等差数列、等比数列同步练习题
(完整版)高二等差、等比数列基础练习题及答案.doc

等差、等比数列基础练习题及答案一、选择题1. 数列 { a n } 满足 a 1=a 2=1,,若数列 { a n }的前 n 项和为 S n 2013),则 S 的值为(A. 2013B. 671C. -671D.2.已知数列 { a n } 满足递推关系: a n+1=,a 1= ,则 a 2017=( )A.B.C.D.3.数列 { a n } 的前 n 项和为 S n ,若 S n =2n-1(n ∈N +),则 a 2017 的值为()A. 2B. 3C. 2017D. 30334. 已知正项数列 { a n } 满足,若 a 1=1,则 a 10=()A. 27B. 28C. 26D. 295. 若数列{a n } 满足: a 1=2 ,a n+1= ,则 a 7 等于()A. 2B.C. -1D. 20186. 已知等差数列 { a n n 6 37 )} 的前 n 项和为 S ,若 2a =a +6,则 S =(A. 49B. 42C. 35D. 287. 等差数列 { a n } 中,若 a 1,a 2013 为方程 x 2-10x+16=0 两根,则a 2+a 1007+a 2012=() A. 10B. 15C. 20D. 408. 已知数列 { a n } 的前 n 项和 ,若它的第 k 项满足 2<a k <5,则 k=()A.2B.3C.4D.59.在等差数列 { a n} 中,首项 a1=0,公差 d≠0,若 a k=a1+a2+a3+ +a10,则 k=()A. 45B. 46C. 47D. 4810.已知 S n是等差数列 { a n} 的前 n 项和,则 2(a1+a3+a5)+3(a8+a10)=36,则 S11=()A. 66B. 55C. 44D. 33二、填空题1.已知数列 { a n} 的前 n 项和 S n=n2+n,则该数列的通项公式a n=______.2.正项数列 { a n} 中,满足 a1=1,a2= , = (n∈N*),那么a n=______.3.若数列 {a n} 满足 a1=-2,且对于任意的 m,n∈N*,都有 a m+n=a m+a n,则 a3=______;数列 { a n} 前 10 项的和 S10=______.4. 数列 { a n} 中,已知 a1=1,若,则 a n=______,若,则 a n=______.5.已知数列{ a n 1 n+1 n *,则通项公式a n= } 满足 a =-1 ,a =a + ,n∈N______ .6. 数列 { a n} 满足 a1=5,- =5(n∈N+),则 a n= ______ .7. 等差数列 { a n} 中, a1+a4+a7=33,a3+a6+a9=21,则数列 { a n} 前 9 项的和 S9等于 ______.三、解答题1.已知数列 { a n} 的前 n 项和为 S n,且=1(n∈N+).(1)求数列 { a n} 的通项公式;(2)设(n∈N+),求的值.2.数列 { a n} 是首项为 23,第 6 项为 3 的等差数列,请回答下列各题:(Ⅰ)求此等差数列的公差 d;(Ⅱ)设此等差数列的前 n 项和为 S n,求 S n的最大值;(Ⅲ)当 S n是正数时,求 n 的最大值.3.已知数列 { a n} 的前 n 项和为 S n,且 S n=2a n-2(n∈N*).(Ⅰ)求数列 { a n} 的通项公式;(Ⅱ)求数列 { S n} 的前 n 项和 T n.4.已知数列 { a n} 具有性质:① a1为整数;②对于任意的正整数 n,当 a n为偶数时,;当a n为奇数时,.(1)若 a1=64,求数列 { a n} 的通项公式;(2)若 a1,a2,a3成等差数列,求 a1的值;(3)设(m≥3且 m∈N),数列 { a n n} 的前 n 项和为 S ,求证:.等差、等比数列基础练习题答案【答案】 ( 选择题解析在后面 )1. D2. C3. A4. B5. A6. B7. B8. C 9. B 10. D12. 2n 13. 14. -6;-110 15. 2n-1;2n-116. - 17. 18. 8119.解:( 1)当 n=1,a1= ,当 n>1,S n+ a n=1,S n-1+ a n-1=1,∴a n- a n-1 =0,即 a n= a n-1,数列 { a n} 为等比数列,公比为,首项为,∴a n= .(2)S n=1- a n=1-()n,∴bn=n,∴==-,∴=1-+-+ +- =1- = .20. 解:(Ⅰ)由 a1=23,a6=3,所以等差数列的公差 d= ;(Ⅱ)= ,因为 n∈N*,所以当n=6 时 S n有最大值为78;(Ⅲ)由,解得 0<n<.因为 n∈N*,所以 n 的最大值为 12.21.解:(Ⅰ)列 { a n} 的前 n 项和为 S n,且 S n=2a n-2①.则: S n+1=2a n+1-2②,②-①得: a n+1=2a n,即:(常数),当 n=1 时, a1=S1=2a1-2,解得: a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n+1-2.-2-2- -2,=2n+2-4-2n.22. 解:(1)由,可得,,,,,,a9=0,,即{ a n} 的前 7 项成等比数列,从第8 起数列的项均为 0.(2 分)故数列 { a n} 的通项公式为.( 4 分)(2)若 a1=4k(k∈Z)时,,,由 a1,a2,a3成等差数列,可知即 2 (2k )=k+4k,解得 k=0,故a1=0;若 a1=4k+1(k∈Z)时,,,由 a1,a2,a3成等差数列,可知 2(2k)=(4k+1)+k,解得 k=-1,故 a1=-3;( 7 分)若 a1=4k+2(k∈Z)时,,,由 a1,a2,a3成等差数列,可知 2(2k+1)=(4k+2)+k,解得 k=0,故 a1=2;若 a1=4k+3(k∈Z)时,,,由 a1,a2,a3成等差数列,可知 2(2k+1)=(4k+3)+k,解得 k=-1,故 a1=-1;∴a1的值为 -3 ,-1,0,2.