反比例函数与一次函数综合限时训练(原卷版+解析)

合集下载

专题04 一次函数、反比例函数(原卷版)

专题04 一次函数、反比例函数(原卷版)

专题04 一次函数、反比例函数(原卷版)分支上,则实数n的值为()A.−3B.−13C.13D.32.(2021·福建·统考中考真题)如图,一次函数y=kx+b(k>0)的图像过点(−1,0),则不等式k(x−1)+b> 0的解集是()A.x>−2B.x>−1C.x>0D.x>13.(2022·福建·统考中考真题)已知反比例函数y=kx的图象分别位于第二、第四象限,则实数k的值可以是______.(只需写出一个符合条件的实数)5.(2019·福建·统考中考真题)如图,菱形ABCD顶点A在例函数y=3x (x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k的值为______.6.(2020·福建·统考中考真题)设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:∠四边形ABCD可以是平行四边形;∠四边形ABCD可以是菱形;∠四边形ABCD不可能是矩形;∠四边形ABCD不可能是正方形.其中正确的是_______.(写出所有正确结论的序号)7.(2022年福建中考数学真题)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.8.(2021·福建·统考中考真题)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?9.(2020·福建·统考中考真题)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.一、单选题A.45B.50C.53D.689.(2023·辽宁沈阳·统考二模)反比例函数y=1的图象在()xA.第二、四象限B.第二、三象限C.第三、四象限D.第一、三象限10.(2023·浙江杭州·校联考一模)若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=−6的图像上,则y1,y2,y3x的大小关系为()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1二、填空题11.(2023·河南信阳·一模)某函数满足当自变量x=1时,函数值y=0.写出一个满足条件的一次函数表达式:_____.12.(2023·山西阳泉·统考一模)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)成反比例函数关系,图像如图所示,则这个反比例函数解析式为_______.13.(2023·贵州贵阳·校考一模)如图,若反比例函数y1=k与一次函数y2=ax+b交于A、B两点,当y1<y2x时,则x的取值范围是_________.14.(2023·安徽·统考一模)如图,将直线y=x向下平移b个单位长度后得到直线l,直线l与反比例函数y=8(k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2-OB2=_______.x15.(2023·黑龙江齐齐哈尔·统考二模)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边x上,则点A2023的坐标是______.三角形,边AO在y轴上点B1,B2,B3,…都在直线y=√3316.(2023春·江西景德镇·八年级景德镇一中校考期中)如图,直线y=−x+2与x轴,y轴分别交于点A,B,与反比例函数y=k的图象交于点E,F.若AB=2EF,则k的值为_____.x三、解答题17.(2023·北京·一模)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)由函数y=x平移得到,(x>0)的图象交于点A(3,m).且与函数y=3x(1)求一次函数的表达式;(2)已知点P(n,0)(n>0),过点P作平行于y轴的直线,交直线y=kx+b(k≠0)于点M(x1,y1),交函数(x>0)的图象于点N(x2,y2).当y1<y2时,直接写出n的取值范围.y=3x18.(2023·山东泰安·模拟预测)汽车油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图:(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系.(2)从开始算起,如果汽车每小时行驶40 千米,当油箱中余油20 升时,该汽车行驶了多少千米?19.(2023春·江苏·八年级阶段练习)如图,一次函数y=kx+b与反比例函数y=m的图象交于A(n,3),xB(−3,−2)两点.(1)求反比例函数与一次函数的解析式;(2)过点A作AC⊥y轴,垂足为C,求△ABC的面积S△ABC.20.(2023·湖北襄阳·统考一模)我市某房地产开发公司计划建A、B两种户型的住房共80套,A种户型每套成本和售价分别为90万元和102万元,B种户型每套成本和售价分别为60万元和70万元,设计划建A 户型x套,所建户型全部售出后获得的总利润为W万元.(1)求W与x之间的函数解析式;(2)该公司所建房资金不少于5700万元,且所筹资金全部用于建房,若A户型不超过32套,则该公司有哪几种建房方案?(3)在(2)的前提下,根据国家房地产政策,公司计划每套A户型住房的售价降低a万元(0<a≤3),B户型住房的售价不变,且预计所建的两种住房全部售出,求该公司获得最大利润的方案.21.(2023·广东湛江·中考真题)某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示.从2009年开始,该市荔枝种植面积y(万亩)随着时间x(年)逐年成直线上升,y与x之间的函数关系如图所示.(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);(2)该市2023年荔枝种植面积为多少万亩?(k≠0)的图象相交于点A(m,3) 22.(2023·山东济宁·统考三模)如图,一次函数y=x+1与反比例函数y=kx(1)试求w与x之间的函数关系式,并求出自变量x的取值范围;(2)请你设计一种方案,使得购买这三种奖品所花的总费用最少,并求出最少费用.24.(2023·广西河池·校考一模)某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成.已知甲队每天绿化的面积是乙队的2倍,并且在独立完成400m2的绿化时,甲队比乙队少用4天.(1)分别求出甲队、乙队每天完成的绿化面积;(2)设甲队施工x天,乙队施工y天,刚好完成绿化任务,且甲、乙两队施工的总天数不超过26天,写出y 与x的函数解析式和自变量x的取值范围;(3)在(2)条件下,若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低费用.25.(2023·上海·模拟预测)如图,是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据函数图象,蓄电池剩余电量为35千瓦时汽车已经行驶的路程为____千米.当0≤x≤150时,消耗1千瓦时的电量,汽车能行驶的路程为_____千米.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶160千米时,蓄电池的剩余电量.。

2019-2020年中考数学:反比例函数与一次函数综合题(含答案)

2019-2020年中考数学:反比例函数与一次函数综合题(含答案)

2019-2020年中考数学:反比例函数与一次函数综合题(含答案) 针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242, ∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得, ∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M , ,2y x y x =⎧⎪⎨=⎪⎩联立 2222x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩解得或(舍去), ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|, ∴(a -2)2=14×222(2)a a-,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。

反比例函数与一次函数的综合应用 参考答案与试题解析

反比例函数与一次函数的综合应用 参考答案与试题解析

反比例函数与一次函数的综合应用1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>32.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是;(3)点A到OB的距离AH的长度是.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;(2)点E是y轴上点C下方一点,若S=,求E点的坐标;△AEB(3)当y1>y2时,x的取值范围是.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S:S△BOP=1:4,求点P的坐标.△AOP参考答案与试题解析1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>3【解答】解:根据题意得:当y1<y2时,x的取值范围是﹣1<x<0或x>3,∴当kx<+b时,x的取值范围是﹣1<x<0或x>3.故选:B.2.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.【解答】解:(1)∵点C(3,6)在反比例函数y=的图象上,∴k2=3×6=18,∴反比例函数的解析式为y=;如图,作CE⊥x轴于E,∵C(3,6),AB=BC,∴B(0,3),∵B、C在y=k1x+b的图象上,∴,解得,∴一次函数的解析式为y=x+3;(2)由,解得或,∴D(﹣6,﹣3),=S△BOC+S△BOD=×3×3+×3×6=;∴S△COD(3)由图象可得,当0<x<3或x<﹣6时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是16;(3)点A到OB的距离AH的长度是.【解答】解:(1)设反比例函数的解析式为y=,由题意可知:k=6×2=12,∴y=,∵A(2,m)在反比例函数y=的图象上,∴m==6,∴A(2,6),∵A(2,6)、B(6,2)在一次函数y=ax+b的图象上,∴,解得,∴直线AB的表达式为y=﹣x+8;(2)设直线AB与x轴的交点为C,令y=0,则﹣x+8=0,解得x=8,∴C(8,0),=S△AOC﹣S△BOC=﹣=16,∴S△AOB故答案为:16;(3)∵B(6,2),∴OB==2,∵S=OB•AH=16,△AOB∴AH==,故答案为:.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;=,求E点的坐标;(2)点E是y轴上点C下方一点,若S△AEB(3)当y1>y2时,x的取值范围是x<﹣1或0<x<3.【解答】解:(1)将A(﹣1,6)代入一次函数y=﹣2x+b,得b=4;将A(﹣1,6)代入,得k=﹣6.(2)设E(a,0),将B(m,﹣2)代入,得m=3,∴B(3,﹣2)∴)=2CE=2(4﹣a)=,∴E(0,);(3)观察图象,当y1>y2时,x的取值范围是x<﹣1或0<x<3,故答案为:x<﹣1或0<x<3.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP【解答】解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),:S△BOP=1:4,∵S△AOP∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).。

中考数学复习《一次函数与反比例函数综合》真题练习(含答案)

中考数学复习《一次函数与反比例函数综合》真题练习(含答案)

