八年级培优班试卷(一次函数)

合集下载

人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案

人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案

期末复习:《一次函数》培优训练一.选择题1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=6.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<010.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题11.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.12.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.13.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.15.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示兔子所行的路程).有下列说法:表示乌龟所行的路程,y2①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)16.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.三.解答题19.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.23.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?24.已知一次函数y =2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2.(1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.25.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?26.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案一.选择题1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D 正确.故选:D.2.解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.3.解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.4.解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.5.解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.6.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选:C.7.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x ≤2,s =,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .8.解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t =50时,可解得t =,当100﹣40t =﹣50时,可解得t =,又当t =时,y 甲=50,此时乙还没出发,当t =时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t =时,两车相距50千米, ∴④不正确; 综上可知正确的有①②共两个,故选:B .9.解:∵一次函数y =kx ﹣m ﹣2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,∴k ﹣2<0,﹣m <0,∴k <2,m >0.故选:A .10.解:∵OB =,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1为等边三角形,∠A 1AB 1=60°,∴∠COA 1=30°,则∠CA 1O =90°.在Rt △CAA 1中,AA 1=OC =,同理得:B 1A 2=A 1B 1=,依此类推,第n 个等边三角形的边长等于.故选:A .二.填空题(共8小题)11.解:∵正比例函数y =x 也经过点A ,∴kx +b <x 的解集为x >3,故答案为:x >3. 12.解:y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0,∴k >1,k <3,∴1<k <3;故答案为1<k <3;13.解:根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k |越大,则b >c .则b >c >a ,故答案为:a <c <b .14.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.15.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y 1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.16.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.17.解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.18.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.三.解答题(共8小题)19.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD +S△BOD=××2+××1=.20.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.21.解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.22.解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.23.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.25.解:(1)由图可知,甲乙两地相距420km,小轿车中途停留了2小时;(2)①y1=60x(0≤x≤7);②当x=5.75时,y1=60×5.75=345,x≥5时,设y2=kx+b,∵y2的图象经过(5.75,345),(6.5,420),∴,解得:,∴x≥5时,y2=100x﹣230;(3)x=5时,有y2=100×5﹣230=270,即小轿车在3≤x≤5停车休整,离甲地270km,当x=3时,y1=180;x=5时,y1=300,∴火车在3≤x≤5时,会与小轿车相遇,即270=60x,x=4.5;当0<x≤3时,小轿车的速度为270÷3=90km/h,而货车速度为60km/h,故,货车在0<x≤3时,不会与小轿车相遇,∴货车出发4.5小时后首次与小轿车相遇,距离甲地270km.26.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。

八年级一次函数培优训练题

八年级一次函数培优训练题

一次函数培优训练一,填空题1.直线y=3x+b与y轴交点(0 ,–2),则这条直线不经过第____象限.2.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a、b的大小关系是a____b.3.若点A(2 , 4)在直线y=kx–2上,则k= .4.已知直线y=(k–2)x+k不经过第三象限,则k的取值范围是 .5.直线xy2-=向上平移3个单位,再向左平移2个单位后的解析式为________.6. 函数y=kx+2,经过点(1 , 3),则y=0时,x= .7. 一次函数62-=xy的图象与x轴的交点坐标是____ __,与y轴的交点坐标是 __8.(2007山东淄博)从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y kx b=+的系数k,b,则一次函数y kx b=+的图象不经过第四象限的概率是________.9.若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 .二.选择题1.如果在一次函数中,当自变量x的取值范围是-1<x<3时,函数y的取值范围是-2<y<6,那么此函数解析式为( )A.xy2= B.42+-=xyC.xy2=或42+-=xy D.xy2-=或42-=xy2.无论m为何实数,直线mxy2+=与直线4+-=xy的交点不可能在( ) A.第三象限B.第四象限C.第一象限D.第二象限3.已知一次函数kkxy-=,若y随着x的增大而减小,则该函数的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限4.已知一次函数4)2(2-++=kxky的图象经过原点,则()A、k=±2B、k=2C、k= -2D、无法确定5.一次函数y kx b=+的图象如图所示,当0y<时,x的取值范围是()A.0x>B.0x<C.2x>D.2x<6.(2007福建福州)已知一次函数(1)y a x b=-+的图象如图1所示,那么a的取值范围是()A.1a>B.1a<C.0a>D.0a<7.(2007上海市)如果一次函数y kx b=+的图象经过第一象限,且与y轴负半轴相交,那么()第5题图x图1A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <8.(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--9.(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( ) A.y =2x +2 B.y =2x -2 C.y =2(x -2) D.y =2(x +2)10.(2007四川乐山)已知一次函数y kx b =+的图象如下图(6)所示,当1x <时,y 的取值范围是( ) A.20y -<<B.40y -<<C.2y <-D.4y <-11.(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0B .1C .2D .312.〔2011•日照市〕在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A.(0,43)B.(0,34) C.(0,3) D.(0,4)13. (2011•苏州市)如图,已知A 点坐标为(5,0),直线(0)y x b b =+>与y 轴交于点B ,连接AB ,∠a =75°,则b 的值为( ) A .3 B .533 C .4 D .53414. 1+=mx y 与12-=x y 的图象交于x 轴上一点,则m 为( )A .2B .2-C .21D .21-x yO 3 2y x a =+ 1y kx b =+ 第11题 图(6) 0 2 -4xyOxy A B1- y x =-2三.解答题1.已知一次函数图象经过点(3 , 5) , (–4,–9)两点. ① 求一次函数解析式.② 求图象和两坐标轴交点坐标.③ 求图象和坐标轴围成的三角形面积. ④ 若点(a , 2)在图象上,求a 的值.2.已知函数y=(2m –2)x+m+1① m 为何值时,图象过原点.② 已知y 随x 增大而增大,求m 的取值范围. ③ 函数图象与y 轴交点在x 轴上方,求m 取值范围. ④ 图象过二、一、四象限,求m 的取值范围.3. (2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。

八年级数学 一次函数 培优练习卷(含答案)

八年级数学 一次函数 培优练习卷(含答案)

16、无论 m 取什么实数,点 A(m+1,2m-2)都在直线 l 上,若点 B(a,b)是直线 l 上的动点, 则(2a-b-6)3 的值等于
17、设直线 nx+(n+1)y= S1+S2+…+S2016 的值为__.
(n 为自然数)与两坐标轴围成的三角形面积为 Sn,则
18、如图,在平面直角坐标系中,直线 l:y=
x+4 与 x 轴、y 轴分别交于点 A 和点 B,点 C、D 分别为线段 AB、OB 的中
点,点 P 为直线 OA 上一动点,PC+PD 值最小时点 P 的坐标为( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣
,0)
D.(﹣
,0)
5、P1(x1,y1),P2(x2,y2)是一次函数 y=﹣2x+5 图象上的两点,且 x1<x2,则 y1 与 y2 的大小 关系是( ) A.y1<y2 B.y1=y2 C.y1>y2 D.y1>y2>0 6、如图,一直线与两坐标轴的正半轴分别交于 A,B 两点,P 是线段 AB 上任意一点(不包括端 点),过 P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为 10,则该直线的函数表达式是 ( )
13、已知 m 为整数,且一次函数
的图像不经过第二象限,则 m=
.
14、直线 y=3x﹣m﹣4 经过点 A(m,0),则关于 x 的方程 3x﹣m﹣4=0 的解是 . 15、如图,将含 45°角的直角三角尺放置在平面直角坐标系中,其中 A(﹣2,0),B(0,1),则 直线 BC 的函数表达式为 .
;(2)D 的坐标为(-2,5)或(-5,3).
(3)(3)当 OC 是腰,O 是顶角的顶点时,OP=OC,则 P 的坐标为(5,0)或(-5,0); 当 OC 是腰,C 是顶角的顶点时,CP=CP,则 P 与 O 关于 x=3 对称,则 P 的坐标是(6,0); 当 OC 是底边时,设 P 的坐标为(a,0),则 ,解得