( 10 分)(3)由(m≥3),可得,,,若,则 a k是奇数,从而,可得当 3≤n≤m+1 时,成立.( 13 分)又,a m+2=0,故当 n≤m 时, an>0;当≥( 15 分)n m+1 时, a n=0.故对于给定的m,S n的最大值为 a1+a2++a m=(2m-3)+(2m-1-2)+(2m-2-1)+(2m-3 -1)+ +(21-1)=(2m+2m-1+2m-2++21)-m-3=2m+1-m-5,故.(18分)1. 解:∵数列 { a n} 满足 a1=a2=1,,∴从第一项开始, 3 个一组,则第 n 组的第一个数为a3n-2a3n-2 +a3n-1+a3n=cos =cos(2nπ- )=cos(- )=cos =-cos =- ,∵2013 ÷3=671,即 S2013正好是前 671 组的和,∴S2013=- ×671=-.故选 D.由数列 { a n 12} 满足 a =a=1,,知从第一项开始, 3 个一组,则第 n 组的第一个数为 a3n-2,由a3n-2 +a3n-1+a3n=cos =- ,能求出 S2013.本题考查数列的递推公式和数列的前n 项和的应用,解题时要认真审题,注意三角函数的性质的合理运用.2. 解:∵a n+1=,a1=,∴- =1.∴数列是等差数列,首项为2,公差为 1.∴=2+2016=2018.则 a2017= .故选: C.a n+1=,a1=,可得- =1.再利用等差数列的通项公式即可得出.本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.3. 解:∵S n=2n-1(n∈N+),∴a2017=S2017-S2016=2×2017-1-2 ×2016+1=2由 a2017=S2017-S2016,代值计算即可.本题考查了数列的递推公式,属于基础题.4. 解:∵2 2,∴a n+1 -2a n a n+1 +a n =9,∴(a n+1-a n)2=9,∴a n+1-a n=3,或 a n+1-a n=-3,∵{ a n} 是正项数列, a1=1,∴a n+1-a n=3,即 { a n} 是以 1 为首项,以 3 为公差的等差数列,∴a10=1+9×3=28.故选 B.由递推式化简即可得出{ a n} 是公差为 3 的等差数列,从而得出 a10.本题考查了等差数列的判断,属于中档题.5. 解:数列 { a n} 满足: a1=2,a n+1=,则a2== ,a3= =-1a4==2a5= = ,a6= =-1.a7==2.故选: A.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,考查计算能力.6.解:∵等差数列 { a n} 的前 n 项和为 S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选: B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前 n 项和公式能求出S7.本题考查等差数列的前7 项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n 项和公式的合理运用.7. 解:∵a1,a2013为方程 x2-10x+16=0 的两根∴a1+a2013=10由等差数列的性质知:a1+a2013=a2+a2012=2a1007∴a2+a1007+a2012=15故选: B由方程的韦达定理求得a1+a2013,再由等差数列的性质求解.本题主要考查韦达定理和等差数列的性质,确定a1+a2013=10 是关键.8. 解:已知数列 { a n} 的前 n 项和,n=1可得S1=a1=1-3=-2,∴a n=S n-S n-1=n2-3n-[(n-1)2-3(n-1)]=2n-4,n=1 满足 a n,∴a n=2n-4,∵它的第 k 项满足 2<a k<5,即 2<2k-4<5,解得 3<k<4.5,因为 n∈N,∴k=4,故选 C;先利用公式 a n=求出 a n=,再由第k项满足4<a k<7,建立不等式,求出k 的值.本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.9.解:∵a k=a1+a2+a3+ +a10,∴a1+(k-1)d=10a1+45d∵a1=0,公差 d≠0,∴(k-1)d=45d∴k=46故选 B由已知 a k=a1+a2+a3++a10,结合等差数列的通项公式及求和公式即可求解本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题10.解:由等差数列的性质可得: 2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即 a1+a11=6.则 S11=×=11 3=33.故选: D.利用等差数列的通项公式与性质与求和公式即可得出.本题考查了等差数列的通项公式与性质与求和公式,考查了推理能力与计算能力,属于中档题.12.解:由 S n=n2+n,得a1=S1=2,当 n≥2时,a n=S n-S n-1=(n2+n)-[ (n-1)2+(n-1)]=2n.当 n=1 时上式成立,∴a n=2n.故答案为: 2n.由数列的前 n 项和求得首项,再由a n=S n-S n-1(n≥2)求得 a n,验证首项后得答案.本题考查了由数列的前n 项和求数列的通项公式,是基础题.13.解:由 = (n∈N*),可得 a2n+1=a n?a n+2,∴数列{ a n} 为等比数列,∵a1=1,a2= ,∴q= ,∴a n= ,故答案为:由=(n∈N*),可得a2n+1=a n?a n+2,即可得到数列{ a n}为等比数列,求出公比,即可得到通项公式本题考查了等比数列的定义以及通项公式,属于基础题.14.