中考数学复习《一次函数与反比例函数综合》真题练习(含答案)(2016·青海西宁·2分)如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.m(m≠0)(2016·贵州安顺·10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=x的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.解:(1)过点A作AD⊥x轴,垂足为D由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2∵tan∠ACO=2∴=2,即=2∴n=1∴A(1,6)将A(1,6)代入反比例函数,得m=1×6=6∴反比例函数的解析式为将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得解得∴一次函数的解析式为y=2x+4(2)由可得,解得x1=1,x2=﹣3∵当x=﹣3时,y=﹣2∴点B坐标为(﹣3,﹣2)(2016·四川泸州)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B 两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△B O C=bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.4.(2016·四川南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.5.(2016·四川攀枝花)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(3)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.【解答】解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,解得:.∴反比例函数的解析式为y=.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.∴经过C、D两点的一次函数解析式为y=﹣x+3.(2016·重庆市A卷·10分)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.(2016·山东省菏泽市·3分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y=,∴m=﹣4.(2)解方程组解得:或,∴该双曲线与直线y =﹣2x +2另一个交点B 的坐标为(2,﹣2).(2016·山东省东营市·9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =x m 的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,tan ∠ABO =12,OB =4,OE =2. (1)求反比例函数的解析式;(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y 轴,垂足为点F ,连接OD 、BF ,如果S △BAF =4S △DFO ,求点D 的坐标.(l )∵OB =4,OE =2,∴BE =OB +OE =6. ∵CE ⊥x 轴,∴∠CEB =90°.在Rt △BEC 中,∵tan ∠ABO =12,∴CE BE =12.即CE 6=12,解得CE =3. 结合图象可知C 点的坐标为(一2,3),将C (―2,3)代入反比例函数解析式可得3=m-2.解得m =-6.反比例函数解析式为y =-6x .(2)解:方法一:∵点D 是y =-6x 的图象上的点,且DF ⊥y 轴, ∴S △DFO =12×|-6|=3.∴S △BAF =4S △DFO =4×3=12.∴12AF •OB =12.∴12×AF ×4=12.∴AF =6.∴EF =AF -OA =6-2=4. ∴点D 的纵坐标为-4.把y =-4代入y =-6x ,得 -4=-6x .∴x =32. ∴D (32,一4).方法二:设点D 的坐标为(a ,b ).∵S △BAF =4S △DFO ,∴12AF •OB =4×12OF •FD .∴(AO +OF ) OB =4OF •FD . ∴[2+(-b )]×4=-4ab .∴8-4b =-4ab .又∵点D 在反比例函数图象上,∴b =-6a .∴ab =-6.∴8-4b =24.解得:b =-4. 把b =-4代ab =-6中,解得:a =32. ∴D (32,一4).(2016·四川宜宾)如图,一次函数y =kx +b 的图象与反比例函数y =(x >0)的图象交于A(2,﹣1),B (,n )两点,直线y =2与y 轴交于点C .(1)求一次函数与反比例函数的解析式; (2)求△ABC 的面积.解:(1)把A (2,﹣1)代入反比例解析式得:﹣1=,即m =﹣2,∴反比例解析式为y =﹣,把B (,n )代入反比例解析式得:n =﹣4,即B (,﹣4),把A 与B 坐标代入y =kx +b 中得:,解得:k =2,b =﹣5,则一次函数解析式为y =2x ﹣5; (2)∵A (2,﹣1),B (,﹣4),直线AB 解析式为y =2x ﹣5,∴AB ==,原点(0,0)到直线y =2x ﹣5的距离d ==,则S △A B C =AB •d =.(2015呼和浩特,23,7分)7分)如图,在平面直角坐标系中A 点的坐标为(8,y ) ,AB ⊥x 轴于点B , sin ∠OAB = 45 ,反比例函数y = kx 的图象的一支经过AO 的中点C ,且与AB 交于点D. (1)求反比例函数解析式;(2)若函数y = 3x 与y = kx 的图象的另一支交于点M ,求三角形OMB 与四边形OCDB 的面积的比. 解:(1) ∵A (8,y ) 又∵AB ⊥x 轴于点B∴点B 横坐标为8,∴∠ ABO =90° 又∵点B 在x 轴上 ∴OB =8.在Rt △ABO 中, ∵sin ∠OAB = 45 =OAOB∴OA =8×54 =10 ∴.∴A (8,6)又∵C 点为OA 的中点,O 点为坐标原点∴C (4,3)又∵C (4,3)在函数y = kx 上 ∴3=4k,即k =12 ∴反比例函数解析式为y =x12.(2)法一:将四边形切成两个三角形,算△OCB 的面积和△BCD 的面积,再求和先求直线y = 3x 与y =x 12的交点M 的坐标,列如下方程组∴M (2,6)或M (-2,-6)又∵M 为函数y = 3x 与函数y =x 12在第三象限的交点 ∴M (-2,-6).∴S △OMB = 12·OB·|-6| = 12×8×6 =24∵S 四边形OCDB = S △OBC +S △BCD =12+12·DB ·4又∵D 在双曲线上,且D 点横坐标为8∴D (8,32),即BD =32∴S 四边形OCDB =12+3=15∴S △OMB S 四边形OCDB = 85 .法二:算出△ABO 的面积,再减去△ACD 的面积先求直线y = 3x 与y =x12的交点M 的坐标,列如下方程组∴M (2,6)或M (-2,-6)又∵M 为函数y = 3x 与函数y =x12在第三象限的交点∴M (-2,-6).∴S △OMB = 12·OB·|-6| = 12×8×6 =24又 ∵D 在双曲线上,且D 点横坐标为8∴D (8,32),即AD =AB -BD =6-32=29 ∴S △ACD = 12·AD·|8-4|=12×29×4=9 又∵S △ABO = 12·OB·AB = 12×8×6 =24 ∴S 四边形OCDB = S △ABO -S △ACD =24-9=15∴S △OMB S 四边形OCDB = 85 .(2015•四川广安,第20题6分)如图,一次函数的图象与x 轴、y 轴分别相交于A 、B 两点,且与反比例函数y =(k ≠0)的图象在第一象限交于点C ,如果点B 的坐标为(0,2),OA =OB ,B 是线段AC 的中点. (1)求点A 的坐标及一次函数解析式.(2)求点C 的坐标及反比例函数的解析式.解:(1)∵OA =OB ,点B 的坐标为(0,2),∴点A (﹣2,0),点A 、B 在一次函数y =kx +b (k ≠0)的图象上,∴,解得k =1,b =2,∴一次函数的解析式为y =x +2.(2)∵B 是线段AC 的中点,∴点C 的坐标为(2,4),又∵点C 在反比例函数y =(k ≠0)的图象上,∴k =8;∴反比例函数的解析式为y =.(2015•四川泸州,第23题8分)如图,一次函数(0)y kx b k =+<的图象经过点C (3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数m y x=的图象与该一次函数的 图象交于二、四象限内的A 、B 两点,且AC =2BC ,求m 的值。

反比例函数与一次函数综合三类型(解析版)九年级数学下册常考点微专题提分精练(人教版)

反比例函数与一次函数综合三类型(解析版)九年级数学下册常考点微专题提分精练(人教版)

专题03 反比例函数与一次函数综合三类型类型一反比例函数与一次函数图像综合判断1.如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数2kyx=的图象交于C(1,m),D(n,-1),连接OC、OD.(1)求k的值;(2)求COD的面积;(3)根据图象直接写出y1<y2时,x的取值范围.数y =kx(x >0)的图象交于点C (6,m ).(1)求直线和反比例函数的表达式;(2)连接OC ,在x 轴上找一点P ,使S △POC =2S △AOC ,请求出点P 的坐标.3.如图,一次函数15y k x =+(1k 为常数,且10k ≠)的图象与反比例函数2y x=(2k 为常数,且20k ≠)的图象相交于()2,4A -,(),1B n 两点.(1)求n 的值;(2)若一次函数1y k x m =+的图象与反比例函数2k y x=的图象有且只有一个公共点,求m 的值.【答案】(1)8n =- (2)4m =或4-【分析】(1)由待定系数法求出反比例函数的解析式,再由B 点坐标计算求值即可; (2)根据函数图象交点的意义,利用一次函数和反比例函数构建一元二次方程,令0∆=,4.一次函数y =﹣12x +3的图象与反比例函数y =x的图象交于点A (4,1).(1)画出反比例函数y =m x 的图象,并写出﹣12x +3>m x的x 取值范围; (2)将y =﹣12x +3沿y 轴平移n 个单位后得到直线l ,当l 与反比例函数的图象只有一个交点时,求n 的值.1m则()26=--解得12n =-当l 与反比例函数的图像只有一个交点时,则【点睛】本题考查了反比例函数、一次函数的综合.解题的关键在于了解不等式的意义,一次函数平移后解析式的表达,将交点转化为二次方程根的个数.易错点在于求解集时落解.5.如图:一次函数的图象与反比例函数y x=的图象交于()2,6A -和点()4,B n .(1)求点B 的坐标;(2)根据图象回答,当x 在什么范围时,一次函数的值大于反比例函数的值. )一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象6.如图,已知双曲线y =kx与直线y =mx +5都经过点A (1,4).(1)求双曲线和直线的表达式;(2)将直线y =mx +5沿y 轴向下平移n 个单位长度,使平移后的图象与双曲线y =kx有且只有一个交点,求n 的值.47.如图所示,平面直角坐标系中,直线1y kx b =+分别与x ,y 轴交于点A ,B ,与曲线2my x=分别交于点C ,D ,作CE x ⊥轴于点E ,已知OA =4,OE =OB =2.(1)求反比例函数2y 的表达式; (2)在y 轴上存在一点P ,使ABPCEOS S=,请求出P 的坐标.12ABPCEOSSCE ==243a ⨯-⨯=,解出S=CEOS=3ABPP(0,BP=S=ABPa-22解得:a=交于A,B两点,其中A的坐标为8.如图,在平面直角坐标系中,直线y= x与双曲线yx(1,a),P是以点C(- 2,2)为圆心,半径长为1的圆上一动点,连接AP,Q为AP的中点.(1)求双曲线的解析式:(2)将直线y = x向上平移m(m > 0)个单位长度,若平移后的直线与∵C相切,求m的值(3)求线段OQ长度的最大值.(3)【点睛】本题主要考查了圆与函数综合,待定系数法求函数解析式,勾股定理,三角形中位9.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(x<0)的x图象交于点A(﹣1,6),与x轴交于点B.点C是线段AB上一点,且∵OCB与∵OAB的面积比为1:2.(1)求k和b的值;(2)将∵OBC绕点O逆时针旋转90°,得到ΔOB′C′,判断点C′是否落在函数y=kx(k<0)的图象上,并说明理由.y x=-+y∴=时,(5,0)B∴OCB∆与C∴为AB(1,6)A-(2,3)C∴.如图,过点将OBC∆C'在第二象限,(3,2)C∴'-∴点C'是落在函数【点睛】本题考查了待定系数法求函数的解析式,三角形的面积,线段中点坐标公式,全等10.如图,一次函数y=-x+b与反比例函数y=x(x> 0)的图象交于点A(m,4)和B(4,1)(1)求b、k、m的值;(2)根据图象直接写出-x+b< kx(x> 0)的解集;(3)点P是线段AB上一点,过点P作PD∵x轴于点D,连接OP,若∵POD的面积为S,求S的最大值和最小值.)一次函数)一次函数14n≤≤S12 =-1 2a=-11.在平面直角坐标系xOy 中,已知点(1,2)P ,(2,2)Q -,函数y x=.(1)当函数my x=的图象经过点Q 时,求m 的值并画出直线y =-x -m . (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组m y x y x m ⎧>⎪⎨⎪<--⎩(m <0),求m 的取值范围.(2)12.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,2),B(﹣2,xn)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.A,(1,2)∴△的ACPACP的面积是13.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(∵)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求线段AB和双曲线CD的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10∵时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?20x小时,蔬菜才能避免受到伤害.本题考查一次函数和反比例函数的应用,.病人按规定的剂量服用某种药物,测得服药后值为4毫克,已知服药后,2小时前每毫升血液中的含药量y (毫克)与时间x (小时)成正比例,2小时后y 与x 成反比例(如图所示).根据以上信息解答下列问题. (1)求当02x ≤≤时,y 与x 的函数关系式; (2)求当2x >时,y 与x 的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?【答案】(1)2y x =8k , 与x 的函数关系式为第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图.并发现衰退时y 与x 成反比例函数关系.(1)=a ;(2)当5100x 时,y 与x 之间的函数关系式为 ;当100x >时,y 与x 之间的函数关系式为 ;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多久?5100x 时,设经过点(5,0),(100,19)019b =+= 0.21k b =⎧⎨=-⎩解析式为0.2y x =经过点堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.空气中的含药量y(毫克)与药物点燃后的时间x(分)满足函数关系式y=2x,药物点燃后6分钟燃尽,药物燃尽后,校医每隔6分钟测一次空气中含药量,测得数据如下表:(1)在如图所示平面直角坐标系中描出以表格中数据为坐标的各点;(2)观察上述各点的分布规律,判断它们是否在同一个反比例函数图象上,如果在同一个反比例函数图象上,求出这个反比例函数图象所对应的函数表达式,如果不在同一个反比例函数图象上,说明理由;(3)研究表明:空气中每立方米的含药量不低于8毫克,且持续4分钟以上才能有效杀灭空气中的病菌,应用上述发现的规律估算此次消毒能否有效杀灭空气中的病菌?【答案】(1)见解析(2)温y (∵)与开机时间x (分)满足一次函数关系,当加热到100∵时自动停止加热,随后水温开始下降,此过程中水温y (∵)与开机时间x (分)成反比例关系,当水温降至20∵时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当010x ≤≤时,求水温y (∵)与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少∵?x时,20小丽散步70【点睛】本题考查了待定系数法求一次函数解析式、数值,解决本题的关键是熟练掌握待定系数法的应用.。

