19.2.1正比例函数2
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案
在小组讨论环节,我发现学生们对于正比例函数在实际生活中的应用有着很高的热情,他们能够提出很多有趣的例子。但是,如何将这些例子抽象成数学模型,并运用正比例函数的性质来分析问题,这对他们来说是一个挑战。在这方面,我应该提供更多的引导和示范,让学生学会如何将实际问题转化为数学问题。
-正比例函数性质的掌握:明确当k>0时,函数值随x增大而增大;当k<0时,函数值随x增大而减小。
举例:通过实例说明,如一辆汽车以恒定速度行驶,行驶的距离与时间成正比,这里的比例系数k就是速度。
2.教学难点
-正比例函数图像的绘制:学生需要掌握如何根据函数表达式绘制出准确的图像,特别是对于k值的理解和应用。
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案
一、教学内容
人教版初中数学八年级下册第19章《函数》第二节《正比例函数的图像和性质》。本节课主要内容包括:
1.正比例函数的定义:形如y=kx(k≠0)的函数称为正比例函数。
2.正比例函数的图像:在直角坐标系中,正比例函数的图像是一条通过原点的直线。
五、教学反思
在今天的教学中,我发现学生们对正比例函数的概念和图像性质有了初步的理解,但仍然存在一些难点需要进一步突破。首先,正比例函数的定义对于部分学生来说还不够清晰,他们在理解y=kx(k≠0)这个表达式时显得有些吃力。在讲解过程中,我应该更形象地举例,比如用速度与时间的关系来说明k值的意义,让学生更直观地感受到正比例函数的实际意义。
-正比例函数性质的深入理解:学生可能会对k值的正负与图像斜率的关系感到困惑,需要通过具体实例和图形帮助学生理解。
课件4:19.2.1正比例函数(2)
则m的取值范围是( B)
A. m 1 B. m 1
2. 函数 y 5x , y 2 x ,
C.
y
m
x,
1
y
D.1
m 1
x 中,
7
y随x的增大而增大的是 y 5x , y x
,
y随x的增大而减小的是 y 2x ,
y 1 x 7
.
3.已知正比例函数 y kx (k 2 2) 的图像,
例1:用“两点法”画出函数y 3x 和 y 3x
的图像,并回答下列问题。
图像
(1)函数 y 3x的图像过点(0, 0 )和
( 2 ,6),且 y 随x 的增大而 增大 ;
(2)函数 y 3x 的图像过第__二__、__四____象限,
且 y随 x的增大而 减小 。
练习:
1.正比例函数 y (m 1)x 的图象经过一、三象限,
第 十 九 章
一
次 函
数
y 随 x 的增大而减小,求 k 的值。 解:由正比例函数的定义可知:k 2 2 0, k 2
又y 随 x 的增大而减小,故 k<0 所以 k 2 4. 已知正比例函数 y (m 1) x|m|的图象过第
二、四象限,求m的值。 解:由正比例函数的定义可知: | m | 1, m 1
又图像过第二、四象限,故 m 1 0, m 1 所以 m 1
画出正比例函数 y 2x和 y 2x 的图像
画图
解析式
y kx(k 0)
k 0
k 0
图像
图像恒过原点
(0, 0)
性质
⑴图像过一、三象限
⑵ y随 x的增大而
增大(上升趋势)
⑴图像过二、四象限
课件3:19.2.1正比例函数(2)
(2)画出这个函数的图象
(3)根据图象说明当t 增大时S 随着增大还是减小?
一、今天的收获是什么?
二、有什么疑问的地方?
三、注意: 1、实际问题求出的函数要注意自变量的取值范围 2、画实际问题的函数图象时,两轴的意义如果不 同,单位长度可以不同。
第
十
九
19.2.1正比例函数(2)
章
一
次
函
数
1.平面直角坐标系
y
第二象限 第一象限
,
,
第三象限
o
x 第四象限
,
,
坐标轴上 的点不属 于任何象 限
直角坐标平面内任意一点都有唯一确定的坐标(x,y) 与之对应,反过来,以任意给定的一对有序数对(x,y) 为坐标,都可以在直角坐标平面内确定一个点
练 (1)判断下列各点分别在哪个象限. 一 ( 2, 3), (5, 6.8), (a2 1, 4), (b│ , b│) 练 (2( ) 2s 1, 3 s)在第二象限,则
y=2x
x 1 23
请你动手画一画
在同一直角坐标系下作出下列函数图象
y x,
y
xHale Waihona Puke y xy1
01
图象有什么共同点?
yx x
正比例函数y= kx (k≠0) 的图象是一条直线
经过原点(0,0)和点(1,k)的一条直线。 那么,画正比例函数的图象,只要取上述两点就可以 了.
y y= kx (k>0) k
s的取值范围是 ___________
2.解析式形如y=kx(k≠0)的函数叫做正比例函数
例1 画正比例函数 y =2x 的图象
课件1:19.2.1正比例函数(2)
问题2:这种规律对其他正比例函数适用吗? 具有一般性吗?
请同学们在同一坐标系内画出
y 1 x 、y 1 x 进行验证。
2
2
总结
一般地正比例函数的y=kx(k是常数,k≠0)的图 象是一条经过 原点 的直线,我们称它为直线 y=kx.当k>0时,直线y=kx经过第_一__、__三__象限, 从左向右上升,即随着x的增大而__增__大____;当 k<0时,直线y=kx经过第_二__、__四___象限,从左向 右下降,即随着x的增大反而__减__小___.
