整式的运算单元测试题
整式的运算单元试卷
整式的运算测试卷一、填空题(每小题2分,共20分)1.多项式-abx2+51x3-21ab+3中,是次四项式。
2.计算:100×103×104=;3.-2a3b4÷12a3b2=。
4.(8xy2-6x2y)÷(-2x)=5.一个正方体的棱长为2×102毫米,则它的体积是毫米3。
6.(-3x-4y) ·( ) =9x2-16y2。
7.5x2-6x+1-( )=7x+8;8.有一单项式的系数是2,次数为3,这个单项式可能是_______;9.已知正方形的边长为a,如果它的边长增加4,那么它的面积增加。
10.如果x+y=6, xy=7, 那么x2+y2=。
二、选择题(每小题3分,共18分)11. 下列3,121,,,41,431,4232322xyxyxxbaxxabax--+---+--各式中多项式有()个A. 34B. 5C. 6D. 712.若(2x+a)( x-1)的结果中不含x的一次项,则a等于…………………………………….( )(A) a=2 (B) a=-2 (C) a=1 (D) a=-113.若( x+3) 2=x2+ax+9 ,则a的值为……………………………………………( )(A) 3 (B) ±3 (C) 6 (D)±614.用小数表示3×10-2的结果为()A. -0.03B.-0.003C. 0.03D. 0.00315.下列运算正确的是()A. a5·a5=a25B. a5+a5=a10C. a5·a5=a10D. a5·a3=a1516.下列计算 ① (-1)0=-1 ② (-1)-1=-1 ③ 2×2-2=21 ④ 3a -2 ⑤(-a 2)m =(-a m )2正确的有 ( )(A) 2个 (B) 3个 (C) 4个 (D) 5个三、知识应用(共62分)17.利用乘法公式计算:(每题4分,共8分)(1)205×195 (2)98218.计算:(每题4分,共16分)(1)()()3223332a a a a -+-+⋅ (2)()()z y x z y x -+++(3)()()2234232-+--x x x x (4)x(x-3)-(x +2)(x-1)19.先化简,再求值:(3a -7)(3a +7)-2a(2a 3-1) , 其中a =-3 (5分)22.用两种不同的方法求下面图形的总面积(本题5分) aa 3a23.观察例题,然后回答: 例:x+1x =3,则x 2+21x = .(本题6分) 解:由x+1x =3,得(x+1x )2=9,即x 2+21x+2=9 所以:x 2+21x =9-2=7 通过你的观察你来计算:当x=6时,①x 2+21x= ; ②(x-1x)2= ;③(x 4-2x 2+1)÷x= .25.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ;②29-( )2=8×4;③( )2-92=8×5;④213-( )2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗?请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗?(本题6分)3a3a。
整式章节单元测试题及答案
整式章节单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是单项式?A. 3xB. -2C. 5x²D. 4x³2. 多项式3x² - 4x + 1的次数是多少?A. 1B. 2C. 3D. 43. 多项式2x³ - x² + 5x - 3的首项系数是?A. 2B. -1C. 5D. 34. 合并同类项后,2x² + 3x - 5与3x² - 4x + 6的和是?A. 5x² - x - 1B. 5x² - x + 1C. 5x² + x - 1D. 5x² + x + 15. 如果多项式f(x) = ax³ + bx² + cx + d,其中 a = 2,b = -3,c = 4,d = -5,那么f(1)的值是?A. -2B. -1C. 0D. 1二、填空题(每题2分,共10分)6. 单项式-5x的系数是________。
7. 多项式4x³ - 2x² + 3x - 1的常数项是________。
8. 如果多项式f(x) = 2x³ - x² + 5x + 3,那么f(-1) =________。
9. 两个多项式的和是5x³ - 2x² + 3x + 1,其中一个多项式是3x³ + x² - 2x + 5,另一个多项式是________。
10. 如果多项式f(x) = 3x³ + 2x² - 5x + 7,那么f(0)=________。
三、解答题(每题5分,共30分)11. 计算多项式2x³ - 3x² + x - 5与多项式4x³ + x² - 2x + 3的差。
12. 求多项式3x³ - 2x² + 5x - 7与多项式2x³ + 3x² - 4x + 6的乘积。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
第一章《整式》单元测试题
第一章《整式》单元测试题A 卷(时间:90分钟 总分:100分)班级:__________ 姓名:____________ 学号:______________ 得分:_____________一、选择题。
(每题3分,共24分)1、代数式-0.5、-x 2y 、2x 2-3x+1、-a2、31-x 、3x 中,单项式共有( )。
A.2个 B.3个 C.4个 D.5个2、下列式子是二次三项式的是( )。
A. 0.5x 2-3x+5B. -x 2+5C. x n+2-7x n+1+12x nD. 2x 2-x 3-93、下列运算正确的是( )。
A.2x 2-3x 2 = -1B. 2x 2+3x 2=5x 2C. 2x 2∙3x 2 =6x 2D. 2x 2+3x 3 = 6x 54、下列运算中,错误的是( )。
A.(x 2y 3)2=x 4y 6B.(−x 3y 2)3=−x 9y 6C.4a 3b ÷2a 2=2aD.−16a 2bc ÷8abc =−2a5、已知a 2+b 2=3,a-b=2,则ab 的值为( )。
A. −12B. 12C. -2D. 26、下列多项式中是完全平方式的是( )A.2x 2+4y -4 B 、16x 2+8y 2-1C 、9a 2-12a +4D 、x 2y 2+2xy +y 27、长方形的长为3a ,宽比长小(a -b),则其周长为( )A 、10a+2bB 、6aC 、6a+4bD 、以上全错 8、下列各式中,可用平方差公式计算的是( )。
A .(x+y)(x+y) B.(x-y)(y-x) C.(3a-bc)(-bc-3a) D.(x-y)(-y+x)二、填空题。
(1-6每题4分,7题6分,共30分)1.单项式3yz x 223-的系数是 ,次数是 。
2.多项式4x-32x 2y 2-x 3y+5y 3-7是_______次_______项式, 按x 的降幂排列是______________ 。
整式的运算基础练习题
整式的运算基础练习题整式的运算是数学中的一个重要分支,它涉及到各种基本运算规则,如加法、减法、乘法和除法等。
下面是一些关于整式运算的基础练习题,可以帮助大家巩固和加深对整式运算的理解。
1、单项式的加法1)计算:2x + 3x = __x2)计算:5a - 2a = __a答案:(1)5x;(2)3a2、多项式的加法1)计算:2x - 3x + 4x = __x2)计算:5a + 2b + 3a = __a + __b答案:(1)3x;(2)8a;2b3、单项式的乘法1)计算:2x × 3x = __x²2)计算:5a × 4b = __ab²答案:(1)6x2(2)20ab24、多项式的乘法1)计算:(2x + 3y) × (x - y) = __x² - __xy + __y²2)计算:(3a - 2b) × (4a + 5b) = __a×__b² + __a×__b - __a ×__b² - __a×__b答案:(1)x2xy+3y2(2)12a×4b+5a×2b−3a×5b−2a×4b即48ab+10ab−15ab−8ab,最终结果为45ab。
整式的运算测试题一、选择题1、下列哪个选项是整式?()A. 2/3B. 4x/3yC. x + 2yD. √22、下列哪个选项是整式的乘法?()A. 3(x + y)B. 4x^2yC. (x + 2y)(x - 2y)D. x + 2y = 03、下列哪个选项是整式的除法?()A. (x + y)/2B. (x + 2y)(x - 2y)C. x \div 2yD. 2x^2 - x = y二、填空题1、如果 a和 b是整数,那么 a + b的值是____。
2、如果 x和 y是整数,那么 x - y的值是____。
(完整版)整式的乘除(单元测试卷及答案)