一次函数与反比例函数综合(含解析答案)

一次函数与反比例函数综合(含解析答案)

一次函数与反比例函数综合1.(2016·襄阳)如图,直线y =ax +b 与反比例函数y =mx (x >0)的图象交于A(1,4),B(4,n)两点,与x 轴,y 轴分别交于C ,D 两点.(1)m =4,n =1;若M(x 1,y 1),N(x 2,y 2)是反比例函数图象上两点,且0<x 1<x 2,则y 1>y 2(填“<”“=”或“>”);(2)若线段C D 上的点P 到x 轴,y 轴的距离相等.求点P 的坐标.解:∵直线y =ax +b 经过点A(1,4),B(4,1), ∴⎩⎨⎧a +b =4,4a +b =1.解得⎩⎨⎧a =-1,b =5. ∴y =-x +5.当x =y 时,x =-x +5,解得x =52. ∴P(52,52).2.(2016·威海)如图,反比例函数y =mx 的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1). (1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.解:(1)把点A(2,6)代入y =mx ,得m =12, 则y =12x .把点B(n ,1)代入y =12x ,得n =12, 则点B 的坐标为(12,1).由直线y =kx +b 过点A(2,6),点B(12,1)得⎩⎨⎧2k +b =6,12k +b =1.解得⎩⎪⎨⎪⎧k =-12,b =7. 则所求一次函数的表达式为y =-12x +7.(2)设直线AB 与y 轴的交点为P ,点E 的坐标为(0,t),连接AE ,BE ,则点P 的坐标为(0,7). ∴PE =|t -7|.∵S △AEB =S △BEP -S △AEP =5, ∴12×|t -7|×(12-2)=5. ∴|t -7|=1. 解得t 1=6,t 2=8.∴点E 的坐标为(0,6)或(0,8).3.(2016·安徽)如图,一次函数y =kx +b 的图象分别与反比例函数y =ax 的图象在第一象限交于点A(4,3),与y 轴的负半轴交于点B ,且OA =OB. (1)求函数y =kx +b 和y =ax 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M ,使得MB =MC.求此时点M 的坐标.解:(1)将A(4,3)代入y =a x ,得3=a4,∴a =12. OA =42+32=5.∵OA =OB ,且点B 在y 轴负半轴上, ∴B(0,-5).将A(4,3),B(0,-5)代入y =kx +b ,得 ⎩⎨⎧3=4k +b ,-5=b.解得⎩⎨⎧k =2,b =-5.∴所求函数表达式分别为y =2x -5和y =12x . (2)∵MB =MC ,∴点M 在线段BC 的中垂线上,即x 轴上. 又∵点M 在一次函数的图象上, ∴M 为一次函数图象与x 轴的交点.令y =0,即2x -5=0,解得x =52.∴点M 的坐标为(52,0).4.(2016·自贡)如图,已知A(-4,n),B(2,-4)是一次函数y =kx +b 和反比例函数y =mx 的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程kx +b -mx =0的解; (3)求△AOB 的面积;(4)观察图象,直接写出kx +b -mx <0的解集.解:(1)∵B(2,-4)在y =mx 上,∴m =-8. ∴反比例函数的解析式为y =-8x .∵点A(-4,n)在y =-8x 上,∴n =2.∴A(-4,2). ∵y =kx +b 经过A(-4,2),B(2,-4), ∴⎩⎨⎧-4k +b =2,2k +b =-4.解得⎩⎨⎧k =-1,b =-2. ∴一次函数的解析式为y =-x -2. (2)x 1=-4,x 2=2.(3)设一次函数图象与y 轴交点为C.∵当x =0时,y =-2,∴点C(0,-2).∴OC =2. ∴S △AOB =S △ACO +S △BCO =12×2×4+12×2×2=6.(4)-4<x <0或x >2.5.(2016·乐山)如图,反比例函数y =kx 与一次函数y =ax +b 的图象交于点A(2,2),B(12,n).(1)求这两个函数的解析式;(2)将一次函数y =ax +b 的图象沿y 轴向下平移m 个单位,使平移后的图象与反比例函数y =kx 的图象有且只有一个交点,求m 的值.解:(1)∵A(2,2)在反比例函数y =kx 的图象上,∴k =4. ∴反比例函数的解析式为y =4x .又∵B(12,n)在反比例函数y =4x 的图象上, ∴12n =4,解得n =8.由A(2,2),B(12,8)在一次函数y =ax +b 的图象上,得⎩⎪⎨⎪⎧2=2a +b ,8=12a +b.解得⎩⎨⎧a =-4,b =10. ∴一次函数的解析式为y =-4x +10.(2)将直线y =-4x +10向下平移m 个单位得直线的解析式为y =-4x +10-m.∵直线y =-4x +10-m 与双曲线y =4x 有且只有一个交点,令-4x +10-m =4x ,得4x 2+(m -10)x +4=0. ∴Δ=(m -10)2-64=0,解得m =2或18.6.(2016·新疆)如图,直线y =2x +3与y 轴交于A 点,与反比例函数y =kx (x >0)的图象交于点B ,过点B 作BC ⊥x 轴于点C ,且C 点的坐标为(1,0). (1)求反比例函数的解析式;(2)点D(a ,1)是反比例函数y =kx (x >0)图象上的点,在x 轴上是否存在点P ,使得PB +PD 最小?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵BC ⊥x 轴于点C ,且C 点的坐标为(1,0), ∴在直线y =2x +3中,当x =1时,y =2+3=5. ∴点B 的坐标为(1,5).又∵点B(1,5)在反比例函数y =kx 上, ∴k =1×5=5.∴反比例函数的解析式为y =5x .(2)存在.作D 点关于x 轴的对称点D′,连接BD′,交x 轴于点P ,P 点即为所求. 将D(a ,1)代入y =5x ,得a =5. ∴点D 的坐标为(5,1). ∴D ′(5,-1).设过点B(1,5),点D′(5,-1)的直线解析式为y =tx +b , 可得⎩⎨⎧t +b =5,5t +b =-1.解得⎩⎪⎨⎪⎧t =-32,b =132.∴直线BD′的解析式为y =-32x +132.当y =0时,-32x +132=0,解得x =133. 故点P 的坐标为(133,0).热点3:(2016·山东省东营市·9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =x m的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,tan∠ABO =12,OB =4,OE =2. (1)求反比例函数的解析式;(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y 轴,垂足为点F ,连接OD 、BF ,如果S △BAF =4S △DFO ,求点D 的坐标.【知识点】锐角三角函数——锐角三角函数的求法、平面直角坐标系——利用图形变化确定点的坐标、反比例函数——反比例函数的表达式及反比例函数的图像及性质(k 的几何意义)【解析】(1)先由tan∠ABO =CE BE =12及OB =4,OE =2求出CE 的长度,从而得到点C 的坐标,再将点C 的坐标代入y =x m即可求得反比例函数的解析式.(2)先由反比例函数y =x k的k 的几何意义得出S △DFO ,由S △BAF =4S △DFO 得到S △BAF ,根据S △BAF =12AF •OB 得出AF 的长度,用AF-OA 求出OF 的长,据此可先得出点D的纵坐标,再求D得横坐标.【解答】(l)∵OB=4,OE=2,∴BE=OB+OE=6. ∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∵tan∠ABO=12,∴CEBE=12.即CE6=12,解得CE=3.结合图象可知C点的坐标为(一2,3),将C(―2,3)代入反比例函数解析式可得3=m-2.解得m=-6.反比例函数解析式为y=-6 x .(2)解:方法一:∵点D是y=-6x的图象上的点,且DF⊥y轴,∴S△DFO=12×|-6|=3.∴S△BAF=4S△DFO=4×3=12.∴12AF•OB=12.∴12×AF×4=12.∴AF=6.∴EF=AF-OA=6-2=4. ∴点D的纵坐标为-4.把y=-4代入y=-6x,得-4=-6x.∴x=32.∴D(32,一4).方法二:设点D的坐标为(a,b).∵S△BAF=4S△DFO,∴12AF•OB=4×12OF•FD.∴(AO+OF) OB=4OF•FD.∴[2+(-b)]×4=-4ab.∴8-4b=-4ab.又∵点D在反比例函数图象上,∴b=-6a.∴ab=-6.∴8-4b=24.解得:b=-4.把b=-4代ab=-6中,解得:a=3 2 .∴D(32,一4).【方法总结】要确定反比例函数的表达式,只需根据题目提供的条件求出其图像上某一个点的坐标即可解决;反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象上任取一点,过这一个点向x轴和y轴分别作垂线,两垂线与两坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任取一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的直角三角形的面积是定值12|k|,且保持不变.。

中考数学压轴题提升训练一次函数与反比例函数综合题含解析

中考数学压轴题提升训练一次函数与反比例函数综合题含解析

一次函数与反比例函数综合题【例1】。

如图,直线l:y=ax+b交x轴于点A(3,0),交y于第一象限的点P,点P的轴于点B(0,-3),交反比例函数y kx横坐标为4.的解析式;(1)求反比例函数y kx(2)过点P作直线l的垂线l1,交反比例函数y k的图象于x点C,求△OPC的面积.【答案】见解析。

【解析】解:(1)∵y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),∴3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y k得:k=4,x;即反比函数的解析式为:y4x(2)设直线l1与x轴、y轴分别交于点E,D,∵OA=OB=3,∴∠OAB=∠OBA=45°,∵l⊥l1,∴∠DPB=90°,∴∠ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y4x,解得:x=1,y=4或x=4,y=1,即C(1,4),∴S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=152.【变式1—1】.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC为矩形,∴OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,∴反比例函数的解析式为:4yx=.(2)在4yx=中,当x=4时,y=1,即CN=1,∵S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,∴S△OPM=4,即12·OP·OA=4,∵OA=2,∴OP=4,∴点P 的坐标为(4,0)或(-4,0)。

一次函数和反比例函数测试题(含答案)

一次函数和反比例函数测试题(含答案)