解:∵对于任意的 m,n∈N*,都有 a m+n=a m+a n,∴取 m=1,则 a n+1-a n=a1=-2,∴数列 { a n} 是等差数列,首项为 -2,公差为 -2,∴a n=-2-2(n-1)=-2n.∴a3=-6,∴数列 { a n} 前 10 项的和 S10= =-110.故答案分别为: -6;-110.对于任意的 m,n∈N*,都有 a m+n=a m+a n,取 m=1,则 a n+1-a n=a1=-2,可得数列 {a n} 是等差数列,首项为 -2,公差为 -2,利用等差数列的通项公式及其前n 项和公式即可得出.本题考查了递推式的应用、等差数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.15. 解:在数列 { a n}中,由,可知数列是公差为 2 的等差数列,又a1=1,∴a n=1+2(n-1) =2n-1;由,可知数列是公比为 2 的等比数列,又a1=1,∴.故答案为: 2n-1;2n-1.由已知递推式a n-a n-1=2,可得数列是公差为 2 的等差数列,由,可知数列是公比为 2 的等比数列,然后分别由等差数列和等比数列的通项公式得答案.本题考查数列递推式,考查了等差数列和等比数列的通项公式,是基础题.16.解:由题意, a n+1-a n= - ,利用叠加法可得 a n-a1=1- = ,∵a1=-1,∴a n=- ,故答案为 - .由题意, a n+1-a n= - ,利用叠加法可得结论.本题考查数列的通项,考查叠加法的运用,属于基础题.17. 解:数列 { a n} 满足 a1=5,- =5(n∈N+),可知数列 { } 是等差数列,首项为,公差为:5.可得 = +5(n-1),解得 a n═.故答案为:.判断数列 { } 是等差数列,然后求解即可.本题考查数列的递推关系式的应用,通项公式的求法,考查计算能力.18.解:等差数列 { a n} 中,a1+a4+a7=33,a3+a6+a9=21,∴3a4=33,3a6=21;∴a4=11,a6=7;数列 { a n} 前 9 项的和:.故答案为: 81.根据等差数列项的性质与前n 项和公式,进行解答即可.本题考查了等差数列项的性质与前n 项和公式的应用问题,是基础题目.19.(1)根据数列的递推公式可得数列 { a n} 为等比数列,公比为,首项为,即可求出通项公式,(2)根据对数的运算性质可得 b n=n,再根据裂项求和即可求出答案本题考查了数列的递推公式和裂项求和,考查了运算能力和转化能力,属于中档题.20.(1)直接利用等差数列的通项公式求公差;(2)写出等差数列的前 n 项和,利用二次函数的知识求最值;(3)由 S n>0,且 n∈N*列不等式求解 n 的值.本题考查了等差数列的通项公式和前 n 项和公式,考查了数列的函数特性,是基础的运算题.21.(Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用数列的通项公式,直接利用等比数列的前n 项和公式求出结果.本题考查的知识要点:数列的通项公式的求法,等比数列前n 项和的公式的应用.22. (1)由,可得{ a n}的前7项成等比数列,从第8 起数列的项均为0,从而利用分段函数的形式写出数列{a n} 的通项公式即可;(2)对 a1进行分类讨论:若 a1=4k(k∈Z)时;若 a1=4k+1(k∈Z)时;若 a1=4k+2(k∈Z)时;若 a1=4k+3(k∈Z)时,结合等差数列的性质即可求出 a1的值;(3)由(m≥3),可得 a2,a3,a4.若,则a k是奇数,可得当 3≤n≤m+1 时,成立,又当 n≤m 时,a n>0;当 n≥m+1 时,a n=0.故对于给定的 m,S n的最大值为 2m+1-m-5,即可证出结论.本小题主要考查等差数列的性质、等比数列的性质、数列与函数的综合等基本知识,考查分析问题、解决问题的能力.。
(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。
解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。
题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。
解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。
题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。
解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。
题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。
解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。
以上是关于等差数列求和与差的练题的完整版文档。
《等差数列与等比数列》小题专项练习

a1=1,点
an n
,
an1 n 1
在直线
x
y
2
0 上,则
an
.
17、数列1,1 2,1 2 22 ,1 2 22 23 , 的前 n 项和为
。
18、某同学在电脑上设置一个游戏,他让一弹性球从 100m 高出下落,每次着地后又跳回原
来的高度的一半再落下,则第 8 次着地时所经过的路程和为
A.52
B.51
C.50
D.49
7.等比数列{an}的前 5 项的和 S5=10,前 10 项的和 S10=50,则它的前 20 项的和 S20=( )
A.160
B.210
C.640
D.850
8.已知等差数列{an}的前 n 项和为 Sn,若 m>1,且 am-1+am+1-am2=0,S2m-1=38,则 m 等于( )
.
答案:1-5: DDADD ; 6-10: ADCCC ; 11-14 : 15,16; 16, n(2n-1);17,2^(n+1)-2-n;18,298.4m.
BCDC .
