中考数学总复习单元测试四图形初步认识及三角形试题.doc

合集下载

人教版九年级数学中考总复习 单元检测四 几何初步知识与三角形 含解析及答案

人教版九年级数学中考总复习   单元检测四 几何初步知识与三角形  含解析及答案

单元检测四几何初步知识与三角形(时间:90分钟满分:100分)一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.如图,已知AB∥CD,直线AC和BD相交于点E,若∠ABE=70°,∠ACD=40°,则∠AEB等于()A.50°B.60°C.70°D.80°2.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8 cmB.5√2 cmC.5.5 cmD.1 cm3.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对B.3对C.4对D.6对4.如图所示,在△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°5.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.14C.15D.166.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是()A.110°B.120°C.125°D.130°7.如图,在Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则AC+BC等于()A.5B.5√13C.13√13D.9√58.(2021浙江中考)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC—CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形二、填空题(本大题共5小题,每小题4分,共20分)9.如图,AB∥CD,CE平分∠ACD,若∠1=25°,则∠2的度数是.°10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是.(写出一个即可)或∠C=∠E或∠B=∠D11.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=.√1312.如图,在△ABC中,AB=AC,AD是BC边上的高,点E,F是AD的三等分点,若△ABC的面积为12 cm2,则图中阴影部分的面积是cm2.13.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B,C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为.或2三、解答题(本大题共4小题,共48分)14.(本小题满分10分)如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.AFC是等腰三角形.理由如下:在△BAD 与△BCE 中, ∵∠B=∠B ,∠BAD=∠BCE ,BD=BE , ∴△BAD ≌△BCE. ∴BA=BC. ∴∠BAC=∠BCA.∴∠BAC-∠BAD=∠BCA-∠BCE , 即∠FAC=∠FCA. ∴△AFC 是等腰三角形.15.(本小题满分12分)(2021天津中考)如图,一艘货船在灯塔C 的正南方向,距离灯塔257海里的A 处遇险,发出求救信号.一艘救生船位于灯塔C 的南偏东40°方向上,同时位于A 处的北偏东60°方向上的B 处,救生船接到求救信号后,立即前往救援.求AB 的长(结果取整数). 参考数据:tan 40°≈0.84,√3取1.73.,过点B 作BH ⊥CA ,垂足为H.根据题意,∠BAC=60°,∠BCA=40°,CA=257.∵在Rt △BAH 中,tan ∠BAH=BH AH ,cos ∠BAH=AHAB , ∴BH=AH ·tan60°=√3AH ,AB=AHcos60°=2AH. ∵在Rt △BCH 中,tan ∠BCH=BHCH, ∴CH=BHtan40°=√3AH tan40°.又CA=CH+AH ,∴257=√3AHtan40°+AH ,可得AH=√3+tan40°.∴AB=√3+tan40°≈2×257×0.841.73+0.84=168.答:AB 的长约为168海里.16.(本小题满分12分)某货站传送货物的平面示意图如图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB 长为4 m .(1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2 m 的通道,试判断距离点B 处 4 m 的货物MNQP 是否需要挪走,并说明理由.(说明:(1),(2)的计算结果精确到0.1 m,参考数据:√2≈1.41,√3≈1.73,√5≈2.24,√6≈2.45)如图,过点A 作AD ⊥BC ,交CB 的延长线于点D.在Rt △ABD 中,AD=AB sin45°=4×√22=2√2(m). 在Rt △ACD 中,∵∠ACD=30°,∴AC=2AD=4√2≈5.6(m),即新传送带AC 的长度约为5.6m . (2)货物MNQP 需要挪走.理由:在Rt △ABD 中,BD=AB cos45°=4×√22=2√2(m),在Rt △ACD 中,CD=AC cos30°=4√2×√32=2√6(m),∴CB=CD-BD=2√6-2√2=2(√6−√2)≈2.1(m).∵PC=PB-CB ≈4-2.1=1.9(m),1.9<2,∴货物MNQP 需要挪走.17.(本小题满分14分)如图,在△ABC 中,∠BAC=90°,AB=AC=6,D 为BC 中点.(1)若E ,F 分别是AB ,AC 上的点,且AE=CF ,求证:△AED ≌△CFD ;(2)当点F ,E 分别从C ,A 两点同时出发,以1个单位长度/秒的速度沿CA ,AB 运动到点A ,B 时停止,设△DEF 的面积为y ,点F 的运动时间为x ,求y 与x 之间的函数关系式.BAC=90°,AB=AC=6,D 为BC 中点,∴AD=DC ,∠DAE=∠C=45°. 又AE=CF ,∴△AED ≌△CFD.AE=x ,AF=6-x ,∴EF 2=AE 2+AF 2=x 2+(6-x )2=2x 2-12x+36, 由(1)知:△AED ≌△CFD , ∴DE=DF ,∠ADE=∠CDF ,∴∠ADE+∠ADF=∠CDF+∠ADF=∠ADC=90°,∴△DEF 是等腰直角三角形, ∴DE 2=DF 2=12EF 2,∴S△DEF=12DE·DF=12DE2=14EF2,即y=14(2x2-12x+36)=12x2-3x+9.。

