,21 到基n γγγ,,,21 的过渡矩阵是AB .(4)设基n ααα,,,21 到基n βββ,,,21 的过渡矩阵是A ,向量α在基n ααα,,,21 和n βββ,,,21 下的坐标分别是),,,(21n x x x 和),,,(21n y y y ,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n y y y A x x x 2121. 3、子空间的交与和的性质:设21,V V 都是线性空间V 的子空间,则如下条件等价 (1)21V V ⊂; (2)121V V V =⋂; (3)221V V V =+;4、同构映射的性质:设τ是线性空间V 到线性空间W 的同构映射,则 (1)0)0(=τ;)()(ατατ-=-;(2))()()()(22112211m m m m k k k k k k ατατατααατ+++=+++ ; (3)⇔线性相关m ααα,,,21 )(,),(),(21m ατατατ 线性相关; (4)同构映射的逆映射1-τ是线性空间W 到线性空间V 的同构映射; (5)若ρ是线性空间W 到线性空间U 的同构映射,则ρτ是线性空间V 到线性空间U 的同构映射.§2 基本题型及其常用解题方法§2. 1 线性空间的判定与证明1、利用定义例6.1(北大教材,P267,3) 2、利用子空间的判定定理 例6.2(北大教材,P267,3)§2.2 基、维数的计算、判定与证明 1、利用定义例6.3(北大教材,P268,8)2、利用定理:设n ααα,,,21 是线性空间V 上的n 个线性无关的向量,若V 上任意一个向量可以由n ααα,,,21 线性表出,那么V 是n 维线性空间且n ααα,,,21 是它的一个基。
高代第六章 线性空间
![高代第六章 线性空间](https://img.taocdn.com/s3/m/aa9dfd2e4b73f242336c5fe2.png)
数量乘法满足下面两条规则: (5) 1α = α (6) k(lα) = (kl)α 数量乘法与加法满足下面两条规则: (7) (k + l)α = kα + lα (8) k(α + β) = kα + kβ
满足以上8条的加法和数量乘法通常称为线性运算。 线性空间中的元素也称为向量,因此线性空间也称为向量 空间,但这里的向量比几何中向量的含义要广得多。
A1 A 2 A n A i
i 1 n
n
A1 A 2 A n A i
i 1
线性空间
§1 集合和映射
几个运算规律:
(1) A∩B⊂A (2) A∪B⊃A A∩B⊂B A∪B⊃B
(3) A∩(A∪B)=A A∪(A∩B)=A
(4) A∩(B∪C)=(A∩B)∪(A∩C)
线性空间
第六章
线性空间
线性空间
§1 集合和映射
§1 集合和映射
一、集合
集合:由一堆东西组成的整体,通常用大写字母A、B、C表示。 元素:组成集合的个体,通常用小写字母a、b、c表示。 集合与元素的关系:
(1) a∈A 表示a是集合A中的元素。 (2) a∈A 表示a不是集合A中的元素。 (3) 无限集:由无限个元素组成的集合。 (4) 有限集:由有限个元素组成的集合。
线性空间
§2 线性空间的定义和性质
例10 按通常数域P上矩阵的加法与数量乘法,下列数域P上的 矩阵集合是否构成数域P上的线性空间。 (1) 全体n阶对称矩阵所组成的集合V。 (2) V={ X | AX=0 },其中A为给定的n阶矩阵。 例11 按通常数的加法和乘法运算,下列各数集是否构成指定 数域P上的线性空间。 (1) 实数域R是否分别构成实数域、复数域上的线性空间。 (2) 复数域C是否分别构成实数域、复数域上的线性空间。
第六章线性空间
![第六章线性空间](https://img.taocdn.com/s3/m/f3e1298b58fafab068dc02e1.png)
第六章线性空间§ 1集合•映射一、集合集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西• 组成集合的东西称为这个集合的元素•用a M表示a是集合M的元素,读为:a属于M .用a F M表示a不是集合M的元素,读为:a不属于M .所谓给出一个集合就是规定这个集合是由哪些元素组成的•因此给出一个集合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给出这个集合的元素所具有的特征性质.设M是具有某些性质的全部元素所成的集合,就可写成M = "a |a具有的性质—不包含任何元素的集合称为空集,记作'.如果两个集合M与N含有完全相同的元素,即a M当且仅当a N,那么它们就称为相等,记为M二N .如果集合M的元素全是集合N的元素,即由a • M可以推出a • N,那么M 就称为N的子集合,记为M N或N二M .