A.y1>y2 B.y1<y2 C.y1=y2 D.以上都有可能
第 十 九 章
一
次 函
ห้องสมุดไป่ตู้
数
问题1:经过原点与点(1,3)的直线是哪 个函数的图象?若经过原点与点(1,-4) 呢?你发现什么?
问题2:画正比例函数的图象时,怎样画最 简单?为什么?
试一试:用你认为最简单的方法画出下列正 比例函数的图象:
(1)y=3x
(2) y=-5x
五、课堂总结,发挥潜能 1.正比例函数y=kx图象的画法:过_原__点___与点 (1,k) 的直线即所求图象. 2.正比例函数的性质.
5、若k=2,则直线y=(k-1)x比例系数k-1 > 0(>或 <)从左到右 上升 (上升或下降)
6,若k=-2,则y=(k-1)x的比例系数k-1 < 0(>或<), 直线y=kx经过第_二__、__四__象限,从左到右 下降 (上 升或下降),即y随x的增大而 减小 (增大或减小)
思考探索
例3:已知正比例函数y=(k-1)x(k是常数,k≠0)
(1)直线y=(k-1)x经过三、一象限,求k的取值范围。 (2)直线y=(k-1)x从左到右上升,求k的取值范围。 (3)直线y=(k-1)x经过二、四象限,求k的取值范围。 (4)直线y=(k-1)x随着x的增大而减小,求k的取值范围。
19.2.1正比例函数的概念(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正比例函数的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对正比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了正比例函数的概念,我观察到学生们对这一新知识充满了好奇。他们对于如何将现实生活中的问题转化为数学模型表现出了浓厚的兴趣。我尝试通过实际例子和直观的图像来解释正比例函数的定义和性质,希望这样的教学方法能够帮助他们更好地理解抽象的数学概念。
我注意到,在讲解正比例函数的图像特点时,有些学生对k值的正负与图像斜率的关系感到困惑。在今后的教学中,我需要更加细致地解释这一部分,或许可以通过更多的互动提问和实际操作来加深学生的理解。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的数学抽象能力:通过正比例函数的概念引入,使学生能够从具体实例中抽象出函数的一般规律,理解并掌握正比例函数的表达式及其特点。
2.培养学生的逻辑推理能力:在探讨正比例函数性质的过程中,引导学生运用逻辑推理,分析k值与函数图像之间的关系,提高学生的推理能力。
3.培养学生的数学建模素养:鼓励学生运用所学知识解决实际问题,将现实情境中的正比例关系抽象为数学模型,培养学生建立数学模型解决问题的能力。
三、教学难点与重点
1.教学重点
-正比例函数的定义:准确理解正比例函数表达式y=kx(k为常数,k≠0)的意义,明确k的取值范围及对函数图像的影响。
-正比例函数图像的特点:掌握正比例函数图像是一条通过原点的直线,并理解k值与图像斜率的关系。
19.2.1正比例函数(第2课时)
· 八年级(下)
19.2.1 正比例函数
第2课时
1.什么是正比例函数?请举几个实例。
一般地,形如 y=kx(k是常数, k≠0)的函数,叫做正比例函数 , 其中k叫做比例系数.
2.画函数图象的一般步骤是什么? 描点法:① 列表 ② 描点 ③ 连线
用描点法画正比例函数 y =2x 的图象 练习 在同一坐标系中用描点法画出正比例函数 1 y y = x 的图象. y=2x 3
y =k2 x y =k1 x
5. 函数y=-3x的图象过第二、四 象限,经过点
(0, 0 )与点(1,-3 ),y随x的增大而 减小 .
一、三 象限,经过点 6. 函数y= 3 x 的图象过第 2 3 (0, 0 )与点(1, 2 ),y随x的增大而 增大 .
7. 正比例函数y=(m-1)x的图象经过一、 三象限, 则m的取值范围( B )
O
A
x
O C
练习
练习3 对于正比例函数y =kx,当x 增 大时,y 随x 的增大而增大,则k的取值范 围 ( C ). A.k<0 B.k≤0 C.k>0 D.k≥0
练习
练习4 比较大小: (1)k1 < k2;(2)k3 < k4; (3)比较k1, k2, k3, k4大小,并用不等号连接. y y =k4 x 4 k1<k2 <k3 <k4 y =k3 x 2 -4 -2 O -2 -4 2 4 x
观察
5 4 3 2 1 -5 -4 -3 -2 -1 0 1 -2 -3 -4 -5
y
y=2x
1 2 3 4 5
x
y 2 x
比较上面两个函数的图象的相同点与不同点, 考虑两个函数的变化规律.