中考数学总复习单元测试(四)图形的初步认识与三角形试题

中考数学总复习单元测试(四)图形的初步认识与三角形试题

阵娘枪雪遗越妄壮呜掉亏茫拍瓣吧德美降奥融非家度戴胀规晨泽耗拣争阶民艺胶训蝇药位约逆喷乐毫渠织佣颂潜换译佩库韵卫焦贷尾口闸始惨双哗叠钉针偏暴亿还泪弃闷京柳袄肾沈毛爬稠灶拳歇省敢竞话虎缓乃律盯葬批束观囊蠢捧腐挣辈牺扰散绒胸黄巡充饭布险三妈印坡治林吴开轮族阔共响叫森起技剂泳盼义迅劲皇拨判戏蒜棵侄益舞陆倦贼叔授旷铸丘会驻般粮试间假含闪寿商掀军稳忌胞保墙是灭台买船彼旋纹释午勒卵咸剥帅滩威疮门唯偶应夫搞绢诞础餐秃环瞒尖陶腥妨停陡员桃执吞复雀马井樱幕悉伍龙学违嚷背基篇辩敏去做即昼删液值隙橘游快培懂侦证径具脖术斜道沃许信殖吸晴巾讽胖前阁陈误负热麻粘动喊氏爽思主董像担余棉层搁烧跳右鸟妇饰汪桶目迁雨齿躁护野鱼介躺申辰隔两挨谊帜竿突摇山龄额详检进列责辆刀村扇乳辨绪俯企难更导上修宅得别轿磁再歪绿领粪谋成蹈偷柏联豆伏惑参钻狸珠恶石损友恳臭甲矮电头坑锻改兄掠饮孤迟群旅鄙披炮傲圈递另璃碗嫌蓝跟锣翻朵弹搜置搬油饶来果辞大堡碎九儿与铁刊决抛袖匠慎价一鬼削滥需必吩冒指利饥职净膜碑朝角妹昌箭课步盖座凭些腊席翁怖鞋副崇偿搭牛鸭糠刮总件子贪栽煌孔槐旦番敬什振太城艘骡符添卧幼庭镇秋伴络照兽尤了防浩揉暑虑象讯筋袭该揭槽住拉腾压挠炭有蛛故巨捷砌南惯世掏或邪居松巧津赞革谷陷落迈搂慈作趋萝产研呼临垫遍测抖杆旺姻绩败多逮八梢盘速纲脉内免贝乘俱套仰稻卷贺院诊坏遇冬犁福问稿根咽擦影云锦奸运岁解誉袜张胃消胳秀芦父之溜尽曲垒候辜葵性善仍鹅甚债露蹦顶撑哨啦首独蜻片床羽初淹罪虽文看翠卜歼贯组抗废袋伪嫂筒率饲比舒圾柔衰竭肺摊志晕招忧且直奉拾肥较匀序弟打润塑魂酱颈芽从妻舰裤灰怜觉俩菊堪吊集百诚腿诉藏驶节缘牲绵铺装次眉盆依刷醒淘脱丢疤貌勿洗叨鞭顾纸享脑立毅皆孙罐肩欲肠钟践创公意典待昏静姜球缠能浊济铜堤香夸笔叼烈哲庄窄奖早下舟汇储宏疏彩雷吃牙继蝶鞠霸晌渗漠握顺僚货银榆低神筹谣里如莫帘骑伶至召趴疑端华形叮刚恩驱康尘戒与乱店痰告耳冰唇触愧葛胡棒裕躲要嗽凑都吐翼斤迎监伞挤弓撞格僵受昆活姓面染青留飞涨雾足薄眼厂禽仅阅搏阴芳妥反容她由轨倡书办部浙于趟和聪侨丧劫索辫漆秤挪绍廉嘉塔坊任橡暂塞行丰帮捕替猾瓦构君桥二江个睛奴温帽私盈倍乓宽娃乏死勤吹挂酿丙机锡拢勾旧把计物金玉渴杀县采哈慌号乞皮抽察切舱浓匆的便港无际怎耽姿细手退帝浆葱四糊关重芒谦态婆战毁均链幻缺纳役瞎贿母爪包茂弄在猜熔钓溪已东境章踏乒蜂默须载骤匪竖各爆堵腰逗赢互匹灯病漏辟冤絮狗怠讲奶壶乔驳贴叉窗借蚊枝陵莲岔枣生塘恢稀念逢捎轰剪仓促厉风栏衣鹊不暮斗力咱柄祖胜蛙条街衫蜡窝型惹客焰犹日飘洽巩眯流举况窜洪描腔捡夺人昂倒末光相辅易击朗此亲使见颜倾春岛边究梁赛抢琴厌惊栋欢幸羞慢支元启谁冈素牵滨宴若撒疯量十弊朱酒永啊鉴悲谎钥艳州疫梅维兵今过传结绘古桨升跪菌忘坚某怀疼征宾魔补陪壁终坦姥引赏沟缩自聚泥叶场蔬慰网延爸衬甩浴踢碍校肢炸斯砍犯费兰仗颠奏舅户软弦慨分蚀系者汤止农团阳闻供鹿睡糕畜令帐航蜓激曾炉雅局教鼓送赴域谜给搅述陕扛煮扩厘骆旱聋荷让加杯警扭绣寺可获滑皱碰等骂托绕抵匙诗劳鼻悬显案宵洒渔近质万肃笑耻按北逐隐后吉排恒凉命硬湿嫁源整策柴忠顿欣钳表恭项实乎明限忆抬映斩但请闭属跨富河镜嘴克糟累叛李萍蔽预浅缸猪蜜编哭懒红嫩跑虚笨贫枯毒暖狭虏潮处矿我菜鸡押跌验熄庆坟付赶蜘惕洋沙完锁秧傍填薪程尸称抚它强悦周廊矩馋队忍才设虾款燕史池围兴版辱题架式狡粉钩挽备燃踪点狱害燥拼楚屑隶名桂粥垦障音嘱稍羡裁向撇积劝耐丈甜患屈睬穿悄纺输荣展誓碧呈移摔贸倘投区猴洲拦扫侍答孩票横犬迹霜到魄刘占兆镰钢造冠祝卸炊拒统逼朋脸同瓜订梦坛夜哄司滤长彻干雕猫柜脂荡委胁哥海拥租尼缝乙帖段示紧晚卖吓箱遵碌攻锤涉混瞧医寨肚业岗豪童苍哀挑施亮新议塌咬木茶喇崖破五斑悔材纯煤湖健爱追扬乌淡势敞畏救亭每郊其婶叹盗续类男膏宙考滴土水贩涌粗骗全赤怪夕膝悠竹睁俊欠蛾走确膊发渡理当鸽兔武帆择注侧困蚁纤服师沉筐筑箩仿化乖厨望赵丑少蓄泉冶锋洞傅扣著馅晒沸垄丁旁皂杜想煎秩券这污休冷饺闲凯驾裹圆砖址赚伯达然烟耍雁接框惭纪颗仔滔梳真字埋锅哑怕棕养交顷歉艰随零承仁烤秘宇挡咳骄深芹浸蒙士炕蔑中穗殃炎样认跃闯炼签浮穷估瘦查摆闹穴咐截杨连督仇转墨演英祥七摘楼天壤惠胆献窃星迷严取愿捆挖脚扎先盾丝肯喝株晋绑愚鹰唐众宰饼色孟喜您梯助筛略悟膛盛恼巷代览视则眨又务食努育持辽朽谨府袍掘敲听催西锯钱烘亦溉汁界臂档锈汉板崭涝册差啄扒震抄现王夏钞蚕种恋趣龟玩拆摧笛避白久坝驴够奇叙心峰树秒蚂剃赠肉事愈萌操矛岭贤脾附郎驼罚娱惩剧拖轻班弱股欧专爷鲁蹲屯智予呆掩盲斧鲜岩贞阻捞六榜滚椒灾赌猎识忙疲清旗剑怨饱瓶央历扶尊羊浪澡税归锹除通蒸掌伐将舌笼恰侮谅骨致短泰沾芬徒平泻着泛绸桑尚灿最写推葡郑女嚼蝴站疾效颤制沫寇攀铃牌扯狂稼购揪霞唤厚衡级荒诵宁覆堆画御对哪鸦因扑脏眠爹减远殊锄找资顽知挎词丛烦川罩铲房抹醉用抱螺括配剖熟途柿纵宪登芝辉扁何痛届墓喘官遥单合谱奋锐控毯裳功气循迫凝漂慧挺线析嗓坐寄超寒撤裂拔惰诱田杂泡勇痕漫呀紫页耕汽几米拴摄售棋增姨峡息棚桌党籍泄仪异为否急蛋捉良盟怒椅刑馆调黑劣核趁殿离祸空狼喂割洁垂茄遣唱己梨微花宣图侵翅情出固状赖审屠们倚并乡渣劈凤简磨求榨期冲奔晓蕉季未禾丽特拜左兼透往珍盒晃扮市笋症狠伤膨枕月援以也涂汗练圣逝惜屋时玻尿俗巴氧串鼠亡园收凡婚腹肤畅录娇遮耀灵苏携方呢波感轧宋销谈回剩筝励返优狐么惧厕模牢蛮苦就狮慕舍贵键捏斥路经佳纷僻地定植泊孝只忽残罢室概拘涛滋浑辛扔烛提裙竟血淋榴存放虹插茅炒外年鸣毙选极那凳栗愁寸粒码勉茧愤弯政逃肌厦伙被常射阿衔踩馒甘拌纱宫俘浇蹄宝仙似脊盐绳本邮宿带蛇杰蓬屡妖肿车国躬疆半佛询说希勺数读封垃社秆酸粱贡姐危驰戚湾语拿安刻泼探距草错齐雹脆铅挥卡准很幅虫昨底原吼妙亚禁既科萄密烂欺茎盏缎刺瑞权篮吨屿礼赔播凶旬烫熊断拐讨据声荐肆言精孕营臣饿贱份绝诸博厅岂品体霉吵繁沿菠苹傻喉例雄糖句酬酷老庙变料邀夹允遭报暗伸痒范苗膀牧小尝缴悼第正普恐守窑工高薯币愉折协宗伟仆纽派捐他俭恨好谢猛记黎丸庸毕抓垮论尺宜旨摸纠灌敌姑岸失罗疗摩咏撕建刃艇壳冻唉而味绞堂晶没满醋徐丹杠邻千法访算财阀习隆标评寻所朴吗火适棍入器划你身却辣歌柱块景麦管肝广靠渐杏械桐亩单元测试(四) 图形的初步认识与三角形(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.若∠α=32°,则∠α的补角为( C )A.58° B.68° C.148° D.168°2.(2016·长沙)下列各图中,∠1与∠2互为余角的是( B )3.(2016·毕节)到三角形三个顶点的距离都相等的点是这个三角形的( D )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点4.如图,字母B所代表的正方形的面积是( B )A.12 B.144 C.13 D.194 5.(2016·河北)如图,△中,∠A=78°,=4,=6.将△沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( C )6.如图,△中,=,D是的中点,的垂直平分线分别交、、于点E、O、F,则图中全等三角形的对数是( D )A.1对 B.2对 C.3对 D.4对7.将两个含30°和45°的直角三角板如图放置,则∠α的度数是( B )A.10° B.15° C.20° D.25°8.(2016·武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△为等腰三角形,则满足条件的点C的个数是( A )A.5 B.6 C.7 D.8二、填空题(每小题4分,共24分)9.如图,在△中,∠=90°,∥,∠=40°,则∠B的度数为50°.10.如图所示,小明同学利用一个锐角是30°的三角板测量一棵树的高度,测量时如图所示放置三角板,已知他与树之间的水平距离为 5 m,小明的眼睛距地面的距离为1.5 m,则这棵树高是4.39m(可用计算器,精确到0.01).11.若a、b、c为三角形的三边,且a,b满足+(b-2)2=0,则第三边c的取值范围是1<c<5.12.(2016·南京)如图,、相交于点O,=2,=3,∥,是△的中位线,且=2,则的长为.13.如图,在△中,平分∠,⊥于点F,D为的中点,连接延长交于点E.若=10,=16,则线段的长为3.14.(2016·临沂)一般地,当α、β为任意角时,(α+β)与(α-β)的值可以用下面的公式求得:(α+β)=α·β+α·β;(α-β)=α·β-α·β.例如90°=(60°+30°)=60°·30°+60°·30°=×+×=1.类似地,可以求得15°的值是.三、解答题(共44分)15.(10分)已知:如图,△中,=,∠1=∠2.求证:△∽△.证明:∵=,∴∠B=∠.∵∠=∠1+∠C=∠2+∠,∠1=∠2,∴∠C=∠.16.(10分)如图,在△中,=.(1)作∠的平分线,交于点D(尺规作图,保留痕迹);(2)在的延长线上任取一点E,连接、.求证:△≌△.解:(1)如图.(2)证明:∵=,平分∠,∴∠=∠=90°.在△和△中,17.(12分)如图,以△的三边为边分别作等边△、△、△,则下列结论:①△≌△;②四边形为平行四边形;③当=,∠=120°时,四边形是正方形.其中正确的结论是哪几个?并说明理由.解:正确的结论有:①②.理由:①∵△和△为等边三角形,∴∠=60°,∠=60°.即∠=∠.在△和△中,∴=.同理可证:=.又∵==,==,可知在△和△中,②由=,=可知四边形为平行四边形.18.(12分)如图所示,港口B位于港口O正西方向120 处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿方向(北偏西30°)以v 的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60 的速度驶向小岛C,在小岛C 用1 h加装补给物资后,立即按照原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1 h,求v的值与相遇处与港口O的距离.解:(1)∵∠=30°,∠=60°,∴∠=90°.∴=·60°=120×=60().∴快艇从港口B到小岛C需要的时间为=1(小时).答:快艇从港口B到小岛C需要1小时.(2)作⊥,设相交处为点E,连接.∴=·30°=60 ,==30 ,=·30°=90 .∴=90-3v().∵=60 ,∴2+2=2,即(30)2+(90-3v)2=602.解得v=20或v=40.当v=20 时,=3×20=60();当v=40 时,=3×40=120().答:v的值为20 或40 ,相遇处与港口O的距离分别为60 或120 .。