A.60 里
B.48 里
C.36 里
D.24 里
12. 已知等差数列{an}的前 n 项和为 Sn,若 m>1,且 am-1+am+1-am2=0,S2m-1=38,则 m 等于( )
A.38
B.20
C.10
D.9
13. 对任意等比数列{an},下列说法一定正确的是( )
A.a1,a3,a9 成等比数列
Hale Waihona Puke A.38B.20C.10
D.9
11. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为
等差数列等比数列基础练习题

一.选择题1.2005是数列7,13,19,25,31,,中的第( )项.A. 332 B. 333 C. 334 D. 3352.在等差数列{}n a 中,若===371,313a d a 则,( )(A )12 (B )15 (C )17 (D )163.在等差数列中,若a 2=4,d =3则9S =( )(A )117 (B )10 (C )99 (D )904.等差数列3,7,11,,---的一个通项公式为( )A. 47n -B. 47n --C. 41n +D. 41n -+5.已知等差数列的公差为d ,它的前n 项和S n =n 2,那么( ).(A )a n =2n -1,d =-2 (B )a n =2n -1,d =2(C )a n =-2n +1,d =-2 (D )a n =-2n +1,d =26.在等差数列}{n a 中,已知1254=+a a ,那么它的前8项和=8S ( ) A 12 B 24 C 36 D 487.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=1020a a ( )A.32B.23C. 32或23D. -32或-238.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( )A .16B .24C .48D .1289.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为()A. -4B.4C. ±4D. 510.设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69S S =A . 2 B. 73 C. 83 D. 3111.等比数列{}n a 的前n 项和为n S ,若242S S =,则公比为( )A.1B.1或-1C.21或21- D.2或-212.已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为A .15B .17C .19D .2113.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =()A.-2B.-12C.12D.2 14.在等比数列{n a }中,44a =,则26a a ⋅等于( )A. 4B. 8C. 16D. 3215.在等比数列{n a }中,333S a =,则其公比q 的值为( )A. 12-B. 12C. 1或12- D.1-或12 16.已知为等差数列,,则等于()A. -1B. 1C. 3D.717.如果-1,a,b,c,-9成等比数列,那么( )A.b=3,ac=9B.b=-3,ac=9C.b=3,ac=-9D.b=-3,ac=-918.设{}n a 是等比为正数的等比数列,若a 1=1,a 5=16,则数列{}n a 的前7项的和为( )A.63B.64C.127D.12819.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于A .1B 53C.- 2 D 3 20.设等比数列{}n a 的公比q=2,前n 项和为n S ,则24a S 等于( )A.2B.4C.215D.217 21.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =A.3B.4C.5D.622.已知各项均为正数的等比数列{}n a ,123a a a =5,789a a a =10,则456a a a =( )A. 52B. 7C. 6D. 4223.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=1020a a ( ) A.32 B.23 C. 32或23 D. -32或-23 24.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( )A .16B .24C .48D .12825.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为( )A. -4B.4C. ±4D. 526.设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69S S = A . 2 B. 73C. 83D. 3 27.等比数列{}n a 的前n 项和为n S ,若242S S =,则公比为( )A.1B.1或-1C.21或21- D.2或-2 28.已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为A .15B .17C .19D .21。
(完整版)高二等差、等比数列基础练习题及答案

(完整版)高二等差、等比数列基础练习题及答案等差、等比数列基础练习题及答案一、选择题1.数列{a n}满足a1=a2=1,,若数列{a n}的前n项和为S n,则S2013的值为()A. 2013B. 671C. -671D.2.已知数列{a n}满足递推关系:a n+1=,a1=,则a2017=()A. B. C. D.3.数列{a n}的前n项和为S n,若S n=2n-1(n∈N+),则a2017的值为()A. 2B. 3C. 2017D. 30334.已知正项数列{a n}满足,若a1=1,则a10=()A. 27B. 28C. 26D. 295.若数列{a n}满足:a1=2,a n+1=,则a7等于()A. 2B.C. -1D. 20186.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=()A. 49B. 42C. 35D. 287.等差数列{a n}中,若a1,a2013为方程x2-10x+16=0两根,则a2+a1007+a2012=()A. 10B. 15C. 20D. 408.已知数列{a n}的前n项和,若它的第k项满足2<a k<5,则k=()A. 2B. 3C. 4D. 59.在等差数列{a n}中,首项a1=0,公差d≠0,若 a k=a1+a2+a3+…+a10,则k=()A. 45B. 46C. 47D. 4810.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A. 66B. 55C. 44D. 33二、填空题1.已知数列{a n}的前n项和S n=n2+n,则该数列的通项公式a n=______.2.