人教版八年级数学下册单元培优卷:第十九章《一次函数》

人教版八年级数学下册单元培优卷:第十九章《一次函数》

单元培优卷:第十九章《一次函数》一.选择题1.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则k的值可以是()A.3 B.2 C.1 D.02.在平面直角坐标系中,将函数y=﹣2x的图象沿y轴负方向平移4个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(﹣4,0)D.(0,﹣4)3.一次函数y=kx+b(k、b为常数,且k≠0)的图象如图,则使y>0成立的x的取值范围为()A.x>0 B.x<0 C.x>﹣2 D.x<﹣24.已知一次函数y=kx+b的图象如图所示,则y=﹣2kx﹣b的图象可能是()A.B.C.D.5.已知点P (m ,n )在一次函数y =2x ﹣3的图象上,且m +n >0,则m 的取值范围( )A .m >1B .m >2C .m <1D .m >﹣16.五一假期,小明一家自驾游去离家路程为170千米的某地,如图是汽车行驶的路程y (千米)与汽车行驶时间x (小时)之间的函数图象,当他们离目的地的路程还有20千米时,汽车行驶的时间是( )A .2小时B .2.25小时C .2.3小时D .2.45小时 7.函数y =中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠2 8.一次函数y 1=ax +b 与y 2=cx +d 的图象如图所示,下列说法:①ab <0;②函数y =ax +d 不经过第一象限;③函数y =cx +b 中,y 随x 的增大而增大;④3a +b =3c +d .其中正确的个数有( )A .4个B .3个C .2个D .1个9.如图,一次函数y=kx+b的图象经过点A(0,3),B(4,﹣3),则关于x的不等式kx+b+3<0的解集为()A.x>4 B.x<4 C.x>3 D.x<310.如图1,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图2所示,则图2中的a等于()A.25 B.20 C.12 D.二.填空题11.在函数y=中,自变量x的取值范围是.12.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣4,则输出y的值是.13.直线y=﹣2x+1不经过第象限.14.在直角坐标系中,一次函数y=kx+b的图象经过一、二、三象限,若点(﹣1,m),(﹣2,n)都在该直线上,则m、n的大小关系为.15.如图,在平面直角坐标系中,已知点A(0,4),B(2,4),直线y=x+1上有一动点P,当PA=PB时,点P的坐标是.三.解答题16.(1)已知函数y=x+m+1是正比例函数,求m的值;(2)已知函数+m+1是一次函数,求m的值.17.已知一次函数y=﹣2x+3.(1)在平面直角坐标系内画出该函数的图象;(2)当自变量x=﹣4时,函数y的值;(3)当x<0时,请结合图象,直接写出y的取值范围:.18.甲、乙两人在净月大街上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA﹣AB﹣BC﹣CD所示.(1)甲的速度为米/分,乙的速度为米/分.(2)求线段AB的表达式,并写出自变量x的取值范围.(3)求乙比甲早几分钟到达终点?19.某商店销售甲、乙两种品牌的A4多功能办公用纸,购买2包甲品牌和3包乙品牌的A4多功能办公用纸共需156元;购买3包甲品牌和1包乙品牌的A4多功能办公用共需122元.(1)求这两种品牌的A4多功能办公用纸每包的单价;(2)疫情期间,为满足师生的用纸要求,该商店对这两种A4多功能办公用纸展开了促销活动,具体办法如下:甲品牌的A4多功能办公用纸按原价的八折销售,乙品牌的A4多功能办公用纸超出5包的部分按原价的七折销售,设购买的x包甲品牌的A4多功能办公用纸需要y1元,购买x包乙品牌的A4多功能办公用纸需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50包A4多功能办公用纸时,买哪种品牌的A4多功能办公用纸更合算?20.定义:在平面直角坐标系中,对于任意P (x 1,y 1),Q (x 2,y 2),若点M (x ,y )满足x =3(x 1+x 2),y =3(y 1+y 2),则称点M 是点P ,Q 的“美妙点”.例如:点P (1,2),Q (﹣2,1),当点M (x ,y )满足x =3×(1﹣2)=﹣3,y =3×(2+1)=9时,则点M (﹣3,9)是点P ,Q 的“美妙点”.(1)已知点A (﹣1,3),B (3,3),C (2,﹣2),请说明其中一点是另外两点的“美妙点”;(2)如图,已知点D 是直线y =+2上的一点.点E (3,0),点M (x ,y )是点D 、E 的“美妙点”.①求y 与x 的函数关系式;②若直线DM 与x 轴相交于点F ,当△MEF 为直角三角形时,求点D 的坐标.21.如图①是两圆柱形连通容器(连通处体积急略不计),向甲容器匀速注水,甲容器的水面高度h (cm )随时间t (分)之间的函数关系如图②所示,根据提供的图象信息,回答下列问题:(1)直接写出从乙容器开始进水到水面高度达到连通处所用时间是 分钟;(2)若甲的底面半径为1cm ,求乙容器底面半径;(3)若A (1,4),求水面高度为6cm 时t 的值.22.阅读理解材料一:已知在平面直角坐标系中有两点M (x 1,y 1),N (x 2,y 2),其两点间的距离公式为:MN =,当两点所在直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可化简为|x 2﹣x 1|或|y 2﹣y 1|;材料二:如图1,点P ,Q 在直线l 的同侧,直线l 上找一点H ,使得PH +HQ 的值最小.解题思路:如图2,作点P 关于直线l 的对称点P 1,连接P 1Q 交直线l 于H ,则点P 1,Q 之间的距离即为PH +HQ 的最小值.请根据以上材料解决下列问题:(1)已知点A ,B 在平行于x 轴的直线上,点A (2a ﹣1,5﹣a )在第二象限的角平分线上,AB =5,求点B 的坐标;(2)如图3,在平面直角坐标系中,点C (0,2),点D (3,5),请在直线y =x 上找一点E ,使得CE +DE 最小,求出CE +DE 的最小值及此时点E 的坐标.参考答案一.选择题1.解:由题意,得k﹣2>0,解得k>2,观察选项,只有选项A符合题意.故选:A.2.解:由“上加下减”的原则可知,将函数y=﹣2x的图象沿y轴负方向平移4个单位长度所得函数的解析式为y=﹣2x﹣4,∵此时与x轴相交,则y=0,∴﹣2x﹣4=0,即x=﹣2,∴点坐标为(﹣2,0),故选:B.3.解:由图象可得,当x=﹣2时,y=0,当x<﹣2时,y>0,故选:D.4.解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0.∴函数y=﹣2k﹣b的图象经过第一、二、三象限.∵因为|k|<|﹣2k|,所以一次函数y=kx+b的图象比y=﹣2kx﹣b的图象的倾斜度小,综上所述,符合条件的图象是C选项.故选:C.5.解:∵点P(m,n)在一次函数y=2x﹣3的图象上,∴n=2m﹣3.∵m+n>0,即m+2m﹣3>0,解得:m>1.故选:A.6.解:如图所示:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得,∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150,解得:x=2.25,故选:B.7.解:由题意得,x﹣2≥0,解得x≥2.故选:B.8.解:由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,函数y=cx+b中,y随x的增大而增大,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d,故④正确.综上所述,正确的结论有4个.故选:A.9.解:∵一次函数y=kx+b的图象经过B(4,﹣3),∴x=4时,kx+b=﹣3,又y随x的增大而减小,∴关于x的不等式kx+b+3<0的解集是x>4.故选:A.10.解:如图2,x=5时,BC=5,x=10时,BC+CD=10,则CD=5,x=15时,CB+CD+BD=15,则BD=8,如下图,过点C作CH⊥BD交于H,在Rt△CDH中,∵CD=BC,CH⊥BD,∴DH=BD=4,而CD=5,故CH=3,当x=5时,点P与点C重合,即BP=5,a=S△ABP =S△ABC=BD×CH=×8×3=12,故选:C.二.填空题11.解:∵函数y=有意义,∴2x﹣5≠0,解得:x≠,故答案为:x≠.12.解:当x=7时,y==﹣2,解得:b=3,当x=﹣4时,y=﹣2×(﹣4)+3=11,故答案为:11.13.解:∵y=﹣2x+1,k=﹣2,b=1,∴该直线经过第一、二、四象限,不经过第三象限,故答案为:三.14.解:∵一次函数y=kx+b的图象经过一、二、三象限,∴k>0,∴y随x的增大而增大,∵﹣1>﹣2,∴m>n,故答案为:m>n.15.解:∵点P在直线y=x+1上,∴设点P的坐标为(m,m+1).∵PA=PB,∴(m﹣0)2+(m+1﹣4)2=(m﹣2)2+(m+1﹣4)2,即4m﹣4=0,解得:m=1,∴点P的坐标为(1,).故答案为:(1,).三.解答题(共7小题)16.解:(1)∵y=x+m+1是正比例函数,∴m+1=0,解得m=﹣1;(2))∵y=(m﹣)+m+1是一次函数,∴m2﹣4=1,m﹣≠0,解得m=﹣.17.解:(1)∵一次函数y=﹣2x+3的图象是一条直线,当x=0时,解得y=3;当y=0时,解得x=,∴直线与坐标轴的两个交点分别是(0,3)和(,0),其图象如下:(2)把x=﹣4代入y=﹣2x+3,得y=11,故答案为11;(3)由图可知,当x<0时,y>3,故答案为y>3.18.解:(1)由线段OA可知:甲的速度为:=60(米/分),乙的步行速度为:=80(米/分),故答案为:60;80.(2)根据题意得:设线段AB的表达式为:y=kx+b(4≤x≤16),把(4,240),(16,0)代入得:,解得,即线段AB的表达式为:y=﹣20x+320 (4≤x≤16).(3)在B 处甲乙相遇时,与出发点的距离为:240+(16﹣4)×60=960(米), 与终点的距离为:2400﹣960=1440(米), 相遇后,到达终点甲所用的时间为:=24(分), 相遇后,到达终点乙所用的时间为:=18(分),24﹣18=6(分),答:乙比甲早6分钟到达终点.19.解:(1)设A 、B 两种品牌的多功能办公用纸的单价分别为x 元、y 元, 根据题意得,,解得, 答:A 、B 两种品牌的多功能办公用纸的单价分别为30元、32元;(2)A 品牌:y 1=30x •0.8=24x ;B 品牌:0≤x ≤5,y 2=32x ,x >5时,y 2=5×32+32×(x ﹣5)×0.7=22.4x +48,所以y 1=24x ,y 2=;(3)当y 1=y 2时,24x =22.4x +48,解得x =30,购买30个多功能办公用纸时,两种品牌都一样,购买超过30个多功能办公用纸时,B 品牌更合算,购买不足30个多功能办公用纸时,A 品牌更合算,∵需要购买50个多功能办公用纸,∴买B 种品牌的多功能办公用纸更合算.20.解:(1)∵3×(﹣1+2)=3,3×(3﹣2)=3,∴点B 是A 、C 的“美妙点”;(2)设点D (m ,m +2),①∵M是点D、E的“美妙点”.∴x=3(3+m)=9+3m,y=3(0+m+2)=m+6,故m=x﹣3,∴y=(x﹣3)+6=x+3;②由①得,点M(9+3m,m+6),如图1,当∠MEF为直角时,则点M(3,4),∴9+3m=3,解得:m=﹣2;∴点D(﹣2,);当∠MFE是直角时,如图2,则9+3m=m,解得:m=﹣,∴点D(﹣,);当∠EMF是直角时,不存在,综上,点D(﹣2,)或(﹣,).21.解:(1)从乙容器开始进水到水面高度达到连通处所用时间是4分钟;故答案为:4.(2)设乙容器底面半径为rcm,连通处水面高度为h,则πr2h=4πh,∴r=2.(3)∵A(1,4),∴B(5,4),即注水5分钟,连通器整个水面高度为4cm,∴每分钟可使整个连通器水面上升cm,∴(分),答:当水面高度为6cm时,.22.解:(1)∵点A(2a﹣1,5﹣a)在第二象限的角平分线上,∴5﹣a=1﹣2a,∴a=﹣4,∴A(﹣9,9),∵点A,B在平行于x轴的直线上,∴B点的纵坐标为9,∵AB=5,∴B(﹣4,9)或B(﹣14,9);(2)作点C关于y=x的对称点为C'(2,0),连接C'D与y=x的交点即可所求点E;∵CE=C'E,∴CE+DE=C'E+DE=C'D,∵D(3,5),∴C'D=,直线C'D的解析式为y=5x﹣10,联立:5x﹣10=x,∴x=,∴E(,),∴CE+DE的最小值,此时点E的坐标(,).。

最新八年级数学(一次函数)培优测试题

最新八年级数学(一次函数)培优测试题

八年级数学(一次函数)培优辅导题1.下列关于x 的函数中,是一次函数的是( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y 2.一次函数y=kx+6.y 随x 的增大而减小,则此一次函数的图象不过 ( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列函数,y 随x 增大而减小的是( )A .y=xB .y=x –1C .y=x+1D .y=–x+14.下列各点在直线13-=x y 上的是( )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0(5. 下列各点在函数y =3x +1的图象上的是( ).A .(3,5)B .(-2,3)C .(2,7)D .(4,10)6.若点A(2 , 4)在直线y=kx –2上,则k=( )A .2B .3C .4D .07.在直角坐标系中,既是正比例函数kx y =,又是y 的值随x 值的增大而减小的图像是( )A B C D 8.y =kx +b 图象如图则( )A .k>0 , b>0B .k>0 , b<0C .k<0 , b<0D .k<0 , b>09.y=kx +k 的大致图象是( )A B C D10.已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<211.下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 12.如果y=x -2a +1是正比例函数,则a 的值是( )(A)21 (B)0 (C)-21 (D)-2 13.函数y=kx+2,经过点(1 , 3),则y=0时,x=( )A .–2B .2C .0D .±24.已知长方形的周长为14.一个长方形的周长是25,设它的长为x ,宽为y ,则y 与x 的函数关系为( )A.x y -=25B. x y +=25C. x y -=225D. x y +=225 15点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( )A. 1y 2yB. 1y 2yC. 1y =2yD.不能确定16.函数y=2x+1的图象经过( )A .(2 , 0)B .(0 , 1) C. (1 , 0) D .(12, 0)17.如图,直线b kx y +=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( )A.32+=x yB.232+-=x y C.23+=x y D.1-=x y18.已知油箱中有油25 L ,每小时耗油5 L ,则剩油量P (L)与耗油时间t (h)之间的函数关系式为( ).A .P =25+5tB .P =25-5tC .P =255t D .P =5t -2519.函数x 取值范围是( ) A .x ≥3 B .x>3 C .x ≤3 D .x<320.直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.721.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( )A. 1b 2bB. 1b 2bC. 1b =2bD.不能确定22.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )23.第二象限和第四象限角平分线所在的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=24.函数值y 随x 的增大而减小的是( )(A)y=1+x (B)y=21x -1 (C)y=-x +1 (D)y=-2+3x 1..对于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________.2.一次函数b kx y +=的图象与两坐标轴的交点坐标分别为)0,3(和)2,0(-,则=k ____,=b ____.3..若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_____________.4.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,则k ____________________.5.某公司现在年产值为150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.6.直线2-=kx y 经过点),4(1y ,且平行于直线12+=x y ,则1y =___________,k =______.7.函数y=x -2自变量x 的取值范围是_________. 8.直线y=3x+b 与y 轴交点(0 ,–2),则这条直线不经过第____象限.9.直线y=x –1和y=x+3的位置关系是_________10.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b.11.已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是 .12.函数2+-=x y 中,y 的值随x 值的减小而 ,且函数图像与x 轴、y 轴的交点坐标分别是 , 。

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册

第四章一次函数培优训练试题北师大版2024—2025学年八年级上册一、选择题1.已知A点坐标为A()点B在直线y=﹣x上运动,当线段AB最短时,B点坐标()A.(0,0)B.(,﹣)C.(1,﹣1)D.(﹣,)2.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是()A.(﹣,﹣)B.(,)C.(﹣,)D.(,﹣)3.如图,直线与x轴、y轴交于A、B两点,∠BAO的平分线所在的直线AM的解析式是()A.B.C.D.二、填空题4.在平面直角坐标系中,一次函数y=x+4的图象分别与x轴,y轴交于点A,B,点P在一次函数y=x的图象上,则当△ABP为直角三角形时,点P的坐标是.5.直线y=kx+1与两坐标轴围成的三角形周长为6,则k=.6.如图,正方形OA1B1C1,C1A2B2C2,C2A3B3C3,…的顶点A1,A2,A3,…在直线y=kx+b上,顶点C1,C2,C3,…在x轴上,已知B1(1,1),B2(3,2),那么点A4的坐标为,点A n的坐标为.7.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是.8.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于.9.如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC 于点F,连接EF,若AF平分∠DFE,则k的值为.10.如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.11.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.12.如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A和点B,过点B的直线BC:y=kx+b交x轴于点C(﹣8,0).(1)k的值为;(2)点M为直线BC上一点,若∠MAB=∠ABO,则点M的坐标是.三、解答题13.如图,直线与x轴、y轴分别交于B、C两点.(1)求B、C两点的坐标.(2)若点A(x,y)是第一象限内的直线上的一个动点,则当点A运动到什么位置(求出点A的坐标)时,△AOB的面积是3.(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,直线l交x轴于点A(﹣1,0)、交y轴于点B(0,3).(1)求直线l对应的函数表达式;(2)在x轴上是否存在点C,使得△ABC为等腰三角形,若存在,请求出点C的坐标,若不存在,请说明理由.15.如图,在平面直角坐标系中,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(2,4).(1)求m的值及l2的解析式;(2)若点M是直线上的一个动点,连接OM,当△AOM的面积是△BOC面积的2倍时,请求出符合条件的点M的坐标;(3)一次函数y=kx+2的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.16.已知:如图1,直线AB:y=﹣x+2分别交x,y轴于点A,B.直线AC与直线AB关于x轴对称,点D为x轴上一点,E为直线AC上一点,BD=DE.(1)求直线AC的函数解析式;(2)若点D的坐标为(3,0),求点E的坐标;(3)如图2,将“直线AB:y=﹣x+2”改为“直线AB:y=kx+2”,∠E=∠ABO+∠ADB,x E=3,其他不变,求k的值.17.在平面直角坐标系中,点O为坐标原点,直线y=kx+3交x轴负半轴于点A,交y轴于点B,AB+OB=2OA.(1)如图1,求k值;(2)如图2,点C在y轴正半轴上,OC=2OA,过点C作AB的垂线交x轴于点D,点E为垂足,点P在BE的延长线上,点P的横坐标为t,连接PO,PD,△POD的面积为S,求S与t之间的函数关系式,不要求写出自变量t的取值范围;(3)在(2)的条件下,点F在OD上,连接FB,FP,若∠OBF+∠BPF=∠FPD=45°,求t值.18.在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a=,b=,c=;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?20.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?21.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?。