【四川版】2020中考数学复习试题:第四单元_图形的初步认识与三角形单元测试卷_含答案

【四川版】2020中考数学复习试题:第四单元_图形的初步认识与三角形单元测试卷_含答案

单元测试(四) 图形的初步认识与三角形(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.已知∠α=32°,求∠α的补角为( C )A .58°B .68°C .148°D .168° 2.(2016·黔南)下面四个图形中,∠1=∠2一定成立的是( B )3.(2016·重庆)如图,直线a ,b 被直线c 所截,且a∥b,若∠1=55°,则∠2等于( C ) A .35° B .45° C .55° D .125°4.如图,在直角三角形ABC 中,斜边AB 的长为m ,∠B =40°,则直角边BC 的长是( B )A .msin40°B .mcos40°C .mtan40° D.mtan40°5.如图,在△ABC 中,∠A =60°,点D ,E 分别在AC ,AB 上,则∠1+∠2的大小为( B ) A .120° B .240° C .180° D .300°6.(2015·黄冈)如图,在△ABC 中,∠C =90°,∠B =30°,设AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( C )A .6B .6 3C .9D .3 37.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为( C ) A. 3 B.2 C.3 D.2 38.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE 的周长为( C )A.20 B.12 C.14 D.139.如图,在▱ABCD中,点E在AD上,且AE∶ED=3∶1,CE的延长线与BA的延长线交于点F,则S△AFE∶S 四边形ABCE为( D )A.3∶4 B.4∶3 C.7∶9 D.9∶710.(2016·武汉)平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( A )A.5 B.6 C.7 D.8提示:由点A,B的坐标可得到AB=22,然后分类讨论:①AC=AB;②BC=AB;③CA=CB,确定C点的个数.二、填空题(每小题4分,共24分)11.如图,△A BD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.12.若a,b,c为三角形的三边,且a,b满足a2-9+(b-2)2=0,则第三边c的取值范围是1<c<5.13.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB214.如图,AC ,BD 相交于O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD=75°.15.(2015·巴中)如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为1.16.(2016·凉山)如图,四边形ABCD 中,∠BAD =∠ADC=90°,AB =AD =32,CD =22,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P 有2个.三、解答题(共46分)17.(10分)如图,AC =AE ,∠1=∠2,AB =AD.求证:BC =DE.证明:∵∠1=∠2, ∴∠CAB =∠EAD.在△BAC 和△DAE 中,⎩⎪⎨⎪⎧AC =AE ,∠CAB =∠EAD,AB =AD ,,∴△BAC ≌△DAE(SAS). ∴BC =DE.18.(10分)某校八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC =20 cm ,宽AB =16 cm 的矩形纸片ABCD ,②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的F 处,…,请你根据①②步骤解答下列问题: (1)找出图中∠FEC 的余角; (2)计算EC 的长.解:(1)∠CFE,∠BAF.(2)设EC =x cm ,则EF =DE =(16-x)cm ,AF =AD =20 cm. 在Rt △ABF 中, BF =AF 2-AB 2=12 cm , FC =BC -BF =20-12=8(cm). 在Rt △EFC 中,EF 2=FC 2+EC 2, ∴(16-x)2=82+x 2,解得x =6. ∴EC 的长为6 cm.19.(12分)(2015·泸州)如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)解:过点A 作AP ⊥BC,垂足为P.设AP =x 海里. 在Rt △APC 中,∵∠APC =90°,∠PAC =30°,∴tan ∠PAC =CPAP .∴CP =AP·tan ∠PAC =33x. 在Rt △APB 中,∵∠APB =90°,∠PAB =45°, ∴BP =AP =x.∵PC +BP =BC =30×12,∴33x +x =15,解得x =15(3-3)2. ∴PB =x =15(3-3)2.∴航行时间为:15(3-3)2÷30=3-34(小时).答:该渔船从B 处开始航行3-34小时,离观测点A 的距离最近.20.(14分)(2015·资阳)如图,E ,F 分别是正方形ABCD 的边DC ,CB 上的点,且DE =CF ,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,连接DF. (1)求证:△ADE≌△DCF;(2)若E 是CD 的中点,求证:Q 为CF 的中点;(3)连接AQ ,设S △CEQ =S 1,S △AED =S 2,S △EAQ =S 3,在(2)的条件下,判断S 1+S 2=S 3是否成立?并说明理由.解:(1)证明:∵四边形ABCD 为正方形, ∴AD =CD ,∠ADE =∠DCF=90°. 又∵DE=CF ,∴△ADE ≌△DCF. (2)证明:易证△ECQ∽△ADE, ∴CQ DE =CE AD . ∵CE AD =DE AD =12, ∴CQ DE =CQ CF =12,即点Q 是CF 的中点. (3)S 1+S 2=S 3成立.理由:∵△ECQ∽△ADE,∴CQ DE =QE AE .∴CQ CE =QEAE .又∵∠C=∠AEQ =90°,∴△AEQ ∽△E CQ. ∴△AEQ ∽△ECQ ∽△ADE.∴S 1S 3=(EQ AQ )2,S 2S 3=(AE AQ)2. ∴S 1S 3+S 2S 3=(EQ AQ )2+(AE AQ )2=EQ 2+AE 2AQ2. ∵EQ 2+AE 2=AQ 2,∴S 1S 3+S 2S 3=1,即S 1+S 2=S 3.。

中考数学复习第四单元图形的初步认识与三角形单元测试四图形的初步认识与三角形试题

中考数学复习第四单元图形的初步认识与三角形单元测试四图形的初步认识与三角形试题

单元测试(四) 图形的初步认识与三角形(时间:45分钟满分:100分)一、选择题(每小题4分,共32分,在四个选项中)1.下列图形中,∠1与∠2互为补角的是( C )A BC D2.现有两根木棒,长度分别为5 cm和17 cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( B )A.24 cm的木棒 B.15 cm的木棒C.12 cm的木棒 D.8 cm的木棒3.如图,在A,B 两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长6千米,且BC的走向是北偏西42°,则A地到公路BC 的距离是( B )A.6千米 B.8千米C.10千米 D.14千米4.如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,BE=4,则AC长为( B )A.1 B.2 C.3 D.45.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为( C )A.35° B.30° C.15° D.10°6.如图,若A、B、C、D、E、甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的( A )A.甲 B.乙 C.丙 D.丁7.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P 的度数为( D )A .44°B .66°C .88°D .92°提示:根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.8.(2016·淄博)如图,正方形ABCD 的边长为10,AG =CH =8,BG =DH =6,连接GH ,则线段GH 的长为( B ) A.835B .2 2 C.145D .10-5 2提示:延长BG 交CH 于点E ,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE =BE -BG =2,HE =CH -CE =2,∠HEG =90°,由勾股定理可得GH 的长. 二、填空题(每小题5分,共20分)9.(2016·雅安)计算:1.45°=1°27′.10.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tanD11.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB =10,AC =6,则DF 的长为2.提示:延长CF 交AB 于点G ,∵在△AFG 和△AFC 中,∠GAF =∠CAF,AF =AF ,∠AFG =∠AFC,∴△AFG ≌△AFC(ASA).∴AC=AG ,GF =CF.又∵点D 是BC 中点,∴DF 是△CBG 的中位线.∴DF=12BG =12(AB -AG)=12(AB -AC)=2.12.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n -1BC 的平行线与∠A n -1CD 的平分线交于点A n ,设∠A=θ,则∠A n =θ2n.提示:由三角形的外角性质,得∠ACD=∠A+∠ABC,∠A 1CD =∠A 1+∠A 1BC ,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1BC =12∠ABC,∠A 1CD =12∠ACD.∴∠A 1+∠A 1BC =12(∠A+∠ABC)=12∠A+∠A 1BC.∴∠A 1=12∠A,同理∠A n =θ2n.三、解答题(共48分)。