一次函数和反比例函数测试题(考试时间70分钟 试卷满分100分)一、选择题(每题4分,共24分)1.如图,已知直线y =k 1x (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(-2,-1)2.如图,已知反比例函数y =-3x 与正比例函数y =kx (k <0)的图象相交于A ,B 两点,AC 垂直x 轴于点C ,则△ABC 的面积为( )A .3B .2C .kD .k 2 3. 已知函数1y x=的图象如图所示,当1x -≥时,y 的取值范围是( ) A. 1y <- B. 1y -≤ C. 1y -≤或0y > D. 1y -<或0y ≥ 4.若点A(-6,y 1),B(-2,y 2),C(3,y 3)在反比例函数y =2k 2+3x (k 为常数)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 2>y 3>y 1C .y 3>y 2>y 1D .y 3>y 1>y 2 5.在同一直角坐标系中,函数y =kx 和y =kx -3的图象大致是( )y xO 1-1-第3题图6.如图,已知一次函数y =ax +b 和反比例函数y =kx 的图象相交于A (-2,y 1),B (1,y 2)两点,则不等式ax +b <kx 的解集为( )A .x <-2或0<x <1B .x <-2C .0<x <1D .-2<x <0或x >1 二、填空题(每小题4分,共16分)7.已知反比例函数y =k -1x (k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是 .8.已知A(-4,y 1),B(-1,y 2)是反比例函数y =-4x 图象上的两个点,则y 1与y 2的大小关系为 .9.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 值的增大而 .(填“增大”或“减小”) 10.(2018•东营)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .三、解答题(共6小题,共60分)11.(8分)正比例函数 y =kx 和一次函数 y =ax +b 的图象都经过点A(1,2),且一次函数的图象交 x 轴于点 B(4,0).求正比例函数和一次函数的表达式.12.(12分)已知函数y =(2m +1)x +m -3 (1)若函数图象经过原点,求m 的值;第6题图第10题图(2)若函数的图象平行直线y =3x -3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.13.(12分)如图,一次函数y =kx +b 的图象与反比例函数y =xm的图象交于A (-2,1)B (1,n )两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求△ABO 的面积;(3)根据图像直接写出当一次函数的值大于反比例函数的值时x 的取值范围。

中考数学重要考点题型精讲精练(人教版):反比例函数与一次函数和几何综合(热考题型)原卷版

中考数学重要考点题型精讲精练(人教版):反比例函数与一次函数和几何综合(热考题型)原卷版

专题02反比例函数与一次函数和几何综合【思维导图】◎考点题型1一次函数与反比例函数图像综合判断例.(2022·重庆一中八年级期末)如图,在同一平面直角坐标系中,一次函数(0)y ax b ab 的图象与反比例函数(0)ab y ab x 的图象大致可以是()A .B .C .D .变式1.(2022·山东青岛·八年级期末)反比例函数k y x与一次函数3y kx 在同一坐标系中的大致图象可能是()A .B .C .D .变式2.(2022·河南南阳·八年级期中)已知m ≠0,b <0,则下列图中能正确表示一次函数y =mx +b 和反比例函数m y x 的图象的是()A .B .C .D .变式3.(2022·湖南·中考真题)在同一平面直角坐标系中,函数1(0)y kx k 和(0)k y k x的图像大致是()A .B .C .D .◎考点题型2一次函数与反比例函数的交点问题例.(2022·辽宁朝阳·中考真题)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =k x(k 为常数,且k ≠0)的图象相交于A (﹣2,m )和B 两点,则不等式ax >k x 的解集为()A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2变式1.(2022·浙江金华·八年级期末)如图,在平面直角坐标系xOy 中,直线 0y ax k ak 与x 轴交于点A 、与y 轴交于点B ,过点A 作AC x 轴,交反比例函数 0k y x x的图象于点C ,过点C 作CD y 轴于点D ,与直线y ax k 交于点E ,若CE DE ,则k 与a 的关系正确的是()A .20a kB .20a kC .230a kD .230a k变式2.(2022·浙江宁波·八年级期末)如图,反比例函数1k y x和一次函数2y x b 图像交于A ,B 两点,A 点坐标为 1,2,当12y y 时,x 的取值范围为()A .2x 或01xB .20x 或1xC .1x 或02xD .10x 或2x 变式3.(2022·河南南阳·八年级期中)已知一次函数y 1=k 1x +b 与反比例函数y 2=2k x 上在同一直角坐标系中的图象如图所示,则当k 1x 十b <2k x 时,x 的取值范围是()A .x <1成0<x <3B .﹣1<x <0或x >3C .﹣1<x <0D .x >3◎考点题型3一次函数与反比例函数的实际应用例.(2022·江苏·九年级课时练习)如图,在平面直角坐标系中,函数y =kx 与2y x的图象交于A ,B 两点,过点B 作y 轴的平行线,交函数3y x 的图象于点C ,连接AC ,则△ABC 的面积为()A .2.5B .5C .6D .10变式1.(2021·山东·禹城市龙泽实验学校九年级阶段练习)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当410x 时,y 与x 成反比例).血液中药物浓度不低于6微克毫升的持续时间为()A .73B .3C .4D .163变式2.(2022·贵州遵义·二模)小亮为了求不等式3x >x +2的解集,绘制了如图所示的反比例函数y =3x 与一次函数y =x +2的图像,观察图像可得该不等式的解集为()A .3xB .1xC .31xD .3x 或01x 变式3.(2022·江苏南京·模拟预测)如图,反比例函数k y x(k ≠0)与正比例函数y =mx (m ≠0)的图像交于点A ,点B .AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,2ACO BDO S S △△,则k =__.◎考点题型4一次函数与反比例函数的其它综合应用例.(2022·重庆市第七中学校一模)如图,在平面直角坐标系中,一次函数 1y kx b k 0 图象与反比例函数 2m y m 0x图象交于A ,B 两点,与x 轴交于点C ,已知点 4,1A ,点B 的横坐标为2 .(1)求一次函数与反比例函数的解析式,(2)若点D 是x 轴上一点,且6ABD S ,求点D 坐标;(3)当12y y 时,直接写出自变量x 的取值范围.变式1.(2022·浙江宁波·八年级期末)如图,已知反比例函数k y x(0k ,k 为常数)的图象与一次函数y ax b 的图象交于(1,3)A 、(,1)B m 两点.(1)求反比例函数及一次函数的表达式;(2)已知点(,0)P n ,过点P 作平行于y 轴的直线,交一次函数图象于点M ,且点M 第一象限内,交反比例函数图象于点N .若点P 到点M 的距离小于线段PN 的长度,结合函数图象直接写出n 的取值范围.变式2.(2022·河南鹤壁·八年级期末)如图,直线y 1=2x ﹣1与双曲线y 2=3x 相交于点A (32,2),B (﹣1,﹣3).(1)根据图象直接写出321x x的解集为_____;(2)过点A 作AC ⊥y 轴于点C ,连接BC ,求△ABC 的面积;(3)过点C 的直线交AB 与点D ,若直线CD 将△ABC 分成了面积相等的两个三角形,求出直线CD 的解析式.变式3.(2022·河北石家庄·九年级期末)如图,在直角坐标系中,点A (3,a )和点B 是一次函数y =x ﹣2和反比例函数y m x图像的交点.(1)求反比例函数的表达式和点B 的坐标;(2)利用图像,直接写出当x ﹣2m x>时x 的取值范围;(3)C 为线段AB 上一点,作CD ∥y 轴与反比例函数图像交于点D ,与x 轴交于点E ,当DE EC 3时,直接写出点C 的坐标.◎考点题型5反比例函数与几何综合例.(2022·江苏扬州·八年级期末)如图,已知点A 在正比例函数2y x 图像上,过点A 作AB x 轴于点B ,四边形ABCD 是正方形,点D 在反比例函数k y x 图像上.(1)若点A 的横坐标为-2,求k 的值;(2)若设正方形ABCD 的面积为m ,试用含m 的代数式表示k 值.变式1.(2022·福建泉州·八年级期末)如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,点B 在反比例函数(0)k y x x的图象上,且2BC .将矩形OABC 以点A 为旋转中心,顺时针旋转90 后得到矩形FADE ,函数k y x 的图象刚好经过EF 的中点N ,交DE 于点M .(1)求该反比例函数关系式;(2)求OBM 的面积.变式2.(2022·浙江宁波·八年级期末)如图,菱形ABCD 的顶点A 、B 分别在y 轴与x 轴正半轴上,C 、D 在第一象限,AC x ∥轴,反比例函数k y x的图象经过顶点D .(1)若 0,2A ,10B ,①求反比例函数的解析式;②证明:点C 落在反比例函数k y x的图象上;(2)若183k 30ABD ,求菱形ABCD 的边长.变式3.(2022·江苏泰州·八年级期末)对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“直V 图形”.例如,图中点D 为点C 关于点P 的“直V 图形”.(1)3y x的图像关于原点O 的“直V 图形”的表达式为__________;(2)M 为 30y x x的图像上一点,其横坐标为m ,点P 的坐标为 ,0a .点M 关于点P 的“直V 图形”为点N .①若1m ,试说明:不论a 为何值,点N 始终在直线2y x 上;②若83a ,试判断点N 能否在直线23y x 上?若能,请求出m 的值;若不能,请说明理由.。

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)