整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. B. C. D. 954a a a =+33333a a a a =⋅⋅954632a a a =⨯()743aa=- ( ) =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2 A. B. 1 C. 0 D. 19971- 3.设,则A=( )()()A b a b a +-=+223535 A. 30 B. 60 C. 15 D. 12ab ab ab ab 4.已知则( ) ,3,5=-=+xy y x =+22y x A. 25. B C 19 D 、25-19- 5.已知则( ),5,3==bax x =-ba x 23 A 、B 、C 、D 、522527109536. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 810.已知(m 为任意实数),则P 、Q 的大小关系为( )m m Q m P 158,11572-=-=A 、B 、C 、D 、不能确定Q P >Q P =Q P <二、填空题(共6小题,每小题4分,共24分)11.设是一个完全平方式,则=_______。
第十五章整式单元检测试题
a b C A B图1整式测试题一、填空题:(每空 2 分,共 30 分)1、_______x x 32=⋅;________)y 2(32=-、2、_________)xy 32()y x 3(22432=-⋅-;如果代数式1a 3a 22++的值等于 6 ,则代数式_______5a 9a 62=-+、3、有一列数为 3,5,7,9,11……,则表示第n 个数的式子是_________、4、______)b a ()b a (22=--+、5、若c bx ax )5x )(3x 2(2++=+-,则______a =,______b =,______c =、6、22)4x (k 218x 8x +=-++,则______k =、7、设1x 1x =-,则_______x1x 22=+、 8、一个三位数,百位数为a ,十位数是百位数的3倍,个位数是十位数的一半,则这个 三位数最大是__________、9、若5a m =,6a n =,则______a n m =+、 10、阅读下文,寻找规律,并填空: ⑴已知1x ≠,计算:2x 1)x 1)(x 1(-=+- 32x 1)x x 1)(x 1(-=++-432x 1)x x x 1)(x 1(-=+++-,…… ⑵观察上式,并猜想:___________)x x x 1)(x 1(n 2=++++- 、 ⑶根据你的猜想计算:___________)222221)(21(5432=+++++-、二、选择题:(每题 3 分,共 30 分)1、下列运算正确的是()A 、633x 2x x =+B 、842x x x =⋅C 、n m n m x x x +=⋅D 、2045x )x (-=-2、下列关系式中,正确的是( ) A 、222b a )b a (-=- B 、22b a )b a )(b a (-=-+ C 、222b a )b a (+=+D 、222b ab 2a )b a (+-=+3、若5)a)(x (x --展开式中不含有x 的一次项,则a 的值为 ( )A 、0B 、5C 、5-D 、5或5-4、下列因式分解错误的是 ( ) A 、)6a 4a (a 2a 12a 8a 2223+-=+- B 、)3x )(2x (6x 5x 2--=+- C 、)c b a )(c b a (c )b a (22--+-=--D 、22)1a (22a 4a 2+=-+-5、下列多项式:①22y xy 2x -+ ②xy 2y x 22+-- ③22y xy x ++ ④2x 41x 1++,其中能用完全平方公式分解因式的有 ( ) A 、1个 B 、2个 C 、3个D 、4个6、下列各式中,代数式( )是3223xy 4y x 4y x ++的一个因式 A 、22y xB 、y x +C 、y 2x +D 、y x -7、n 个底边长为a ,腰长为b 的等腰△ABC 拼成图1, 则图l 中的线段之和是 ( )A 、nb 2na +B 、b nb na ++;C 、b 2na + C 、b 2na 2+8、若0)5y x ()3y x (22=+-+-+,则22y x -的值是 ( )A 、8B 、8-C 、15D 、15-9、为了应用平方差公式计算)1y 2x )(1y 2x (+--+下列变形正确的是( ) A 、2)]1y 2(x [+-B 、2)]1y 2(x [++C 、)]1y 2(x [--)]1y 2(x [-+D 、]1)y 2x ][(1)y 2x [(--+-10、用四个完全一样的边长分别为a 、b 、c 的直角三角板拼成图中所示的图形,则下列结论中正确的是 ( )A 、22)b a (c +=;B 、222b ab 2a c ++=;C 、222b ab 2a c +-=;D 、222b a c +=三、计算下列各题:(每小题3分,共12分)1、)xy xy 3y x 2)(y x 7(322+--;2、)5.1x 5)(23x 5(--+-3、)y x 3()y x y x 6y x (232234÷-+;4、 运用乘法公式计算:20041996⨯四、分解因式(每题3分,共12分)1、3223xy y x 4y x 4++;2、23xy 25x 9-3、32x 3x 6x 3-+-;4、22)b a ()y x (+-+五、解答下列各题:(每题4分,共16分) 1. 先化简再求值:)b 21a 2(])b 21a ()b 21a [(2222-⋅-++,其中3a -=,4b =、2. 已知4y x =+,2xy =,求xy 3y x 22++的值3. 请你根据所给式子y 8xy 24÷,联系生活实际,编写一道应用题、4. 阅读理解:计算13128)125.0(⨯-解:13128)125.0(⨯-=13128)81(⨯-88)81(1212⨯⨯=8)881(12⨯⨯==8请根据根据阅读理解计算:320002000)2()125.0(⨯-。
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷及答案(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 计算(12x4y2+3x3y)÷3x3y的结果是()A. 4xy+1B. 4xyC. 4x2y+3D. 4x3y+3x3y2. 在下列各式中的括号内填入a3后成立的是()A. a12=()2B. a12=()3C. a12=()4D. a12=()63. 把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是()A. x+1B. x+3C. 2xD. x+24. 下列多项式中,不能进行因式分解的是()A. x2-2x+1B. x2-9C. x2+1D. 6x2+3x5. 若计算(x+my)(x+ny)时能使用平方差公式,则m,n应满足()A. m,n同号B. m,n异号C. m+n=0D. mn=16. 下列因式分解正确的是()A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)27. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-7xy(2y-x-3)=-14xy2+7x2y□,□的地方被钢笔水弄污了,你认为□处应是()A. +21xyB. -21xyC. -3D. -10xy8. 如图1-①,将一张长方形纸板四个角各切去一个同样的正方形,制成图1-①的无盖纸盒,若该纸盒的容积为4a2b,则图①中纸盒底部长方形的周长为()A. 4abB. 8abC. 4a+bD. 8a+2b① ①图19. 已知a=314,b=96,c=275,则a,b,c的大小关系为()A. c>a>bB. a>c>bC. c>b>aD. b>c>a10. 课本第37页“阅读材料”中介绍了贾宪三角,贾宪三角可以看作是对两数和平方公式的推广,也告诉我们二项式乘方展开式的系数规律:…… …………根据上述规律,(a+b)7展开式的系数和是()A. 32B. 64C. 88D. 128二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式x2-9与x2-6x+9的公因式是.12. 火星的体积约为1.35×1020立方米,地球的体积约为1.08×1021立方米,地球体积约是火星体积的__________倍.13. 一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:___________.14. 