正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么a n=______.3.若数列{a n}满足a1=-2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=______;数列{a n}前10项的和S10=______.4.数列{a n}中,已知a1=1,若,则a n=______,若,则a n=______.5.已知数列{a n}满足a1=-1,a n+1=a n+,n∈N*,则通项公式a n= ______ .6.数列{a n}满足a1=5,-=5(n∈N+),则a n= ______ .7.等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,则数列{a n}前9项的和S9等于______.三、解答题1.已知数列{a n}的前n项和为S n,且=1(n∈N+).(1)求数列{a n}的通项公式;(2)设(n∈N+),求的值.2.数列{a n}是首项为23,第6项为3的等差数列,请回答下列各题:(Ⅰ)求此等差数列的公差d;(Ⅱ)设此等差数列的前n项和为S n,求S n的最大值;(Ⅲ)当S n是正数时,求n的最大值.3.已知数列{a n}的前n项和为S n,且S n=2a n-2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.4.已知数列{a n}具有性质:①a1为整数;②对于任意的正整数n,当a n为偶数时,;当a n为奇数时,.(1)若a1=64,求数列{a n}的通项公式;(2)若a1,a2,a3成等差数列,求a1的值;(3)设(m≥3且m∈N),数列{a n}的前n项和为S n,求证:.等差、等比数列基础练习题答案【答案】(选择题解析在后面)1. D2. C3. A4. B5. A6. B7. B8. C9. B10. D12. 2n13. 14. -6;-110 15. 2n-1;2n-116. -17. 18. 8119. 解:(1)当n=1,a1=,当n>1,S n+a n=1,S n-1+a n-1=1,∴a n-a n-1=0,即a n=a n-1,数列{a n}为等比数列,公比为,首项为,∴a n=.(2)S n=1-a n=1-()n,∴b n=n,∴==-,∴=1-+-+…+-=1-=.20. 解:(Ⅰ)由a1=23,a6=3,所以等差数列的公差d=;(Ⅱ)=,因为n∈N*,所以当n=6时S n有最大值为78;(Ⅲ)由,解得0<n<.因为n∈N*,所以n的最大值为12.21. 解:(Ⅰ)列{a n}的前n项和为S n,且S n=2a n-2①.则:S n+1=2a n+1-2②,②-①得:a n+1=2a n,即:(常数),当n=1时,a1=S1=2a1-2,解得:a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n+1-2.-2-2- (2)=2n+2-4-2n.22. 解:(1)由,可得,,…,,,,a9=0,…,即{a n}的前7项成等比数列,从第8起数列的项均为0.…(2分)故数列{a n}的通项公式为.…(4分)(2)若a1=4k(k∈Z)时,,,由a1,a2,a3成等差数列,可知即2(2k)=k+4k,解得k=0,故a1=0;若a1=4k+1(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k)=(4k+1)+k,解得k=-1,故a1=-3;…(7分)若a1=4k+2(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k+1)=(4k+2)+k,解得k=0,故a1=2;若a1=4k+3(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k+1)=(4k+3)+k,解得k=-1,故a1=-1;∴a1的值为-3,-1,0,2.…(10分)(3)由(m≥3),可得,,,若,则a k是奇数,从而,可得当3≤n≤m+1时,成立.…(13分)又,a m+2=0,…故当n≤m时,a n>0;当n≥m+1时,a n=0.…(15分)故对于给定的m,S n的最大值为a1+a2+...+a m=(2m-3)+(2m-1-2)+(2m-2-1)+(2m-3-1)+...+(21-1)=(2m+2m-1+2m-2+ (21)-m-3=2m+1-m-5,故.…(18分)1. 解:∵数列{a n}满足a1=a2=1,,∴从第一项开始,3个一组,则第n组的第一个数为a3n-2a3n-2+a3n-1+a3n=cos=cos(2nπ-)=cos(-)=cos=-cos=-,∵2013÷3=671,即S2013正好是前671组的和,∴S2013=-×671=-.故选D.由数列{a n}满足a1=a2=1,,知从第一项开始,3个一组,则第n组的第一个数为a3n-2,由a3n-2+a3n-1+a3n=cos=-,能求出S2013.本题考查数列的递推公式和数列的前n项和的应用,解题时要认真审题,注意三角函数的性质的合理运用.2. 解:∵a n+1=,a1=,∴-=1.∴数列是等差数列,首项为2,公差为1.∴=2+2016=2018.则a2017=.故选:C.a n+1=,a1=,可得-=1.再利用等差数列的通项公式即可得出.本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.3. 解:∵S n=2n-1(n∈N+),∴a2017=S2017-S2016=2×2017-1-2×2016+1=2由a2017=S2017-S2016,代值计算即可.本题考查了数列的递推公式,属于基础题.4. 解:∵,∴a n+12-2a n a n+1+a n2=9,∴(a n+1-a n)2=9,∴a n+1-a n=3,或a n+1-a n=-3,∵{a n}是正项数列,a1=1,∴a n+1-a n=3,即{a n}是以1为首项,以3为公差的等差数列,∴a10=1+9×3=28.故选B.由递推式化简即可得出{a n}是公差为3的等差数列,从而得出a10.本题考查了等差数列的判断,属于中档题.5. 解:数列{a n}满足:a1=2,a n+1=,则a2==,a3==-1 a4==2a5==,a6==-1.a7==2.故选:A.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,考查计算能力.6. 解:∵等差数列{a n}的前n项和为S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选:B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前n项和公式能求出S7.本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.7. 