中考数学总复习《反比例函数与一次函数综合》专项训练题(带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系中,直线33y x =-与反比例函数k y x=的图象在第一象限交于点()2,A n ,在第三象限交于点B ,过点B 作BC x ⊥轴于C ,连接AC .(1)求反比例函数解析式;(2)求ABC 的面积;2.如图,一次函数y ax b =+与反比例函数k y x =()0k ≠的图象交于()23A -,,()1B m ,两点.(1)试求m 的值和一次函数的解析式;(2)求AOB 的面积.3.如图,在平面直角坐标系中,一次函数1y k x b =+的图象与反比例函数2k y x=的图象交于()2,1A -、()1,B n -两点,与x 轴交于点C .(1)求2k ,n 的值;(2)请直接写出不等式21k k x b x+<的解集; (3)连接OA 、OB ,求AOB 的面积.4.一次函数2y x b =+的图象与反比例函数()60y x x=>的图象交于点()16A ,,与x 轴交于点B .(1)求一次函数的表达式;(2)过点A 作AC x ⊥轴于点C ,求ABC 的面积.5.如图,在平面直角坐标系中,直线y x =与双曲线k y x =相交于()2,A m ,B 两点BC x ⊥轴,垂足为C .(1)求双曲线k y x=的解析式,并直接写出点B 的坐标. (2)求ABC 的面积.6.如图,一次函数y ax b =+的图象与反比例函数k y x=的图象交于第一象限C D ,两点,与坐标轴交于A 、 B 两点,连接(OC OD O ,是坐标原点).(1)求反比例函数的表达式及m 的值;(2)根据函数图象,直接写出不等式k ax b x +≥的解集为 .7.如图,已知一次函数y ax b =+与反比例函数(0)m y x x=<的图象交于(2,4)A -,(4,2)B -两点,且与x 轴和y 轴分别交于点C 、点D .(1)求反比例函数与一次函数的解析式;(2)根据图象直接写出不等式m ax b x<+的解集; (3)点P 在y 轴上,且13AOP AOB S S =△△,请求出点P 的坐标.8.如图,反比例函数m y x=的图象与一次函数y kx b =+的图象交于A 、B 两点,点A 的坐标为()23,,点B 的坐标为()1n ,.(1)求反比例函数与一次函数表达式;(2)结合图象,直接写出不等式m kx b x<+的解集.9.如图,一次函数2y kx =+的图象与x 轴交于点(4,0)A -,与反比例函数m y x =的图象交于点B ,C (-6,c ).(1)求反比例函数的表达式及点B 的坐标;(2)当m kx b x+≥时,直接写出x 的取值范围; (3)在双曲线m y x=上是否存在点P ,使ABP 是以点A 为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,一次函数y kx b =+的图象与反比例函数()0m y x x=>的图象交于点()2P n ,,与x 轴交于点()40A -,,与y 轴交于点C ,PB x ⊥轴于点B ,且AC BC =.(1)求一次函数、反比例函数的解析式;(2)在平面内找一点D ,使以B ,C ,P ,D 为顶点的四边形是平行四边形,求出点D 的坐标.11.如图,反比例函数1k y x =图象与一次函数2112y x =--的图象交于点()4,A a -与点B .(1)求a 的值与反比例函数关系式;(2)连接OA ,OB ,求AOB S ;(3)若12y y >,请结合图象直接写出x 的取值范围.12.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()12A -,,(1),B m -.(1)求这两个函数的表达式;(2)在x 轴上是否存在点(0)(0),P n n >,使ABP 为等腰三角形?若存在,求n 的值,若不存在,说明理由.13.如图,在平面直角坐标系中,点()2,2A -,()6,6B -为Rt ABC △的顶点90BAC ∠=︒,点C 在x 轴上.将ABC 沿x 轴水平向右平移a 个单位得到A B C ''',A ,B 两点的对应点A ',B '恰好落在反比例函数()0k y x x=>的图象上.(1)求a 和k 的值;(2)作直线l 平行于A C ''且与A B '',B C ''分别交于M ,N ,若B MN '△与四边形MA C N ''的面积比为4:21,求直线l 的函数表达式;(3)在(2)问的条件下,是否存在x 轴上的点P 和直线l 上的点Q ,使得以P A Q ',,,B '四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P ,Q 的坐标;若不存在,请说明理由.14.如图,已知直线1y x m =-++与反比例函数()0,0m y x m x =>>的图象分别交于点A 和点B ,与x 轴交于点C ,与y 轴交于点D .(1)如图1,当点A 坐标为()1,3时 ①求直线AB 的解析式:①若点P 是反比例函数在第一象限直线AB 上方一点,当ABP 面积为2时,求点P 的坐标;(2)将直线CD 向上平移2个单位得到直线EF ,将双曲线位于CD 下方部分沿直线CD 翻折,若翻折后的图象(图中虚线部分)与直线EF 有且只有一个公共点,求m 的值.15.已知在直角坐标平面内,直线l 经过点()0,4A -,且与x 轴正半轴交于点B ,25cos 5BAO ∠=,反比例函数()0k y x x =>的图像与直线l 交于点()3,C m .(1)求k 的值;(2)点P 在上述反比例函数的图像上,联结BP 、PC ①过点P 作PD x 轴,交直线l 于点D ,若PD 平分BPC ∠,求PD 的长; ①作直线PC 交y 轴于点E ,联结BE ,若3PBE PBC S S =△△,请直接写出点P 的坐标.参考答案:1.(1)6y x=; (2)92.(1)16,42m y x =-=+ (2)83.(1)22k =-,n=2(2)2x >或10x -<<(3)324.(1)一次函数的表达式为24y x =+;(2)ABC 的面积为9.5.(1)4y x =;()2,2B -- (2)46.(1)4y x=;1m = (2)14x ≤≤7.(1)8y x=- 6y x =+ (2)42x -<<-(3)(0,2)P 或(0,2)-8.(1)6y x = 142y x =-+; (2)26x <<或0x <.9.(1)反比例函数得表达式为:6y x=()2,3B (2)60x -≤<或2x ≥(3)存在 1(1,6)P -- 2(3,2)P --10.(1)114y x =+ 8y x = (2)()01-,、()03,和()81,11.(1)1a = 4y x=- (2)3(3)40x -<<或2x >12.(1)2y x=- 1y x =-+; (2)114n =-+或217n =+13.(1)8a = 12k =(2)45y x (3)存在,点P 、Q 的坐标分别为4360855⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,或1405⎛⎫- ⎪⎝⎭,、625⎛⎫ ⎪⎝⎭,或36,85⎛⎫ ⎪⎝⎭ 1645⎛⎫ ⎪⎝⎭,14.(1)①4y x =-+;①()3636P +-,或()3636-+, (2)322m =+15.(1)6k =.(2)①125PD =;①94,23P ⎛⎫ ⎪⎝⎭或98,43P ⎛⎫ ⎪⎝⎭.。

反比例函数与一次函数综合 中考数学专项训练(含解析)

反比例函数与一次函数综合 中考数学专项训练(含解析)

反比例函数与一次函数综合一、单选题.....反比例函数()10y mx=的图象与一次函数2y x b =-+的图象交于A 、B 两点,其中),当12y y >时,的取值范围是().1x <B 12x <<.2x >D .01x <<或2>A .18-B .4.如图,双曲线my x=与直线的纵坐标为1-.根据图象信息可得关于A .1x =C .11x =-,21x =6.如图,一次函数2y x =-+与反比例函数(),1B n -,不等式2kx x-+>的解集为(A .1x <-或0x <<C .13x -<<7.直线2y x =+与双曲线A .78.如图,已知一次函数A .33二、填空题9.考察函数4y x=-10.如图,已知一次函数11.如图,直线2y x =与双曲线单位后,直线与双曲线交于点12.已知直线y x =与反比例函数C 为反比例函数图象第一象限上任意一点,连接点C 的坐标为.13.如图,直线3y x =-+与坐标轴分别相交于x14.如图,曲线l 是由函数y 到的,过点()42,42A -,B 面积是46,则k 的值为15.如图,一次函数y 点,则不等式1kx b x+-16.如图,点A 在双曲线y 0b >)上,A 与B 关于x 轴对称,直线有以下结论:①(),3A b b ②当三、解答题(1)请求出一次函数和反比例函数解析式:(2)连接OC,OD,求出(1)求反比例函数的关系式与(2)根据图象直接写出不等式(3)若动点P在x轴上,求PA(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接点C的坐标.参考答案:3.A【分析】本题考查一次函数与反比例函数的交点问题,直角三角形的性质,设点4,3a a ⎛⎫- ⎪⎝⎭,求出OA ,根据点角形的性质得到OC OA =程,解方程即可求解,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的令23y x =-中0x =,代入∴()0,3B -,∴3OB =,令23y x =-中0y =,得:由图象可知,反比例函数上,第二象限内的一支符合题意,即第四象限内,与直线交点及交点上方的图象符合题意,联立两函数解析式:41y x y ⎧=-⎪⎨⎪=-⎩解得:41x y =⎧⎨=-⎩即4x ≥,当0y =时,1042x =+,解得,8x =-,∴()80C -,,则D的坐标为2,22a a⎛⎫⎪ ⎪⎝⎭,直线2y x=向右平移3个单位后,直线与双曲线交于点∴B的坐标为23,22a a⎛⎫+⎪ ⎪⎝⎭.将0y =代入直线3y x =-+得解得3x =,②当2b =时,点A 的坐标为:∴23243k =⨯=,故②正确;③∵()3,Ab b ,A 与B 关于()3,B b b -∵28y x =+,∴令0x =,则8y =;令∴()()4,0,0,8A B -DOC AOB AOD BOC S S S S =-- 18.(1)反比例函数解析式为【点睛】本题考查了用待定系数法求反比例函数的关系式、题、利用图象求不等式的解集、轴对称性质、勾股定理,解题关键是熟练利用待定系数法求∠=∠=∠=ABO BOE AEO90。

2023年中考数学专题练习:反比例函数与一次函数的综合

2023年中考数学专题练习:反比例函数与一次函数的综合

2023年中考数学专题练习--反比例函数与一次函数的综合1.如图, A B 、 两点的坐标分别为 ()()2,0,0,3- ,将线段 AB 绕点 B 逆时针旋转90°得到线段BC ,过点 C 作 CD OB ⊥ ,垂足为 D ,反比例函数 ky x=的图象经过点 C .(1)直接写出点 C 的坐标,并求反比例函数的解析式;(2)点 P 在反比例函数 ky x=的图象上,当 PCD 的面积为3时,求点 P 的坐标. 2.如图,四边形ABCD 是矩形,点A 在第四象限y 1=﹣ 2x 的图象上,点B 在第一象限y 2= kx 的图象上,AB 交x 轴于点E ,点C 与点D 在y 轴上,AD = 32 ,S 矩形OCBE = 32S 矩形ODAE .(1)求点B 的坐标.(2)若点P 在x 轴上,S △BPE =3,求直线BP 的解析式.3.如图,直线y=2x+4与反比例函数y=kx的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式65x - >x 的解集. 4.如图,直线y=3x 与双曲线y= kx(k≠0,且x >0)交于点A ,点A 的横坐标是1.(1)求点A 的坐标及双曲线的解析式;(2)点B 是双曲线上一点,且点B 的纵坐标是1,连接OB ,AB ,求△AOB 的面积.5.如图,点A (m ,6)、B (n ,1)在反比例函数图象上,AD△x 轴于点D ,BC△x 轴于点C ,DC=5.(1)求m 、n 的值并写出该反比例函数的解析式. (2)点E 在线段CD 上,S △ABE =10,求点E 的坐标.6.如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数kyx=(k >0)的图象与BC 边交于点E .(1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?7.如图6,正比例函数 2y x = 的图象与反比例函数 ky x=的图象交于A 、B 两点,过点A 作AC △x 轴于点C ,连接BC ,若△ABC 面积为2.(1)求k 的值;(2)在x 轴上是否存在点D ,使△ABD 为直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,直线EF 交x ,y 轴子点F ,E ,交反比例函数 ky x=(x >0)图象于点C ,D ,OE=OF= 52,以CD 为边作矩形ABCD ,顶点A 与B 恰好落在y 轴与x 轴上.(1)若矩形ABCD 是正方形,求CD 的长。