若2a=5,8b=11,则2a+3b的值为____________.15. 一个正方形的边长增加3 cm,它的面积增加了45 cm2,则原来这个正方形的面积为________cm2.16. 已知:31=3,32=9,33=27,34=81,35=243,36=729,…,设A=2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1,则A的个位数字是______________.三、解答题(本大题共6小题,共52分)17. (每小题4,共8分)因式分解:(1)a2(m-2)-b2(m-2);(2)3m3-6m2n+3mn2;18. (6分)先化简,再求值:(2x+y)2-(2x+y)(2x-y)-2y(x+y),其中x=12,y=2.19.(8分)如图2,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形.图2(1)通过计算左、右两图的阴影部分面积,可以得到乘法公式:______________;(2)利用上述乘法公式计算:1002-98×102;20. (9分)如图3,小明用若干个长为a,宽为b的小长方形拼出图形,把这些拼图置于图①,②所示的正方形和大长方形内,请解答下列问题.(1)分别求出图①,图②中空白部分的面积S1,S2;(用含a,b的代数式表示)(2)若S1=11,S2=32,求ab的值.①②图321.(9分)发现:任意两个连续偶数的平方和是4的奇数倍.验证:(1)计算22+42的结果是4的倍;(2)设两个连续偶数较小的一个为2n(n为整数),请说明“发现”中的结论正确;拓展:(3)任意三个连续偶数的平方和是4的倍数吗?是(填“是”或“不是”)22. (12分)如图4,阴影部分是一个边长为a的大正方形剪去一个边长为b的小正方形和两个宽为b的长方形之后所剩余的部分.(1)①图1中剪去的长方形的长为_____________ ,面积为_____________.①用两种方式表示阴影部分的面积为__________________或________________,由此可以验证的公式为____________________.图4 图5(2)请设计一个新的图形验证公式:(a+b)2=a2+2ab+b2.(3)如图5,S1,S2分别表示边长为a,b的正方形的面积,且A,B,C三点在一条直线上,若S1+S2=40,AB=8,求图中阴影部分的面积.附加题(20分,不计入总分)形如a2±2ab+b2的式子叫做完全平方式.有些多项式虽然不是完全平方式,但可以通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、代数最值等问题中都有着广泛的应用.(1)用配方法因式分解:a2+6a+8.解:原式=a2+6a+9-1=(a+3)2-1=(a+3-1)(a+3+1)=(a+2)(a+4).(2)用配方法求代数式a2+6a+8的最小值.解:原式=a2+6a+9-1=(a+3)2-1.因为(a+3)2≥0,所以(a+3)2-1≥-1.所以a2+6a+8的最小值为-1.解决问题:(1)因式分解:a2-12a+32= ;(2)用配方法求代数式4x2+4x+5的最小值;拓展应用:(3)若实数a,b满足a2-5a-b+7=0,则a+b的最小值为.参考答案一、1. A 2. C 3. B 4. C 5. C 6. C 7. A 8. D 9. A 10. D二、11. x-3 12. 8 13. x2-1(答案不唯一)14. 55 15. 36 16. 110. D 解析:当n=0时,展开式的系数和为1=20;当n=1时,展开式的系数和为1+1=2=21;当n=2时,展开式的系数和为1+2+1=4=22;当n=3时,展开式的系数和为1+3+3+1=8=23;当n=4时,展开式的系数和为1+4+6+4+1=16=24;当n=5时,展开式的系数和为1+5+10+10+5+1=32=25;……当n=8时,展开式的系数和为28=256.16. 1 解析:A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34-1)(34+1)(38+1)(316+1)(332+1)+1=(38-1)(38+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364.观察已知等式,个位数字以3,9,7,1循环,且64÷4=16,能整除,所以A的个位数字是1.三、17. 解:(1)原式=(m-2)(a2-b2)=(m-2)(a+b)(a-b);(2)原式=3m(m2-2mn+n2)=3m(m-n)2.18. 解:(2x+y)2-(2x+y)(2x-y)-2y(x+y)=4x2+4xy+y2-4x2+y2-2xy-2y2=2xy.当x=12,y=2时,原式=2×12×2=2.19. 解:(1)(a+b)(a-b)=a2-b2.(2)1002-98×102=1002-(100-2)(100+2)=1002-(1002-22)=1002-1002+22=4.20. 解:(1)S1=(a+b)2-3ab=a2+b2-ab.S2=(2a+b)(a+2b)-5ab=2a2+2b2.(2)因为S1=a2+b2−ab=11,S2=2a2+2b2=32,所以a2+b2=16.所以ab=5.21. 解:(1)5(2)因为两个连续偶数较小的一个为2n(n为整数),则较大的偶数为2n+2.所以(2n)2+(2n+2)2=4n2+4n2+8n+4=8n2+8n+4=4(2n2+2n+1).因为n为整数,所以2n2+2n+1为奇数.所以任意两个连续偶数的平方和是4的奇数倍.(3)是解析:设三个连续偶数较小的一个为2n(n为整数),则中间的偶数为2n+2,最大的偶数为2n+4.所以(2n)2+(2n+2)2+(2n+4)2=4n2+4n2+8n+4+4n2+16n+16=12n2+24n+20=4(3n2+6n+5).所以任意三个连续偶数的平方和是4的倍数.22. 解:(1)①a-b ab-b2①(a-b)2a2-2ab+b2(a-b)2=a2-2ab+b2(2)如图所示:(3)因为S1+S2=40,AB=8,所以a2+b2=40,a+b=8.因为(a+b)2=a2+2ab+b2,所以82=40+2ab.所以ab=12.所以图中阴影部分的面积=2×12ab=ab=12.附加题解:(1)(a-4)(a-8)解析:a2-12a+32=a2-12a+36-4=(a-6)2-4=(a-6+2)(a-6-2)=(a-4)(a-8).(2)4x2+4x+5=4x2+4x+1+4=(2x+1)2+4.因为(2x+1)2≥0,所以(2x+1)2+4≥4.所以4x2+4x+5的最小值为4.(3)3 解析:因为a2-5a-b+7=0,所以a2-4a-a-b+7=0.所以a+b=a2-4a+4+3=(a-2)2+3. 因为(a-2)2≥0,所以(a-2)2+3≥3.所以a+b的最小值为3.。
整式的运算单元测试卷
数学单元测试卷整式的运算(姓名___________ _ )一、选择题(每题3分,共24分)1、下列计算正确的是( ) A 、2a-a=2 B 、x 3+x 3=x 6 C 、3m 2+2n=5m 2n D 、2t 2+t 2=3t 22、下列语句中错误的是 ( ) A 、数字 0 也是单项式 B 、单项式 a 的系数与次数都是 1 C 、21x 2 y 2是二次单项式 C 、-32ab的系数是 -32 3、下列计算正确的是( ) A 、(-a 5)5=-a 25 B 、(4x 2)3=4x 6 C 、y 2·y 3-y 6=0 D 、(ab 2c)3=ab 2c 3 4、(x+5)(x-3)等于()A 、x 2 -15 B 、x 2 + 15 C 、x 2 + 2x -15 D 、 x 2 - 2x - 15 5、下列整式加减正确的是【 】A 、2x -(x 2+2x )= x 2 B 、2x -(x 2-2x )= x 2 C 、2x +(y +2x )= y D 、2x -(x 2-2x )= x 26、减去x 2-后,等于4x 2-3x -5的代数式是 【 】 A 、4x 2-5x -5 B 、-4x 2+5x +5 C 、4x 2-x -5 D 、4x 2-57、下列运算正确的是 【 】A 、954a a a =+ B 、954632a a a =⨯ C 、33333a a a a =⨯⨯ D 、743)(a a =-8、下列计算结果错误的是 【 】 A 、437)()()(ab ab ab =÷B 、xx x =÷2332)()( C 、224323232⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-m m m D 、24625)5()5(a a a =-÷二、填空题(每题3分,共27分)1、代数式4πxy 3是__项式,次数是__,系数是____________2、代数式x x a x a 5154323+-是__项式,次数是__3、(2x 2y+3xy 2)-(6x 2y -3xy 2)=____________4、43)()(b a b a -⋅-=_____________5、(7y+3x)·(-7y+3x)=________________6、(x+2)2-(x+1)(x -1)=______________7、=-⨯-32)3()3( ,=⨯-3255 。