结论:两图象都是经过原点的 直线 ,函数 y 2 x
学案4:19.2.1正比例函数(2)
19.2.1正比例函数(2)学习目标:本节课主要内容是正比例函数的研究,讨论这种函数的定义、图象和增减性.领会正比例函数的定义,会从实际问题中提炼出正比例函数的解析式.学习重点:正比例函数.学习难点:正比例函数性质的理解.学习过程:一、回顾交流,探索新知知识回顾:前面我们学习了函数的概念,函数是怎么定义的?在一个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么,我们称y是x的函数。
其中,x是自变量,y是x的函数(因变量)。
今天,我们继续研究函数,我们要研究一个较为简单、应用广泛的函数——正比例函数。
预备问题:汽车以60/千米时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时,请填下表再写出s关于t的函数关系:.问题探究:1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环:4个月零1周后,人们在2.56万米外的澳大利亚发现了它(一个月按30天计算).这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?(2)这只燕鸥的行程y(单位:千米)与飞行时间x(单位:天)之间有什么关系?(3)这只燕鸥飞行1个半月的行程大约是多少千米?共同思考:下列问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?(1)圆的周长L随半径r的大小变化而变化:()m,铁块的质量m(g)随它的体积V(3m)的大小变化而变化;(2)铁的密度为7.8g/3()(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;()(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化;()这些函数的共同点:形成定义:一般地,形如的函数叫做正比例函数,其中k叫下列函数中,y是x的正比例函数的是()A.y=4x+1B.y=2x-1C.y=-5x D.y=x-8已知y=(k+1)x+k-1是正比例函数,求k的值.二、范例点击,提高认知正比例函数的解析式具有共同的结构,那么他们的图像是否也具有某种必然的共同之处呢?先给同学们提一个问题:描点法画函数图象的一般步骤是:画出下列正比例函数的图象:(1)y=2x(2)y=-2x1:通过观察例2中两图象可发现如下规律,你能将此规律补充完整吗?两图象都是经过点的线,函数y=2x的图象经过第象限,从左向右呈趋势即y随着x的增大而,函数y=-2x的图象经过第象限.从左向右呈趋势,即y随着x的增大而。
19.2.1正比例函数(2)
学以致用:(口答) 1.函数y=-7x的图象在第 二、四 象限内,
经过点(0, 0 )与点(1, -7 ),y随x的增大 而 减少 . 2.正比例函数y=(m-1)x的图象经过一、 三象限,则m的取值范围是( B ) A.m=1 B.m>1 C.m<1 D.m≥1
自学检测:
• 请在8min内完成课本P89的练习
C.k4<k2<k1<k3
D.k4<k2<k3<k1
y
O
x
当堂训练:
• 1. 教材习题19.2第1题 (P98) 2.已知 y关于x的正比例函数 y=(k+3)x|k|-4,且 y随x的增大而减 小,那么k=________.
选做题:若 y=k1x,y=k2x,y=k3x,y正确的是( A.k1<k2<k3<k4 ) B.k2<k1<k4<k3
19.2.1 正比例函数(第二课时)
学习目标:
1.会画正比例函数的图象; 2.熟练掌握正比例函数性质,并能运用性质解 决些简单地问题.
自学指导:(限时9min)
阅读课本P87练习下面-P89练习上面内容,注意: 1.仔细看P87例1(1),①这两个函数解析式中的比例 系数有什么共同点?自变量x的范围是什么? ②观察图19.2-1,这两个函数的图象是什么形状? 都过哪个点?都经哪些象限?图象从左到右呈什么 趋势? 2.仔细观察P88图19.2-2(例1(2)):①这两个函数解析 式的比例系数又有什么特点?②两图象都过哪个点? 都经哪些象限?当x在增大时,对应的y在如何变化? 3.例1中的四个函数图象有什么异同点? 4.请归纳总结正比例函数性质. 5.回答课本P89思考.
19.2.1正比例函数(2)
求m的值。
例1 已知正比例函数当自变量x等于-4时,函
数y的值等于2。求正比例函数的解析式和自 变量的取值范围;
解:设正比例函数解析式是 y=kx,
把 x =-4, y =2 代入上式,得 1 解得 k= - 2 x 为任何实数 2 = -4k
x 所求的正比例函数解析式是 y= - 2
设 代 求 写
待定系数法
练习. 铜的质量M与体积V成正比例,已知当 V=5(cm3)时,M=44.5(g) (1)求铜的质量M与体积V的函数关系式,并求 出铜的密度ρ; (2)求体积为0.3dm3的铜棒的质量。
解:(1)因为M与V成正比例,所以 M=ρV. 把V=5,M=44.5代入,得
44.5=5ρ, ρ=8.9 ∴M=8.9V,铜的密度是8.9g/cm3 (2)因为铜棒的体积为0. 3dm3,即V=300(cm3) 所以M=8.9V=8.9×300=2670(g) 答:铜棒的质量为2670g
练习
1.正比例函数y=(m-1)x的图象经过一、三象限,则 m的取值范围是 ( )
A.m=1
B.m>1
C.m<1
D.m≥1