【学生卷】初中数学八年级数学下册第十九章《一次函数》经典题(培优)

【学生卷】初中数学八年级数学下册第十九章《一次函数》经典题(培优)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x分别交x轴、y轴于A、B两点.若C是x轴上的动点,则2BC AC+的最小值()A.236+B.6 C.33+D.42.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,1)C.(0,103)D.(0,2)3.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .5.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 6.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 7.甲,乙两车分别从A , B 两地同时出发,相向而行.乙车出发2h 后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x (h ), 甲,乙两车到B 地的距离分别为y 1(km ), y 2(km ), y 1, y 2关于x 的函数图象如图.下列结论:①甲车的速度是45a km /h ;②乙车休息了0.5h ;③两车相距a km 时,甲车行驶了53h .正确的是( )A .①②B .①③C .②③D .①②③ 8.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .9.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =-D .3y x =- 10.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D . 11.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小12.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+13.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 14.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米;④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④ 15.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②162±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( )A .1B .2C .3D .4 二、填空题16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2正确的是_____.17.如图,直线y =12x +b 交x 轴于点A ,交y 轴于点B ,OA =2,点C 是x 轴上一点,且△ABC 是直角三角形,满足这样条件的点C 的坐标是_____.18.如图1,在△ABC 中,AB >AC,D 是边BC 上一动点,设B,D 两点之间的距离为x,A,D 两点之间的距离为y ,表示y 与x 的函数关系的图象如图2所示.则线段AC 的长为_____,线段AB 的长为______.19.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.20.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.21.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③22.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -++-+=_________.23.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.24.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.25.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.26.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题27.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式;(2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.28.周末了,小红带弟弟一起荡秋千,秋千离地面的高度()m h 与摆动时间()s t 之间的关系如图所示.(1)根据函数的定义,请判断变量h 是否为t 的函数?(2)当 2.8s t =时,h 的值是多少?并说明它的实际意义;(3)秋千摆动第二个来回需要多少时间?29.已知点(2,﹣4)在正比例函数y =kx 的图象上.(1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.30.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.。

一次函数培优练习题(含答案)

一次函数培优练习题(含答案)

一次函数培优练习题(含答案)一、选择题:1.y与x+3成正比例,即y=k(x+3),代入x=1,y=8,解得k=2,因此函数关系式为y=2(x+3)=2x+6,选项(C)。