两个集合M和N如果同时满足M N和N二M .,则M和N相等.设M和N是两个集合,既属于M又属于N的全体元素所成的集合称为M 与N 的交,记为M N .属于集合M或者属于集合N的全体元素所成的集合称为M与N的并,记为M N .二、映射设M和M •是两个集合,所谓集合M到集合M的一个映射就是指一个法则,它使M中每一个元素a都有M •中一个确定的元素a •与之对应.如果映射二使元素a > M与元素a • M对应,那么就记为a ■就为a在映射二下的像,而a称为a ■在映射二下的一个原像.M到M自身的映射,有时也称为M到自身的变换.关于M到M •的映射匚应注意:1)M与M •可以相同,也可以不同;2)对于M中每个元素a,需要有M •中一个唯一确定的元素a •与它对应;3)—般,M •中元素不一定都是M中元素的像;4)M中不相同元素的像可能相同;5)两个集合之间可以建立多个映射.集合M到集合M ■的两个映射二及.,若对M的每个元素a都有二(a)二.(a)则称它们相等,记作二二...例1 M是全体整数的集合,M •是全体偶数的集合,定义-(n) = 2n, n M ,这是M到M •的一个映射.例2 M是数域P上全体n级矩阵的集合,定义5(A) A|,A M .这是M到P的一个映射.例3 M是数域P上全体n级矩阵的集合,定义二2(a)二aE , a P .E是n级单位矩阵,这是P到M的一个映射.例4对于f(x) P[x],定义r f(X))= f (x)这是P[X]到自身的一个映射.例5设M,M是两个非空的集合,a0是M中一个固定的元素,定义「(a)二a0,a M .这是M到M •的一个映射.例6设M 是- -个集合,定义二(a)二 a ,a M .即二把M的每个元素都映到它自身,称为集合M的恒等映射或单位映射,记为1 M .例7任意一个定义在全体实数上的函数y 二f(x)都是实数集合到自身的映射,因此函数可以认为是映射的一个特殊情形.对于映射可以定义乘法,设匚及.分别是集合M到M,M ■到M “的映射,乘积.二定义为(.;「)(a) = (;「(a)) ,a M ,即相继施行;「和.的结果,.;「是M到M ”的一个映射.对于集合集合M到M的任何一个映射匚显然都有1M一"M .映射的乘法适合结合律.设匚,•「分别是集合M到M,M ■到M ,M “到M托勺映射,映射乘法的结合律就是(-);「- (;「).设二是集合M到M •的一个映射,用;「(M )代表M在映射二下像的全体,称为M在映射二下的像集合.显然;「(M ) M .如果二(M )二M •,映射二称为映上的或满射.如果在映射二下,M中不同元素的像也一定不同,即由a^ - a2一定有二(耳)=二(a?),那么映射二就称为1-1的或单射.一个映射如果既是单射又是满射就称1-1对应或双射.对于M到M •的双射二可以自然地定义它的逆映射,记为匚* .因为二为满射,所以M •中每个元素都有原像,又因为二是单射,所以每个元素只有一个原像,定义二'(a)二a,当二(a) = a .显然,二」是M ■到M的一个双射,并且'■- '■- = = 1 M '.不难证明,如果匚,.分别是M到M , M ■到M ”的双射,那么乘积v就是M到M “的一个双射.§ 2线性空间的定义与简单性质一、线性空间的定义.例1 在解析几何里,讨论过三维空间中的向量.向量的基本属性是可以按平行四边形规律相加,也可以与实数作数量算法•不少几何和力学对象的性质是可以通过向量的这两种运算来描述的.10按平行四边形法则所定义的向量的加法是V3的一个运算;2°解析几何中规定的实数与向量的乘法是R X V3到V3的一个运算.30由知道,空间上向量的上述两种运算满足八条运算规律.例2.数域P上一切矩阵所成的集合对于矩阵的加法和数与矩阵的乘法满足上述规律.定义1令V是一个非空集合,P是一个数域.在集合V的元素之间定义了一种代数运算,叫做加法;这就是说给出了一个法则,.对于V中任意两个向量〉与,在V中都有唯一的一个元素与它们对应,称为〉与]的和,记为 =:'■.在数域P与集合V的元素之间还定义了一种运算,叫做数量乘法;这就是说,对于数域P中任一个数k与V中任一个元素—在V中都有唯一的一个元素:与它们对应,称为k与〉的数量乘积,记为:二k〉.如果加法与数量乘法满足下述规则,那么V称为数域P上的线性空间.加法满足下面四条规则::1) :- - - = ■ ■ :■;2)(、£);3)在V中有一个元素0^ V ,都有: (具有这个性质的元素0称为V的零元素);4) -• V , 「V , st 〉• 1 = 0 ( 1 称为〉的负元素).数量乘法满足下面两条规则:5) 1——:;6)k(l:)=(kl):;数量乘法与加法满足下面两条规则:7)(k 亠丨):-k::亠丨、;;8)k (;*_亠 | ;)= k 很亠k |;在以上规则中,k,l等表示数域P中任意数;:•「,等表示集合V中任意元素.例3数域P上一元多项式环P[x],按通常的多项式加法和数与多项式的乘法,构成一个数域P上的线性空间.