整式的乘除(单元测试卷及答案)
精心整理整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-⎝⎛.2 3. 4. 5. 6. .①③你认为其中正确的有A 、①② B 、③④ C 、①②③ D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a2+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A11.12.13.14.15.16.17(1()22x (318、(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中21=a ,2-=b 。
19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=BC ,现打算在阴影部分种植一片草坪,求这片草D坪的面积。
20、(本题8分)若(x2+mx-8) (x2-3x+n)的展开式中不含x2和x3项,求m和n的值a+22无关23方形的面24每吨2m元计算.•现有一居民本月用水x吨,则应交水费多少元?参考答案一、选择题11. 44± 12. 23 13. 1411-=x 14. -3 15. a+b=c 16. 2 三、解答题17((3。
北师大版七年级下第一章《整式的运算》单元测试题(3)
七年级(下)数学《整式的运算》测试卷(满分120分,考试时间90分钟)班级 ____________ 姓名 _____________ 考号 _______一、选择题(3分×10=30分,请把你的正确答案填入括号中)1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有( )个. A .1个 B .2个 C .3个 D .4个2.单项式221ab -的系数和次数分别为 A 、 -21,2 B 、 -21,3 C 、21,2 D 、 21,3 3.林老师做了个长方形教具,其中一边长为2a b +,另一边为a b -,则该长方形周长为A .6a b +B .6aC .3aD .10a b -4.下列运算正确的是A .a 3÷a 2=aB .a 3+a 2=a 5C .(a 3)2=a 5D .a 2·a 3=a 65.两整式相乘的结果为122--a a 的是A 、()()43-+a aB 、()()43+-a aC 、()()26-+a aD 、()()26+-a a6.下列式子可用平方差公式计算的是:A .()()a b b a --B .(1)(1)x x -+-C .()()a b a b ---+D .(1)(1)x x --+7.下列各式中,相等关系一定成立的是A .22)()(x y y x -=-B .6)6)(6(2-=-+x x xC .222)(y x y x +=+D .6)2)(3(2-=-+x x x8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+A .23bB .26bC .29bD .236b9.在式子①2)12(--y ②)12)(12(+---y y ③)12)(12(++-y y ④2)12(-y ⑤2)12(+y 中相等的是( ) A .①④ B .②③ C .①⑤ D .②④10.形如222a ab b ++和222a ab b -+的式子称为完全平方式,若812++ax x 是一个完全平方式,则a 等于A .9B .18C .9±D .18±二、填空题(2分×11=22分)11.计算:① =-32)2(a ; ②=÷)5()10(3234bc a c b a ;③=-)3(22y x x x ; ④542_______x x x -⋅=⑤=⨯⋅⨯)105()104(45 ;⑥208)21(-⨯= 。
整式单元测试题(含分析答案)
试卷第1页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………初中数学第二章整式单元测试题试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I 卷的文字说明评卷人 得 分一.选择题(共10小题)1.如果单项式2a n b 2c 是六次单项式,那么n=( ) A .6B .5C .4D .32.有下列说法:(1)单项式x 的系数、次数都是0;(2)多项式﹣3x 2+x ﹣1的系数是﹣3,它是三次二项式;(3)单项式﹣34x 2y 与πr 6都是七次单项式;(4)单项式﹣和﹣πa 2b 的系数分别是﹣4和﹣;(5)是二次单项式;(6)2a +与3π+都是整式,其中正确的说法有( )A .0个B .1个C .3个D .4个 3.下列所列式子错误的是( ) A .x 的3倍与y 的2倍的差:3x ﹣2y B .x 除以2的商与5的和的立方:C .三个数a 、b 、c 的积的10倍再减去10:10abc ﹣10D .x 与y 平方和的倒数:4.某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%,则现在的单价是( )A .(25%x +10)元B .[(1﹣25%)x +10]元C .25%(x +10)元D .(1﹣25%)(x +10)元试卷第2页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.若A 是五次多项式,B 也是五次多项式,则A +B 的次数是( ) A .十次B .五次C .不高于五次D .不能确定6.在矩形ABCD 内,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD ﹣AB=2时,S 2﹣S 1的值为( )A .2aB .2bC .2a ﹣2bD .﹣2b7.若关于x 、y 的多项式2x 2+mx +5y ﹣2nx 2﹣y +5x +7的值与x 的取值无关,则m +n=( )A .﹣4B .﹣5C .﹣6D .68.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,…,其中第10个式子是( )A .a 10+b 19B .a 10﹣b 19C .a 10﹣b 17D .a 10﹣b 219.若a 2+2ab=﹣10,b 2+2ab=16,则多项式a 2+4ab +b 2与a 2﹣b 2的值分别为( )A .6,26B .﹣6,26C .6,﹣26D .﹣6,﹣2610.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是( ) A .甲>乙 B .甲=乙 C .甲<乙D .不能确定,与桶中原有水的重量有关试卷第3页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人 得 分二.填空题(共5小题) 11.代数式﹣+4x ﹣3的二次项系数是12.若单项式2a x +1b 与﹣3a 3b y +4是同类项,则x y = . 13.若单项式与﹣2x b y 3的和仍为单项式,则其和为 .14.若多项式A 满足A +(2a 2﹣b 2)=3a 2﹣2b 2,则A= .15.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a |+|c ﹣b |﹣|a +b ﹣c |= .评卷人 得 分三.解答题(共8小题) 16.化简:(1)(2a ﹣b )﹣(2b ﹣3a )﹣2(a ﹣2b )(2)2x 2﹣[7x ﹣(4x ﹣3)﹣x 2]试卷第4页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………17.化简并求值:3(x 2﹣2xy )﹣[(﹣2xy +y 2)+(x 2﹣2y 2)],其中x 、y 的位置如图所示.18.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a 2+4ab +4b 2)=a 2﹣4b 2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值19.