2.直线y=kx+b经过一、二、四象限,说明k和b异号,因此直线y=bx+k经过三象限,选项(C)。

3.直线y=-2x+4与两坐标轴围成的三角形的底边分别为4和2,因此面积为1/2*4*2=4,选项(A)。

4.由于两弹簧的函数解析式分别为y=k1x+a1和y=k2x+a2,因此y1=k1*2+a1,y2=k2*2+a2,无法确定它们的大小关系,选项(D)。

5.两个函数的图象分别为斜率为b和a的直线,当b>a时,y=bx+a的图象在y=ax+b的图象上方,因此选项(D)。

6.同第二题,直线y=bx+k经过三象限,因此不经过第二象限,选项(B)。

7.当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;当k=0时,y=2,因此选项(B)。

8.直线y=x+2m与y=-x+4的交点为(-2m+2,2m+2),当m>0时在第一象限,当m<0时在第二象限,因此选项(B)。

9.直线y=-x/2平移下移4个单位得到y=-x/2-4,即y=-33x-4,因此选项(D)。

10.XXX与x成正比例,则k=m-5=0,解得m=5,选项(D)。

11.直线y=3x-1与y=x-k的交点为(1/2,3/2-k/2),当k>1时在第四象限,因此选项(C)。

12.直线可以作4条,分别为y=-5x-2,y=5x-8,x=3,x=-1,选项(A)。

13.由于a+b/c+b/a+c=p,将其化简得到(a+b+c)/bc=p,因此直线y=px+p经过点(1/a,1/b,1/c),选项(D)。

改写后的文章:一、选择题:1.已知y与x+3成正比例,且当x=1时,y=8,求y与x 之间的函数关系式。

答案:y=2x+6.2.若直线y=kx+b经过一、二、四象限,求直线y=bx+k不经过的象限。

八年级数学培优专题一、一次函数培优训练经典题型

八年级数学培优专题一、一次函数培优训练经典题型

一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。

一次函数(全章分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

一次函数(全章分层练习)(培优练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.27一次函数(全章分层练习)(培优练)一、单选题本大题共10小题,每小题3分,共30分)1.(2023春·八年级单元测试)无论m 为什么实数时,直线2y mx m =+-总经过点().A .(0,2)-B .(1,2)-C .(1,2)--D .(2,0)2.(2023秋·北京西城·九年级北京市第一六一中学校考开学考试)如图,有一个球形容器,小海在往容器里注水的过程中发现,水面的高度h 、水面的面积S 及注水量V 是三个变量.下列有四种说法:①S 是V 的函数;②V 是S 的函数;③h 是S 的函数;④S 是h 的函数.其中所有正确结论的序号是()A .①③B .①④C .②③D .②④3.(2023·浙江丽水·统考一模)将一圆柱体从水中匀速提起,从如图所示开始计时,直至其下表面刚好离开水面,停止计时.用x 表示圆柱体运动时间,y 表示水面的高度,则y 与x 之间函数关系的图象大致是()A .B .C .D .4.(2022秋·四川成都·八年级校考期中)如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是()A .k >0,b <0B .直线y =bx +k 经过第四象限C .关于x 的方程kx +b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,若x 1<x 2,则y 1>y 25.(2023春·四川南充·八年级期末)如图,是李林周末骑自行车离家出游的图象,图中t 表示时间,s 表示李林离家的距离.则下列说法错误的是()A .60min 时李林离家8kmB .前20min 骑行速度为12km/hC .20min 30min -骑行的距离为4kmD .45min 时李林离家6km6.(2023春·浙江·八年级期末)如图,()()1122,,,A x y B x y 分别是直线21,4y x y x =+=-+上的动点,若121x x -≤时,都有124y y -≤,则1x 的取值范围为()A .1103x -≤≤B .102x ≤≤C .17133x -≤≤-D .1223x -≤≤7.(2023春·浙江台州·八年级统考期末)已知一次函数()0y kx b k =+≠的图象与2y x =-的图象交于点(),4m -.则对于不等式2kx b x -<- ,下列说法正确的是()A .当2k <-时,2x >B .当2k <-时,2x <C .当2k >-且0k ≠时,2x >-D .当2k >-且0k ≠时,<2x -8.(2023春·广东深圳·八年级统考期中)如图,点P 为直线1y x =+上一点,先将点P 向左移动2个单位,再绕原点O 顺时针旋转90︒后,它的对应点Q 恰好落在直线34y x =-+上,则点Q 的横坐标为()A.13-B.12C.13D.12-9.(2022秋·江苏无锡·八年级期末)如图,直线y=2x+2与直线y=﹣x+5相交于点A,将直线y=2x+2绕点A旋转45°后所得直线与x轴的交点坐标为()A.(﹣8,0)B.(3,0)C.(﹣11,0),(73,0)D.(﹣10,0),(2,0)10.(2021秋·重庆北碚·九年级西南大学附中校考期中)小明和小李住在同一个小区,暑假期间,他们相约去缙云山某地露营;小明先出发5分钟后,小李以65米/分的速度从小区出发,小明到达相约地点后放下装备,休息了10分钟,立即按原路以另一速度返回,途中与小李相遇,随后他们一起步行到达目的地.小李与小明之间的距离y(米)与小明出发的时间x(分)之间的关系如图,则下列说法正确的是()A.小明首次到达目的地之前的速度是75米/分B.小明首次到达目的地时,小李距离目的地还有200米C.从小区到目的地路程为2800米D .小明返回时的速度是33米分二、填空题(本大题共8小题,每小题4分,共32分)11.(2022秋·八年级课时练习)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =.12.(2021春·湖北武汉·八年级统考期末)直线l :y kx b =+(k 、b 是常数,0k ≠)经过()0,2A 、()1,B m -两点,其中0m <,下列四个结论:①方程0kx b +=的解在1-和0之间;②若点()111,P x y 、()2121,Px y +在直线l 上,则12y y >;③2k >;④不等式kx b m +>-的解集为13x >-时,3k =,其中正确的结论有.(只需填写序号)13.(2022秋·江苏镇江·八年级统考期末)已知点Р在直线l :y =kx ﹣3k (k ≠0)上,点Q 的坐标为(0,4),则点Q 到直线l 的最大距离是.14.(2023春·全国·七年级期末)平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()2,4-,点P 的坐标为(),a b ,其中a ,b 满足方程组21223b a m b a m -+=⎧⎨--=⎩,已知点P 在直线AB 的下方,且点P 不在第三象限,则m 的取值范围为.15.(2022秋·安徽蚌埠·八年级校考期中)已知{}max ,,a b c ⋅⋅⋅表示a ,b ,c …几个数中最大的那个数,{}min ,,a b c ⋅⋅⋅表示a ,b ,c …几个数中最小的那个数,例如{}min 5,3,03-=-,则:(1){}max 2,4,1-=;(2)已知函数min 152,28,44y x x x ⎧⎫=+-++⎨⎬⎩⎭,则max y =;16.(2023·全国·八年级假期作业)在平面直角坐标系中,直线4:4AB y x m =-+与直线:4m OC y x =交于点P ,N 为直线4x =上的一个动点,(2,0)M ,则+MN NP 的最小值为.17.(2023春·八年级课时练习)甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t (h ),甲、乙行驶的路程分别为,S S 甲乙,路程与时间的函数关系如图所示,丙与乙同时出发,从N 地沿同一条公路匀速前往M 地.当丙与乙相遇时,甲、乙两人相距20km ,问丙出发后小时后与甲相遇.18.(2023春·湖北武汉·八年级校联考阶段练习)已知一次函数()0y kx b k =+<的图象与y 轴正半轴交于点A ,且2k b +=,则下列结论:①函数图象经过一、二、四象限;②函数图象一定经过定点()1,2;③不等式()20k x b -+>的解集为1x <;④直线y bx k =--与直线y kx b =+交于点P ,与y 轴交于点B ,则PAB 的面积为2.其中正确的结论是.(请填写序号)三、解答题(本大题共6小题,共58分)19.(8分)(2023春·山东济南·七年级统考期中)如图1,在长方形ABCD 中,动点P 以1厘米/秒的速度,由A 点出发,沿A B C D →→→匀速运动,到点D 停止运动.设运动的时间为t 秒,三角形ADP 的面积为S 平方厘米.图2为运动过程中,S 与t 的关系图象.(1)由图2可知,AB =______厘米;(2)当点P 在AB 上运动时,求S 与t 的关系式;(3)在整个运动过程中,当三角形ADP 的面积为10平方厘米时,求t 的值.20.(8分)(2023春·福建龙岩·八年级统考期末)如图,已知直线1l :112y x =--与x 轴交于点A ,直线2l :4y kx =+经过点A ,与y 轴交于点B .(1)求点A 的坐标和k 的值;(2)点E 在线段AB 上,点F 在直线AC 上,若EF y ∥轴,且52EF =,求点E 坐标.21.(10分)(2023春·云南临沧·八年级统考期末)如图,直线1l 与x 轴交于点()5,0A ,与y 轴交于点()0,5B ,直线2l 的解析式为33y x =-.(1)求直线1l 的解析式.(2)点P 在x 轴上,过点P 作直线x a =平行于y 轴,分别与直线1l 、2l 交于点M 、N ,当点M 、N 、P 三点中的任意两点关于第三点对称时,求a 的值.22.(10分)(2023·四川眉山·校考三模)“双减”政策实施后,学生有了更多体验生活、学习其它知识的时间,为丰富学生的课外生活,某学校计划购入A 、B 两种课外书,已知用300元购进A 种书的数量与用400元购进B 种书的数量相同,B 种书每本价格比A 种书每本价格多10元.(1)求A 种书、B 种书的单价;(2)若学校一次性购进A 、B 两种书共200本,且要求购进A 种书的本数不超过B 种书本数的2倍,则学校怎样购书,才能使购书款最少?请你求出最少的购书款及相应的购买方案.23.(10分)(2023春·湖南邵阳·八年级统考期末)如图,过点C 的直线6y x -=与坐标轴相交于A 、B 两点,已知点(),C x y 是第二象限的点,设AOC 的面积为S .(1)写出S 与x 之间的函数关系,并写出x 的取值范围;(2)当AOC 的面积为6时,求出点C 的坐标;(3)在(2)的条件下,坐标轴上是否存在点M ,使得M 与A 、O 、C 中任意两点形成的三角形面积也为6,若存在,请直接写出点M 的坐标.24.(12分)(2023·河南商丘·统考三模)某火锅店为吸引客户,推出两款双人套餐,下表是近两天两种套餐的收入统计:数量收入A 套餐B 套餐第一天20次10次2800元第二天15次20次3350元(1)求这两款套餐的单价;(2)A 套餐的成本约为45元,B 套餐的成本约为50元,受材料和餐位的限制,该火锅店每天最多供应50个套餐,且A 套餐的数量不少于B 套餐数量的15,求火锅店每天在这两种套餐上的最大利润;(3)火锅店后续推出增值服务,每个套餐可选择再付10元即可加料,即在鱼豆腐、面筋、川粉和蘑菇中任选两种涮菜.小明是这个火锅店的常客,2022年他共花费1610元购买两个套餐,其中A 套餐不加料的数量占总数量的14,则小明选择B 套餐加料的数量为______个.参考答案1.C【分析】把解析式变形得到关于m 的不定方程形式得到y =(x +1)m -2,根据无论m 为什么实数时,直线总过定点得出,x +1=0,求出经过的点即可.解:∵y =mx +m ﹣2,∴y =(x +1)m -2,∵无论m 为什么实数时,直线总过定点,∴x +1=0,解得x =﹣1,代入解析式得,y =﹣2,∴直线y =mx +m ﹣2总经过点(﹣1,﹣2).故选:C .【点拨】本题考查了一次函数过定点问题,解题关键是把解析式适当变形,根据所含参数系数为0求出点的坐标.2.B【分析】由函数的概念求解即可.解:①:由题意可知,对于注水量V 的每一个数值,水面的面积S 都有唯一值与之对应,所以V 是自变量,S 是因变量,所以S 是V 的函数,符合题意;②:由题意可知,对于水面的面积S 的每一个数值,注水量V 的值不一定唯一,所以V 不是S 的函数,不符合题意;③:由题意可知,对于水面的面积S 的每一个数值,水面的高度h 的值不一定唯一,所以h 不是S 的函数,不符合题意;④:由题意可知,对于水面的高度h 的每一个数值,水面的面积S 都有唯一值与之对应,h 是自变量,S 是因变量,所以S 是h 的函数,符合题意;所以正确的的序号有①④,故选:B .【点拨】此题考查了函数的概念,解题的关键是熟记函数的概念.3.C【分析】设刚开始时水高为h ,大水桶底面积为1S ,圆柱体底面积为2S ,速度为v ,当圆柱体上表面未离开水面时,体积不变,水高不变,y h =,当上表面开始离开水面,直至其下表面刚好离开水面时,由题意得,112S y S h S vx =-,整理得,21S v y x h S =-+,根据函数解析式确定函数图象即可.解:设刚开始时水高为h ,大水桶底面积为1S ,圆柱体底面积为2S ,速度为v ,当圆柱体上表面未离开水面时,体积不变,水高不变,y h =,当上表面开始离开水面,直至其下表面刚好离开水面时,由题意得,112S y S h S vx =-,整理得,21S v y x h S =-+,∵210S v S -<,∴y 随x 的增大而减小,∴可知y 与x 之间函数关系的图象大致为y 先保持不变,然后y 随x 的增大而减小,故选:C .【点拨】本题考查了一次函数的图象.解题的关键在于正确的表示数量关系.4.C【分析】由一次函数的图象经过一,二,三象限,所以0,0,k b >>从而可判断A ,B ,由直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),可判断C ,由0k >结合一次函数的性质可判断D ,从而可得答案.解:由一次函数的图象经过一,二,三象限,所以0,0,k b >>故A 不符合题意;直线y =bx +k 经过一,二,三象限,故B 不符合题意;直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),∴关于x 的方程kx +b =0的解为x =﹣5,故C 符合题意;若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,而0,k >y 随x 的增大而增大,若x 1<x 2,则y 1<y 2,故D 不符合题意;故选C【点拨】本题考查的是一次函数的图象与性质,一次函数与一元一次方程的关系,掌握“一次函数的图象与性质”是解本题的关键.5.C【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.解:由图可得,A.60min 时李林离家8km ,故选项A 说法正确,不符合题意;B.前20min 骑行速度为h 204261/0km ÷=,故选项B 说法正确,不符合题意;C.20min 30min -骑行的距离为0km ,故选项C 说法错误,符合题意;D.设3060t ≤≤时,s 与t 之间的函数关系式为s mt n =+,把()()30,4,60,8代入得,304608m n m n +=⎧⎨+=⎩,解得,2150m n ⎧=⎪⎨⎪=⎩,∴s 与t 之间的函数关系式为215s t =,∴当45t =时,2456km 15s =⨯=,故选项D 说法正确,不符合题意;故选:C .【点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.6.B【分析】将()11,,A x y 向右平移1个单位得到点C ,过点C 作x 的垂线,交4y x =-+于点B ,交21y x =+于点D ,当4BC ≤时,符合题意,同理将点A 向左平移一个单位得到C ,进而即可求解.解:如图,将()11,,A x y 向右平移1个单位得到点C ,过点C 作x 的垂线,交4y x =-+于点B ,交21y x =+于点D ,当4BC ≤时,符合题意,()111,21C x x ∴++,()()111,14B x x +-++即()111,3B x x +-+,()11121332BC x x x ∴=+--+=-1324x ∴-≤解得12x ≤如图,将点A 向左平移一个单位得到C ,∴()11121C x x -+,,()()111,14B x x ---+即()111,5B x x --+,()11521BC x x ∴=-+-+134x =-+4≤解得10x ≥综上所述,102x ≤≤,故选B【点拨】本题考查了一次函数的性质,坐标与图形,根据题意作出图形分析是解题的关键.7.D【分析】根据正比例函数可求出交点坐标,进一步可得出k 与b 的关系,利用函数图象可得出正确结论.解:由题意可得交点坐标为()2,4-故有:24k b +=-,24b k ∴=--令24y kx b kx k '=-=++,可知函数24y kx k '=++的图象恒过点()2,4-()2,4-也在2y x =-的图象上对于A 、B 选项,当2k -<时画出函数图象,如图所示:可得:2x ->,故A 、B 错误;对于C 、D 选项,当2k ->且0k ≠时画出函数图象,如图所示:无论20k -<<还是0k >,均有2x -<故C 错误,D 正确故选:D【点拨】本题考查函数的交点问题以及不等式与函数的联系.利用数形结合思想是解决此类问题的关键.8.B【分析】可将点的平移和旋转转化为直线的平移和旋转,求出解析式后,联立两个函数解析式即可求出交点的横坐标.解:∵点P 为直线1y x =+上一点,∴点P 向左移动2个单位后的解析式为213y x x =++=+,∵3y x =+绕原点O 顺时针旋转90︒后解析式为3y x =-+∴334y x y x =-+⎧⎨=-+⎩,可得12x =,∴点Q 的横坐标为12.故选:B【点拨】此题考查一次函数,解题关键是将点的平移和旋转转化为函数平移和旋转,然后求函数的交点坐标.9.C【分析】先求出点A 的坐标;设直线y =2x +2与x 轴交于点B ,过点A 作AC ⊥x 轴于点C ,可求出AC 和BC 的长;若将直线y =2x +2绕点A 旋转45°,则需要分两种情况:当直线AB 绕点A 逆时针旋转45°时,如图1,设此时直线与x 轴的交点为P ;过点B 作BD ⊥AB 交直线AP 于点D ,过点D 作DE ⊥x 轴于点E ,可得△ACB ≌△BED ,进而可得点D 的坐标,用待定系数法可求出直线AP 的表达式,进而求出点P 的坐标;当直线AB 绕点A 顺时针旋转45°时,如图2,设此时直线与x 轴的交点为Q ,延长DB 交AQ 于点F ,则△ADF 是等腰直角三角形,根据中点坐标公式可求出点F 的坐标,进而求出直线AQ 的表达式,最后可求出点Q 的坐标.解:令2x+2=-x+5,解得x=1,∴A(1,4).设直线y=2x+2与x轴交于点B,过点A作AC⊥x轴于点C,∴OC=1,AC=4,令y=2x+2=0,则x=-1,∴OB=1,∴BC=2.将直线y=2x+2绕点A旋转45°,需要分两种情况:①当直线AB绕点A逆时针旋转45°时,如图1,设此时直线与x轴的交点为P,此时∠BAP=45°,过点B作BD⊥AB交直线AP于点D,过点D作DE⊥x轴于点E,∴∠ACO=∠ABD=90°,∴∠ABC+∠DBE=∠DBE+∠BDE=90°,∴∠ABC=∠BDE,∵∠ABD=90°,∠BAP=45°,∴∠BDA=∠BAP=45°,∴AB=BD,∴△ACB≌△BED(AAS),∴BC=DE=2,BE=AC=4,∴OE=3,∴D(3,-2),设直线AP的解析式为y=kx+b,∴432k bk b+⎧⎨+-⎩==,解得37kb-⎧⎨⎩==,∴直线AP的解析式为y=-3x+7,令y =0,则x =73,∴P (73,0);②当直线AB 绕点A 顺时针旋转45°时,如图2,设此时直线与x 轴的交点为Q ,延长DB 交AQ 于点F,则∠BAQ =45°,∵∠ABF =∠ABD =90°,∴∠BAF =∠BFA =45°,∴BF =BA =BD ,即点B 为DF 的中点,∵B (-1,0),D (3,-2),∴F (-5,2),设直线AQ 的解析式为:y =mx +n ,∴524m n m n -+⎧⎨+⎩==,解得13113m n ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AQ 的解析式为:y =13x +113.令y =0,则x =-11,∴Q (-11,0),综上所述,将直线y =2x +2绕点A 旋转45°后所得直线与x 轴的交点坐标为(-11,0),(73,0).故选:C .【点拨】本题属于一次函数与几何综合题目,涉及全等三角形的性质与判定,图象的交点,等腰三角形的性质等内容,解题的关键是根据45°角作出垂线构造全等.本题若放在九年级可用相似解决.10.C【分析】根据图象可知,小明5分钟行走400米,可求速度,到达目的地用时35分,可求总路程,再根据小李行走时间可知小李走的路程,利用两人相向而行时,两分钟相遇可求小明返回时速度,即可得出答案.解:A 、小明首次到达目的地之前的速度是400805=米/分,A 不正确;B 、两地间的距离为:80×35=2800(米).小李在小明到达目的地时行走的路程为:65×(35-30)=1950(米).2800-1950=850(米),此时,小李距目的地还有850米,B 不正确;C 正确;D 、850-65×10=200(米),200÷(47-45)=100(米/分),100-65=35(米/分).D 不正确;故选:C .【点拨】本题考查了行程问题的数量关系的运用,一次函数的解析式的运用,点的坐标的运用,解答时认真分析函数图象的意义是关键.11.0【分析】令x =1和x =-1,得到()1212f f ⎛⎫+= ⎪⎝⎭①,()1212f f ⎛⎫-= ⎪⎝⎭②,两个等式相减,即可得到答案.解:∵对于所有的实数x ,都有()()222x x f xf x -+=,∴当x =1时,()1212f f ⎛⎫+= ⎪⎝⎭①,当x =-1时,()1212f f ⎛⎫-= ⎪⎝⎭②,①-②,得:()220f =,解得:()2f =0.故答案是:0.【点拨】本题主要考查抽象函数求值,掌握赋值法以及等式的性质,是解题的关键.12.①③④【分析】根据图象可对①进行判断;根据题意b =2,m =−k +2<0,解得k >2,可对③进行判断;根据一次函数的性质可对②进行判断;由b =2,m =−k +2,不等式kx +b >−m 化为kx +2>k −2,得到413k k -=-,解得k =3,于是可对④进行判断.解:∵直线l :y =kx +b (k 、b 是常数,k ≠0)经过A (0,2)、B (−1,m )两点,其中m <0,∴直线与x 轴的交点横坐标在−1和0之间,故①正确;∵直线l :y =kx +b (k 、b 是常数,k ≠0)经过A (0,2)、B (−1,m )两点,其中m <0,∴b =2,∴m =−k +2<0,∴k>2,故③正确;∵k>0,y随x的增大而增大,∵x1<x1+1,∴y1<y2,故②错误;∵b=2,m=−k+2,∴不等式kx+b>−m化为kx+2>k−2,∴kx>k−4,∵不等式kx+b>−m的解集为x>−1 3,∴413 kk-=-,解得k=3,故④正确;故答案为①③④.【点拨】本题考查了一次函数的性质,一次函数与一元一次不等式,一次函数与一元一次方程,根据题意得出k>0,b=2是解题的关键.13.5【分析】由题意得直线l一定过点(3,0),在过(3,0)的直线中,当点Q和(3,0)的连线垂直于直线l时,点P到直线l的距离最大,根据勾股定理求解即可.解:∵直线l:y=kx﹣3k=k(x-3)∴当x=3时,y=0,故点(3,0)再直线l上令点P(3,0)连接PQ,当PQ垂直与直线l垂足为点P时,点Q到直线l的距离最大PQ5=故答案为:5【点拨】本题主要考查了一次函数图像和点到直线的距离,过一点作已知直线的垂线,这条垂线段的长度是点到直线的距离;明确当PQ ⊥直线l 时,点Q 到直线的距离最大是解题的关键.14.1122m ≤<【分析】求出直线AB 的解析式2y x =-+,再根据21223b a m b a m -+=⎧⎨--=⎩求出点P 的坐标为()7,2P m m --,然后过P 作'∥PP y 轴,交直线AB 于点P ',确定()7,9P m m '--,再分两步:点P 在直线AB 的下方;点P 不在第三象限,分别确定m 的取值范围,然后确定公共部分即可。