如果只考虑其中次数小于n的多项式,再添上零多项式也构成数域P上的一个线性空间,用P[x]n表示.例4元素属于数域P的m n矩阵,按矩阵的加法和数与矩阵的数量乘法,构成数域P上的一个线性空间,用P mn表示•例5全体实函数,按函数加法和数与函数的数量乘法,构成一个实数域上的线性空间.例6数域P按照本身的加法与乘法,即构成一个自身上的线性空间.例7以下集合对于所指定的运算是否作成实数域R上的线性空间:1)平面上全体向量所作成的集合V ,对于通常向量的加法和如下定义的纯量乘法:a :二0,a R^ - V .2)R上n次多项式的全体所作成的集合W对于多项式的加法和数与多项式的乘法•例8设V是正实数集,R为实数域.规定,二---■(即〉与]的积),a O :■ —a(即〉的a次幕),其中〉J • V,a・R.则V对于加法①和数乘。
第六章 线性空间
![第六章 线性空间](https://img.taocdn.com/s3/m/4cee8045b307e87101f696ca.png)
第六章 线性空间一.内容概述(一) 基本概念⒈线性空间的定义-----两个集合要明确。
两种运算要封闭,八条公理要齐备。
V ,数域F V ∙V →V V ∈∀βα、 使V ∈+βα。
V F ⨯→V ∀k V ∈使k V ∈α。
满足下述八条公理:⑴αββα+=+; ⑵)()(γβαγβα++=++; ⑶对于,V ∈α都有αα=+0,零元素;⑷对于V ∈α,都有0=+βα,称β为α的负元素,记为α-; ⑸βαβαk k k +=+)(;⑹αααl k l k +=+)(;⑺)()(ααl k kl =; ⑻αα=1。
常用的线性空间介绍如下:(ⅰ)2V 、3V 分别表示二维,三维几何空间。
(ⅱ)nF 或nP 表示数域)(P F 上的n 维列向量构成的线性空间。
(ⅲ)[]x F 表示数域上全体多项式组成的线性空间。
[]x F n 表F 上次数不大于n 的多项式集合添上零多项式构成的线性空间。
(ⅳ)()F M n m ⨯表示数域F 上n m ⨯矩阵的集合构成的线性空间。
当n m =时,记为()F M n m ⨯。
(ⅴ)[]b a R ,表示在实闭区间[]b a ,上连续函数的集合组成的线性空间。
⒉基,维数和坐标------刻画线性空间的三个要素。
⑴基 线性空间()F V 的一个基指的是V 中一组向量{}n ααα,,21 满足(ⅰ)n ααα,,21 线性无关;(ⅱ)V 中每一向量都可由n ααα,,21 线性表出。
⑵维数 一个基所含向量的个数,称为维数。
记为V dim 。
⑶坐标 设n ααα,,21 为()F V n 的一个基。
()F V n ∈∀α有n n a a a αααα+++= 2211则称有序数组n a a a ,,21 为α关于基n ααα,,21 的坐标。
记为(n a a a ,,21 )。
⑷过渡矩阵 设()F V n 的二个基n ααα,,21 (ⅰ)n βββ ,,21(ⅱ)且∑==ni iij j a 1αβn j 2,1=则称n 阶矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、为定义在实数域上的函数构成的线性空间,令
证明:1、2皆为的子空间,且
5、设是线性空间的子空间,如果但则必有
三、计算题
1、设,,其中
,,;,
求与的基和维数。
2、在线性空间中,求由基到基的过渡矩阵,
在基下的坐标,其中
四、证明题
1、前4个埃尔米特多项式为1, ,和,这些多项式是在研究数学物
理中的某种重要的微分方程时产生的.证明这前4个埃尔米特多项式构
成的一组基.
2、在中,令 证明: (1) 都是的子空间;(2)
则1、2都是的子空间,且1+2=____________,=____________. 5、设是线性空间V的一组基,,则由基到基的过渡矩阵T
=__________,而在基下的坐标是__________.
6、在中, 在基的坐标是________________.
7、令,,,,则是的一组基,判定是否在中,若在,求在基下的坐ຫໍສະໝຸດ 标____________.
8、已知,则dim=_____,的一组基_______________. 二、判断题
1、 设,则是的子空间.
2、已知为上的线性空间,则维()=2.
3、设,是的解空间,1是的解空间,2是的解空间,则. 4、设线性空间的子空间中每个向量可由中的线性无关的向量组线性
表出,则维()=.
第六章 线性空间测验
一、填空题 1、已知是的一个子空间,则dim= , 的一组基是
___________
_.
2、在中,若线性无关,则的取值范围是____________.
3、已知是数域P中的一个固定的数,而
是的一个子空间,则=__________,而维()=__________.
4、设是数域P上的维列向量空间,记