2.下列函数y=5x,y=-3x,y=0.5x,y=-1/3x中,y随x的 增大而减小的是———,y随x的减小而减小的是— —。
2 m 3. 已知正比例函数y=mx 的图象在第二、四象限,
A y1 <y2 B y1=y2 C y1<y2 Dy1>y2 4、若y=(a+3)x+a2-9是正比例函数,则a=——,y 随着x的增大而——。
5、
解析式的求法:
待定系数法: (1) 设(2)代(3)求(4)写
6. 已知△ABC的底边BC=8cm,当BC边 上的高线从小到大变化时, △ABC的面积 也随之变化。 (1)写出△ABC的面积y(cm2)与高线x 的函数解析式,并指明它是什么函数; (2)当x=7时,求出y的值。
人教版八年级下册19.2.1正比例函数的图像和性质(教案)
二、核心素养目标
1.培养学生的数学抽象能力:通过正比例函数的学习,使学生能够从具体问题中抽象出数学关系,形成数学模型。
2.提升学生的逻辑推理能力:引导学生通过观察和分析正比例函数的图像,推理出其性质,并理解性质背后的逻辑关系。
五、教学反思
在今天的教学中,我发现学生们对于正比例函数的概念和图像性质的理解程度各有不同。在讲解正比例函数的图像时,我尽量用生动的语言和具体的例子来帮助学生形象地理解,比如通过实际的速度与时间的关系来说明斜率k的含义。这样的教学方法似乎对学生们的理解有所帮助,他们能够更直观地感受到函数图像的变化。
我还注意到,在教学难点和重点部分,需要更加细致地进行解释。尤其是斜率k的正负及其对应的图像特征,这一点对于学生来说是理解上的一个挑战。在未来的教学中,我可能会考虑引入更多的互动环节,比如让学生自己动手绘制不同斜率的正比例函数图像,通过亲身体验来加深理解。
在总结回顾环节,我觉得可以更加注重学生的反馈。了解他们在学习过程中的困惑和疑问,有助于我及时调整教学方法,更好地满足学生的学习需求。
1.教学重点
-函数解析式的理解:使学生掌握正比例函数y=kx的定义,理解k代表的是函数图像的斜率。
-图像的绘制:培养学生能够根据给定的正比例函数解析式,正确绘制出对应的图像。
-性质的掌握:让学生理解并记住正比例函数的性质,如当k>0时函数图像斜率为正,函数随x增大而增大;当k<0时,图像斜率为负,函数随x增大而减小。
3.增强学生的直观想象能力:借助图像的绘制和观察,让学生对正比例函数的几何特征形成直观的认识。
4.培养学生的数学运算能力:使学生掌握正比例函数解析式的求解和运用,提高解决实际问题的运算技能。
人教八下数学课件-19.2.1正比例函数
巩固练习 2.已知正比例函数y=(k+5)x. (1)若函数图象经过第二、四象限,则k的取值范围是_k_<_-_5___. 解析:因为函数图象经过第二、四象限,所以k+5<0,解得k<-5. (2)若函数图象经过点(3,-9),则k__=_-8__.
解析:将坐标(3,-9)带入函数解析式中,得-9=(k+5)·3, 解得k=-8.
y=-4x y=-1.5x 看图发现:这两个函数图象都是经过原点和第 二、四 象限 的直线.
探究新知
y=kx (k是常数,k≠0)的图象是一 条经过原点的直线
y=kx(k≠0)
经过的象限
k>0
第一、三象限
k<0
第二、四象限
提示:函数y=kx 的图象我们也称作直线y=kx
巩固练习
1.用你认为最简单的方法画出下列函数的图象:
解:(1)函数y=2x中自变量x可为任意实数.
①列表如下: x … -2 -1 0 1 2 … y … -4 -2 0 2 4 …
探究新知
②描点; ③连线.
同样可以画出
函数
的图
象.
y=2x
y1x 3
看图发现:这两个图象都是经过原点的 直线 . 而且都经过第 一、三 象限;
探究新知 解:(2)函数y=-1.5x,y=-4x的图象如下:
(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米 的南京南站?
探究新知
(1)乘京沪高速列车,从始发站北京南站到终点 站海虹桥站,约需要多少小时(结果保留小数
探究新知
(2)京沪高铁列车的行程y(单位:千米)与 运解行:时y间=30t0(t(单0≤位t≤4:.4)时)之间有何数量关系?
正比例函数(2)课件 2022—2023学年人教版数学八年级下册
-2
-1
0
-1
2
3
1
3
0
1
1
3
2
2
3
3
…
1
…
新知探究
如图,在直角坐标系中描出表中
y
1
y= x
3
2
1
-2 -1
O
1 2
x
x 和 y 的值对应坐标的点,将这
些点连接起来,得到一条经过原
点和第三、第一象限的直线.它
就是函数
1
y= x
3
的函数图象.
新知探究
例1
画出下列正比例函数的图象.
(3)y=-1.5x
(4)y=-4x
(3)y=-1.5x 中自变量 x 的取值范围是全体实数,选
取 y 与 x 的几组对应值.
x
…
-3
-2
-1
0
1
2
3
…
y
…
4.5
3
1.5
0
-1.5
-3
-4.5
…
新知探究
y
如图,在直角坐标系中描出表中
y=-1.5x 9
x 和 y 的值对应坐标的点,将这
4
些点连接起来,得到一条经过原
1
点和第二、第四象限的直线,它
(1)m为何值时,函数图象经过第一、三象限?
(2)m为何值时,y随x的增大而减小?
(3)m为何值时,点(1,3)在该函数图象上?
解:(1)∵函数图象经过第一、三象限,(3)∵点(1,3)在该函数图象
上,
∴2m+4>0,解得m>-2;
∴2m+4=3,
(2)∵y随x的增大而减小,
19-19.2.1正比例函数
() A.m<-1
B.m>-1
C.m≥-1
D.m≤-1
解析 ∵正比例函数y=(m+1)x中,y随x的增大而减小,∴m+1<0,解得m<-1. 故选A.