解:∵a1,a2013为方程x2-10x+16=0的两根∴a1+a2013=10由等差数列的性质知:a1+a2013=a2+a2012=2a1007∴a2+a1007+a2012=15故选:B由方程的韦达定理求得a1+a2013,再由等差数列的性质求解.本题主要考查韦达定理和等差数列的性质,确定a1+a2013=10是关键.8. 解:已知数列{a n}的前n项和,n=1可得S1=a1=1-3=-2,∴a n=S n-S n-1=n2-3n-[(n-1)2-3(n-1)]=2n-4,n=1满足a n,∴a n=2n-4,∵它的第k项满足2<a k<5,即2<2k-4<5,解得3<k<4.5,因为n∈N,∴k=4,故选C;先利用公式a n=求出a n=,再由第k项满足4<a k<7,建立不等式,求出k的值.本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.9. 解:∵a k=a1+a2+a3+…+a10,∴a1+(k-1)d=10a1+45d∵a1=0,公差d≠0,∴(k-1)d=45d∴k=46故选B由已知a k=a1+a2+a3+…+a10,结合等差数列的通项公式及求和公式即可求解本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题10. 解:由等差数列的性质可得:2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即a1+a11=6.则S11==11×3=33.故选:D.利用等差数列的通项公式与性质与求和公式即可得出.本题考查了等差数列的通项公式与性质与求和公式,考查了推理能力与计算能力,属于中档题.12. 解:由S n=n2+n,得a1=S1=2,当n≥2时,a n=S n-S n-1=(n2+n)-[(n-1)2+(n-1)]=2n.当n=1时上式成立,∴a n=2n.故答案为:2n.由数列的前n项和求得首项,再由a n=S n-S n-1(n≥2)求得a n,验证首项后得答案.本题考查了由数列的前n项和求数列的通项公式,是基础题.13. 解:由=(n∈N*),可得a2n+1=a n?a n+2,∴数列{a n}为等比数列,∵a1=1,a2=,∴q=,∴a n=,故答案为:由=(n∈N*),可得a2n+1=a n?a n+2,即可得到数列{a n}为等比数列,求出公比,即可得到通项公式本题考查了等比数列的定义以及通项公式,属于基础题.14. 解:∵对于任意的m,n∈N*,都有a m+n=a m+a n,∴取m=1,则a n+1-a n=a1=-2,∴数列{a n}是等差数列,首项为-2,公差为-2,∴a n=-2-2(n-1)=-2n.∴a3=-6,∴数列{a n}前10项的和S10==-110.故答案分别为:-6;-110.对于任意的m,n∈N*,都有a m+n=a m+a n,取m=1,则an+1-a n=a1=-2,可得数列{a n}是等差数列,首项为-2,公差为-2,利用等差数列的通项公式及其前n项和公式即可得出.本题考查了递推式的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.15. 解:在数列{a n}中,由,可知数列是公差为2的等差数列,又a1=1,∴a n=1+2(n-1)=2n-1;由,可知数列是公比为2的等比数列,又a1=1,∴.故答案为:2n-1;2n-1.由已知递推式a n-a n-1=2,可得数列是公差为2的等差数列,由,可知数列是公比为2的等比数列,然后分别由等差数列和等比数列的通项公式得答案.本题考查数列递推式,考查了等差数列和等比数列的通项公式,是基础题.16. 解:由题意,a n+1-a n=-,利用叠加法可得a n-a1=1-=,∵a1=-1,∴a n=-,故答案为-.由题意,a n+1-a n=-,利用叠加法可得结论.本题考查数列的通项,考查叠加法的运用,属于基础题.17. 解:数列{a n}满足a1=5,-=5(n∈N+),可知数列{}是等差数列,首项为,公差为:5.可得=+5(n-1),解得a n═.故答案为:.判断数列{}是等差数列,然后求解即可.本题考查数列的递推关系式的应用,通项公式的求法,考查计算能力.18. 解:等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,∴3a4=33,3a6=21;∴a4=11,a6=7;数列{a n}前9项的和:.故答案为:81.根据等差数列项的性质与前n项和公式,进行解答即可.本题考查了等差数列项的性质与前n项和公式的应用问题,是基础题目.19. (1)根据数列的递推公式可得数列{a n}为等比数列,公比为,首项为,即可求出通项公式,(2)根据对数的运算性质可得b n=n,再根据裂项求和即可求出答案本题考查了数列的递推公式和裂项求和,考查了运算能力和转化能力,属于中档题.20. (1)直接利用等差数列的通项公式求公差;(2)写出等差数列的前n项和,利用二次函数的知识求最值;(3)由S n>0,且n∈N*列不等式求解n的值.本题考查了等差数列的通项公式和前n项和公式,考查了数列的函数特性,是基础的运算题.21. (Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用数列的通项公式,直接利用等比数列的前n项和公式求出结果.本题考查的知识要点:数列的通项公式的求法,等比数列前n项和的公式的应用.22. (1)由,可得{a n}的前7项成等比数列,从第8起数列的项均为0,从而利用分段函数的形式写出数列{a n}的通项公式即可;(2)对a1进行分类讨论:若a1=4k(k∈Z)时;若a1=4k+1(k∈Z)时;若a1=4k+2(k∈Z)时;若a1=4k+3(k∈Z)时,结合等差数列的性质即可求出a1的值;(3)由(m≥3),可得a2,a3,a4.若,则a k是奇数,可得当3≤n≤m+1时,成立,又当n≤m时,a n>0;当n≥m+1时,a n=0.故对于给定的m,S n的最大值为2m+1-m-5,即可证出结论.本小题主要考查等差数列的性质、等比数列的性质、数列与函数的综合等基本知识,考查分析问题、解决问题的能力.。
数列等差数列与等比数列练习题

数列等差数列与等比数列练习题数列是数学中基础而重要的概念之一,同时也是数学的应用领域中常见的数学模型之一。
其中,等差数列和等比数列是数列中最基础的两种常见类型。
本文将为大家提供一些关于等差数列和等比数列的练习题,以巩固和提高大家对数列的理解和运用能力。
【练习题一】1. 若等差数列的首项是3,公差是4,求第n项的表达式。
解析:由题意,首项是3,公差是4。
所以等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得an = 3 + (n-1)4。
2. 若等差数列的第7项是18,公差是2,求首项和第n项的和。
解析:由题意,第7项是18,公差是2。
所以等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
代入已知条件,可得18 = a1 + (7-1)2。
解方程得a1 = 5。
首项和第n项的和可以表示为Sn = (n/2) * (a1 + an),其中n为项数,a1为首项,an为第n项。