已知:多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,求: (1)4A ﹣B ;(2)当x=1,y=﹣2时,4A ﹣B 的值.试卷第5页,总6页20.大刚计算“一个整式A 减去2ab ﹣3bc +4ac”时,误把“减去”算成“加上”,得到的结果是2bc +ac ﹣2ab .请你帮他求出正确答案.21.小明在依次测验中计算一个多项式M 加上5ab ﹣3bc +2ac 时,不小心看成减去:5ab ﹣3bc +2ac ,结果计算出错误答案为2ab +6bc ﹣4ac . (1)求多项式M ;(2)试求出原题目的正确答案.22.某天深圳开往北京(西)的列出上原载客(3a ﹣b )人,当车行驶到南昌时,下去了一半客人,又上来了若干人,此时车上共有客人(8a ﹣5b )人,问上车的乘客是多少人?当a=200,b=60时,上车的乘客是多少人?试卷第6页,总6页23.某个体商贩在一次买卖中同时买进两件上衣,每件都以a 元出售,若按成本计算,一件盈利25%,另一件亏本25%,那么该商贩在这次买卖过程中是赚了还是赔本了?赚或赔多少?初中数学第二章整式单元测试题参考答案与试题解析一.选择题(共10小题)1.如果单项式2a n b 2c是六次单项式,那么n=()A.6 B .5 C.4 D.3【分析】直接利用单项式的次数求法得出n的值.【解答】解:∵单项式2a n b2c是六次单项式,∴n+2+1=6,解得:n=3.故选:D.【点评】此题主要考查了单项式,正确把握单项式次数求法是解题关键.2.有下列说法:(1)单项式x的系数、次数都是0;(2)多项式﹣3x2+x﹣1的系数是﹣3,它是三次二项式;(3)单项式﹣34x2y与πr6都是七次单项式;(4)单项式﹣和﹣πa2b 的系数分别是﹣4和﹣;(5)是二次单项式;(6)2a +与3π+都是整式,其中正确的说法有()A.0个 B.1个 C.3个 D.4个【分析】解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断.【解答】解:根据单项式和多项式的概念可知,单项式的系数是字母前的数字,次数是字母的指数和;多项式是若干个单项式的和.故(1),(2),(3)(4)(5)(6)都错.其中(2)多项式﹣3x2+x﹣1不能说多项式的系数,它是2次3项式;(3)单项式﹣34x2y是3次单项式πr6是6次单项式;(4)单项式﹣和﹣πa2b的系数分别是﹣和﹣π;(5)是多项式;(6)2a+是整式,3π+是分式.故选:A.1【点评】主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.3.下列所列式子错误的是()A.x的3倍与y的2倍的差:3x﹣2yB.x除以2的商与5的和的立方:C.三个数a、b、c的积的10倍再减去10:10abc﹣10D.x与y平方和的倒数:【分析】根据题意结合选项分别列出代数式,选出错误的选项即可.【解答】解:A、x的3倍与y的2倍的差:3x﹣2y ,该式正确,故本选项错误;B、x除以2的商与5的和的立方:,该式正确,故本选项错误;C、三个数a、b、c的积的10倍再减去10:10abc﹣10,该式正确,故本选项错误;D、x与y平方和的倒数:,原式错误,故本选项正确;故选:D.【点评】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“和”等,从而明确其中的运算关系,正确地列出代数式.4.某商品的原价为每件x元,后来店主将每件加价10元,再降价25%,则现在的单价是()A.(25%x+10)元B.[(1﹣25%)x+10]元C.25%(x+10)元D.(1﹣25%)(x+10)元【分析】根据某商品原价每件x元,后来店主将每件增加10元,再降价25%,可以求得表示现在的单价代数式,从而可以解答本题.【解答】解:由题意可得,2现在的单价是:(x+10)(1﹣25%),故选:D.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.5.若A是五次多项式,B也是五次多项式,则A+B的次数是()A.十次B.五次C.不高于五次D.不能确定【分析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【解答】解:A是五次多项式,B也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B的次数不高于五次.故选:C.【点评】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.6.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【专题】11:计算题.【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD ﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b (AD﹣AB)=2b.故选:B.3【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.7.若关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,则m+n=()A.﹣4 B.﹣5 C.﹣6 D.6【专题】1:常规题型.【分析】首先利用关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,得出x的二次项、一次项的系数和为0,进而得出答案.【解答】解:2x2+mx+5y﹣2nx2﹣y+5x+7=(2﹣2n)x2+(m+5)x+4y+7,∵关于x、y的多项式2x2+mx+5y﹣2nx2﹣y+5x+7的值与x的取值无关,∴2﹣2n=0,解得n=1,m+5=0,解得m=﹣5,则m+n=﹣5+1=﹣4.故选:A.【点评】此题主要考查了多项式,正确得出m,n的值是解题关键.8.一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第10个式子是()A.a10+b19B.a10﹣b19C.a10﹣b17D.a10﹣b21【专题】2A:规律型.【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【解答】解:多项式的第一项依次是a,a2,a3,a4,…,a n,第二项依次是b,﹣b3,b5,﹣b7,…,(﹣1)n+1b2n﹣1,所以第10个式子即当n=10时,代入到得到a n+(﹣1)n+1b2n﹣1=a10﹣b19.故选:B.【点评】本题属于找规律的题目,把多项式分成几个单项式的和,分别找出4各单项式的规律是解决这类问题的关键.9.若a2+2ab=﹣10,b2+2ab=16,则多项式a2+4ab+b2与a2﹣b2的值分别为()A.6,26 B.﹣6,26 C.6,﹣26 D.﹣6,﹣26【分析】将多项式合理变形即可,a2+4ab+b2=(a2+2ab)+(b2+2ab);a2﹣b2=(a2+2ab)﹣(b2+2ab).【解答】解:∵a2+2ab=﹣10,b2+2ab=16,∴a2+4ab+b2=(a2+2ab)+(b2+2ab),=﹣10+16,=6;∴a2﹣b2=(a2+2ab)﹣(b2+2ab),=﹣10﹣16,=﹣26.故选:C.【点评】解答本题的关键是合理的将多项式进行变形,与已知相结合.10.甲、乙两个水桶中装有重量相等的水,先把甲桶的水倒三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出).最后甲、乙两桶中水的重量的大小是()A.甲>乙B.甲=乙C.甲<乙D.不能确定,与桶中原有水的重量有关【分析】设甲、乙两个水桶中水的重量是a,甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×,乙桶有水=(1+)a×(1﹣),再比较出其大小即可.【解答】解:设甲、乙两个水桶中水的重量是a,∵甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,∴把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×=a+a=a;乙桶有水=(1+)a×(1﹣)=a,∴甲=乙.故选:B.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.二.填空题(共5小题)11.代数式﹣+4x﹣3的二次项系数是﹣【专题】1:常规题型.【分析】直接利用多项式中各项系数确定方法分析得出答案.【解答】解:代数式﹣+4x﹣3的二次项系数是:﹣.故答案为:﹣.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.12.若单项式2a x+1b与﹣3a3b y+4是同类项,则x y=.