答案 A
19.2.1 正比例函数
知识点三 正比例函数的解析式
栏目索引
步骤
①设出含有未知系数的函数解析式为y=kx(k≠0);②把已知条件(自变量与 函数的对应值)代入解析式,得到关于未知系数k的方程;③解方程,求出未 知系数k;④将求得的未知系数k的值代入所设的解析式
y= 1 x;y=- 1 x.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、取点、描点、连线,
即可得到函数图象,再进行比较.
解析 列表:
x
…
-4
-2
0
2
4
…
y= 1 x
…
-2
-1
0
1
2
…
2
y=- 1 x
…
2
1
0
-1
-2
…
2
19.2.1 正比例函数
描点、连线,如图19-2-1-1所示.
栏目索引
例1 若函数y=(2-m)xm2-3 是关于x的正比例函数,则常数m的值为 ( )
A.±2
B.-2
C.± 3
D.- 3
解析 根据题意得m2-3=1且2-m≠0,解得m=±2且m≠2,所以m=-2.故选B.
答案 B
19.2.1 正比例函数
题型二 根据性质和图象比较比例系数的大小
栏目索引
例2 如图19-2-1-2所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、 y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是 ( )
人教版八下数学19.2.1 课时1正比例函数的概念教案+学案
人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时1正比例函数的概念教案【教学目标】知识与技能目标认识正比例函数的意义,掌握正比例函数解析式特点.过程与方法目标能利用正比例函数知识解决相关实际问题.情感、态度与价值观目标通过对实际问题的解决,亲身感受数学来源于生活,体会在学习中与同学合作交流获得成功的喜悦,增强学习的自信心.【教学重点】理解正比例函数意义及解析式特点.【教学难点】掌握正比例函数的解析式的求法.【教学过程设计】一、情境导入导入一:2011年开始运营的京沪高速铁路全长1318 km.设列车平均速度为300 km/h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站海虹桥站,约需多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km的南京南站?学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析:(1)1318÷300≈4.4(h).(2)y=300t.(3)y=300×2.5=750(km), 故列车尚未到达距始发站1100 km的南京南站.y=300t中,变量和常量分别是什么?其对应关系是函数关系吗?谁是自变量,谁是函数?自变量与常量按什么运算符号连接起来的?由此引出今天学习的课题:正比例函数.[设计意图]通过这一环节,让学生体会到正比例函数来源于生活实际,通过实例引入,激发学生学习数学的兴趣.导入二:一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到1千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?学生在练习本上独立完成,有困难的小组讨论、交流.教师总结,全班讲评.一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈202(千米).若设这只燕鸥每天飞行的路程为202千米,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为y=202x(0≤x≤127).这只燕鸥飞行1个半月的行程,大约是x=45时函数y=202x的值.即:y=202×45=9090(千米).以上我们用y=202x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=202x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?今天学习的课题:正比例函数.[设计意图]通过这一环节,使学生认识到数学总是与现实问题密不可分的,人们的需要产生数学.二、新知构建1.正比例函数概念思路一下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长l随半径r的大小变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位: cm3)的大小变化而变化;(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数 n 的变化而变化;(4)冷冻一个0 ℃物体,使它每分下降2 ℃,物体的温度T (单位: ℃)随冷冻时间t (单位:分)的变化而变化.学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析: (1)l =2πr ;(2)m = 7.8V ;(3)h =0.5 n ;(4)T =-2t.引导学生认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数.函数解析式常数 自变量 函数 (1)l =2πr2π r l (2)m =7.8V7.8 V m (3)h =0.5n0.5 n h (4)T =-2t -2 t T提问:这些函数有什么共同点?学生观察这些函数关系式,发现这些函数都是常数与自变量乘积的形式,和y =300t ,y =200x 的形式一样.教师归纳:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.[设计意图] 由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受正比例函数在实际生活中的应用.思路二前面我们学习了函数的概念,学会了用描点法来画函数的图象,观察下列函数的解析式,发现它们有什么特点?(1)y =3x ; (2)y =-6x ; (3)y =x ; (4)y =-x.师生共同分析:上述这些函数都是常数与自变量乘积的形式,我们把形如这样的函数叫做正比例函数.一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 教师强调:(1)常量:k ,变量:x ,y ,自变量取值范围:全体实数;(2)正比例函数的函数y 与自变量x 之间就是正比例关系的量.[设计意图] 通过观察所给函数的结构特点,让学生寻找这些函数具有的规律,让学生体会由特殊到一般来解决问题的方法.2.