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。

【试题】怀化专版2020年中考数学总复习阶段测评四图形的初步认识与三角形四边形B试题

【试题】怀化专版2020年中考数学总复习阶段测评四图形的初步认识与三角形四边形B试题

【关键字】试题阶段测评(四) 图形的初步认识与三角形、四边形(B)(时间:120分钟总分:120分)一、选择题(每题4分,共40分)1.(2016毕节中考)到三角形三个顶点的距离都相等的点是这个三角形的( D )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的笔直平分线的交点2.(2016娄底中考)下列命题中,错误的是( D )A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等3.(2015徐州中考)如图,在菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( A )A.3.5 B.4 C.7 D.14,(第3题图)) ,(第4题图))4.(2015台州中考)如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( C )A.6.5 B.6 C.5.5 D.55.(2016宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )A.4.8 B.5 C.6 D.7.2,(第5题图)) ,(第6题图))6.(2015龙东中考)如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF 的面积为( D )A.4 B. C.2 D.27.如图,在△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC交DE于点F,若BC=6,则DF的长是( B )A.2 B.3 C.4 D.5,(第7题图)) ,(第8题图))8.如图,在菱形ABCD中,DE⊥AB,∠A=60°,BE=2.则菱形ABCD的面积为( C )A.8 B.4 C.8 D.129.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C )A.14 B.15 C.16 D.17,(第9题图)) ,(第10题图))10.(2014德州中考)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD、BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,在以下四个结论中,正确的有( C )①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围是3≤BF≤4;④当点H与点A重合时,EF=2.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共16分)11.(2016临沂中考)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD =3,BF=4,则FC的长为____.,(第11题图)) ,(第12题图))12.(2016昆明中考)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__40°__.13.(2016茂名中考)已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD=__2__.14.(2014安徽中考)如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是__①②④__.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、解答题(每题8分,共64分)15.(2015梅州中考)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,求▱ABCD的周长.解:▱ABCD的周长为20.16.(2016泸州中考)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.证明:∵CD∥BE,∴∠ACD=∠CBE.∵C是AB的中点,∴AC=CB,∴在△ACD和△CBE中,∴△ACD≌△CBE,∴∠D=∠E.17.(2016泰州中考)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.解:(1)∵AB=AC,∴∠B=∠3,∵AD平分∠CAE,∴∠1=∠2,而∠CAE=∠1+∠2=∠B+∠3,∴∠1=∠3,∴AD∥BC;(2)BC=8.18.(2014枣庄中考)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论. 解:(1)略;(2)若OD =12AC ,则四边形ABCD 是矩形, 理由:∵△BOE≌△DOF,∴DO =OB ,OF =OE.又∵O 是AC 的中点,∴OA =OC ,∵OD =12AC ,∴OD =OA =OB =OC , ∴四边形ABCD 为矩形.19.(2015扬州中考)如图,在△ABC 中,AB =AC ,D 是BA 延长线上的一点.(1)实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC 的平分线AM ;②作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF.(2)猜想并证明:判断四边形AECF 的形状并加以证明.解:(1)如图;(2)四边形AECF 是菱形,∵EF 是AC 的垂直平分线,∴AG =GC ,AF =FC ,AE =EC ,且∠AGF=∠E GC =90°.∠DAC 是△ABC 的外角,∴∠DAC =∠ABC+∠ACB.∵AB=AC ,∴∠ABC =∠ACB,∴∠DAC =2∠ACB,∵AM 平分∠DAC,∴∠DAC =2∠FAC,∴∠ACB =∠FAC.在△AGF 和△CGE 中,⎩⎪⎨⎪⎧∠AGF=∠CGE,AG =CG ,∠FAG =∠ECG,∴△AGF ≌△CGE ,∴AF =EC ,∴AF =FC =EC =AE ,∴四边形AECF 为菱形.20.(2016北京中考)如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN.(1)求证:BM =MN ;(2)若∠BAD=60°,AC 平分∠BAD,AC =2,求BN 的长.解:(1)∵∠ABC=90°,M 为AC 的中点,∴BM =12AC. 又∵在△ACD 中,M 、N 分别为AC 、CD 的中点,∴MN ∥AD 并且MN =12AD. 又∵AC=AD ,∴BM =12AC =12AD =MN ,即BM =MN ; (2)BN = 2.21.(2016长沙中考)如图,AC 是▱ABCD 的对角线,∠BAC =∠DAC.(1)求证:AB =BC ;(2)若AB =2,AC =23,求▱ABCD 的面积.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCA =∠DAC,又∠BAC=∠DAC,∴∠BCA =∠BAC,∴AB =BC.(2)∵AB=BC ,∴▱ABCD 是菱形,连接BD 交AC 于点O ,则∠AOB=90°.∴AO =12AC =3,BO =22-(3)2=1, ∴BD =2,∴S ▱A BCD =12×23×2=2 3. 22.如图,两个全等的△ABC 和△DFE 重叠在一起,固定△ABC,将△DEF 进行如下变换:(1)如图1,△DEF 沿直线CB 向右平移(即点F 在线段CB 上移动),连接AF 、AD 、BD ,请直接写出S △ABC 与S 四边形AFBD 的关系;(2)如图2,当点F 平移到线段BC 的中点时,若四边形AFBD 为正方形,那么△ABC 应满足什么条件?请给出证明;(3)在(2)的条件下,将△DEF 沿DF 折叠,点E 落在FA 的延长线上的点G 处,连接CG ,请你画出图形,并求出sin ∠CGF 的值.解:(1)S △ABC =S 四边形AFBD ;(2)△ABC 为等腰直角三角形,即AB =AC ,∠BAC =90°.理由:∵F 为BC 的中点,∴CF =BF ,∵CF =AD ,∴AD =BF.又∵AD∥BF,∴四边形AFBD 为平行四边形,∵AB =AC ,F 为BC 的中点,∴AF ⊥BC ,∴▱AFBD 为矩形,∵∠BAC =90°,F 为BC 的中点,∴AF =12BC =BF , ∴四边形AFBD 为正方形;(3)如图所示,由(2)知,△ABC 为等腰直形三角形,AF ⊥BC ,设CF =k ,则GF =EF =CB =2k ,∴CG =5k ,∴sin ∠CGF =CF CG =k 5k =55.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

中考数学总复习单元测试四图形的初步认识与三角形试题

中考数学总复习单元测试四图形的初步认识与三角形试题

单元测试(四) 图形的初步认识与三角形(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.若∠α=32°,则∠α的补角为( C )A.58° B.68° C.148° D.168°2.(2016·长沙)下列各图中,∠1与∠2互为余角的是( B )3.(2016·毕节)到三角形三个顶点的距离都相等的点是这个三角形的( D )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点4.如图,字母B所代表的正方形的面积是( B )A.12 B.144 C.13 D.1945.(2016·河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( C )6.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( D )A.1对 B.2对 C.3对 D.4对7.将两个含30°和45°的直角三角板如图放置,则∠α的度数是( B )A.10° B.15° C.20° D.25°8.(2016·武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( A )A.5 B.6 C.7 D.8二、填空题(每小题4分,共24分)9.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为50°.10.如图所示,小明同学利用一个锐角是30°的三角板测量一棵树的高度,测量时如图所示放置三角板,已知他与树之间的水平距离BE为5 m,小明的眼睛距地面的距离AB为1.5 m,那么这棵树高是4.39m(可用计算器,精确到0.01).11.若a、b、c为三角形的三边,且a,b满足a2-9+(b-2)2=0,则第三边c的取值范围是1<c<5.12.(2016·南京)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为8 3.13.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC =16,则线段EF的长为3.14.(2016·临沂)一般地,当α、β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=s inα·cosβ+cosα·sinβ;sin(α-β)=sinα·cosβ-cosα·sinβ.例如sin90°=sin(60°+30°)=sin60°·cos30°+cos60°·sin30°=32×32+12×12=1.类似地,可以求得sin15°的值是6-24.三、解答题(共44分)15.(10分)已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.16.(10分)如图,在△ABC中,AB=AC.(1)作∠BAC的平分线,交BC于点D(尺规作图,保留痕迹);(2)在AD的延长线上任取一点E,连接BE、CE.求证:△BDE≌△CDE.解:(1)如图.(2)证明:∵AB=AC ,AD 平分∠BAC,∴BD =CD ,AD ⊥BC.∴∠BDE =∠CDE=90°.在△BDE 和△CDE 中,∴△BDE ≌△CDE.17.(12分)如图,以△ABC 的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF ≌△DFC ;②四边形AEFD 为平行四边形;③当AB =AC ,∠BAC =120°时,四边形AEFD 是正方形.其中正确的结论是哪几个?并说明理由.解:正确的结论有:①②.理由:①∵△BCF 和△ACD 为等边三角形,∴∠FCB =60°,∠DCA =60°.∴∠FCB -∠FCA=∠DCA-∠FCA,即∠ACB=∠DCF.在△ABC 和△DFC 中,∴△ABC ≌△DFC(SAS).∴AB =DF.同理可证:AC =EF.又∵AB=AE =BE ,AD =DC =AC ,∴BE =FD =AE ,EF =DC =AD.可知在△EBF 和△DFC 中,∴△EBF ≌△DFC(SSS).②由EF =AD ,AE =DF 可知四边形AEFD 为平行四边形.18.(12分)如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km/h 的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km/h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按照原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.解:(1)∵∠BOC=30°,∠CBO =60°,∴∠BCO =90°.∴BC =OB·cos60°=120×12=60(km). ∴快艇从港口B 到小岛C 需要的时间为6060=1(小时). 答:快艇从港口B 到小岛C 需要1小时.(2)作CD⊥OA,设相交处为点E ,连接CE.∴OC =OB·cos30°=60 3 km ,CD =12OC =30 3 km ,OD =OC·cos30°=90 km. ∴DE =90-3v(km).∵CE =60 km ,∴CD 2+DE 2=CE 2,即(303)2+(90-3v)2=602.解得v =20或v =40.当v =20 km/h 时,OE =3×20=60(km);当v =40 km/h 时,OE =3×40=120(km).答:v 的值为20 km/h 或40 km/h ,相遇处与港口O 的距离分别为60 km 或120 km.。