中考数学专练——反比例函数与一次函数的综合

中考数学专练——反比例函数与一次函数的综合

2023年数学专练——反比例函数与一次函数的综合一、综合题1.如图,已知反比例函数kyx=与一次函数y x m=+的图象交于点B和点(14)A k-+,,一次函数的图象与x轴交于点C .(1)求出两个函数的表达式.(2)求AOB的面积.(3)直接写出kx mx+≥的解集.2.已知:如图,函数kyx=与28y x=-+的图象交于点A(1,a)、B(b,2).(1)求函数kyx=的解析式以及点A、B的坐标;(2)观察图象,直接写出不等式k28xx≥-+的解集;(3)若点P是x轴上的动点,当AP+BP取得最小值时,直接写出出点P的坐标.3.如图,直线y1=ax+b与双曲线y2=kx交于A,B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)根据图象直接写出ax+b﹣kx>0中x的取值范围.4.如图,在平面直角坐标系中,一次函数y x m=-+的图象与反比例函数(0)ky xx=>的图象交于A、B两点,已知()2,4A,(),2B n .(1)求反比例函数的表达式;(2)当 0x > 时,求不等式kx m x>-+ 的解集. 5.已知图中的曲线是函数 5m y x-=(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y=2x 图象在第一象限的交点为 A (2,n ),求点A 的坐标及反比例函数的解析式.6.如图,一次函数y =kx+b 的图象与反比例函数y = 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,且OB =6,(1)求函数y = 和y =kx+b 的解析式.(2)已知直线AB 与x 轴相交于点C ,在第一象限内,求反比例函数y = 的图象上一点P ,使得S △POC =9.7.如图,直线 y kx b =+ y kx b =+ 与反比例函数 12y x=相交于 A(2)m -, 、 B(n 3),.(1)连接 OA 、 OB ,求 AOB 的面积; (2)根据(1)中的图象信息,请直接写出不等式12kx b x>+ 的解集. 8.如图,一次函数 1y kx b =+ 的图象与反比例函数 2my x=的图象交于点A (-3, 8m + ),B ( n ,-6)两点.(1)求一次函数与反比例函数的解析式; (2)求 AOB 的面积;(3)直接写出 12y y > 时,x 的取值范围.9.如图,在直角坐标系中,O 为坐标原点.已知反比例函数 ky x=( 0k > )的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数 ky x=的图象上,求当1≤x≤3时,函数值y 的取值范围. 10.如图,在平面直角坐标系中,一次函数 ()0y kx b k =+≠ 与反比例函数 ()0my m x=≠ 的图像交于点 ()3,1A ,且过点 ()1,3B -- .(1)求反比例函数和一次函数的表达式; (2)根据图像直接写出当 mkx b x+>时, x 的取值范围. 11.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8),B (﹣4,m )两点.(1)求k 1,k 2,b 的值; (2)求△AOB 的面积;(3)请直接写出不等式1k x≤ 2k x+b 的解. 12.如图所示,一次函数y =kx+b 的图象与反比例函数y =mx的图象交于A(1,t+1),B(t-5,-1)两点.(1)求一次函数和反比例函数的解析式;(2)若点(c ,p)和(n ,q)是反比例函数y =mx图象上任意两点,且满足c =n+1时,求 q p pq - 的值.(3)若点M(x 1,y 1)和N(x 2,y 2)在直线AB(不与A 、B 重合)上,过M 、N 两点分别作y 轴的平行线交双曲线于E 、F ,已知x 1<-3,0<x 2<1,当x 1x 2=-3时,判断四边形NFEM 的形状.并说明理由.13.如图,反比例函数 8y x=-与一次函数 2y x =-+ 的图象交于A 、B 两点.(1)求A 、B 两点的坐标;(2)求△AOB 的面积. (3)当x 为何值时 8y x=-的函数值大于 2y x =-+ 的函数值,直接写出x 的取值范围14.如图,在平面直角坐标系xOy 中,直线y =2x +2与函数y =kx(k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1,m ).(1)求k ,m 的值;(2)直接写出关于x 的不等式2x +2>kx的解集; (3)若Q 在x 轴上,△ABQ 的面积是6,求Q 点坐标.15.如图,一次函数 1y kx =+ 的图象与反比例函数 my x=的图象交于点 A 、 B ,点 A 在第一象限,过点 A 作 AC x ⊥ 轴于点 C , AD y ⊥ 轴于点 D ,点 B 的纵坐标为-2,一次函数的图象分别交 x 轴、 y 轴于点 E 、 F ,连接 DB 、 DE .已知 4ADFS= , 3AC OF = .(1)求一次函数与反比例函数的解析式; (2)求 DBE 的面积;(3)直接写出反比例函数的值大于一次函数的值的 x 的取值范围.16.如图,已知直线 5l y x =-+:(1)当反比例函数 (0,0)ky k x x=>> 的图象与直线 l 在第一象限内至少有一个交点时,求k 的取值范围 (2)若反比例函数 (0,0)ky k x x=>> 的图象与直线 l 在第一象限内相交于点 11(,)A x y 、 22(,)B x y ,当 213x x -= 时,求k 的值并根据图象写出此时关的不等式 5kx x-+< 的解集17.如图,过直线 12y kx =+上一点 P 作 PD x ⊥ 轴于点D ,线段 PD 交函数 (0)my x x=> 的图像于点C ,点C 为线段 PD 的中点,点C 关于直线 y x = 的对称点 C ' 的坐标为 (13),.(1)求k 、m 的值;(2)求直线 12y kx =+与函数 (0)my x x=> 图像的交点坐标;(3)直接写出不等式1(0)2m kx x x >+> 的解集. 18.如图,一次函数y =k 1x+b 的图象与反比例函数y =2k x的图象相交于点A(3,1),B(﹣1,n)两点.(1)分别求出一次函数和反比例函数的解析式; (2)根据图象,直接写出满足k 1x+b≥2k x的x 的取值范围; (3)连接BO 并延长交双曲线于点C ,连接AC ,求△ABC 的面积.19.如图,双曲线 ()0ky k x=> 经过矩形OABC 的边BC 的中点E ,交AB 于点D.设点B 的坐标为(m ,n ).(1)直接写出点E 的坐标,并求出点D 的坐标;(用含m ,n 的代数式表示) (2)若梯形ODBC 的面积为,求双曲线的函数解析式.20.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,反比例函数y=k x(k≠0)在第一象限内的图象经过点D (m ,2)和AB 边上的点E (3,23).(1)求反比例函数的表达式和m 的值;(2)将矩形OABC 的进行折叠,使点O 于点D 重合,折痕分别与x 轴、y 轴正半轴交于点F ,G ,求折痕FG 所在直线的函数关系式.答案解析部分1.【答案】(1)解:将点 (14)A k -+, 代入 ky x= , 得 4k k -+= 解得 2k =∴ 反比例函数表达式为 2y x=, (12)A , 将点 (12)A , 代入 y x m =+ 得 21m =+1m ∴=∴ 一次函数的表达式为 1y x =+(2)解:由一次函数 1y x =+ 的图象与 x 轴交于点 C .令 0y = ,解得 1x =- ,则 (10)C -, 则 1OC =联立 21y x y x ⎧=⎪⎨⎪=+⎩解得 1121x y =-⎧⎨=-⎩ , 2212x y =⎧⎨=⎩ ()21B ∴--,()113=121222AOBA B SOC y y ∴=⋅⋅-⨯⨯--= (3)解:一次函数 1y x =+ 与反比例函数 2y x=交于点 (12)A , , ()21B --, 根据函数图象可得 kx m x+≥的解集为: 1x ≥ 或 20x -≤< 【解析】【分析】(1)将A (1,-k+4)代入y=kx中可得k 的值,进而可得反比例函数的解析式;将A (1,2)代入y=x+m 中求出m ,进而可得一次函数的解析式;(2)易得C (-1,0),则OC=1,联立反比例函数与一次函数的解析式求出x 、y ,可得B (-2,-1),接下来根据三角形的面积公式进行计算;(3)根据图象,找出一次函数在反比例函数图象上方部分所对应的x 的范围即可.2.【答案】(1)解:将A (1,a ),B (b ,2)代入y =﹣2x+8中得:a=6,b=3∴A (1,6),B (3,2), 把A (1,6)代入y =kx中,可得k =6 ∴反比例函数解析式为y =6x,A 、B 两点坐标分别为A (1,6)、B (3,2); (2)解:由图象得:不等式6x<﹣2x+8的解集为1<x <3或x <0; (3)(52,0) 【解析】【解答】解:(3)如图,作点A 关于x 轴的对称点A′(1,-6),连结A′B 交x 轴于点P ,则点P 即为所求,此时AP+BP 的值最小.设直线A′B 的解析式为y =mx+n , ∵B (3,2),A′(1,-6),∴326m n m n +=⎧⎨+=-⎩ ,解得 410m n =⎧⎨=-⎩, ∴直线A′B 的解析式为y =4x-10, 当y =0时,y =52, ∴点P 的坐标为(52,0).【分析】(1)将点A 、B 的坐标代入一次函数表达式求解a 、b ,再将点A 坐标代入反比例函数表达式求解k 即可;(2)结合图像,函数值大的图像在上方的原则直接写出答案即可;(3)利用“将军饮马”的方法,先作对称轴,再求解即可。