一次函数培优(完美版)

一次函数培优(完美版)

一次函数培优(完美版)1、已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,),则不等式ax大于b的解集为()解:根据题意,该函数经过x轴交点为(-2,0),即-2a+b=0,解得b=2a。

由于图像经过一,二,三象限,即函数值同时为正、负、正,因此a的符号为正。

代入不等式ax>b 中,得到ax>2a,即x>2.因此,答案为A。

2、若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是________解:不等式左侧为两个绝对值的和,可以通过分段讨论的方法求解。

当x<1时,2|x-1|=-2x+2,3|x-3|=-3x+9,因此不等式化为-5x+11≤a。

当1≤x<3时,2|x-1|=2x-2,3|x-3|=-3x+9,因此不等式化为-x+7≤a。

当x≥3时,2|x-1|=2x-2,3|x-3|=3x-9,因此不等式化为5x-15≤a。

为了使不等式有解,必须满足-5x+11≤a和5x-15≤a都成立,即a≥11/2且a≥15/2,取最大值a=15/2,因此答案为15/2.3、已知实数a,b,c满足a+b+c≠0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?解:将a/b+c=b/c+a=c/a+b=k代入,得到a=k(b+c),b=k(c+a),c=k(a+b)。

将b+c=a/k代入第一个式子,得到a=k(a/k),即a=c+b。

因此,a,b,c三个数相等,且都不为0.将a=b=c代入直线方程y=kx-3中,得到y=kx-3a。

因为a不为0,所以直线不经过原点,因此必定经过第二、第三、第四象限。

答案为第二、第三、第四象限。

4、已知一次函数y=ax+b的图象过(,2)点,它与坐标轴围成的图形是等腰直角三角形,则a的值为________ 解:由于图象过(,2)点,因此b=2.又因为图形是等腰直角三角形,所以另外两个交点的横坐标相等,即函数值为0时的横坐标相等。

【学生卷】初中数学八年级数学下册第十九章《一次函数》经典习题(培优)

【学生卷】初中数学八年级数学下册第十九章《一次函数》经典习题(培优)

一、选择题1.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟2.一次函数y=-3x-2的图象和性质,表述正确的是( ) A .y 随x 的增大而增大 B .函数图象不经过第一象限 C .在y 轴上的截距为2D .与x 轴交于点(-2,0)3.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .4.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t <<5.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→ B .CDE A →→→ C .A E C B →→→D .AE D C →→→6.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .7.函数2y x x=+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限8.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④9.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .10.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+ 11.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在13.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发后步行的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有( )A .1个B .2个C .3个D .4个14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m <<15.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5下列说法错误的是( )A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题16.如图,一次函数y ax b =+与y cx d =+的图象交于点P .下列结论中,所有正确结论的序号是_________.①0b <;②0ac <;③当1x >时,ax b cx d +>+;④a b c d +=+;⑤c d >.17.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.18.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________. 19.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.20.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________.21.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.22.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.23.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.24.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.25.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.26.在平面直角坐标系中,Rt ABO 的顶点B 在x 轴上,90∠=︒ABO ,AB OB =,点()10,8C 在AB 边上,D 为OB 的中点,P 为边OA 上的动点(不与,O A 重合).下列说法正确的是________(填写所有正确的序号).①当点P 运动到OA 中点时,点P 到OB 和AB 的距离相等; ②当点P 运动到OA 中点时,APC DPO ∠=∠;③当点P 从点O 运动到点A 时,四边形PCBD 的面积先变大再变小; ④四边形PCBD 的周长最小时,点P 的坐标为5050,77⎛⎫⎪⎝⎭.三、解答题27.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?28.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.29.在平面直角坐标系中,已知一次函数4y kx =+与12y x b =-+的图象都经过()2,0A -,且分别与y 轴交于点B 和点C .(1)求,k b 的值;(2)设点D 在直线12y x b =-+上,且在y 轴右侧,当ABD ∆的面积为15时,求点D 的坐标.30.已知一次函数3y kx =-的图象经过点()2,1A .(1)求这个一次函数的表达式;(2)在图中的直角坐标系画出这个函数的图象.。

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质—2024学年八年级数学上册培优题型(北师大版)(教师版)