【专题】512:整式.【分析】依据同类项的相同字母指数相同列方程求解即可.【解答】解:单项式2a x+1b与﹣3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=﹣3.∴x y=2﹣3=.故答案为:.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.若单项式与﹣2x b y3的和仍为单项式,则其和为.【分析】若单项式与﹣2x b y3的和仍为单项式,则它们是同类项.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.根据同类项的定义中相同字母的指数也相同求出a和b的值.【解答】解:若单项式与﹣2x b y3的和仍为单项式,则它们是同类项.由同类项的定义得a=3,b=2,则其和为﹣x2y3.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.14.若多项式A满足A+(2a2﹣b2)=3a2﹣2b2,则A=a2﹣b2.【分析】此题涉及整式的加减运算,解答时只要用和减去加数即可得出A的结果.【解答】解:A=3a2﹣2b2﹣(2a2﹣b2)=3a2﹣2b2﹣2a2+b2=a2﹣b2.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.括号前是负号,括号里的各项要变号;合并同类项时,注意是系数相加减,字母与字母的指数不变.15.如图,数轴上点A、B、C所对应的数分别为a、b、c,化简|a|+|c﹣b|﹣|a+b﹣c|=0.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:a<0<b<c,∴a<0,c﹣b>0,a+b﹣c<0,∴|a|+|c﹣b|﹣|a+b﹣c|=﹣a+(c﹣b)+(a+b﹣c)=﹣a+c﹣b+a+b﹣c=0.故答案为0.【点评】本题考查的是整式的加减及绝对值的性质,熟知整式的加减实质上就是合并同类项是解答此题的关键.三.解答题(共8小题)16.化简:(1)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)(2)2x2﹣[7x﹣(4x﹣3)﹣x2]【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2a﹣b﹣2b+3a﹣2a+4b=3a+b(2)原式=2x2﹣[7x﹣4x+3﹣x2]=2x2﹣[3x+3﹣x2]=2x2﹣3x﹣3+x2=3x2﹣3x﹣3【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.化简并求值:3(x2﹣2xy)﹣[(﹣2xy+y2)+(x2﹣2y2)],其中x、y的位置如图所示.【专题】1:常规题型.【分析】根据数轴可知x与y的值,然后根据整式的运算法则即可求出答案.【解答】解:由数轴可知:x=2,y=﹣1,原式=3x2﹣6xy﹣(﹣2xy+y2+x2﹣2y2)=3x2﹣6xy+2xy﹣y2﹣x2+2y2=2x2+y2﹣4xy=8+1+8=17【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.18.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值【专题】1:常规题型.【分析】(1)根据整式的运算法则即可求出答案.(2)将a与b的值代入(1)的多项式即可求出答案.【解答】解:(1)所捂多项式=(a2+4ab+4b2)+a2﹣4b2=2a2+4ab(2)当a=﹣2,b=时,所捂多项式=2×4+4×(﹣2)×=8+(﹣4)=4【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)∵多项式A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=4(2x2﹣xy)﹣(x2+xy﹣6)=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6(2)∵由(1)知,4A﹣B=7x2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.【专题】1:常规题型.【分析】根据整式的运算法则即可求出答案.【解答】解:由题意可知:A+(2ab﹣3bc+4ac)=2bc+ac﹣2ab,A=2bc+ac﹣2ab﹣(2ab﹣3bc+4ac)=2bc+ac﹣2ab﹣2ab+3bc﹣4ac=5bc﹣3ac﹣4ab∴A﹣(2ab﹣3bc+4ac)=5bc﹣3ac﹣4ab﹣2ab+3bc﹣4ac=8bc﹣7ac﹣6ab【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.小明在依次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.【专题】11:计算题;512:整式.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)列出正确的关系式,去括号合并即可得到结果.【解答】解:(1)依题意得:M﹣(5ab﹣3bc+2ac)=2ab+6bc﹣4ac,∴M=2ab+6bc﹣4ac+(5ab﹣3bc+2ac)=7ab+3bc﹣2ac,∴多项式M为7ab+3bc﹣2ac;(2)M+(5ab﹣3bc+2ac)=(7ab+3bc﹣2ac)+(5ab﹣3bc+2ac)=12ab,∴原题目的正确答案为12ab.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.某天深圳开往北京(西)的列出上原载客(3a﹣b)人,当车行驶到南昌时,下去了一半客人,又上来了若干人,此时车上共有客人(8a﹣5b)人,问上车的乘客是多少人?当a=200,b=60时,上车的乘客是多少人?【专题】11:计算题;512:整式.【分析】根据题意列出关系式,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:根据题意得:(8a﹣5b)﹣(3a﹣b)=8a﹣5b﹣a+b=(a ﹣b)人,当a=200,b=60时,原式=1300﹣270=1030(人).【点评】此题考查了整式的加减,列代数式,以及代数式求值,熟练掌握去括号法则及合并同类项法则是解本题的关键.23.某个体商贩在一次买卖中同时买进两件上衣,每件都以a元出售,若按成本计算,一件盈利25%,另一件亏本25%,那么该商贩在这次买卖过程中是赚了还是赔本了?赚或赔多少?【专题】12:应用题.【分析】此题首先要设出原来各自的成本,再根据题意表示售价,最后比较总售价和总进价,进行判断.【解答】解:设第一件上衣的成本为x元,第二件的成本为y元.则a=x(1+25%);a=y(1﹣25%).∴,.∴,故该商贩在这次买卖中赔了.赔了元.【点评】注意无论是赔,还是赚,其基数都是原来的进价.。
七年级数学下册《整式的乘除》单元测试卷(附答案)
七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
初一整式的加减单元测试卷
初一整式的加减单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. (1)/(x)B. x + yC. √(x)D. (1)/(x + y)2. 单项式-3x^2y的系数和次数分别是()A. -3,3B. -3,2C. 3,3D. 3,2.3. 下列单项式中,与2x^2y是同类项的是()A. -2x^2zB. 2xy^2C. x^2yD. 3x^3y4. 化简3a + 2b - 5a - b的结果是()A. -2a + bB. 2a + bC. -2a - bD. 2a - b5. 一个多项式加上3x^2y - 3xy^2得x^3 - 3x^2y,则这个多项式是()A. x^3+3xy^2B. x^3-6x^2y + 3xy^2C. x^3-6x^2y - 3xy^2D. x^3-3xy^26. 当a = 1,b=-2时,代数式a^2+2ab + b^2的值是()A. 1B. -1C. 0D. 4.7. 已知A = 3x^2-2x + 1,B = 5x^2-3x + 2,则A - B等于()A. -2x^2+x - 1B. -2x^2-x + 1C. 2x^2-x - 1D. 2x^2+x + 18. 若单项式3x^my^3与-2x^2y^n是同类项,则m + n的值为()A. 5B. 4C. 3D. 2.9. 化简-(a - b)-3(b - a)的结果是()A. 2(a - b)B. -2(a - b)C. 4(a - b)D. -4(a - b)10. 某长方形的长为3x + 2y,宽为x - y,则这个长方形的周长为()A. 4x + yB. 8x + 2yC. 10x - 2yD. 10x + 2y二、填空题(每题3分,共15分)1. 单项式(2)/(3)π r^2的系数是______,次数是______。