中考数学总复习 第四单元 图形的初步认识与三角形 第19讲 解直角三角形试题及答案

中考数学总复习 第四单元 图形的初步认识与三角形 第19讲 解直角三角形试题及答案

第19讲 解直角三角形1.已知tanA =1,则锐角A 的度数是( B )A .30°B .45°C .60°D .75°2.(2016·怀化)在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.(2016·乐山)如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( C )A .sinB =AD AB B .sinB =AC BC C .sinB =AD AC D .sinB =CDAC4.在Rt △ABC 中,∠C =90°,sinA =513,则tanB 的值为( D )A.1213B.512C.1312D.1255.(2016·益阳)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等.小明将PB 拉到PB ′的位置,测得∠PB′C=α(B′C 为水平线),测角仪的高度为1米,则旗杆PA 的高度为( A )A.11-sin αB.11+sin αC.11-cos αD.11+cos α6.(2016·白银)如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是92.7.(2016·岳阳)如图,一山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200米到达点B ,则小辰上升了100米.8.(2016·福州)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A ,B ,C 都在格点上,则tan ∠ABC 29.(2016·丽水)数学拓展课程(玩转学具)课堂中,小陆同学发现,一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼在一起,点B ,C ,E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.解:在Rt △ABC 中,BC =2,∠A =30°,∴AC =BC tanA =2tan30°=2 3.由题意得EF =AC =23,在Rt △EFC 中,∠E =45°,∴CF =EF·cos45°=23×22= 6.∴AF =AC -CF =23- 6.10.(2016·黄石)如图,为测量一座山峰CF 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长AB =800米,BC =200米,坡角∠BAF=30°,∠CBE =45°. (1)求AB 段山坡的高度EF ;(2)求山峰的高度CF.(2≈1.414,结果精确到1米)解:(1)过点B 作BH⊥AF 于点H.在Rt △ABH 中,∵sin ∠BAH =BHAB,∴BH =800×sin30°=400(m). ∴EF=BH =400 m.答:AB 段山坡高度为400米.(2)在Rt △CBE 中,∵sin ∠CBE =CEBC ,∴CE =200×sin45°=1002≈141.4(m), ∴CF=CE +EF =141.4+400≈541(m). 答:CF 的高度约为541米.11.(2016·台州)保护视力要求人写字时眼睛和笔端的距离应超过30 cm.图1是一位同学的坐姿,把她的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC.已知BC=30 cm,AC=22 cm,∠ACB=53°,她的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)解:该同学的这种坐姿不符合保护视力的要求.理由:过点B作BD⊥AC于点D,在Rt△BDC中,BD=BCsin53°≈30×0.8=24(cm),CD=BCcos53°≈30×0.6=18(cm).∴AD=AC-CD=4(cm).在Rt△ABD中,AB=AD2+BD2=592(cm)<30(cm).∴该同学的这种坐姿不符合保护视力的要求.12.(2016·永州)下列式子错误的是( D )A.cos40°=sin50° B.tan15°·tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°13.(2016·巴中)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( B )A.斜坡AB的坡度是10° B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米 D.AB=1.2cos10°米14.(2016·娄底)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( C )A.不变 B.增大 C.减小 D.先变大再变小15.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB.(结果保留根号)解:过点C作CF⊥AB于点F,设AF=x米.在Rt △ACF 中,tan ∠ACF =AFCF ,则CF =AF tan ∠ACF =x tan α=xtan30°=3x.在Rt △ABE 中,AB =x +BF =4+x(米),tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.16.(2016·连云港)如图,在△ABC 中,C =150°,AC =4,tanB =18.(1)求BC 的长;(2)利用此图形求tan15°的值.(精确到0.1,参考数据:2≈1.4,3≈1.7,5≈2.2)解:(1)过A 作AD⊥BC,交BC 的延长线于D , 在Rt △ADC 中,AC =4,∠ACD =30°,∴AD =12AC =2,CD =AC·cos30°=4×32=2 3.在Rt △ABD 中,tanB =AD BD =2BD =18,∴BD =16.∴BC =BD -CD =16-2 3.(2)在BC 边上取一点M ,使得CM =AC ,连接AM. ∵∠ACB =150°,∴∠AMD =∠MAC=15°.∴tan15°=tan ∠AMD =AD MD =24+23=12+3≈0.3.17.(2016·资阳)如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里. (1)求出此时点A 到岛礁C 的距离;(2)若“中国海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A′时,测得点B 在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)解:(1)延长BA ,过点C 作CD⊥BA 延长线于点D. 由题意可得 ∠CBD =30°, BC =120海里, 则DC =60海里.故cos30°=DC AC =60AC =32.解得AC =40 3.答:点A 到岛礁C 的距离为403海里.(2)过点A′作A′N⊥BC 于点N ,A ′E ⊥BD 于点E ,可得∠A′CN=30°,∠BA ′A =45°,∠A ′BN =∠A ′BA =15°. 则A′N=A′E.设AA′=x ,则A′E=32x.故CA′=2A′N=2×32x =3x , ∴3x +x =40 3. 解得x =20(3-3).答:此时“中国海监50”的航行距离为20(3-3)海里.18.(人教9下教材P78T2变式)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10米,∠B =36°,则中柱AD(D 为底边中点)的长是( C )A .5sin36°米B .5cos36°米C .5tan36°米D .10tan36°米。

中考数学总复习 第四单元 图形的初步认识与三角形 第15讲 三角形的基础知识试题及答案

中考数学总复习 第四单元 图形的初步认识与三角形 第15讲 三角形的基础知识试题及答案

第15讲三角形的基础知识1.(2015·宜昌)下列图形具有稳定性的是( D )A.正方形 B.矩形 C.平行四边形 D.直角三角形2.(2016·贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为( C )A.35° B.40° C.45° D.50°3.(2016·岳阳)下列长度的三根小木棒能构成三角形的是( D )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm4.(2016·鄂州)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( B ) A.50° B.40° C.45° D.25°5.(2016·乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( C ) A.35° B.95° C.85° D.75°6.(2015·绵阳)如图,在△ABC中,∠B、∠C的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( C )A.118° B.119° C.120° D.121°7.(2016·毕节)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( C )A.85° B.60° C.50° D.35°8.(2015·衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20 m,则池塘的宽度AB为40m.9.(2016·淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.10.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,求∠B的度数.解:∵AE平分∠BAC,∴∠1=∠CAE.又∵∠1=30°,∠2=20°,∴∠EAD=10°.∵AD⊥BC,∴∠EDA=90°.∴∠AED=90°-∠EAD=80°.∴∠B=∠AED-∠1=80°-30°=50°.11.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-125°=55°.又∵∠A=55°,∴∠C=180°-55°-55°=70°.12.(2016·盐城)若a,b,c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为( A ) A.5 B.6 C.7 D.813.(2016·内江)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为( A )A.75° B.65° C.45° D.30°14.(2015·广州)如图,在四边形ABCD中,∠A=90°,AB=33,AD=3,点M、N分别是线段BC、AB 上的动点(含端点,但点M不与点B重合),点E、F分别是DM、MN的中点,则EF长度的最大值为3.15.(2016·黑龙江校级月考)如图,点D在△ABC边AB上且AD∶BD=2∶1,E是BC的中点,设S1为△ADF 的面积,S2为△CEF的面积,若S△ABC=24,则S1-S2=4.16.(2016·河北)如图,已知∠AOB=7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =76°. ……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=6°.17.(2016·大庆改编)如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 的平分线的交点,求∠BDC 的度数.解:在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB=180°-∠A=140°. 又∵∠ABC 和∠ACB 的平分线交于点B ,∴∠DBC =12∠ABC,∠DCB =12∠ACB.则∠DBC+∠DC B =12(∠ABC+∠ACB)=12×140°=70°.∴在△BCD 中,∠BDC =180°-(∠DBC+∠DCB)=180°-70°=110°.18.如图,在△ABC 中,∠C =90°,∠CAB ,∠CBA 的平分线交于点D ,BD 的延长线交AC 于点E ,则∠ADE =45°.。