一次函数的图像和性质(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.51一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•道里区开学)若把直线y=2x+3向上平移3个单位长度,得到图象对应的函数解析式是()A.y=2x+9 B.y=2x﹣3 C.y=2x+6 D.y=2x解:由“上加下减”的原则可知,将直线y=2x+3,向上平移3个单位所得的直线的解析式是y=2x+3+3,即y=2x+6.故选:C.2.(2分)(2023春•丰润区期末)若k<0,则一次函数y=﹣2x﹣k的图象大致是()A.B.C.D.解:∵k<0,∴﹣k>0,∴直线y=﹣2x﹣k的图象经过第第一、二、四象限,∴该直线不经过第三象限;故选:A.3.(2分)(2022秋•平遥县期末)如图,直线与x轴,y轴分别交于点A和点B,点C在线段AB 上,且点C坐标为(m,2),点D为线段OB的中点,点P为OA上一动点,当△PCD的周长最小时,点P 的坐标为()A.(﹣3,0)B.C.D.解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选:B.4.(2分)(2022秋•相山区校级期末)一次函数y1=mx+n(m,n是常数)与y2=nx+m在同一平面直角坐标系中的图象可能是()A.B.C.D.解:由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n<0,m=0,矛盾,故A不合题意;由一次函数y1=mx+n图象可知m>0,n<0,由一次函数y2=nx+m可知n<0,m>0,一致,故B符合题意;由一次函数y1=mx+n图象可知m<0,n>0,由一次函数y2=nx+m可知n>0,m>0,矛盾,故C不合题意;由一次函数y1=mx+n图象可知m>0,n>0,由一次函数y2=nx+m可知n<0,m>0,矛盾,故D不合题意;故选:B.5.(2分)(2022秋•兴化市期末)若点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣x+1图象上的点,则()A.y3<y2<y1B.y1<y2<y3C.y1<y3<y2D.y2<y3<y1解:∵k=﹣1<0,∴y随x的增大而减小,∵﹣1<1<2,∴y3<y2<y1,故选:A.6.(2分)(2021秋•沂源县期末)关于函数y=(k﹣3)x+k,给出下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(﹣1,3);③若图象经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是0<k<3.其中正确结论的序号是()A.①②③B.①③④C.②③④D.①②③④解:①根据一次函数定义:k≠0函数为一次函数,故正确;②y=(k﹣3)x+k=k(x+1)﹣3x,故函数过(﹣1,3),故正确;③图象经过二、三、四象限,则k﹣3<0,k<0,解得:k<0,故正确;④函数图象与x轴的交点始终在正半轴,则x=>0,解得:0<k<3,故正确.故选:D.7.(2分)(2020秋•苏州期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A.若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或+1 B.3或C.2或D.3或+1解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故选:D.8.(2分)(2020•鹿城区校级模拟)如图,平面直角坐标系中,直线l:y=﹣x+2分别交x轴、y 轴于点B、A,以AB为一边向右作等边△ABC,以AO为一边向左作等边△ADO,连接DC交直线l于点E.则点E的坐标为()A.(,)B.(,)C.(,)D.(,)解:y=﹣x+2①,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(0,2)、(2,0),即OB=2,AO=2=OD,则AB=4=BC,tan∠ABO==,故∠ABO=60°,而△ABC为等边三角形,则BC与x轴的夹角为180°﹣∠ABC﹣∠ABO=180°﹣60°﹣60°=60°,则y C=BC sin60°=4×=2,x C=x B+BC cos60°=2+4×=4,故点C(4,2),同理可得点D的坐标为:(﹣3,),设直线CD的表达式为y=kx+b,则,解得:,故直线CD的表达式为:y=x+②,联立①②并解得:x=,y=,故点E的坐标为:(,),故选:A.9.(2分)(2023•灞桥区校级模拟)已知直线l1:y=kx+b(k≠0)与直线l2:y=k1x﹣6(k1<0)在第三象限交于点M,若直线l1与x轴的交点为B(3,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2解:∵直线l1与x轴的交点为B(3,0),∴3k+b=0,∴y=kx﹣3k,直线l2:y=k1x﹣6(k1<0)与y轴的交点坐标为(0,﹣6),若直线l1与x轴的交点为B(3,0),则l1与y轴交点(0,﹣3k)在原点和点(0,﹣6)之间,即:﹣6<﹣3k<0,解得:0<k<2,故选:D.10.(2分)(2019秋•龙岗区校级期末)如图,已知直线AB:y=分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE.当BD+BE 的值最小时,则H点的坐标为()A.(0,4)B.(0,5)C.D.解:由题意A(0,),B(﹣3,0),C(3,0),∴AB=AC=8,取点F(3,8),连接CF,EF,BF.∵C(3,0),∴CF∥OA,∴∠ECF=∠CAO,∵AB=AC,AO⊥BC,∴∠CAO=∠BAD,∴∠BAD=∠ECF,∵CF=AB=8,AD=EC,∴△ECF≌△DAB(SAS),∴BD=EF,∴BD+BE=BE+EF,∵BE+EF≥BF,∴BD+BE的最小值为线段BF的长,∴当B,E,F共线时,BD+BE的值最小,∵直线BF的解析式为:y=x+4,∴H(0,4),∴当BD+BE的值最小时,则H点的坐标为(0,4),故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋中期末)已知在平面直角坐标系中,点A(3,m),B(5,n)是直线y=﹣2x上的两点,则m,n的大小关系是m n.(填“<”,“>”或“=”)解:∵点A(3,m),B(5,n)是直线y=﹣2x上的两点,又∵k=﹣2<0,∴y随着x增大而减小,∵3<5,∴m>n,故答案为:>.12.(2分)(2022秋•磁县期末)如图,在平面直角坐标系中,点A(3,m)在第一象限,若点A关于x 轴的对称点B在直线y=﹣x+1m的值为.解:∵点A(3,m),∴点A关于x轴的对称点B(3,﹣m),∵B在直线y=﹣x+1上,∴﹣m=﹣3+1=﹣2,∴m=2,故答案为:2.13.(2分)(2023春•昌吉市期末)已知一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,则k的值是.解:∵一次函数y=kx+3(k为常数,且k≠0),y随x的增大而减小,当﹣1≤x≤2时,函数有最大值5,∴当x=﹣1时,函数有最大值5,∴﹣k+3=5,解得k=﹣2.故答案为:﹣2.14.(2分)(2022秋•法库县期末)关于一次函数y=kx﹣k(k≠0)有如下说法:①当k>0时,y随x的增大而减小;②当k>0时,函数图象经过二、三、四象限;③函数图象一定经过点(1,0);④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=(k﹣2)x﹣k(k≠0).其中说法正确的序号是.解:①当k>0时,y随x的增大而增大;不符合题意;②当k>0时,则﹣k<0,函数图象经过一、三、四象限,不符合题意;③当x=1时,则y=0,∴函数图象一定经过点(1,0),符合题意;④将直线y=kx﹣k(k≠0)向下移动2个单位长度后所得直线表达式为y=kx﹣k﹣2(k≠0),不符合题意;故答案为:③.15.(2分)(2023春•漳平市期末)如图,直线y=﹣2x+2与x轴和y轴分别交于A、B两点,射线AP⊥AB 于点A,若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为.解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣2x+2中,令x=0,则y=2,令y=0,则x=1,∴OA=1,OB=2,由勾股定理得AB=,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=,∴OD=1+;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=2,∴OA+AD=3,综上所述:OD的长为1+或3.故答案为1+或3.16.(2分)(2023春•昌吉市期末)如图,直线与x轴、y轴分别交于点B和点A,点C是线段OA上的一点,若将△ABC沿BC折叠,点A恰好落在x轴上的A处,若P是y轴负半轴上一动点,且△BCP 是等腰三角形,则P的坐标为.解:当x=0时,=8,∴点A的坐标为(0,8);当y=0时,=0,解得:x=﹣6,∴点B的坐标为(﹣6,0).∴AB==10.∵AB=A′B,∴OA′=10﹣6=4.设OC=m,则AC=A′C=8﹣m.在Rt△A′OC中,A′C2=A′O2+OC2,即(8﹣m)2=42+m2,解得:m=3,∴点C的坐标为(0,3),∴BC==3,∴当BC=BP时,P1(0,﹣3);当BC=CP时,则OP+OC=3,∴OP=3﹣3,∴P2(0,3﹣3);当CP=BP时,设P(0,﹣n),则BP=CP=3+n,∴(3+n)2=62+n2,解得n=,∴此时P3(0,﹣);综上,P点的坐标为(0,﹣3)或(0,3﹣3)或(0,﹣);故答案为:(0,﹣3)或(0,3﹣3)或(0,﹣).17.(2分)(2022秋•丹徒区期末)如图,平面直角坐标系中,x轴上一点A(4,0),过点A作直线AB ⊥x轴,交正比例函数的图象于点B.点M从点O出发,以每秒1个单位长度的速度沿射线OB运动,设其运动时间为t(秒),过点M作MN⊥OB交直线AB于点N,当△MBN≌△ABO时,t=秒(写出所有可能的结果).解:如图1所示,当点M在线段OB上时,∵A(4,0),AB⊥x,∴点B的横坐标为4,当x=4时,,∴B(4,3),∴OA=4,OB=3,∴,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB﹣BM=2,∴t=2;如图2所示,当点M在OB延长线上时,∵△MBN≌△ABO,∴BM=AB=3,∴OM=OB+BM=8,∴t=8;综上所述,当t=2或t=8时△MBN≌△ABO,故答案为:2或8.18.(2分)(2022秋•南京期末)如图,在平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,将直线AB顺时针旋转90°,则旋转后的直线的函数表达式为.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,∴A(2,0),B(0,4),∴AO=2,BO=4,将直线AB绕点A顺时针旋转90°,交y轴于C,根据旋转的性质得到△BAO∽△ACO,∴=,即=,∴OC=1.∴C(0,1),设直线AC为y=kx﹣1,代入A(2,0)得2k﹣1=0,解得k=,∴旋转后的直线的函数表达式为y=x﹣1.故答案为:y=x﹣1.19.(2分)(2022秋•成华区期末)如图,直线y=x+4与x轴,y轴分别交于点A,B,点C是AO的中点,点D,E分别为直线y=x+4和CDE的周长最小时,线段DE的长是.解:在y=x+4中,令y=0得x=﹣4,∴A(﹣4,0),∵C是OA中点,∴C(﹣2,0),作C(﹣2,0)关于y轴的对称点G(2,0),作C(2,0)关于直线y=x+4的对称点F,连接AF,连接FG交AB于D,交y轴于E,如图:∴DF=CD,CE=GE,∴CD+CE+DE=DF+GE+DE=FG,此时△CDE周长最小,由y=x+4得A(﹣4,0),B(0,4),∴OA=OB,△AOB是等腰直角三角形,∴∠BAC=45°,∵C、F关于AB对称,∴∠FAB=∠BAC=45°,∴∠FAC=90°,∵AC=OA﹣OC=2=AF,∴F(﹣4,2),由F(﹣4,2),G(2,0)可得直线FG解析式为y=﹣x+,在y=﹣x+中,令x=0得y=,∴E(0,),由得,∴D(﹣,),∴DE==,故答案为:.20.(2分)(2022秋•锦江区期末)如图,在平面直角坐标系xOy中,已知∠AOB=90°,∠A=60°,点A的坐标为(﹣2,2),若直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是.解:过点A作AE⊥x轴于点E,过点B作BF⊥x于点F,如图,∵,∴,根据勾股定理得,,∴∠AOE=30°,∵∠AOB=90°,∠CAO=60°,∴∠ABO=30°,∴AB=2AO=8,∴,又∠BOF=180°﹣∠AOE﹣∠AOB=60°,∴∠OBF=30°,∴,∴,∴,对于y=﹣2x+2,当y=0时,﹣2x+2=0,∴x=1,∴直线y=﹣2x+2与x轴的交点坐标为(1,0);设过点A且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+p,把代入y=﹣2x+p,得:,∴,∴,当y=0时,,∴,∴直线与x轴的交点坐标为,设过点B且与直线y=﹣2x+2平行的直线解析式为y=﹣2x+q,把代入y=﹣2x+q,得:,∴,∴,当y=0时,,∴,∴与x轴的交点坐标为,∴直线y=﹣2x+2沿x轴平移m个单位后与△AOB仍有公共点,则m的取值范围是,即.故答案为:.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023春•柘城县期末)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△PAB=S△OCD,∴S△PAB=××6×8=12.∵点P在y轴上,S△PAB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).22.(6分)(2022秋•沙坪坝区校级期末)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与x 轴、y轴分别交于点A和点B(0,3),直线l2:y=2x+6与x轴交于点C,且与直线l1交于点D(﹣1,m).(1)求直线l1的表达式;(2)将直线l1向下平移4个单位长度得到直线l3,直线l2、l3交于点E,连接AE,求△ADE的面积.解:(1)把点D(﹣1,m)代入y=2x+6得,m=﹣2+6=4,∴点D的坐标为(﹣1,4),把点D(﹣1,4)和点B(0,3)代入y=kx+b得:,∴,∴直线l1的表达式为:y=﹣x(2)将直线l1向下平移4个单位长度得到直线l3的解析式为y=﹣x﹣1,解得,∴E(﹣,),在y=﹣x+3中,令y=0,则x=3,∴A(3,0),在直线l2:y=2x+6中,令y=0,则x=﹣3,∴C(﹣3,0),∴AC=6,∴△ADE的面积=S△ADC﹣S△ACE=×6×4﹣×6×=8.23.(8分)(2022秋•顺德区期末)一次函数y=x+1.(1)画出函数的图象;(2)当x时,的值大于0;(3)对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,求b的取值范围.解:(1)列表:画图如下:(2)由图可知:函数图象在x轴上方的部分对应的x的范围是x>﹣2,∴当x>﹣2时,的值大于0;(3)若对于任何一个x的值,函数y=﹣x+b与的值中至少有一个大于0,则当x≤﹣2时,y=﹣x+b必然大于0,∴﹣(﹣2)+b=4+b>0,解得b>﹣2.∴b的取值范围为:b>﹣2.24.(8分)(2023•花都区一模)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;②当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标.解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,解得:k=﹣,故答案为:﹣;(2)①如图1,由(1)可知直线AB的解析式为y=﹣x+4.∴设C(m,﹣m+4)(0<m<8),∵点D的坐标为(6,0),点E的坐标为(0,1),∴OD=6,OE=1,∴OM=m,CM=﹣m+4,∵四边形OECD的面积是9,∴S梯形CEOM+S△CDM=(1﹣m+4)•m+(﹣m+4)•(6﹣m)=9,整理得2m=6,解得m=3,∴点C的坐标为(3,);②∵CE平行于x轴,CD平行于y轴,∴四边形CEOD是矩形,∵四边形OECD的周长是10,∴2(m﹣m+4)=10或2(﹣m+4﹣m)=10,解得m=2或m=6,点C的坐标为(2,3)或(﹣,).25.(8分)(2023•南山区校级三模)图象对于探究函数性质有非常重要的作用,下面我们就一类特殊的函数展开探究.画函数y1=3|x|的图象,经历分析表达式、列表、描点、连线过程得到函数图象如图所示:在同一平面直角坐标系中,经历同样的过程画出函数y2=3|x﹣2|的图象如图所示.(1)观察发现:两个函数的图象都是由两条射线组成的轴对称图形,且图象的开口方向和形状完全相同,只有最低点和对称轴发生了变化.所以可以将函数y1的图象向右平移2个单位得到y2的图象,则此时函数y2的图象的最低点A的坐标为.(2)探索思考:将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,请在网格图中画出函数y3的图象,并求出当x≥4时,函数y3的最小值.(3)拓展应用:将函数y3的图象继续平移得到函数y4=3|x﹣m|+2的图象,其最低点为点P.①用m表示最低点P的坐标为;②当﹣1≤x≤2时,函数y4有最小值为5,求此时m的值.解:(1)由图象可得A(2,0),故答案为:(2,0);(2)将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,如图:当x≥4时,y3取到最小值,最小值为8;(3)拓展应用:将函数y3的图象继续平移得到y4=3|x﹣m|+2,其最低点为点P.①最低点P的坐标为(m,2),故答案为(m,2);②若m<﹣1,当x=﹣1时,y4有最小值5,∴3×|﹣1﹣m|+2=5∴m=0(舍),或m=﹣2若﹣1≤m≤2,当x=m时,y4有最小值2,不符合题意,舍去.若m>2,当x=2时,y4有最小值5,∴3×|2﹣m|+2=5∴m=1(舍),或m=3综上所述,m=﹣2或m=3.26.(8分)(2023春•新疆期末)因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.解:(1)根据题意可得:函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;故答案为:y=﹣3x﹣2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:x×2x=16,解得:x=4,则B(﹣4,0),C(4,0),A(0,4),将B,A分别代入y=kx+b得:,解得:,故其函数解析式为:y=x+4,故其“镜子”函数为:y=﹣x+4.27.(8分)(2022秋•皇姑区校级期末)在初学函数过程中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题;在y=a|x|+b中,如表是y与x的几组对应值.(1)直接写出a=,b=;(2)直接写出m=,n=;(3)在给出的平面直角坐标系xOy中,描出以上表格中各组对应值为坐标的点,并根据描出的点,画出该函数的图象.根据函数图象可得:①该函数的最小值为;②该函数图象轴对称图形(填“是”或“不是”);(4)已知点(2022,y1)和(﹣2023,y2)在函数y=a|x|+b的图象上,则比较y1y2(填“>”或“<”).解:(1)∵函数y=a|x|+b的图象经过点(﹣1,3),(0,1),∴,解得,故答案为:2,1;(2)∵y=2|x|+1,∴当x=﹣2时,m=2×|﹣2|+1=5,当x=1时,n=2×|1|+1=3.故答案为:5,3;(3)函数y=2|x|+1的图象如图所示:根据图象可知,①该函数的最小值为1.②该函数图象是轴对称图形,故答案为:1;是;(4)∵点(2022,y1)到对称轴y轴的结论小于点(﹣2023,y2)的距离,∴y1<y2.故答案为:<.28.(8分)(2021秋•镇海区期末)如图,一次函数y=﹣x+4的图象交y轴于点A,交x轴于点B,点P为AB中点,点C,D分别在OA,OB上,连结PC,PD,点A,E关于PC对称,点B,F关于PD对称,且CE∥DF.(1)直接写出点A,B,P的坐标.(2)如图1,若点O,E重合,求DF.(3)如图2,若点F横坐标为5,求点E的坐标.解:(1)∵当x=0时,y=4,∴A(0,4),∵当y=0时,即,则x=8,∴B(8,0),∵点P为AB中点∴P(4,2),综上所述:A(0,4),B(8,0),P(4,2);(2)∵点C在OA,点A,E关于PC对称,此时点O,E重合,∴CE⊥x轴,∵CE∥DF,∴DF⊥x轴,∵B(8,0),P(4,2),∴PB2=(8﹣4)2+(0﹣2)2=20,∵点B,F关于PD对称,∴PF=PB,DF=DB设OD=m,则DF=DB=8﹣m,∴F(m,m﹣8),∴PF2=(m﹣4)2+(m﹣10)2=2m2﹣28m+116,∵PF2=PB2,∴2m2﹣28m+116=20,解得:m1=6,m2=8(舍),∴DF=8﹣6=2;(3)设F(5,n),由折叠知PF=PB==2,∵P(4,2),∴,解得n=2+(舍)或n=2﹣,∴F(5,2﹣),设PF的解析式为y=kx+b(k≠0),则,解得,∴直线PF的解析式为:y=﹣x+4+2,过P作PQ∥CE,则PQ∥CD∥DF,∴∠EPQ=∠E=∠PAC,∠FPQ=∠F=∠ABD,∴∠EPF=∠EPQ+∠FPQ=∠PAC PBD=90°,即PE⊥PF,∴可设直线PE的解析式为y=x+m,把P(4,2)代入得2=+m,解得m=2﹣,∴直线PE的解析式为y=x+2﹣,设E(t,t+2﹣),∵PE=PA=2,∴解得t=4+(舍)或t=4﹣,∴E(4﹣,1)。