2. 多项式3x^2-5x + 2是______次______项式。
七年级数学下册第一章试题
第一章整式的运算单元测试 1一、 耐心填一填每小题3分,共30分1.单项式32n m -的系数是 ,次数是 . 2.()()23342a b ab -÷= . 3.若A=2x y -,4B x y =-,则2A B -= .4.()()3223m m -++= .5.2005200640.25⨯= .6.若23nx =,则6n x = . 7.已知15a a +=,则221aa +=___________________.441a a +=___________________. 8.用科学计数法表示: 000024⋅-= .9.若10m n +=,24mn =,则22mn += . 10.()()()24212121+++的结果为 . 二、 精心选一选每小题3分,共30分 11.多项式322431x x y xy -+-的项数、次数分别是 .A .3、4B .4、4C .3、3D .4、312.三、用心想一想21题16分,22~25小题每小题4分,26小题8分,共40分.21.计算:16822a a a ÷+ 2()()().52222344321044x x x x x ⋅+-+- 3()()55x y x y --+- 4用乘法公式计算:21005. 22.已知0106222=++-+b a b a ,求20061ab-的值 23. 先化简并求值: )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .24.已知9ab =,3a b -=-,求223a ab b ++的值.25. 在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ()1把这个数加上2后平方.()2然后再减去4. ()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗26.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ; ②29- 2=8×4;③ 2-92=8×5;④213- 2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗 请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗附加题:1.把1422-+x x 化成k h x a ++2)(其中a,h,k 是常数的形式2.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 . 绝密★档案B第一章整式的运算单元测试2一、填空题:每空2分,共28分1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+ K.c 3ab 2+ 1单项式集合 { …}2多项式集合 { …}3三次多项式 { …}4整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.2x+y 2=4x 2+ +y 2. 5.计算:-2a 221ab+b 2-5aa 2b-ab 2 = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A,2x 2与1-y 2的差为B, 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题每题3分,共24分1.下列计算正确的是A 532x 2x x =+B 632x x x =⋅C 336x x x =÷D 623x x -=-)(2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是A1.183710⨯ B 510183.1⨯ C 71083.11⨯ D 610183.1⨯3.如果x 2-kx -ab = x -ax +b, 则k 应为Aa +b B a -b C b -a D -a -b4.若x -30 -23x -6-2 有意义,则x 的取值范围是A x >3 Bx ≠3 且x ≠2 C x ≠3或 x ≠2 Dx < 25.计算:322)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是A8 B9 C10 D116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫⎝⎛-,d =041⎪⎭⎫⎝⎛-, 则 a 、b 、c 、d 的大小关系为A a<b<c<d Bb<a<d<c C a<d<c<b Dc<a<d<b7.下列语句中正确的是Ax -3.140 没有意义B 任何数的零次幂都等于1C 一个不等于0的数的倒数的-p 次幂p 是正整数等于它的p 次幂D 在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为A 36y 2B 9y 2C 4y 2 Dy 2三、1.计算13xy -2x 2-3y 2+x 2-5xy +3y 22-51x 25x 2-2x +13-35ab 3c ⋅103a 3bc ⋅-8abc 2420052006315155321352125.0)()()()(-⨯+⨯- 5〔21xyx 2+yx 2-y +23x 2y 7÷3xy 4〕÷-81x 4y 6))((c b a c b a ---+ 2.用简便方法计算: 17655.0469.27655.02345.122⨯++ 29999×10001-100002 3.化简求值:14x 2+yx 2-y -2x 2-y 2 , 其中 x=2, y=-52已知:2x -y =2, 求:〔x 2+y 2-x -y 2+2yx -y 〕÷4y 4.已知:aa -1-a 2-b= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a2005-b 1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .绝密★档案C第一章整式的运算单元测试3一.填空题.1. 在代数式4,3x a ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 .. 3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n --⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=-- 7.-+2)23(y x =2)23(y x -.8. -5x 2 +4x -1=6x 2-8x +2.9.计算:31131313122⨯--= . 10.计算:02397)21(6425.0⨯-⨯⨯-= . 11.若84,32==n m ,则1232-+n m = .12.若10,8==-xy y x ,则22y x += . 13.若22)(14n x m x x +=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 .16. 若 b 、a 互为倒数,则 20042003b a⨯= . 二.选择题.1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有 个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是A.2224)2(b a b a +=+B.1)412(02=-- C.32622x x x -=÷- D.523)()()(y x x y y x -=--3.计算223)31(])([-⋅---a 结果为 A.591a B.691a C.69a - D.891a - 4.2)21(b a --的运算结果是 A.2241b a + B.2241b a - C.2241b ab a ++ D.2241b ab a +- 5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7. 若y b a 25.0与b a x 34的和仍是单项式,则正确的是 A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 8. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,……根据其规律可知108的末位数是 ……………………………………………A 、2B 、4C 、6D 、89.