2021年九年级中考数学总复习阶段测评(4)图形的初步认识与三角形

2021年九年级中考数学总复习阶段测评(4)图形的初步认识与三角形

阶段测评(四) 图形的初步认识与三角形(时间:45分钟 满分:100分)一、选择题(本大题共10小题,每小题4分,共40分)1.若∠A =23°,则∠A 余角的大小是( ) A .57° B .67° C .77° D .157°2.下面四个图形中,∠1=∠2一定成立的是( )3.已知两个角的和是67°56′,差是12°40′,则这两个角的度数分别是( ) A .40°18′,27°38′ B .40°8′,27°48′ C .39°18′,28°38′ D .40°28′,27°28′ 4.下列命题正确的是( )A .若分式x 2-4x -2 的值为0,则x 的值为±2B .一个正数的算术平方根一定比这个数小C .若b >a >0,则a b >a +1b +1D .若c ≥2,则一元二次方程x 2+2x +3=c 有实数根5.已知a ,b ,c 是三角形的三边长,且满足(a -1)2+b -2 +|c -3 |=0,则三角形的形状是( ) A.等腰三角形 B .等边三角形 C .直角三角形 D .钝角三角形6.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( ) A .40° B .60° C .70° D .80°7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD8.如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,已知AB =3,AD =1,则△AED 的周长为( ) A.2 B .3 C .4 D .59.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF的长为( )A .5B .6C .7D .810.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .2B .3C .4D .5二、填空题(本大题共6小题,每小题4分,共24分)11.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD =___.12.已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为____.13.如图,将分别含有30°,45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为____.14.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x =____.15.如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为____.16.如图,∠MON =30°,在OM 上截取OA 1=3 .过点A 1作A 1B 1⊥OM ,交ON 于点B 1,以点B 1为圆心,B 1O 为半径画弧,交OM 于点A 2;过点A 2作A 2B 2⊥OM ,交ON 于点B 2,以点B 2为圆心,B 2O 为半径画弧,交OM 于点A 3……;按此规律,所得线段A 20B 20的长等于____.三、解答题(本大题共3小题,共36分)17.(12分)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O . (1)求证:△AEC ≌△BED ;(2)若∠1=42°,求∠BDE 的度数.18.(12分)如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=3,求△AOC的面积..19.(12分)如图,已知等边△ABC,CD⊥AB于点D,AF⊥AC,点E为线段CD上一点,且CE=AF,连接BE,BF,EG⊥BF于点G,连接DG.(1)求证:BF=BE;(2)试说明DG与AF的位置关系和数量关系.答案一、选择题(本大题共10小题,每小题4分,共40分)1.若∠A =23°,则∠A 余角的大小是( B ) A .57° B .67° C .77° D .157°2.下面四个图形中,∠1=∠2一定成立的是( B )3.已知两个角的和是67°56′,差是12°40′,则这两个角的度数分别是( A ) A .40°18′,27°38′ B .40°8′,27°48′ C .39°18′,28°38′ D .40°28′,27°28′ 4.下列命题正确的是( D )A .若分式x 2-4x -2 的值为0,则x 的值为±2B .一个正数的算术平方根一定比这个数小C .若b >a >0,则a b >a +1b +1D .若c ≥2,则一元二次方程x 2+2x +3=c 有实数根5.已知a ,b ,c 是三角形的三边长,且满足(a -1)2+b -2 +|c -3 |=0,则三角形的形状是( C ) A.等腰三角形 B .等边三角形 C .直角三角形 D .钝角三角形6.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( D ) A .40° B .60° C .70° D .80°7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( D )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD8.如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,已知AB =3,AD =1,则△AED 的周长为( C ) A.2 B .3 C .4 D .59.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF的长为( B )A .5B .6C .7D .810.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5二、填空题(本大题共6小题,每小题4分,共24分)11.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6,则CD =__2__.12.已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为__5__.13.如图,将分别含有30°,45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为__140°__.14.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x =__20__.15.如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为__120°__.16.如图,∠MON=30°,在OM上截取OA1=3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3……;按此规律,所得线段A20B20的长等于__219__.三、解答题(本大题共3小题,共36分)17.(12分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.∵在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO.∴∠1+∠AED=∠BEO+∠AED,即∠AEC=∠BED.又∵∠A=∠B,AE=BE,∴△AEC≌△BED(ASA).(2)解:∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.∵在△EDC中,EC=ED,∠1=42°,∴∠C=∠EDC=69°.∴∠BDE=∠C=69°.18.(12分)如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=3,求△AOC的面积.(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°.∵矩形ABCD沿对角线AC折叠,点B落在点E处,∴AB=AE,∠B=∠E.∴AE=CD,∠D=∠E.又∵∠AOE=∠COD,∴△AOE≌△COD(AAS);(2)解:∵△AOE≌△COD,∴AO=CO.∵∠OCD=30°,AB=CD=3,∴CO=CDcos 30°=2.∴S △AOC =12 AO ·CD =12×2×3 =3 .19.(12分)如图,已知等边△ABC ,CD ⊥AB 于点D ,AF ⊥AC ,点E 为线段CD 上一点,且CE =AF ,连接BE ,BF ,EG ⊥BF 于点G ,连接DG .(1)求证:BF =BE ;(2)试说明DG 与AF 的位置关系和数量关系.(1)证明:∵△ABC 是等边三角形,∴AB =AC =BC ,∠BAC =∠ACB =∠ABC =60°. ∵CD ⊥AB ,∴BD =AD ,∠BCD =30°. ∵AF ⊥AC ,∴∠F AC =90°.∴∠F AB =∠F AC -∠BAC =30°. ∴∠F AB =∠ECB .又AB =CB ,AF =CE , ∴△ABF ≌△CBE (SAS ). ∴BF =BE ;(2)解:AF =2DG ,AF ∥DG . 理由:连接EF .∵△ABF ≌△CBE ,∴∠ABF =∠CBE . ∵∠ABE +∠CBE =60°, ∴∠ABE +∠ABF =60°.又BE =BF ,∴△BEF 是等边三角形. ∵EG ⊥BF ,∴BG =FG . 又BD =AD ,∴DG 是△ABF 的中位线. ∴AF =2DG ,AF ∥DG .。

中考数学总复习第一轮中考考点系统复习第四单元图形的初步认识与三角形单元测试(四)图形的初步认识与三角

中考数学总复习第一轮中考考点系统复习第四单元图形的初步认识与三角形单元测试(四)图形的初步认识与三角

单元测试(四) 图形的初步认识与三角形(时间:100分钟满分:150分)一、选择题(本大题共10个小题,每小题4分,满分40分)1.下面四个图形中,∠1=∠2一定成立的是( B )2.下列四组数分别是三条线段的长度,能构成三角形的是( D )A.1,1,2 B.1,3,4 C.2,3,6 D.4,5,83.若一个三角形的三个内角度数的比为2∶3∶4,则这个三角形是( A )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形4.如图,在△ABC中,点D、E、F分别是三条边上的中点,∠B=45°,∠C=55°,则∠EFD=( A ) A.80° B.100° C.75° D.65°5.如图所示,点E是矩形ABCD的边AD延长线上的一点,连接BE交CD于点O,且O点是CD的中点,连接AO,下列结论不正确的是( C )A.AD=DE B.△BOC≌△EOD C.△AOB≌△EOD D.△AOD≌△BOC6.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列各式成立的是( D ) A.b=a·sinB B.a=b·cosB C.a=b·tanB D.b=a·tanB 7.(2016·安徽模拟)如图,已知一块直角三角形的水泥平地,∠ACB=90°,AC=60米,BC=80米,点D是AB 边上的一点,从C点直接走到D点的距离为x米,则x的取值范围为( C )A.60<x<80 B.60≤x≤80 C.48≤x≤80 D.48<x<608.(2016·合肥十校联考模拟)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是( B )A.BF=EF B.DE=EF C.∠EFC=45° D.∠BEF=∠CBE9.(2016·阜阳二模)如图,△ABC的中线BE、CF交于点O,直线AD∥BC,与CF的延长线交于点D,则S△AFD:S四边形AFOE为( D )A.1∶2 B.2∶1 C.2∶3 D.3∶2提示:连接EF ,则EF∥BC.设△ABC 的面积为S ,则S △AFD =S △BFC =S △AFC =12S ,S △AEF =14S ,∴S △BOC =23S △BFC =13S ,∴S △EOF =14S △BOC =112S ,∴S △AFD :S 四边形AFOE =12S :(14S +112S)=3∶2. 10.如图,在等腰△ABC 中,直线l 垂直于底边BC ,现将直线l 沿线段BC 从B 点匀速平移至点C ,直线l 与△ABC 的边相交于E ,F 两点,设线段EF 的长度为y ,平移时间为x ,则下图中能较好地反映y 与x 的函数关系的图象是( B )二、填空题(本大题共4个小题,每小题5分,满分20分)11.(2016·马鞍山二模)如图,AB ∥CD ,∠1 = 60°,F G 平分∠EFD,则∠2=30°.12.(2016·新疆)如图,测量河宽AB(假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD =60 m ,则河宽AB 结果保留根号).13.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E,AD ∶DE =3∶5,AE =8,BD =4,则DC 的长等于154.14.(2016·滁州模拟)如图,AD ,AE 分别是△ABC 的中线和角平分线,AC =2,AB =5,过点C 作CF⊥AE 于点F ,连接DF ,有下列结论:①将△ACF 沿着直线AE 折叠,点C 怡好落在AB 上;②3<2AD <7;③若∠B=30°,∠FCE =15°,则∠ACB =55°;④若△ABC 的面积为S ,则△DFC 的面积为0.15S.其中正确的是①②④.(把所有正确结论的序号都填在横线上)提示:延长CF 交AB 于M ,延长AD 到N 使得DN =AD ,连接BN 、CN ;①正确,由CF =FM 即可解决.②正确,在△ABN 中利用三边关系即可解决.③错误,∠ACB =60°,④正确,先证明S △BCM =35S △ABC =35S ,由△DFC∽△BMC,得S △DFC =14S △BCM 即可证明. 三、(本大题共2个小题,每小题8分,满分16分)15.(2016·长宁区一模)计算:tan 230°-(cos75°-cot10°)0+2cos60°-2tan45°.。