初二(上)培优专题 一次函数

初二(上)培优专题 一次函数

A.0B.2mh h h h 4 t (小时)44 t (小时)t初二(上)数学培优班专题(四)《一次函数》(3)一、选择题:1.若 y = x + 2 - 3b 是正比例函数,则 b 的值是( )2 3 C. -D. -3322.若 m <0, n >0, 则一次函数 y=mx+n 的图象不经过 ()A.第一象限B. 第二象限C.第三象限D.第四象限 13.已知函数 y = - x + 2 ,当 -1 < x ≤ 1 时,y 的取值范围是 ()25 3 3 5 3 5 3 5 A. -< y ≤B. < y <C. ≤ y <D.< y ≤222222224. 已知函数 y =mx +2x -2,使函数值 y 随自变量 x 的增大而增大, 的取值范围是( ) A .m≥-2 B .m>-2 C .m≤-2 D .m<-2 5. 在同一直角坐标系中,对于函数:①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图 象,下列说法正确的是 ( )A . 通过点(-1,0)的是①和③B .交点在 y 轴上的是②和④C .互相平行的是 ①和③D .关于 x 轴平行的是②和③6.一支蜡烛长 20 厘米,点燃后每小时燃烧 5 厘米,燃烧时剩下的高度 h(厘米)与燃烧时间 t(时)的函数关系的图象是 ( ) (厘米)20(厘米) (厘米) (厘米)20 20 204(小时) A B C D7.已知一次函数 y=kx+b,y 随着 x 的增大而减小,且 kb<0,则在直角坐标系内它的大致图象是 ( )A .B .C .D .8.当 a < 0 , b > 0 时,函数 y =ax+b 与 y = bx + a 在同一坐标系中的图象大致是()A.B.C.D.9 .一次函数 y = kx + b 与 y = x + a 的图象如图2 ,则下列结论y12y = x + a2O 3xy = kx + b11① k < 0 ;② a > 0 ;③ b > 0 ;④当 x < 3 时, y < y 中,正确的个数有( )个1 2A .0B .1C .2D .3 10.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上 坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行 程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣 传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟 D.33 分钟二、填空题:1.一次函数的图象经过点(-2,3)与(1 ,-1),它的解析式是________.2.若一次函数 y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 象限 .3.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y 随着 x 的增大而减小;(2)图象经过点(1,-3).4.如果正比例函数 y =3x 和一次函数 y =2x +k 的图象交点在第三象限,那么 k 的取值范围 是_____.5.已知点 P (3a – ,a + 3)是第二象限内坐标为整数的点,则整数 a 的值是_______. 6.一次函数 y=-x-m (m 为常数)的图象与 x 轴的交点坐标是(1,0),则方程-x-m=0 的 根是,不等式-x-m >0 的解集是.7.若直线 y =-x +a 和直线 y =x +b 的交点坐标为(m ,8), y (米)则 a +b =_______.8.某龙舟队在 1000 米比赛项目中,路程 y (米)与时间 x(分钟)之间的函数图象如图所示.根据图中提供的信息,1000925 800该龙舟队的比赛成绩是 分钟.三、解答题:1.已知一次函数图象经过 (3,5 )和 (-4, -9)两点,(1)求此一次函数的解析式;(2)若点 (a,2 ) 在函数图象上,求 a 的值.4 4.5 x (分钟)2.已知,直线 y = 2 x + 3 与直线 y = -2 x - 1 yA(1) 求两直线与 y 轴交点 A ,B 的坐标;CO Bx(2)求两直线交点C的坐标;(3)求△ABC的面积.3.将长为30cm,宽为10cm的长方形白纸,按如图所示的方发粘合起来,粘合部分的宽为3cm.设x张白纸粘合后的总长度为ycm,写出y与x的函数关系式,并求出当x=20时,y的值.301034.如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x 四边形APCD的面积为y.D C⑴写出y与x之间的函数关系式及x的取值范围;⑵说明是否存在点P,使四边形APCD的面积为1.5?PA B5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元水费,超过的部分每吨按b元(b>a)收费.设一户居民月用水y元,y与x之间的函数关系如图所示.(1)求a的值,若某户居民上月用水8吨,应收水费多少元?(2)求b的值,并写出当x大于10时,y与x之间的函数关系;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?403530252015105y(元)四.综合拓展:1.有一条直线y=kx+b,它与直线y=1201020x(吨)图13x+3交点的纵坐标为5,而与直线y=3x-9的交点的横坐标也是5.求该直线与两坐标轴围成的三角形面积.2.在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元)。

八年级上期数学培优一次函数(原题卷)

八年级上期数学培优一次函数(原题卷)

八年级上期数学培优一次函数选择题:〔共10题〕1. 一次函数y i = k i x +b i的图象l i如下图,将直线l i向下平移假设干个单位后得直线12 , 12的函数表达式为y2 =k?X +b2 .以下说法中错误的选项是〔〕A. k i =k2B. bi : b2y i y2 .有甲、乙两个不同的水箱,容量分别为的水全倒入乙箱之后,乙箱还可以继续装装满甲箱后,乙箱里还剩i0升水,那么a,A. b=a+i5B. b=a+20C. b >b2D.当x = 5 时,a升和b升,且已各装了一些水.假设将甲中20升水才会满;假设将乙箱中的水倒入甲箱, b之间的数量关系是〔〕C. b= a+30D. b=a+403 .一次函数0=x + a与y2 = kx+b的图象如图,那么以下结论:①k<0;②ab〉0;③关于x的方程x+a = kx + b的解为x = 2;④当x…2时,yi…y2,其中正确的个数是〔〕4 .如图,假设正比例函数 y=kx 图象与四条直线 x=1, x=2, y= 1, y= 2相交围成的正方形有公共点,那么 k 的取值范围是〔〕1C. 0V k< 一25.甲、乙两人在笔直的公路上问起点、同终点、同方向匀速步行人原地体息甲先出发 4分钟,在整个步行过程中,甲、乙两人的距离 y 〔米〕与甲 出发的时向t 〔分〕之间的函数关系如下图,以下说法中正确的选项是〔A.甲步行的速度为 8米/分 B .乙走完全程用了 34分钟 C.乙用16分钟追上甲 D .乙到达终点时,甲离终点还有 360米C 〔a, 2a 〕及点D 是一个平行四边形的四个顶点, 那么线段CD 的长的最小值为〔长作等边三角形 AOB,过点A 作AB 2平行于x 轴,交直线于点 民,以AB 2为边长作等 边三角形AA8,过点A 作AR 平行于x 轴,交直线l 于点B 3,以AR 为边长作等边三 角形AAR,…,那么点 A019的横坐标是〔〕2400米,先到终点的6.点 A (4, 0), B (0, - 4), A,512.5 B. ---------5D- 4.27 .如图,在平面直角坐标系中,直线y= - x — ~~~与x 轴交于点Bi,以0B 为边2 22xOy中yC B D的面积从左向右依次记为S 的值为B, Q 为△ AO 咕部一点8.如图,在平面直角坐标系9.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶 A. 2 ,3 点落在函数y = x+1的图象上,阴影图形2021B. 2—今2021 C.--2c2021 ,2 一 1 D. r ----------- 122021A.2-A. S n=3X22n+1B. S n=3X22n+3 D. S n=3X22n10.如图:正方形OCAB A (2, 2), Q (5, 7), ABLy 轴,ACLx 轴,OA BC交于点P,假设正方形OCABA O为位似中央在第一象限内放大,点P随正方形一起运动,当PQ到达最小值时停止运动. 以PQ的长为边长,向PQ的右侧作等边△ PQD求在这个位似变化过程中,D点运动的路径长( )二、填空题:(共10题)11 .正方形AiBCiO, ARQG, ARGQ…、正方形AB?nG-1按如图方式放置,点A、AA、…在直线y=x+1上,点C、G、G、…在x轴上. A点的坐标是(0, 1),那么,点B n的坐标是T=T+14民12 .有一种动画设计,屏幕上的长方形ABCD1黑色区域(含长方形的边界),其中A(- 1, 1)、B (2, 1)、C (2, 2), D(- 1, 2),用信号枪沿直线y=kx-2发射信号,当信号遇到黑色区域时,区域便由黑变白,那么能够使黑色区域变白的k的取值范围是13 .如图,在平面直角坐标系中,点A的坐标为(3, 1),直线l与x轴,y轴分别交于点B( - 3, 0), C (0, 3),当x轴上的动点P到直线l的距离PE与至ij点A的距离PA之和最小时,那么点E的坐标是14 .菱形在平面直角坐标系的位置如下图, ,,点是对角线上的一个动点, ,当周长最小时,点的坐标为15 .如图,在平面直角坐标系中,正方形ABCQ A (0, 3),点D为x轴上一动点, 以AD为边在AD的右侧作等腰Rt^ADE / ADE=90 ,连接OE,那么OE的最小值为16 .如图,在直角坐标系中,直线l与y轴正半轴所夹的锐角为60°,过点A (0,1) 作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A,以AB、BA为邻边作DABAG;过点A作y轴的垂线交直线l于点B b过点B作直线l的垂线交y轴于点Aa,以A2B1、B1A1为邻边作口入3402;…;按此作法继续下去,那么G的坐标是___________ ; G的坐标是__________________________17 .要在马路旁边设一个共享单车投放点,向A、B两家公马路司提供效劳,投放点应设在什么地方,才能使从A、B到它的距离之和最短?小明根据实际情况,以马路旁为y轴建立了如下图的平面直角坐标系, 测得A点的坐标为(2,1),B点的坐标为(4,4 ),那么从A、B两点到投放点距离之和为最小值时,投放点的坐标是 .林马路分•B~0X18 .如图,在平面直角坐标系中,点A(12,0 ),点B(0,4),点P是直线y = —x—1上一点,且/ABP =45°,那么点P的坐标为.19 .如图,点C(-1,0),直线y =x+4与两坐标轴分别交于A, B两点,D, E分别是AB OBh的动点,那么|_CDE周长的最小值是 .20 .如图,点C(0,1),直线y = X+5与两坐标轴分别交于A B两点.点D, E分别是OB AB上的动点,那么|_CDE周长的最小值是 .三、解做题:(共10题)21 .甲、乙两车从A城出发前往B城,在整个行程中, 汽车离开A城的距离y与时刻t 的对应关系如右图所示.(1) A、B两城相距多远?(2)哪辆车先出发?哪辆车先到B城?(3)甲、乙两车的平均速度分别为多少?(4)你还能从图中得到哪些信息?322 .如图,直线l i:y = ——x + b分别与x轴、y轴交于A B两点,与直线l2:y = kx —6 4交于点C I 2,3. 2(1)点A 坐标为(, ), B 为(, ).(2)在线段BC上有一点E ,过点E作y轴的平行线交直线12于点F ,设点E的横坐标为m ,假设四边形OBEF是平行四边形时,求出此时m的值.15(3)假设点P为x轴正半轴上一点,且S ABP = 一,那么在轴上是否存在一点Q ,使得L 2P、Q、A、B四个点能构成一个梯形假设存在,求出所有符合条件的Q点坐标;假设不存在,请说明理由.23.在平面直角坐标系中,过点C (1, 3)、D (3, 1)分别作x轴的垂线,垂足分别为A、B.(1)求直线O口直线OD勺解析式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交直线CN点N,是否存在这样的点M使彳导以A、C M N为顶点的四边形为平行四边形?假设存在,求此时点M的横坐标;假设不存在,请说明理由;(3)假设△AOC& CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中, 设平移距离为石t ,△ AOCI△ OBDt叠局部的面积记为s,试求s与t的函数关系式.24 .去年3月,某炒房团以不多于2224万元不少于2152万元的资金分别从A城、B城买入小户型二手房(80平方米/套)共4000平方米.其中A城、B城的购入价格分别为4000元/平方米、7000元/平方米.自住建部今年5月约谈成都市政府负责同志后, 成都市进一步加大了调控政策.某炒房团为抛售A城的二手房,决定从6月起每平方米降价1000元.如果卖出相同平方米的房子,那么5月的销售额为640万元,6月的销售额为560万元.(1) A城今年6月每平方米的售价为多少元?(2)请问去年3月有几种购入方案?(3)假设去年三月所购房产全部没有卖出,炒房团方案在7月执行销售方案:B城售价为1.05万元/平方米,并且每售出一套返还该购房者a元;A城按今年6月的价格进行销售.要使(2)中的所有方案利润相同,求出a应取何值?25 .小颖和同学一起去书店买书, 他们先用60元买了一种科普书, 又用60元买了一种文学书.科普书的价格比文学书高出一半,他们所买的科普书比所买的文学书少2本.(1)求他们买的科普书和文学书的价格各是多少元?(2)学校某月开展读书活动, 班上同学让小颖帮助购置科普书和文学书共20本,且购置总费用不超过260元,求小颖至少购置多少本文学书?26 .如图,平面直角坐标系中,直线AB:y= -1x+b交y轴于点A(0,1),交x轴于点B, 3直线x=1交AB于点D,交x轴于点E,P是直线x=1上的一动点,且在点D的上方,设P(1,n).(1)求直线ABd解析式和点B的坐标;(2)求^ ABP的面积(用含n的代数式表示);⑶ 当S AABP =2时,①求出点P的坐标;②在①的条件下,以PB为边在第一象限作等腰直角△BPG直接写出点C的坐标.27 .如下图,矩形OABC勺邻边OA OC分别与x、y轴重合,矩形OABC勺对称中央P(4, 3),点Q由O向A以每秒1个单位速度运动,点M由C向B以每秒2个单位速度运动,点N 由B向C以每秒2个单位速度运动,设运动时间为t秒,三点同时出发,当一点到达终点时同时停止 .(1)根据题意,可得点B坐标为, AC=;(2)求点Q运动几秒时,△ PCQW长最小?(3)在点M N、Q的运动过程中,能否使以点Q Q M N为顶点的四边形是平行四边形?假设能,请求出t值;假设不能,请说明理由.128 .如图1 ,在平面直角坐标系中,直线y = -- x + 2与坐标轴交于A, B两点,以2AB为斜边在第一象限内作等腰直角三角形ABC点C为直角顶点,连接OC(1)直接写出S&OB = ;(2)请你过点C作CH y轴于E点,试探究OBOA与CE的数量关系,并证实你的结论;⑶ 假设点M为AB的中点,点N为OC勺中点,求MN勺值;(4)如图2,将线段AB绕点B沿顺时针方向旋转至BQ且ODLAD延长口位直线y = x+5 于点P,求点P的坐标.29 .定义:在平面直角坐标系中,对于任意两点A(a,b) , B(c,d),假设点T(x, y)满足a cb dx = ------- , y = ----------,那么称点T是点A , B的融合点.3 3例如:A(-1,8), B(4,—2),当点T(x,y)满是x=^4=1, y=8^21=2时, 3 3那么点T(1,2)是点A, B的融合点,(1)点A(—1,5), B(7,7) , C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x, y)是点D, E的融合点.①试确定y与x的关系式.②假设直线ET交x轴于点H ,当ADTH为直角三角形时,求点E的坐标.30. (1)探索发现:如图1,Rt^ABC中,Z ACB= 90° , AC= BC,直线l过点C, 过点A作ADL l ,过点B作B已l ,垂足分别为D、E.求证:AD= CE, CD= BE.(2)迁移应用:如图2,将一块等腰直角的三角板MO也在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内, 点M的坐标为(1, 3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,直线y= - 3x+3与y轴交于点P, 与x轴交于点Q将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.。