例题讲解例1 (补充)下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.① y =31x ;② y =x32;③ y =﹣x 6;④ y =2x ;⑤y =x 2+1;⑥ y =5x +2. 〔解析〕 观察所给的函数表达式,看是否满足正比例函数y =kx 的形式来求解.解:① y =31x 是正比例函数,正比例系数k =31. ④ y =2x 是正比例函数,正比例系数k =2.②,③,⑤,⑥ 都不是正比例函数.[设计意图] 通过设计一组函数,让学生利用正比例函数的定义进行判断求解,帮助学生及时复习所学的概念.例2 (补充)①若y =(k -1)x 是正比例函数,则 ;②若y =2x m 是正比例函数,则m = .③在函数y =(k -2)中,当k = 时,为正比例函数.〔解析〕 根据正比例函数定义,利用比例系数k ≠0,或者x 的指数为1列不等式或方程进行求解.①∵y =(k -1)x 是正比例函数,∴k -1≠0,∴k ≠1.②∵y =2x m 是正比例函数,∴m =1.③∵函数y =(k -2)为正比例函数,∴∴k =-2.答案:①k ≠1 ②1 ③-2[设计意图] 通过设计一组填空题,让学生根据正比例函数的比例系数和未知数的指数来列不等式或方程来求字母的取值.例3(补充)若y 与x -2成正比例关系,且x =4时,y =5.求y 关于x 的函数关系式. 〔解析〕 先根据y 与x -2成正比例关系可设y =k (x -2),再把x =4时,y =5代入求出k 的值即可.解:设y =k (x -2),则有k (4-2)=5,解得k =25. 所以y 关于x 的函数关系式为y =25x -5. [设计意图] 通过设计代数式之间成正比例关系,利用方程的思想进行求解,让学生更深刻理解正比例函数的定义.三、教学小结本节课学习了正比例函数的概念:形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数;会用正比例函数定义来判断函数是否为正比例函数;并且会用正比例函数定义来求一些字母的取值;解题时注意:判定一个函数是否为正比例函数,要化简后再判断.【板书设计】19.2 一次函数 19.2.1 正比例函数课时1正比例函数的概念1.正比例函数概念2.例题讲解例1 例2 例3【课堂检测】1.下面四个小题中两个变量成正比例的是( )A.儿童的身高和年龄B.等腰梯形的上底固定时,下底和面积C.圆柱的高和体积D.长方体的底面是边长为定值a 的正方形,它的体积和高解析:儿童的身高与年龄不成正比例关系;由等腰梯形的面积公式、圆柱的体积公式可知B,C 不正确;由题意知长方体的体积=a 2×高,且a 为定值,所以它的体积和高是成正比例的.故选D .2.若y =5x 3m -2是正比例函数,则m = .解析:根据正比例函数定义,得3m -2=1,解得m =1.故填1.3.y =(k -2)x 2+5x 是正比例函数,则k 的值为 .解析:根据正比例函数定义,得k -2=0,解得k =2.故填2.4.下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.(1)y =-0.1x ; (2)y =53x ; (3)y =2x 2; (4)y 2=4x ;(5)y =-4x +3; (6)y =2(x -2x 2)+2x 2.解:(1) 表示y 是x 的正比例函数;正比例系数k =-0.1.(2) 表示y 是x 的正比例函数;正比例系数k =53.(3),(4),(5),(6)都不是正比例函数. 5.如果y =kx (k ≠0),当x =4时,y =2;那么x =-3时,y 的值是多少?解:∵y =kx ,当x =4时,y =2,∴4k =2,∴k =21,∴y =21x ,∴当x =-3时,y =23.【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时1正比例函数的概念学案【学习目标】1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.【学习重点】正比例函数的概念及其简单应用.【学习难点】会求正比例函数的解析式.【自主学习】一、知识链接1.若香蕉的单价为5元/千克,则其销售额m(元)与销售量n(千克)成比例,其比例系数为.2.举例说明什么是函数及自变量.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l随半径r的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )随练习本的本数n 的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体问题T (单位:℃)随冷冻时间t (单位:min )的变化而变化.(5)以上出现的四个函数解析式都是常数与自变量 的形式.2.自主归纳:一般地,形如 (k 是常数,k≠0)的函数,叫做正比例函数,其中k 叫做比例系数.三、自学自测1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?2(1)3;(2)21;(3);(4);(5)π ;(6).2x y x y x y y y x y x ==+=-===2. 回答下列问题:(1)若y=(m-1)x 是正比例函数,m 取值范围是 ;(2)当n 时,y=2x n 是正比例函数; (3)当k 时,y=3x+k 是正比例函数. 四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的概念问题1:正比例函数的定义是什么?需要注意哪些问题?【典例探究】例 1 已知函数 y=(m-1)2m x 是正比例函数,求m 的值.方法总结:正比例函数满足的条件:(1)自变量的指数为1;(2)比例系数为常数,且不等于0.知识点2:求正比例函数的解析式例2若正比例函数当自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.方法总结:求正比例函数解析式的步骤:(1)设:设函数解析式为y=kx;(2)代:将已知条件带入函数解析式;(3)求:求出比例系数k;(4)写:写出解析式.知识点3:正比例函数的简单应用问题2:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?例3已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y (元)与行程 x (km )之间的函数关系式,并指出y 是x 的什么函数;(2)计算该汽车行驶220 km 所需油费是多少?