中考数学复习 单元测试(四)图形的初步认识与三角形

中考数学复习 单元测试(四)图形的初步认识与三角形

单元测试(四) 图形的初步认识与三角形(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各组数中,不可能成为一个三角形三边长的是(C)A.3,4,5 B.5,7,7 C.5,6,12 D.5,12,132.下列各图中,∠1与∠2互为余角的是(B)3.如图,字母B所代表的正方形的面积是(B)A.12 B.144 C.13 D.1944.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为(A)A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50°5.如图,点D,E分别在线段AB,AC上,CD与BE相交于点O,已知AB=AC,现添加以下哪个条件仍不能判定△ABE≌△ACD(D)A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD6.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放.若∠1=55°,则∠2的度数为(A)A.80° B.70° C.85° D.75°7.如图,在△ABC 中,AC =8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为(C )A.43 2 B .2 2 C.832 D .3 28.如图,E ,F 是▱ABCD 对角线上AC 两点,AE =CF =14AC.连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则S △ADGS △BGH的值为(C ) A.12 B.23 C.34D .1二、填空题(每小题4分,共24分)9.如图,在△ABC 中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B 的度数为50__°.10.如图所示,小明同学利用一个锐角是30°的三角板测量一棵树的高度,测量时如图所示放置三角板,已知他与树之间的水平距离BE 为5 m ,小明的眼睛与地面的距离AB 为1.5 m ,那么这棵树高是4.39m.(可用计算器,精确到0.01)11.如图,E 为▱ABCD 的DC 边延长线上一点,连接AE ,交BC 于点F ,则图中与△ABF 相似的三角形共有2个.12.如图,在Rt △ABC 中,∠ACB=90°,D ,E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE,BC =23,则AB =4.13.如图,在△ABC 中,BF 平分∠ABC,AF⊥BF 于点F ,D 为AB 的中点,连接DF 并延长交AC 于点E.若AB =10,BC =16,则线段EF 的长为3.14.一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin α·cos β+cos α·sin β;sin (α-β)=sin α·cos β-cos α·sin β.例如sin 90°=sin (60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=32×32+12×12=1.类似地,可以求得sin 4三、解答题(共44分)15.(10分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B=∠C,AF 与DE 相交于点G ,求证:GE =GF.证明:∵BE =CF , ∴BE +EF =CF +EF. ∴BF =CE.在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧AB =DC ,∠B =∠C,BF =CE ,∴△ABF≌DCE (SAS ). ∴∠GEF =∠GFE. ∴EG =FG.16.(10分)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形; (2)画一个底边长为4,面积为8的等腰三角形; (3)画一个面积为5的等腰直角三角形;(4)画一个边长为22,面积为6的等腰三角形.,(1)) ,(2)),(3)),(4))解:如图.17.(12分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10 m 的A 处,测得一辆汽车从B 处行驶到C 处所用时间为0.9 s 秒,已知∠B=30°,∠C=45°.(1)求B ,C 之间的距离;(保留根号)(2)如果此地限速为80 km /h ,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)解:(1)过点A 作AD⊥BC 于点D ,则AD =10 m , 在Rt△ACD 中, ∵∠C =45 °, ∴AD =CD =10 m.在Rt△ABD 中,∵∠B =30 °, ∴tan30 °=ADBD.∴BD =3AD =10 3 m.∴BC =BD +DC =(10+103)m. (2)结论:这辆汽车超速.理由:∵BC =10+103≈27(m ),∴汽车速度为270.9=30(m/s )=108(km/h ).∵108>80,∴这辆汽车超速.18.(12分)问题1:如图1,在△ABC 中,AB =4,D 是AB 上一点(不与A ,B 重合),DE∥BE,交AC 于点E ,连接CD.设△ABC 的面积为S ,△DEC 的面积为S′.(1)当AD =3时,S′S =316;(2)设AD =m ,请你用含字母m 的代数式表示S′S.问题2:如图2,在四边形ABCD 中,AB =4,AD∥BC,AD =12BC ,E 是AB 上一点(不与A ,B 重合),EF∥BC,交CD 于点F ,连接CE.设AE =n ,四边形ABCD 的面积为S ,△EFC 的面积为S′.请你利用问题1的解法或结论,用含字母n 的代数式表S′S.图1 图2解:问题1:(2)∵AB =4,AD =m ,∴AD =4-m. ∵DE∥BC,∴CE EA =BD DA =4-m m .∴S △DEC S △ADE =4-mm .又∵DE∥BC,∴△ADE∽△ABC. ∴S △ADE S △ABC =(m 4)2=m216. ∴S △DEC S △ABC =S △DEC S △ADE ·S △ADE S △ABC =4-m m ·m 216=-m 2+4m 16, 即S ′S =-m 2+4m 16.问题2:分别延长BA ,CD ,相交于点O. ∵AD∥BC,∴△OAD∽△OBC.∴OA OB =AD BC =12. ∴OA =AB =4.∴OB =8. ∵AE =n ,∴OE =4+n. ∵EF∥BC.由问题1的解法可知,S △CEF S △OBC =S △C EF S △OEF ·S △OEF S △OBC =4-n 4+n ·(4+n 8)2=16-n264.∵S △OAD S △OBC =(OA OB )2=14,∴S 四边形ABCD S △OBC =34. ∴S △CEFS 四边形ABCD =S △CEF 34S △OBC =43×16-n 264=16-n248, 即S ′S =16-n 248.。

中考数学总复习 第四单元 图形的初步认识与三角形单元测试(四)图形的初步认识与三角形试题(2021

中考数学总复习 第四单元 图形的初步认识与三角形单元测试(四)图形的初步认识与三角形试题(2021

广西贵港市2017届中考数学总复习第四单元图形的初步认识与三角形单元测试(四)图形的初步认识与三角形试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广西贵港市2017届中考数学总复习第四单元图形的初步认识与三角形单元测试(四)图形的初步认识与三角形试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广西贵港市2017届中考数学总复习第四单元图形的初步认识与三角形单元测试(四)图形的初步认识与三角形试题的全部内容。

贵港单元测试(四)图形的初步认识与三角形(时间:45分钟满分:100分)一、选择题(每小题3分,共24分)1.若∠A=34°,则∠A的补角为( B )A.56°B.146°C.156°D.166°2.如图,直线a∥b,直线c与a,b相交,∠1=70°,则∠2的大小是( D )A.20° B.30°C.50°D.70°3.如果一个三角形的两边长分别为2和4,那么第三边长可能是( B )A.2 B.4 C.6 D.84.下列命题中,是假命题的是( B )A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等5.如图,在△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于( D )A.5B.6C.7D.86.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=(C)A。

错误!B.2 C.3 D。

全国通用中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习(2021年整理)

全国通用中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习(2021年整理)

(全国通用版)2019年中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019年中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019年中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习的全部内容。

第14讲三角形的基础知识重难点三角形中角度的相关计算(2018·眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是(C)A.45°B.60°C.75°D.85°【思路点拨】由直角三角板中各内角度数,结合三角形内角和定理可求得∠1,即∠2的大小,再由三角形外角的性质可求得∠α的度数.错误!求解三角形中有关的角度时,若已知角和待求角可以转化为一个三角形的内角之间或内、外角之间的关系问题,则可以直接利用三角形内角和或外角性质求解.【变式训练1】(2018·黄石)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(A)A.75° B.80°C.85° D.90°【变式训练2】(2018·株洲)如图,直线l1,l2被直线l3所截,且l1∥l2,过l1上的点A作AB⊥l3交l3于点B,其中∠1<30°,则下列一定正确的是(D)A.∠2>120° B.∠3<60° C.∠4-∠3>90° D.2∠3>∠4【变式训练3】(2017·泰州)将一副三角板如图叠放,则图中∠α的度数为15°.考点1三角形的高、中线、角平分线1.(2018·贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BE C.线段EF D.线段FG2.(2017·泰州)三角形的重心是(A)A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边的垂直平分线的交点D.三角形三条内角平分线的交点考点2三角形的中位线3.(2018·南京)如图,在△ABC中,用直尺和圆规作AB,AC的垂直平分线,分别交AB,AC于点D,E连接DE.若BC=10 cm,则DE=5cm.4.如图,在△ABC中,点D,E,F分别是边AB,BC,CA上的中点,且AB=6 cm,AC=8 cm,则四边形ADEF的周长等于14cm。