一次函数单元测试(培优压轴卷)八年级数学上册尖子生同步培优题典(原卷版)【苏科版】

一次函数单元测试(培优压轴卷)八年级数学上册尖子生同步培优题典(原卷版)【苏科版】

【讲练课堂】2022-2023学年八年级数学上册尖子生同步培优题典【苏科版】专题6.9第6章一次函数单元测试(培优压轴卷)注意事项:本试卷满分150分,试题共25题,其中选择8道、填空8道、解答9道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.x+1的图象上()1.(2020·江苏省洪泽县黄集中学八年级阶段练习)下面哪个点在函数y=12A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)2.(2022·江苏·如皋市石庄镇初级中学八年级阶段练习)正比例函数y= - 4x的图象经过的象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.(2022·江苏连云港·八年级期末)正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx﹣k的图象大致是()A.B.C.D.4.(2022·江苏·八年级专题练习)在测量液体密度的实验中,小华同学测得液体和烧杯的总质量与液体体积的关系如图,则下列选项中不正确的是()A.空烧杯的质量是168g B.液体的质量与液体的体积满足一次函数关系⁄D.当液体体积为60cm3时,液体和烧杯的总质量为240g C.液体的密度是900kg m35.(2022·江苏·八年级专题练习)一次函数y=ax−a+3(a≠0)中,当x=1时,可以消去a,求出y=3.结合一次函数图象可知,无论a取何值,一次函数y=ax−a+3的图象一定过定点(1,3),则定义像这样的一次函数图象为“点旋转直线”.若一次函数y=(a−3)x+a+3(a≠3)的图象为“点旋转直线”,那么它的图象一定经过点()A.(1,3)B.(-1,6)C.(1,-6)D.(-1,3)6.(2022·江苏·南通市海门区东洲国际学校八年级阶段练习)如图,购买一种苹果,所付金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A.6元B.3元C.4元D.2元7.(2022·江苏南通·八年级期末)如图,在平面直角坐标系中,直线y=x−2与y=kx+b(k<0)相交于点M,点M的纵坐标为1,则关于x的不等式x−2≤kx+b的解集是()A.x≤1B.x<3C.x≤3D.x<18.(2020·江苏·宜兴外国语学校七年级阶段练习)规定f(x)=|x−3|,g(y)=|y+4|,例如f(−4)=|−4−3|=7,g(−4)=|−4+4|=0,下列结论中,正确的是()(填写正确选项的序号)(1)若f(x)+g(y)=0,则2x−3y=18;(2)若x<−4,则f(x)+g(x)=1−2x;(3)能使f(x)=g(x)成立的x的值不存在;(4)式子f(x−1)+g(x+1)的最小值是9A.(1)(2)(3)B.(1)(2)(4)C.(1)(4)D.(1)(2)(3)(4)二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上9.(2022·江苏·涟水县麻垛中学九年级阶段练习)已知一次函数y=2x−3的图象经过A(x1,1),B(x2,3)两点,则x 1________x 2(填“>”“<”或“=”)10.(2022·江苏·如皋初级中学八年级阶段练习)点P(a ,b)在函数y =3x +2的图象上,则代数式3a −b 的值等于___________.11.(2022·江苏·南通市海门区东洲国际学校八年级阶段练习)某市出租车的收费起步价为14元,即路程不超过3公里时收费14元,超过部分每公里收费2.4元.如果乘客乘坐出租车行驶的路程为x (x >3)公里,乘车费为y 元,那么y 与x 之间的关系式为_________.12.(2017·江苏·启东市南苑中学八年级期中)如果直线y =−2x +b 与两坐标轴所围成的三角形面积是9,则b 的值为______.13.(2022·江苏南京·八年级期末)如图,已知一次函数y =ax +b 的图像与y =kx 的图像相交于点P ,则二元一次方程组{y =ax +b y =kx的解是________.14.(2022·江苏南通·八年级期中)如图,在平面直角坐标系xOy 中,直线l 1:y =kx +b 与直线l 2:y =mx +n 交于点A(−2,1),则关于x 的不等式kx +b <mx +n 的解集为________.15.(2022·江苏南通·八年级期末)定义:点A (x ,y )为平面直角坐标系内的点,若满足x =y ,则把点A 叫做“平衡点”.例如:M (1,1),N (-2,-2),都是“平衡点”.当-3≤x ≤2时,直线y =2x +m 上有“平衡点”,则m 的取值范围是______.16.(2021·江苏·南京师范大学附属中学江宁分校一模)在一条笔直的公路旁依次有A 、B 、C 三个村庄,甲、乙两人同时分别从A 、B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图,则乙在行驶过程中,直接写出当x=_____时距甲5km.三、解答题(本大题共9小题,共102分.解答时应写出文字说明、证明过程或演算步骤)17.(2022·江苏·八年级专题练习)将直线y=2x+3平移后经过点(2,−1),求:(1)平移后的直线解析式;(2)沿x轴是如何平移的.18.(2022·江苏·八年级专题练习)已知一次函数y=2x−4,完成下列问题:(1)求此函数图象与x轴的交点坐标.(2)画出此函数的图象:观察图象,当0⩽x⩽4时,y的取值范围是.(3)平移一次函数y=2x−4的图象后经过点(−3,1),求平移后的函数表达式.x+2先向右平移一个单位长度,再向上平移一个单位长度,19.(2022·江苏·八年级专题练习)将直线y=−12所得新的直线l与x轴、y轴分别交于A、B两点,另有一条直线y=x+1.(1)求l的解析式;(2)求点A和点B的坐标;(3)求直线y=x+1与直线l以及y轴所围成的三角形的面积.20.(2022·江苏·八年级专题练习)学校阅览室有一种能坐4人的方桌,如果多于4人,就把方桌按图中的方式摆放,2张方桌摆放到一起能坐6人,请你结合这个规律,回答问题:(1)写出总人数y(人)与方桌数x(张)之间的函数解析式(不要求写自变量的取值范围),并判断y是不是x的一次函数;(2)若八年级(1)班有42人去阅览室看书,则需要多少张这样的方桌?21.(2022·江苏无锡·一模)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多1万元,且用1200万元恰好能购买300套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共600套,考虑物价因素,预计明年每套A型一体机的价格比今年,上涨20%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用的34那么该市明年至少需要投入多少万元才能完成采购计划?22.(2022·江苏盐城·八年级期末)国庆期间,军军和朋友一起乘旅游公交从军军家出发,去森林公园游玩,出发1小时到达森林公园,游玩了一段时间后,他们继续乘旅游公交按原来的速度前往条子泥景区.军军离家1小时40分钟后,妈妈驾车沿相同的路线前往条子泥景区,如图所示,分别是军军和妈妈离家的路程y(km)与军军离家时间x(h)的函数图像.(1)求旅游公交的速度及军军和朋友在森林公园游玩的时间;(2)若妈妈在出发40分钟时,刚好在条子泥景区门口追上军军所乘的旅游公交,试解决下列问题:①求妈妈驾车的速度;①求CD所在直线的函数表达式.23.(2019·江苏·南通市海门区东洲中学八年级期中)已知直线l1:y=kx+b轻过点A(5,0),B(1,4).(1)求直线AB的函数关系式;(2)若直线l2:y=2x−4与直线AB相交于点C,求点C的坐标;(3)过点P(m,0)作x轴的垂线,分别交直线l1,l2与点M、N,若m>3,当MN=3时,求m的值.24.(2022·江苏·八年级专题练习)定义运算min{a,b}:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{4,0}=0;min{2,2}=2;min{−3,−1}=−3.根据该定义完成下列问题:(1)min{−3,2}=_________,当x≥2时,min{x,2}=_________;(2)若min{3x−1,−x+3}=3x−1,求x的取值范围;(3)如图,已知直线y1=x+m与y2=kx−2相交于点P(−2,1),若min{x+m,kx−2}=kx−2,结合图象,直接写出x的取值范围;25.(2022·江苏·扬州中学教育集团树人学校八年级期末)如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB=6.(1)请直接写出点C的坐标;(2)如图①,点F在BC上,连接AF,把①ACF沿着AF折叠,点C刚好与线段AB上一点C′重合,求线段CF的长度;(3)如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的的解析式;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级提高班试题(一次函数)
1. 无论k 为何值,一次函数(2k-1)x-(k-3)y-(k-11)=0的图像必经过定点( ); A .(0,0) B.(0,11) C.(2,3) D.无法确定
2. 在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点,设k 为整数,当直线y=x-2与y= kx +k 的交点为整点时,k 的值可取( ); A . 4个 B. 5个 C. 6个 D. 7个
3. 如图,设b>a ,将一次函数a bx y +=与b ax y +=的图像画在同一平面直角系内,则有一组a ,b 的取值,是下列4个图中的一个为正确的是( )
A. B. C.
D.
4.当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是( )
A 、04<<-a
B 、20<<a
C 、24<<-a 且0≠a
D 、24<<-a 5. 一个一次函数的图象与直线595
44
y x =
+平行,与x 轴、
y 稠的交点分别为A,B 并且过点(-1,-25).则在线段AB 上(包含端点A,B),横、纵坐标都是整数的点有( )
A.4个
B.5个
C.6个
D.7个
6. 在平面直角坐标系中,已知A (2,•-2),点P 是y 轴上一点,则使AOP 为等腰三角形的点P 有( ) (A )1个 (B )2个 (C )3个 (D )4个
7.函数x
x y --=
2212的自变量x 的取值范围是_________________;
8.一点A 为直线y=-2x+2上一点,点A 到两坐标轴距离相等,则点A 的坐标为_________; 9.一次函数y=kx+2图像与x 轴交点到原点的距离为4,那么k 的值为____;
10.直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n
+的解集为 .
11.如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线b x y +=3
1
恰好将矩形OABC 分成面积相等的两部分,那么b = 12.一次函数1
11+++-
=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是O B A ,,为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .
13.已知A (-2,3),B (3,1),P 点在x 轴上,且│PA │+│PB │最小,求点P 的坐标。

x
y
x y
O
b a
x
y x
y
O
b
a
x
y
x y
O
b
a
2
x
y
x y
O
b
a
y x
O
P
2 a 8题
1
l 2l
O
y/km 90
30
a 0.5 3
P
甲 乙
x/h 14.在一条直线上依次有A 、B 、C 三个港口,甲、乙两
船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终 达到C 港.设甲、乙两船行驶x (h )后,与B 港的距离分 别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.
(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.
15.在平面直角坐标系中,有A (0,5),B (5,0),C (0,3),D (3,0)且AD 与BC 相交于点E ,求△ABE 的面积
16.我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。

按计 划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。

根据下表提供的信息,解答以下问题:
脐 橙 品 种 A B C 每辆汽车运载量(吨) 6 5 4 每吨脐橙获得(百元) 12
16
10
(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数
关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每
种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。

相关文档
最新文档