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。

一次函数和反比例函数综合练习含答案

一次函数和反比例函数综合练习含答案

《一次函数和反比例函数》中考题1、已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象交于点B (2,n ),连结BO ,若.(1)求该反比例函数的解析式和直线AB 的解析式;(2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.【思路分析】(1)先由A (﹣2,0),得OA=2,点B (2,n ),S △AOB =4,得OA •n=4,n=4,则点B 的坐标是(2,4),把点B (2,4)代入反比例函数的解析式为y=,可得反比例函数的解析式为:y=;再把A (﹣2,0)、B (2,4)代入直线AB 的解析式为y=kx+b 可得直线AB 的解析式为y=x+2.(2)把x=0代入直线AB 的解析式y=x+2得y=2,即OC=2,可得S △OCB =OC×2=×2×2=2.【解】(1)由A (-2,0),得OA =2.∵点B (2,n )在第一象限内,4=AOB S △.∴OA ×n=4,∴n=4. ∴点B 的坐标为(2,4)………………(2分)设反比例函数的解析式为y=x8(a ≠0) 将点B 的坐标代入,得4=2a ,∴a=8. ∴反比例函数的解析式为y=x 8………………(4分) 设直线AB 的解析式为y=kx+b(k ≠0)将点A 、B 的坐标分别代入,得 解得⎩⎨⎧==.2,1b k ∴直线AB 的解析式为y=x+2. ………………(6分)(2)在y=x+2中,;令x =0,得y=2.4=AOB S△21⎩⎨⎧=+=+-.42,02b k b k∴点C 的坐标是(0,2),∴OC =2. ∴2222121=⨯⨯=⨯=B OCB x OC S △.………………(10分) 2、如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数xk y =(x >0,k ≠0)的图像经过线段BC 的中点D . (1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.【思路分析】对于(1),根据题中已知条件求出D 的坐标,进而求出k 的值;对于(2),需要先分别画出图形,将根据题中的条件求得解析式.【解】(1)依题意知点B 的坐标为(2,2),得CB 的长为2,且D 点纵坐标为2,又因为D 为BC 的中点,∴D 点的坐标为(1,2),代入y =xk y =解得k =2. (2)分点P 在点D 的下方和上方,即x >1和0<x <1两种情况讨论;(ⅰ)如答案图1,依题意得,点P 的坐标为(x ,x 2),所以PR=x ,PQ=2-x2, 所以,S=PR ·PQ= x (2-)=2x -2.x2(ⅱ)如答案图2,依题意得,点P 的坐标为(x ,x 2),所以PR=x ,PQ=x2-2, 所以,S=PR ·PQ= x (-2)=2-2x , 综上,22;(1)22(01)x x S x x -⎧⎨-⎩>;<< ∴PC =2,∴P 1(-1,0),P 2(3,0).S △PAB =12×PC ×4=4, 3、已知,在平面直角坐标系xOy 中,点A 在x 轴负半轴上,点B 在y 轴正半轴上,OA=OB ,函数y=的图象与线段AB 交于M 点,且AM=BM .(1)求点M 的坐标;(2)求直线AB 的解析式.x2∵AM=BM,∴点M为AB的中点,∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB的中点,∴MC=MD,则点M的坐标可以表示为(﹣a,a),把M(﹣a,a)代入函数y=中,解得a=2,则点M的坐标为(﹣2,2);(2)∵则点M的坐标为(﹣2,2),∴MC=2,MD=2,∴OA=OB=2MC=4,∴A(﹣4,0),B(0,4),设直线AB的解析式为y=kx+b,把点A(﹣4,0)和B(0,4)分别代入y=kx+b中得,解得:.则直线AB的解析式为y=x+4.4、如图,矩形OABC 的顶点,A C 分别在x 轴和轴上,点B 的坐标为(2,3)。

专题三 函数综合问题(一次函数+反比例函数)-中考二轮专题复习(原卷版)(全国适用)

专题三 函数综合问题(一次函数+反比例函数)-中考二轮专题复习(原卷版)(全国适用)