代入已知条件,得Sn = (n/2) * (5 + 5 + (n-1)*2)。
【练习题二】1. 若等比数列的首项是2,公比是3,求第n项的表达式。
解析:由题意,首项是2,公比是3。
所以等比数列的通项公式可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得an = 2 * 3^(n-1)。
2. 若等比数列的第4项是16,公比是2,求首项和第n项的和。
解析:由题意,第4项是16,公比是2。
所以等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
代入已知条件,可得16 = a1 * 2^(4-1)。
解方程得a1 = 2。
首项和第n项的和可以表示为Sn = a1 * (1 - r^n) / (1 - r),其中n为项数,a1为首项,r为公比。
代入已知条件,得Sn = 2 * (1 - 2^n) / (1 - 2)。
判断等差数列和等比数列练习题

判断等差数列和等比数列练习题一、等差数列练习题1. 某等差数列的前三项分别为10、13、16,求该等差数列的通项公式,并计算第10项的值。
2. 若一个等差数列的首项为a,公差为d,且满足a + 2d = 7,a + 3d = 12,求该等差数列的首项和公差。
3. 若一个等差数列的首项为x,公差为y,且满足前n项和Sn =n(2x + (n-1)y),求该等差数列的通项公式。
4. 某等差数列的首项为5,末项为45,公差为4,求该等差数列的项数和前50项的和。
5. 若一个等差数列的前n项和为Sn = 3n² - n,求该等差数列的公差和前n项的通项公式。
二、等比数列练习题1. 某等比数列的首项为2,公比为3,求该等比数列的第n项的值,并计算前5项的和。
2. 若一个等比数列的首项为a,公比为r,且满足a + ar + ar² = 15,求该等比数列的首项和公比。
3. 若一个等比数列的前n项和为Sn = a(1 - rⁿ) / (1 - r),求该等比数列的首项和公比。
4. 某等比数列的首项为3,末项为243,公比为3,求该等比数列的项数和前6项的和。
5. 若一个等比数列的前n项和为Sn = 2(3ⁿ - 1),求该等比数列的首项和公比。
以上是关于等差数列和等比数列的练习题。
通过解答这些练习题,我们可以加深对等差数列和等比数列的理解,掌握它们的性质和计算方法。
在实际应用中,等差数列和等比数列经常会出现,因此熟练掌握相关知识对于数学学习和问题解决都具有重要意义。
希望以上练习题能够帮助你提升对等差数列和等比数列的认识和运用能力。
如果还有其他问题,欢迎随时提问。
(完整版)等差等比数列综合练习题

等差数列等比数列综合练习题一.选择题1. 已知031=--+n n a a ,则数列{}n a 是 ( )A. 递增数列B. 递减数列C. 常数列D. 摆动数列 2.等比数列}{n a 中,首项81=a ,公比21=q ,那么它的前5项的和5S 的值是( ) A .231 B .233 C .235 D .2373. 设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=( ) A. 8 B.7C.6D.54. 等差数列}{n a 中,=-=++10915812,1203a a a a a 则( ) A .24B .22C .20D .-85. 数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是 ( ) A. 第4项 B.第5项 C. 第6项 D. 第7项6.已知a ,b ,c ,d 是公比为2的等比数列,则dc ba ++22等于( ) A .1 B .21 C .41D .817.在等比数列{}n a 中,7114146,5,a a a a •=+=则2010a a =( ) A.23B.32C.23或32 D.23-或 32- 8.已知等比数列{}n a 中,n a >0,243546225a a a a a a ++=,那么35a a +=( ) A.5 B .10 C.15 D .209.各项不为零的等差数列{}n a 中,有23711220a a a -+=,数列{}n b 是等比数列,且7768,b a b b ==则( )A.2B. 4C.8 D .16 10.已知等差数列{}n a 中, 211210,10,38,n m m m m a m a a a S -+-≠>+-==若且则m 等于 A. 38 B. 20 C.10D. 911.已知n s 是等差数列{}n a *()n N ∈的前n 项和,且675s s s >>,下列结论中不正确的是( )A. d<0B. 110s >C.120s <D. 130s < 12.等差数列}{n a 中,1a ,2a ,4a 恰好成等比数列,则14a a 的值是( ) A .1 B .2 C .3 D .4二.填空题13.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________ 14. 在等比数列}{n a 中,1682=•a a ,则5a =__________15.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=__________ 16. 若数列{}n x 满足1lg 1lg n n x x +=+()n N *∈,且12100100x x x +++=,则()101102200lg x x x +++=________17.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值_________ 18.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于_________三.解答题19. 设三个数a ,b ,c 成等差数列,其和为6,又a ,b ,1+c 成等比数列,求此三个数.20. 已知数列{}n a 中,111,23n n a a a -==+,求此数列的通项公式.21. 设等差数列{}na的前n项和公式是253ns n n=+,求它的前3项,并求它的通项公式.22. 已知等比数列{}n a的前n项和记为S n,,S10=10,S30=70,求S40。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列、等比数列同步练习题
等差数列
黎岗
一、选择题
1、等差数列-6,-1,4,9,……中的第20项为( )
A、89 B、 -101 C、101 D、-89
2. 等差数列{an}中,a15=33, a45=153,则217是这个数列的 ( )
A、第60项 B、第61项 C、第62项 D、不在这个数列中
3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为
A、 4 B、 5 C、 6 D、不存在
4、等差数列{an}中,a1+a7=42, a10-a3=21, 则前10项的S10等于( )