方法总结:判断是否为正比例函数的依据是函数解析式能否化为y=kx (k 是常数,k≠0)的形式.【跟踪练习】1.(1)若y=(m-2)x |m|-1是正比例函数,则m= ;(2)若y=(m-1)x+m 2-1是正比例函数,则m= . 2.已知y 与x 成正比例,当x 等于3时,y 等于-1.则当x=6时,y 的值为____________.【学习检测】1.下列说法正确的打“√”,错误的打“✕”(1)若y =kx ,则y 是x 的正比例函数. ( )(2)若y =26x 2,则y 是x 的正比例函数. ( ) (3)若y =2(x -1)+2,则y 是x 的正比例函数. ( )(4)若y =2(x -1),则y 是x -1的正比例函数. ( )(1)✕ (2)✕ (3)√ (4)√(解析:先把所给的代数式化成最简形式,再根据正比例函数定义进行判断求解.)2.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S 与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1” )一定,工作效率w与工作时间t3.下列说法正确的打“√”,错误的打“×”.(1)若y=kx,则y是x的正比例函数()(2)若y=2x2,则y是x的正比例函数()(3)若y=2(x-1)+2,则y是x的正比例函数()(4)若y=(2+k2)x,则y是x的正比例函数()4.填空(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足_______.(2)如果y=kx k-1,是y关于x的正比例函数,则k=____.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_____.(4)若23=-是关于x的正比例函数,m=_____.(2)my m x-5.汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为, y是x的函数.y=40x正比例(解析:根据路程=速度×时间和正比例函数的定义进行判断.) 6.填空(1)若函数y=(a-3)x+a2-9是正比例函数,则a =;(2)若y=(k+3)是y关于x的正比例函数,则k=;(3)若y与x-2成正比例,当x=3时,y=-4.试求出y与x的函数关系式.解析:由正比例函数解析式为y=kx,根据题意列方程或不等式进行求解.解:(1)∵函数y=(a-3)x+a2-9是正比例函数,∴a=-3.(2)∵y=(k+3)x|k|-2是y关于x的正比例函数,∴k=3.(3)∵y与x-2成正比例,∴设y=k(x-2),∵当x =3时,y =-4,∴k =-4,∴y 与x 的函数关系式为y =-4x +8.7.已知函数y =2x 2a +3+a +2b 是正比例函数,则a = ,b = .﹣1 21 8.若x ,y 是变量,且函数y =(k +1)是正比例函数,则k = .1(解析:由正比例函数定义,可知故k =1.)9.若y =kx +2k -3是y 关于x 的正比例函数,则k = .(解析:由正比例函数定义可知2k -3=0,且k ≠0,故k =23.) 10.已知y-3与x 成正比例,并且x=4时,y=7,求y 与x 之间的函数关系式.11.已知y -6与x +3成正比例,且x =1时,y =26,试写出y 与x 的函数关系式. 解:∵y -6与x +3成正比例,∴设y -6=k (x +3).又∵x =1时,y =26,∴4k =20,∴k =5,∴y -6=5(x +3),∴y 与x 的函数关系式为y =5x +21.12.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y (单位:公顷)与收割时间x (单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.13.汽车由天津驶往相距120千米的北京,s (千米)表示汽车离开天津的距离,t (小时)表示汽车行驶的时间,如图所示.(1)汽车用几小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?解:(1)由图象可知:s与t成正比例,设s=kt,当t=4时,s=120.即120=k×4,∴k=30.∴s=30t.∴汽车用4小时可到达北京,速度是30千米/时.(2)当t=1时,s=30×1=30(千米).∴汽车行驶1小时,离开天津30千米.(3)当s=100时,100=30t,t=(小时).∴当汽车距北京20千米时,汽车出发了小时.。
【人教版】八年级数学下册课件-19.2.1 正比例函数
描点(在直角坐标系中描出
y
表格中数对对应的点);
y=-1.5x
连表线格(连中的接点直很角多坐,标可系以中选的
3 2
点),如取图几.个有代表性的作图。
1
用同样的方法,我们可以 得到y=-4x的图象,如图.
-2 -1 O 1 2 x -1 -2
状元成才路
y=-1.5x
x … -3 -2 -1 0 1 2 3 …
根据题意画图,如下,当k>0时,A( 6,6),
此 A得’k时=(S-6k△,A.3因O6B),=此此12k=×时±6kS△×A.36O=B=12,12 ×解(得-k=6k6
3
k
.当k<0时,
2
)×6=12,解
2
2
状元成才路
错因分析:解题时忽略了k值的正负 情况,导致漏解.在解答此类型的题目时, 要根据题目条件画出图形,分类讨论.
因为两点确定一条直线,所以可用两点法画 正比例函数y=kx(k是常数,k≠0)的图象.一般地, 过 原 点 与 点 (1,k)(k≠0)的 直 线 , 即 正 比 例 函 数 y=kx(k是常数,k≠0)的图象.
状元成才路
知识点 3 正比例函数解析式的确定
例3 已知正比例函数y=kx经过点(-1,2), 求这个正比例函数的解析式.
状元成才路
19.2 一次函数
19.2.1 正比例函数
R·八年级数学下册
状元成才路
新课导入
两个变量x,y成正比例, 且 比 例 系 数 是 k(k ≠ 0) , 你 能 写出y与x的关系式吗?
状元成才路
学习目标
(1) 知 道 什 么 样 的 函 数 是 正 比 例 函 数 , 能 根 据正比例函数的定义确定字母系数的值.
人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件
∴ y与∵x之当间x=函8时数,关y系=6式是∴:7yk==676 (∴x-1k ) 76
当x=4时,y=
6 7
×(4-1)= 18
7
当x=-3时,y=
6 7
×(-3-1)=
24 7
的图象?
y=-2x
y
2
y1x 2
5
4 -2小却更陡,说明
3 2 1
是k的绝对值越大, 函数图像越陡!