中考数学专项训练--图形的初步认识与三角形、四边形

中考数学专项训练--图形的初步认识与三角形、四边形

中考数学专项训练--图形的初步认识与三角形、四边形第一节线段、角、相交线和平行线1.(常德中考)若一个角为75°,则它的余角的度数为( D)A.285°B.105°C.75°D.15°2.(自贡中考)如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=( C) A.45°B.50°C.55°D.60°(第2题图)(第3题图)3.(百色中考)如图,直线a,b被直线c所截,下列条件能使a∥b的是( B)A.∠1=∠6 B.∠2=∠6C.∠1=∠3 D.∠5=∠74.(东营中考)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于( C)A.30°B.35°C.40°D.50°(第4题图)(第5题图)5.(襄阳中考)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为( C) A.50°B.40°C.30°D.20°6.(福州中考)下列图形中,由∠1=∠2能得到AB∥CD的是( B),A),B),C),D)7.(湘西中考)如图,直线CD∥EF,直线AB与CD,EF分别相交于点M,N,若∠1=30°,则∠2=__30°__.8.(荆州中考)一把直尺和一块三角板ABC(含30°,60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=40°,那么∠BAF的大小为( D)A.40°B.45°C.50°D.10°(第8题图)(第9题图)9.(宁波中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( D) A.20°B.30°C.45°D.50°10.(枣庄中考)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( B) A.75°36′B.75°12′C.74°36′D.74°12′(第10题图)(第11题图)11.(昆明中考)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__40°__.12.(宜宾中考)如图,直线a∥b,∠1=45°,∠2=30°,则∠P=__75°__.(第12题图)(第13题图)13.(德州中考)如图,利用直尺和三角板过已知直线l外一点P作直线l平行线的方法,其理由是__同位角相等,两直线平行__.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年中考数学总复习单元测试(四)图形的初步认识与三角形试题一、选择题 ( 每小题 4 分,共 32 分 )
1.若∠ α=32°,则∠ α的补角为 ( C )
A. 58°B.68°C.148°2.(2016 ·长沙 ) 下列各图中,∠ 1 与∠2互为余角的是D
( B )
. 168°
3.(2016 ·毕节 ) 到三角形三个顶点的距离都相等的点是这个三角形的( D ) A.三条高的交点
B.三条角平分线的交点
C.三条中线的交点
D.三条边的垂直平分线的交点
4.如图,字母 B 所代表的正方形的面积是( B )
A. 12 5. (2016
B
·河北
. 144C.13 D
) 如图,△ ABC中,∠ A= 78°, AB= 4,AC=6.
. 194
将△ ABC沿图示中的虚线剪开,剪下的阴影三角形与
原三角形不相似的是( C )
6.如图,△ABC中, AB= AC, D
是BC的中
点,
AC的垂直平分线分别

AC、 AD、 AB 于点E、 O、 F,则图中全等三角
形的对数是( D )
A. 1 对 B . 2 对 C . 3 对 D . 4 对
7.将两个含A. 10°30°和
B
45°的直角三角板如图放置,则∠
. 15°C.20°
α的度数是 ( B )
D. 25°
8.(2016 ·武汉 ) 平面直角坐标系中,已知足条件的点 C 的个数是 ( A )
A. 5B.6 C A(2 ,2) 、B(4 ,0) .若在坐标轴上取点
. 7D.8
C,使△ ABC为等腰三角形,则满
二、填空题 ( 每小题 4 分,共 24 分 )
9.如图,在△ ABC 中,∠ ACB =90°, CD ∥ AB ,∠ ACD = 40°,则∠B 的度数为
50°.
10 .如图所示,小明同学利用一个锐角是 30°的三角板测量一棵树的高度,测量时如图所示放置三角板,已知他
与树之间的水平距离 BE 为 5 m ,小明的眼睛距地面的距离
AB 为 1.5 m ,那么这棵树高是
4.39m( 可用计算器,精确
到 0.01) .
11 .若 a 、 b 、 c 为三角形的三边,且 a ,b 满足 a 2- 9+ (b - 2) 2= 0,则第三边 c 的取值范围是 1<c<5.
12 .(2016 ·南京 ) 如图, AB 、CD 相交于点 O ,OC =2,OD = 3,AC ∥ BD ,EF 是△ ODB 的中位线,且 EF = 2,则 AC 的长
8
为 3

13.如图,在△ ABC 中, BF 平分∠ ABC , AF ⊥ BF 于点 F , D 为 AB 的中点,连接 DF 延长交 AC 于点 E. 若 AB =10, BC = 16,则线段 EF 的长为 3.
14.(2016 ·临沂 ) 一般地, 当 α、β 为任意角时, sin( + β ) = s in α ·cos β + cos α · sin β ;sin( α -β )
α + β) 与 sin( α - β ) 的值可以用下面的公式求得: sin( α = sin α· cos β - cos α · sin β . 例如 sin90 °= sin(60 °+
3 3 1 1 6- 2 30°) =sin60 °· cos30°+ cos60°· sin30 °=
2 × 2 +
2×2= 1. 类似地,可以求得 sin15 °的值是 4 .
三、解答题 ( 共 44 分)
15.(10 分 ) 已知:如图,△ ABC 中, AD =DB ,∠ 1=∠ 2. 求证:△ ABC ∽△ EAD.
证明:∵ AD = DB , ∴∠ B =∠ BAD.
∵∠ BDA =∠ 1+∠ C =∠ 2+∠ ADE ,∠ 1=∠ 2,
∴∠ C =∠ ADE.
∴△ ABC ∽△ EAD.
16.(1 0 分 ) 如图,在△ ABC 中, AB= AC.
(1)作∠ BAC的平分线,交 BC于点 D(尺规作图,保留痕迹 ) ;
(2)在 AD的延长线上任取一点 E,连接 BE、 CE.求证:△ BDE≌△ CDE.
解: (1) 如图.
(2)证明:∵ AB= AC, AD平分∠ BAC,
∴BD= CD,AD⊥ BC.
∴∠ BDE=∠ CDE= 90° .
在△ BDE和△ CDE中,
BD= CD,
∠BDE =∠ CDE,
DE= DE,
∴△ BDE≌△ CDE.
17.(12 分 ) 如图,以△ ABC 的三边为边分别作等边△ACD、△ ABE、△ BCF,则下列结论:①△EBF≌△ DFC;②四边形AEFD为平行四边形;③当 AB= AC,∠ BAC=120°时,四边形 AEFD是正方形.其中正确的结论是哪几个?并说
明理由.
解:正确的结论有:①②.
理由:①∵△ BCF 和△ ACD为等边三角形,
∴∠ FCB= 60°,∠ DCA= 60°.
∴∠ FCB-∠ FCA=∠ DCA-∠ FCA,
即∠ ACB=∠ DCF.
在△ ABC和△ DFC中,
BC= FC,
∠ACB=∠ DCF,
AC= DC,
∴△ ABC≌△ DFC(SAS).
∴AB= DF.同理可证: AC= EF.
又∵ AB= AE= BE, AD= DC= AC,
∴BE= FD=AE, EF=DC= AD.
可知在△ EBF 和△ DFC中,
BE = FD , BF = FC ,
EF = DC ,
∴△ EBF ≌△ DFC(SSS).
②由 EF = AD , AE = DF 可知四边形 AEFD 为平行四边形.
18.(12 分 ) 如图所示,港口 B 位于港口 O 正西方向 120 km 处,小岛 C 位于港口 O 北偏西 60°的方向.一艘游船从港口 O 出发,沿 OA 方向 ( 北偏西 30° ) 以 v km/h 的速度驶离港口 O.同时一艘快艇从港口 B 出发,沿北偏东 30°的方向以 60 km/h 的速度驶向小岛 C ,在小岛 C 用 1 h 加装补给物资后,立 即按照原来的速度给游船送去.
(1) 快艇从港口 B 到小岛 C 需要多长时间? (2) 若快艇从小岛 C 到与游船相遇恰好用时
1 h ,求 v 的值及相遇处与港口
O 的距离.
解: (1) ∵∠ BOC = 30°,∠ CBO = 60°, ∴∠ BCO = 90° .
1 ∴ BC =OB · cos60 °= 120×
=60(km) .
2
60
∴快艇从港口 B 到小岛 C 需要的时间为 60= 1( 小时 ) .
答:快艇从港口 B 到小岛 C 需要 1 小时. (2) 作 CD ⊥OA , 设相交处为点 E ,连接 CE.
1
∴ OC =OB · cos30 °= 60
3 km , CD =2OC = 30 3 km ,OD =OC · cos30 °= 90 km.
∴ DE = 90-3v(km) .
∵ CE = 60 km ,
2
2
2 3) 2 + (90 - 3v) 2 2
∴ CD + DE = CE ,即 (30 = 60 . 解得 v = 20 或 v = 40.
当 v = 20 km/h 时, OE =3×20= 60(km) ;
当 v = 40 km/h 时, OE =3×40= 120(km) .
答: v 的值为 20 km/h 或 40 km/h ,相遇处与港口 O 的距离分别为 60 km 或 120 km.。

相关文档
最新文档