A、 720 B、257 C、255 D、不确定
5、等差数列中连续四项为a,x,b,2x,那么 a :b 等于 ( )
A、 B、 C、或 1 D、
6、 已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,……组成一新数
列{Cn},其通项公式为 ( )
A、 Cn=4n-3 B、 Cn=8n-1 C、Cn=4n-5 D、Cn=8n-9
7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30
若此数列的最后一项比第-10项为10,则这个数列共有( )
A、 6项 B、8项 C、10项 D、12项
8、设数列{an}和{bn}都是等差数列,其中a1=25, b1=75,且a100+b100=100,
则数列{an+bn}的前100项和为()
A、 0 B、 100 C、10000 D、505000
[高二数学答案]
1. A 2、 B 3、B 4、C 5、B
6、 D 7 、 A 8、 C
二、填空题
9、在等差数列{an}中,an=m,an+m=0,则am= ______。
10、 在等差数列{an}中,a4+a7+a10+a13=20,则S16= ______ 。
11. 在等差数列{an}中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,则从a15到
a30的和是 ______ 。
12. 已知等差数列 110, 116, 122,……,则大于450而不大于602的各
项之和为 ______ 。
三、解答题
13. 已知等差数列{an}的公差d=,前100项的和S100=145
求: a1+a3+a5+……+a99的值
14. 已知等差数列{an}的首项为a,记
(1)求证:{bn}是等差数列
(2)已知{an}的前13项的和与{bn}的前13的和之比为 3 :2,求{bn}
的
公差。
15. 在等差数列{an}中,a1=25, S17=S9
(1)求{an}的通项公式
(2)这个数列的前多少项的和最大?并求出这个最大值。
16、等差数列{an}的前n项的和为Sn,且已知Sn的最大值为S99,且|a99|〈|a100|
求使Sn〉0的n的最大值。
[高二数学答案]
二、填空题
9、 n
10、 80
11、-368
12、13702
13、 ∵{an}为等差数列
∴ an+1-an=d
∴ a1+a3+a5+…+a99=a2+a4+a6+…+a100-50d
又 (a1+a3+a5+…+a99)+(a2+a4+a6+…+a100)=S100=145
∴ a1+a3+a5+…+a99=
=60
14、
(1)证:设{an}的公差为d
则an=a+(n-1)d
当n≥0时 b n-bn-1=d 为常数
∴ {bn}为等差数列
(2) 记{an},{bn}的前n项和分别为A13, B13则
, ,
∴{bn}的公差为
15、
S17=S9
即 a10+a11+…+a17=
∴ an=27-2n
=169-(n-13)2
当n=13时, Sn最大, Sn的最大值为169
16、
S198=(a1+a198)=99(a99+a100)<0
S197=(a1+a197)= ( a99+ a99)>0
又 a99>0 ,a100<0
则 d<0
∴当n<197时, Sn>0
∴ 使 Sn>0 的最大的n为197
等比数列
一、选择题
1、若等比数列的前3项依次为,……,则第四项为 ( )
A、1 B、 C、 D、
2、公比为的等比数列一定是 ( )
A、递增数列 B、摆动数列 C、递减数列 D、都不对
3、在等比数列{an}中,若a4·a7=-512,a2+a9=254,且公比为整数,则a12= ( )
A、-1024 B、-2048 C、1024 D、2048
4、已知等比数列的公比为2,前4项的和为1,则前8项的和等于 ( )
A、15 B、17 C、19 D、21
5、设A、G分别是正数a、b的等差中项和等比中项,则有 ( )
A、ab≥AG B、ab
A、{an2}为等比数列 B、为等比数列
C、{lgan}为等差数列 D、{anan+1}为等比数列
7、一个等比数列前几项和Sn=abn+c,a≠0,b≠0且b≠1,a、b、c为常数,那
么a、
b、c必须满足 ( )
A、a+b=0 B、c+b=0 C、c+a=0 D、a+b+c=0
8、若a、b、c成等比数列,a,x,b和b,y,c都成等差数列,且xy≠0,则
的值为 ( )
A、1 B、2 C、3 D、4
高二数学答案
一、
1、A 2、D 3、B 4、B 5、D 6、C 7、C 8、B
一、填空题
1、在等比数列{an}中,若S4=240,a2+a4=180,则a7= ______,q=
______。
2、数列{an}满足a1=3,an+1=-,则an = ______,Sn= ______。
3、等比数列a,-6,m,-54,……的通项an = ___________。
4、{an}为等差数列,a1=1,公差d=z,从数列{an}中,依次选出第
1,
3,32……3n-1项,组成数列{bn},则数列{bn}的通项公式是
__________,它的前几项之和是__________。
二、计算题
1、有四个数,前三个数成等差数列,后三个成等比数列,并且第
一个
数与第四个数的和为37,第二个数与第三个数的和为36,求这四
个数。
2、等比数列{an}的公比q>1,其第17项的平方等于第24项,求:
使a1
+a2+a3+……+an>成立的自然数n的取值范围。
3、已知等比数列{an},公比q>0,求证:SnSn+2
,求Bn及数列{|bn|}的前几项和Sn。
高二数学答案
一、
1、6;3
2、
3、-2·3n-1或an=2(-3)n-1
4、2·3n-1-1;3n-n-1
二、
1、解:由题意,设立四个数为a-d,a,a+d,
则
由(2) d=36-2a (3)
把(3)代入(1)得 4a2-73a+36×36=0
(4a-81)(a-16)=0
∴所求四数为或12,16,20,25。
2、解:设{an}的前几项和Sn,的前几项的和为Tn
an=a1qn-1
∵Sn>Tn
∴即>0
又
∴a12qn-1>1 (1)
又a172=a24即a12q32>a1q23
∴a1=q-9 (2)
由(1)(2)
∴n≥0且n∈N
3、证一:(1)q=1 Sn=na1
SnSn+2-Sn+12=(na1)[(n+2)a1]-[(n+1)a1]2=-a12
(2)q≠1
=-a12qn<0 4、解:n=1
∴SnSn+2
SnSn+2-Sn+12=Sn(a1+qSn+1)-Sn+1(a1+qSn)
=a1(Sn-Sn+1)
= -a1a n+1= -a12qn<0
∴SnSn+2
n≥2时,
∴
bn=log2an=7-2n
∴{bn}为首项为5,公比为(-2)的等比数列
令bn>0,n≤3
∴当n≥4时,bn〈0
1≤n≤3时,bn〉0
∴当n≤3时,Sn=Bn=n(6-n),B3=9
当n≥4时,Sn=b1+b2+b3-(b4+b5+…+bn)=2B3-Bn=18-n(6-n)=n2-6n+18