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x10. 如果3x 2y -2xy 2÷M=-3x+2y,则单项式M 等于A 、 xy ;B 、-xy ;C 、x ;D 、 -y12. 若A =5a 2-4a +3与B =3a 2-4a +2 ,则A 与BA 、A =B B 、A >BC 、A <BD 、以上都可能成立三.计算题. 125223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- 2)2(3)121()614121(22332mn n m mn mn n m n m +--÷+-- 3)21)(12(y x y x --++ 422)2()2)(2(2)2(-+-+-+x x x x524422222)2()2()4()2(y x y x y x y x ---++四.解答题.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.1求m 、n 的值;2当m 、n 取第1小题的值时,求22()()m n m mn n +-+的值.五.解方程:3x+2x -1=3x -1x+1.六.求值题:1.已知()2x y -=62536,x+y=76,求xy 的值. 2.已知a -b=2,b -c=-3,c -d=5,求代数式a -cb -d÷a-d 的值. 3.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++- 7分七.探究题.观察下列各式: 2(1)(1)1x x x -+=-1根据前面各式的规律可得:1(1)(...1)n n x x x x --++++ = .其中n 为正整数2根据1求2362631222...22++++++的值,并求出它的个位数字.。
初一数学整式的运算单元测试题及答案
初一数学整式的运算单元测试题及答案第七章整式的运算一、选择题。
1、以下判别中不正确的选项是( )①单项式m的次数是0 ②单项式y的系数是1③ ,-2a都是单项式④ +1是二次三项式2、假设一个多项式的次数是6次,那么这个多项式任何一项的次数( )A、都小于6B、都等于6C、都不小于6D、都不大于63、以下各式中,运算正确的选项是( )A、 B、C、 D、4、以下多项式的乘法中,可以用平方差公式计算的有 ( )A、 B、C、 D、5、在代数式中,以下结论正确的选项是( )A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的选项是( )A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项区分为( )A、2和8B、4和-8C、6和8D、-2和-88、假定关于的积中常数项为14,那么的值为( )A、2B、-2C、7D、-79、,那么的值是( )A、9B、49C、47D、110、假定,那么的值为( )A、-5B、5C、-2D、2二、填空题11、 =_________。
12、假定,那么。
13、假定是关于的完全平方式,那么。
14、多项多项式除以多项式A得商式为,余式为,那么多项式A为________________。
15、把代数式的共同点写在横线上_______________。
16、应用_____公式可以对停止简便运算,运算进程为:原式=_________________。
17、。
18、,那么P=______, =______。
三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。
参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C 10、C 二填空题11、 12、2;4 13、或7 14、15、(1)都是单项式 (2)都含有字母、 ;(3)次数相反16、平方差;17、 18、 ;三、解答题19、(1)1 (2) (3)20、21、34。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
京伟学校整式的运算单元测试题:
一、精心选一选(每小题3分,共21分)
1.多项式8923
3
4
+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 6
2.下列计算正确的是 ( ) A. 8
4
2
1262x x x =⋅ B. ()()
m m
m y y y =÷34
C. ()222
y x y x +=+ D. 3422=-a a
3.计算()()b a b a +-+的结果是 ( ) A. 2
2
a b - B. 2
2
b a - C. 2
2
2b ab a +-- D. 2
2
2b ab a ++- 4. 1532
+-a a 与4322
---a a 的和为 ( ) A.3252
--a a B. 382
--a a C. 532
---a a D. 582
+-a a 5.下列结果正确的是 ( )
A. 9
1312
-=⎪⎭
⎫ ⎝⎛- B. 0590=⨯ C. ()17530
=-. D. 8123-=-
6. 若()
682
b a b a n
m =,那么n m 22-的值是 ( )
A. 10
B. 52
C. 20
D. 32 7.要使式子2
2
259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30± 二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)
1.在代数式23xy , m ,362+-a a , 12 ,22
5
14xy yz x -
,
ab 32
中,单项式有 个,多项式有 个。
2.单项式z y x 4
2
5-的系数是 ,次数是 。
3.多项式5
1
34
+
-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52
x x 。
⑵ ()=4
3
y 。
⑶ ()
=3
22b
a 。
⑷ (
)
=-4
2
5y x 。
⑸ =÷3
9
a a 。
⑹=⨯⨯-02
45
10 。
5.⑴=⎪⎭
⎫
⎝⎛-
⋅⎪⎭⎫ ⎝⎛32
563
1mn mn 。
⑵()()=+-55x x 。
⑶ =-2
2)(
b a 。
⑷(
)()=-÷-2
3
5312xy y x 。
6. ⑴ ()
=÷⋅m m
a a a 23。
⑵ (
)
222842a a ⋅⋅=。
⑶ ()()()=-+-2
2y x y x y x 。
⑷=⎪
⎭
⎫ ⎝⎛⨯2006
2005313 。
三、精心做一做 (每题5分,共15分) 1. (
)(
)
x xy y x x xy y x ++--+457542
2
2. (
)
3
2
2
41232a a a a ++-
3. ()
()xy xy y x y x 28624
3
2
-÷-+-
四、计算题。
(每题6分,共12分) 1. ()()()2112
+--+x x x
2. ()()532532-+++y x y x
五、化简再求值:()()x x y x x 2122
++-+,其中25
1
=
x ,25-=y 。
(7分) 六、若4=m
x ,8=n x ,求n m x -3的值。
(6分)
七、(应用题)在长为23+a ,宽为12-b 的长方形铁片上,挖去长为42+a ,宽为b 的小
长方形铁片,求剩余部分面积。
(6分)
八、在如图边长为7.6的正方形的角上挖掉一个边长为2.6的小正方形,剩余的图形能否拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少.(5分)
2.6
7.6
第一章 整式测试题
一、 (每小题3分,共21分)
1. D ;
2. B ;
3. A ;
4. B ;
5.C ;
6. A ;
7. D
二、 (第1~4题每空1分,第5、6题每空2分,共28分) 1. 3,2;2.-5,7;3. 3,4
13,,
5
ab ab -;4. ⑴7x ⑵12y ⑶638a b ⑷208x y ⑸6
a ⑹25
5.⑴25
25
m n -
⑵225x -⑶2244a ab b -+⑷44x y 6. ⑴22
m a +⑵5a+4⑶42242x x y y -+⑷13
三、精心做一做 (每题5分,共15分) 1.
28x y xy x -+-;2. 4262a a +;3. 2334x x y -+
四、计算题。
(每题6分,共12分) 1.
3x +;2. 22412925x xy y ++-
五、-2 六、8
七、432ab a --
八、能,图略,()5156.26.7=⨯+。