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
练一练
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
当k >0时,直线y=kx经过第一、三象限,从左向右上升, 即随着x的增大y也增大;
当k <0时,直线y=kx经过第二、四象限,从左向右下降, 即随着x的增大y反而减小. 我们称它为直线y=kx.
随堂练习 画出正比例函数 y 2x , y 1 x
的图象?
y
2
这两个正比例函 比较上面两个函数的图象的相同点与不同点,考虑
的图象从左向右下降,经过第二、四象限.
么影响? ∴ y与x之间函数关系式是:y= (x-1)
当k>0时,图象(除原点外)在一,三象限, 就是函数y= x 的图象
2 1
K代表一次函数的斜率即倾斜程度,k的值越大函数图像越陡!
则m的取值范围是( )
-5 -4 x增大时,y的值也增大;
-3 -2 -1 0
x
-1
-2
-3
-4
-5
y 2x
y y=2x
19.2.1 正比例函数(第2课时)
19.2.1 正比例函数的图象与性质
复习回顾
1、用描点法画函数图象有哪几个步骤? ①列表 ②描点 ③连线
2、什么是正比例函数? 一般地,形如式 y kx( k是常数,k≠0)
的函数,叫做正比例函数,其中k是比例系数。
学习目标
1. 会画正比例函数的图象 .
2.能够根据正比例函数的图象理解函数的图象特征 与性质.
2.已知正比例函数y=(m-3)x.
(1)若函数图象经过第二、四象限,则m的取值范围
是________.
(2)若函数图象经过点(2,4),则m_____.
探究新知 知识点 2 正比例函数的性质
y 4x
y 1.5x
图 像 分 析
y 2x 观察图象可以发现:
① 当 K>0时,函数图象从左向
y1x
3 右逐渐
上升 ,
②当K<0时,函数图象从左向右
渐 下降 ,
探究新知
在函数y=2x , y 1 x ,y 1.5x 和 y=-4x 中,随着x的增
3
大,y的值分别如何变化?
x… … y 2x
… y 1 x 3
2
1
3
3
… 当k>0时,y的值随x的 … 增大而 增大 ;
1
2…
3
3
x… … y 1.5x
课堂小结
正比例函 数的图象
和性质
图象的特征:经过原点的直线. 当k>0时,经过第一、三象限; 当k<0时,经过第二、四象限.
作图:两点法(0,0)和(1,k)
性质: 当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.2.1正比例函数(2)
学习目标:
1、会画正比例函数的图像。
2、根据图像说出正比例函数的性质,渗透数形结合思想。
学习重点:正比例函数的图像和性质
学习难点:数形结合思想研究正比例函数的性质。
学习过程:
一、 创设问题情境:
1、下列式子中,哪些是正比例函数,哪些不是,为什么?
8)1(-=y (2)28x y = (3)x
y 4
-= x y 3)4(-=(5)14-=x y
2、画函数图像的步骤有哪些?
二、自主学习与合作探究:
1、画出下列正比例函数的图像: 例、画出下列正比例函数的图象:
(1)y=2x (2)y=-2x 解:(1)y=2x 解:(2)y=-2x
问题1:通过观察例2中两图象可发现如下规律,你能将此规律补充完整吗?
两图象都是经过 点的 线,
函数y=2x的图象经过第象限,从左向右呈趋势,即y随着x的增大而,
函数y=-2x的图象经过第象限.从左向右呈趋势,即y随着x的增大而。
问题2:这种规律对其他正比例函数适用吗?具有一般性吗?请同学
们在同一坐标系内画出
1
y
2
=x、
1
y
2
=-x进行验证。
【总结】:一般地正比例函数的y=kx(k是常数,k≠0)的图象是一条经过的直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第象限,从左向右上升,即随着x的增大反而.;当k<0时,直线y=kx 经过第象限,从左向右下降,即随着x的增大反而.【思考探索】
问题1、经过原点与点(1,3)的直线是哪个函数的图象?若经过原点与点(1,-4)呢?你发现什么?
问题2、画正比例函数的图象时,怎样画最简单?为什么?
试一试:用你认为最简单的方法画出下列正比例函数的图象:
(1)y=3x (2)y=-5x
三、巩固练习:
例1、在同一坐标系中,分别作出下列函数的图像。
x y x y x y 2
1
)3(,)2(,2)1(321===
例2、已知函数2(3)2(3)y a x a x =-+-是关于x 的正比例函数 (1)求正比例函数的解析式。
(2)画出它的图象。
(3)若它的图象有两点1122(,),(,)A x y B x y ,当x 1<x 2时,试比较12,y y 的大小
四、达标测试:
1、函数y=kx(k≠0)的图像过P(-3,7),则k=____,图像过_____象限。
2、在函数y=2x的自变量中任意取两个点x
1,x
2
,若x
1
<x
2
,则对应的函数值
y 1与y
2
的大小关系是y
1
___y
2
.
3、当0
>
k时,正比例函数y=kx的大致图像是()
4、正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函
数值随自变量的增大而_________.
5、在直角坐标系中两条直线6
=
y与kx
y=相交于点A,直线6
=
y与y轴交于点B,若△ABC的面积为12,求k的值。