专题三函数的综合问题专题三函数综合问题(一次函数+反比例函数)一、以一次函数为背景的综合问题例题(2021·黑龙江·哈尔滨市第十七中学校二模)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣34x+3分别交x轴,y轴于点A,B.∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上的一点(不与B,D重合),过点P作PC⊥BD交x轴于点C.设点P 的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,BC的延长线交DE于点F,连AP,若sin∠BAP 10OF的长.练习题1.(2021·吉林双阳·二模)如图,在平面直角坐标系中,两条直线分别为y=2x,y=kx,且点A在直线y=2x上,点B在直线y=kx上,AB∥x轴,AD⊥x轴,BC⊥x轴垂足分别为D 和C,若四边形ABCD为正方形时,则k=()A .14B .12C .23D .22.(2021·山东槐荫·二模)如图,点B ,C 分别在直线y =2x 和直线y =kx 上,A 、D 是x 轴上两点,若四边形ABCD 是长方形,且AB :AD =1:3,则k 的值是( )A .23B .25C .27D .293.(2021·山东广饶·二模)如图,在平面直角坐标系xOy 中,菱形OABC 满足点O 在原点,点A 坐标为(2,0),∠AOC =60°,直线y =﹣3x +b 与菱形OABC 有交点,则b 的取值范围是___.4.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A 的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC =::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.5.(2021·广东深圳·三模)定义:如图1,已知锐角∠AOB 内有定点P ,过点P 任意作一条直线MN ,分别交射线OA ,OB 于点M ,N .若P 是线段MN 的中点时,则称直线MN 是∠AOB 的中点直线.如图2,射线OQ 的表达式为y =2x (x >0),射线OQ 与x 轴正半轴的夹角为∠α,P (3,1),若MN 为∠α的中点直线,则直线MN 的表达式为__________________.6.(2021·山东·济宁学院附属中学一模)如图,在平面直角坐标系xOy 中,ABCO Y 的顶点A ,B 的坐标分别是(6,0)A ,(0,4)B .直线l 经过坐标原点,并与AB 相交于点D .(1)直接写出C 点的坐标______.(2)若DOA BOC ∠=∠,试确定点D 的坐标及直线l 的解析式.(3)在(2)的条件下,动点P 在直线l 上运动,以点P 为圆心,PB 的长为半径的P e 随点P 运动,当P e 与ABCO Y 的边相切时,求出P e 的半径.7.(2022·辽宁·东北育才实验学校模拟预测)如图,已知直线l 1:y =2833x +与直线l 2:y =﹣2x +16相交于点C ,l 1、l 2分别交x 轴于A 、B 两点.矩形DEFG 的顶点D 、E 分别在直线l 1、l 2上,顶点F 、G 都在x 轴上,且点G 与点B 重合.(1)求△ABC 的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原地出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t ≤12)秒,矩形DEFG 与△ABC 重叠部分的面积为S ,直接写出S 关于t 的函数关系式,并写出相应的t 的取值范围.8.(2021·浙江·诸暨市暨阳初级中学一模)如图,直线483y x =−+分别与x 轴,y 轴相交于点A ,点B ,作矩形ABCD ,其中点C ,点D 在第一象限,且满足AB ∶BC =2∶1.连接BD . (1)求点A ,点B 的坐标.(2)若点E 是线段AB (与端点A 不重合)上的一个动点,过E 作EF ∥AD ,交BD 于点F ,作直线AF .①过点B 作BG ⊥AF ,垂足为G ,当BE =BG 时,求线段AE 的长度.②若点P 是线段AD 上的一个动点,连结PF ,将△DFP 沿PF 所在直线翻折,使得点D 的对应点D ¢落在线段BD 或线段AB 上.直接写出线段AE 长的取值范围.9.(2021·辽宁沈阳·中考真题)如图,平面直角坐标系中,O 是坐标原点,直线15(0)y kx k =+≠经过点()3,6C ,与x 轴交于点A ,与y 轴交于点B .线段CD 平行于x 轴,交直线34y x =于点D ,连接OC ,AD .(1)填空:k = __________.点A 的坐标是(__________,__________); (2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D 为止;动点Q 同时从点D 出发,沿对角线OD 以每秒1个单位长度的速度向点O 运动,直到点O 为止.设两个点的运动时间均为t 秒. ①当1t =时,CPQ V 的面积是__________.②当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值.10.(2021·黑龙江·哈尔滨市虹桥初级中学校模拟预测)直线y kx k =+与x 轴交于A ,与y 轴交于C 点,直线BC 的解析式为1y x k k=−+,与x 轴交于B .(1)如图1,求点A 的横坐标;(2)如图2,D 为BC 延长线上一点,过D 作x 轴垂线于点E ,连接CE ,若CD CA =,设ACE V 的面积为S ,求S 与k 的函数关系式;(3)如图3,在(2)的条件下,连接OD 交AC 于点F ,将CDF V 沿CF 翻折得到△FCG ,直线FG 交CE 于点K ,若345ACE CDO ∠−∠=︒,求点K 的坐标.二、反比例函数的综合问题例题(2021·广东·珠海市紫荆中学三模)如图1,在平面直角坐标系xOy 中,线段AB 在x 轴的正半轴上移动,且AB =1,过点A 、B 作y 轴的平行线分别交函数y 1=1x (x >0)与y 2=3x(x >0)的图象于C 、E 和D 、F ,设点A 的横坐标为m (m >0).(1)D 点坐标 ;F 点坐标 ;连接OD 、OF ,则△ODF 面积为 ;(用含m 的代数式表示)(2)连接CD 、EF ,判断四边形CDFE 能否是平行四边形,并说明理由;(3)如图2,经过点B 和点G (0,6)的直线交直线AC 于点H ,若点H 的纵坐标为正整数,请求出整数m 的值. 练习题1.(2021·河北·高阳县教育局教研室模拟预测)如图是反比例函数3y x =和7y x=−在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点A ,B ,点P 在x 轴上.则点P 从左到右的运动过程中,△APB 的面积是( )A .10B .4C .5D .从小变大再变小2.(2021·山东滨州·一模)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x在第一象限内的图象经过点A ,与BC 交于点F ,则点F 的坐标为( )A .611,6120)B .61+1,6120)C .6146120− D .61﹣946120− 3.(2021·山东济南·二模)如图,在平面直角坐标系中,菱形ABCD 的对称中心恰好是原点O ,已知点B 坐标是32,2⎛⎫− ⎪⎝⎭,双曲线y =6x经过点A ,则菱形ABCD 的面积是( )A .2B .18C 252D .254.(2021·广东深圳·三模)如图,在反比例函数y =4x (x >0)的图象上有动点A ,连接OA ,y =k x (x >0)的图象经过OA 的中点B ,过点B 作BC ∥x 轴交函数y =4x 的图象于点C ,过点C 作CE ∥y 轴交函数y =kx的图象于点D ,交x 轴点E ,连接AC ,OC ,BD ,OC 与BD 交于点F .下列结论:①k =1;②S △BOC =32;③S △CDF =316S △AOC ;④若BD =AO ,则∠AOC =2∠COE .其中正确的是( )A .①③④B .②③④C .①②④D .①②③④5.(2021·江苏扬州·一模)如图,正方形的顶点A ,C 分别在y 轴和x 轴上,边BC 的中点F 在y 轴上,若反比例函数12y x=的图象恰好经过CD 的中点E ,则OA 的长为______.6.(2021·福建·厦门五缘实验学校二模)如图,在平面直角坐标系中,反比例函数y kx=(k >0)的图象与半径为5的⊙O 交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是______.7.(2021·江苏常州·二模)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =kx(k >0,x >0)的图象上,CD 在x 轴上,点B 在y 轴上,已知CD =2.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标. 8.(2021·山东菏泽·三模)如图,反比例函数()0ky k x=≠的图像过等边BOC V 的顶点B ,2OC =,点A 在反比例函数的图象上,连接AC ,AO .(1)求反比例函数()0ky k x=≠的表达式; (2)若四边形ACBO 的面积是33A 的坐标.9.(2021·吉林·三模)如图,在平面直角坐标系中,矩形ABCO 的顶点A 、C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(4,2),双曲线ky x=(x >0)的图象交BC 于点D ,若BD =32.求反比例函数的解析式及点F 的坐标.10.(2022·广东江门·一模)反比例函数y 1=1k x(k 1>0)和y 2=22(0)k k x >在第一象限的图象如图所示,过原点的两条射线分别交两个反比例图象于A ,D 和B ,C(1)求证:AB ∥CD ;(2)若k 1=2,S △OAB =2,S 四边形ABCD =3,求反比例函数y 2=2k x(k 2>0)的解析式. 11.(2021·湖北恩施·模拟预测)如图,在平面直角坐标系中,点A ,D 分别是x 轴、y 轴上的一动点,以AD 为边向外作矩形ABCD ,对角线BD ∥x 轴,反比例函数(0)ky k x=>图象经过矩形对角线交点E .(1)如图1,若点A 、D 坐标分别是(6,0),(0,2),求BD 的长;(2)如图2,保持点D 坐标(0,2)不变,点A 向右移移动,当点C 刚好在反比函数图象上时,求点A 坐标及k 的值.12.(2021·广东·汕头市潮南实验学校一模)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,其中4cos 5OBC ∠=,3OC =.已知反比例函数(0)ky x x=>的图象经过BC 边上的中点D ,交AB 于点E .(1)求k 的值;(2)猜想OCD ∆的面积与OBE ∆的面积之间的关系,请说明理由.(3)若点(,)P x y 在该反比例函数的图象上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.13.(2021·重庆北碚·模拟预测)有这样一个问题:探究函数y =bx ax ++2的图象与性质,小童根据学习函数的经验,对函数的图象与性质进行例研究,已知当x =2时,y =7,0x =时,y =﹣3.下面是小童探究的过程,请补充完整:(1)该函数的解析式为,m=,n=.根据图中描出的点,画出函数图象.x…﹣4﹣3﹣20234…y…m 3413﹣37n113…;①该函数图象是中心对称图形,它的对称中心是原点.②该函数既无最大值也无最小值.③在自变量的取值范围内,y随x的增大而减小.(3)请结合(1)中函数图象,直接写出关于x的不等式2220x axx b+−−≥+的解集.(保留1位小数,误差不超过0.2)14.(2021·广东·二模)如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A⊥y轴于点A,PB⊥x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P (6,3),求△PCD 的面积;(2)在(1)的条件下,当PG 平分∠CPD 时,求点G 的坐标;(3)如图2,若点G 是OP 与CD 的交点,点M 是线段OP 上的点,连接MC 、MD .当∠CMD =90°时,求证:MG =12CD .15.(2021·广东珠海·一模)如图,在平面直角坐标系中,O 为坐标原点,点B 在x 轴正半轴上,四边形OACB 为平行四边形,3cos AOB?(0)k y k x=>的图象在第一象限内过点A ,且经过BC 边的中点F ,连接AF ,OF .(1)当3OA = (2)在(1)的条件下,求点F 的坐标; (3)证明:ΔΔOAF AFC ∽.三、一次函数与反比例函数的综合问题例题(2021·江苏·苏州市吴中区碧波中学一模)如图,过直线12y kx =+上一点P 作PD x ⊥轴于点D ,线段PD 交函数(0)my x x=>的图象于点C ,点C 为线段PD 的中点,点C 关于直线y x =的对称点C '的坐标为()1,3.(1)直接写出点C 的坐标(____,______),求k 、m 的值:(2)求直线12y kx =+函数(0)m y x x =>图象的交点坐标;(3)直接写出不等式1(0)2m kx x x >+>的解集. 练习题1.(2021·四川成都·一模)如图,在同一平面直角坐标系中,反比例函数y =kx 与一次函数y =kx ﹣k (k 为常数,且k ≠0)的图象可能是( )A .B .C .D .2.(2021·湖北荆门·中考真题)在同一直角坐标系中,函数y kx k =−与(0)||ky k x =≠的大致图象是( )A.①②B.②③C.②④D.③④3.(2022·湖北武汉·模拟预测)如图,直线y=x+8分别交x、y轴于A、B两点,交双曲线kyx =,若CD=3(AC+BD),则k的值为()A.﹣6B.﹣7C.﹣8D.﹣94.(2021·广东·深圳市罗湖区翠园初级中学二模)将反比例函数y=4x的图象绕坐标原点O逆时针旋转30°,得到如图的新曲线A(﹣3,3,B 332,32)的直线相交于点C、D,则△OCD的面积为()A .3B .8C .3D 3325.(2018·山东青岛·中考模拟)如图,反比例函数y =kx (x <0)与一次函数y =x +4的图象交于A 、B 两点的横坐标分别为-3,-1.则关于x 的不等式kx <x +4(x <0)的解集为( )A .x <-3B .-3<x <-1C .-1<x <0D .x <-3或-1<x <06.(2021·山东临沂·一模)在平面直角坐标系xOy 中,已知一次函数0y ax b a +≠=()与反比例函数ky x=的图象交于点1A m (,)和()2,1B −−,点A 关于x 轴的对称点为点C .(1)求这两个函数的表达式. (2)直接写出关于x 的不等式kax b x+≤的解.(3)过点B 作y 轴的垂线与直线AC 交于点D ,经过点C 的直线与直线BD 交于点E ,且3045CED ︒≤∠≤︒,直接写出点E 的横坐标t 的取值范围.7.(2021·山东青岛·一模)如图,直线y 1=k 1x +b 与双曲线y 2=2k x在第一象限内交于A 、B 两点,已知A (1,m ),B (2,1).(1)分别求出直线和双曲线的解析式;(2)设点P 是线段AB 上的一个动点,过点P 作PD ⊥x 轴于点D ,E 是y 轴上一点,当△PED 的面积最大时,请直接写出此时P 点的坐标为 . 8.(2021·广东清远·二模)如图,一次函数y 1=k 1x +4与反比例函数22k y x=的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C .(1)求一次函数与反比例函数的表达式;(2)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =4:1时,求点P 的坐标;(3)点M 是y 轴上的一个动点,当△MBC 为直角三角形时,直接写出点M 的坐标.9.(2021·湖南·株洲市芦淞区教育教学研究指导中心模拟预测)如图1,点(08)(2)A B a ,、,在直线2y x b =−+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ⊥x 轴于点F ,交反比例函数图象于点E ,求E 点坐标; ②在线段AB 运动过程中,连接BC ,若△BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.10.(2021·四川·叙州区双龙镇初级中学校模拟预测)如图1,在平面直角坐标系中,直线l 1:y =kx +b (k ≠0)与双曲线()0my m x=≠交于点A (a ,4a )(a >0)和点B (﹣4,n ),连接OA ,OB ,其中17OA =(1)求双曲线和直线l 1的表达式; (2)求△AOB 的面积;(3)如图2,将直线l 1:y =kx +b 沿着y 轴向下平移得到直线l 2,且直线l 2与双曲线在第三象限内的交点为C ,若△ABC 的面积为20,求直线l 2与y 轴的交点坐标.11.(2021·山东潍坊·二模)如图,在平面直角坐标系xOy 中,函数(0)ky x x=>的图象与直线2y x =−交于点(4,)A m .(1)求k ,m 的值;(2)已知点(P n ,)(0)n n >,过点P 作平行于x 轴的直线,交直线2y x =−于点M ,过点P 作平行于y 轴的直线,交函数ky x=(0)x >的图象于点N . ①当2n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM …,结合函数的图象,直接写出n 的取值范围. 12.(2021·四川南充·一模)如图,直线y =kx +b 与x 轴交于点A ,与y 轴交于点B ,与双曲线y =ax(x <0)交于C (﹣8,1),D (﹣m ,m 2)两点.(1)求直线和双曲线的解析式;(2)比较AC 和BD 的大小,直接填空:AC BD ;(3)写出直线对应函数值大于双曲线对应函数值自变量x 的取值范围,直接填空: . 13.(2021·山东临沂·一模)如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD .(1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标. 14.(2021·广东·东莞市南开实验学校一模)如图,一次函数y=k 1x +1的图象与反比例函数22(0)k y k x=> 点的图象相交于A 、B 两点,点C 在x 轴正半轴上,点D (1,-2 ),连接OA 、OD 、DC 、AC ,四边形OACD 为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数值大于一次函数值时,x 的取值范围; (3)设点P 是直线AB 上一动点,且S △OAP =12S 菱形OACD ,求点P 的坐标.15.(2021·山东济南·三模)已知点A (0,4),将点A 先向右平移1个单位长度,再向上平移2个单位长度,对应点B 恰好落在反比例函数(0)ky k x=>的图象上.过点B 的直线l 的表达式为y =mx +n ,与反比例函数图象的另一个交点为点C ,分别交x 轴、y 轴于点D 、点E .(1)求反比例函数表达式;(2)若线段BC =2CD ,求△BOD 的面积;(3)在(2)的条件下,点P 为反比例函数图象上B 、C 之间的一点(不与B 、C 重合),PM⊥x 轴交直线l 于点M ,PN ⊥y 轴交直线l 于点N ,请分析EM •DN 是否为定值,并说明理由.16.(2021·广东阳江·一模)如图,一次函数y =kx +b (k ≠0)与反比例函数(0,0)m y m x x=≠>交于A (4,12),B (1,2),AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数值大于反比例函数值;(2)求一次函数的解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△BDP ∽△ACP ,求点P 的坐标.17.(2021·广东佛山·二模)如图,一次函数y =k 1x +b 与反比例函数y =2k x图象交于点B (﹣1,6)、点A ,且点A 的纵坐标为3.(1)填空:k 1= ,b = ;k 2= ;(2)结合图形,直接写出k 1x +b >2k x时x 的取值范围; (3)在梯形ODCA 中,AC ∥OD ,且下底DO 在x 轴上,CD ⊥x 轴于点D ,CD 和反比例函数的图象交于点M ,当梯形ODCA 的面积为12时,求此时点M 坐标.18.(2021·广东梅州·一模)已知一次函数y =kx +b 与反比例函数y =m x的图象交于A (﹣3,2)、B (1,n )两点.(1)求一次函数和反比例函数的表达式;(2)△AOB 的面积为 ;(3)直接写出不等式kx +b >m x的解 ; (4)点P 在x 的负半轴上,当△P AO 为等腰三角形时,直接写出点P 的坐标.19.(2021·江苏南通·中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”. (1)分别判断函数22,y x y x x =+=−的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=−+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC V 的面积为3时,求b 的值;(3)若函数22()y x x m =−≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.。

一次函数与反比例函数综合题附答案

一次函数与反比例函数综合题附答案
(1)当点 的横坐标逐渐增大时, 的面积将如何变化?
(2)若 与 均为等边三角形,求此反比例函数的解析式及 点的坐标.
四、应用题
22.天水市某果蔬公司组织20辆汽车装运甲、乙、丙三种水果共120吨去外地销售.按计划20辆都要装运,每辆汽车只能装运同一种水果,且必须装满,根据下表提供的信息,解答以下问题:
一、选择题一次函数与反比例函数综合题
1. 已知函数 的图象如图所示,当 时, 的取值范围是()
A. B.
C. 或 D. 或
2.如图,在矩形ABCD中,AB=4,BC=3,点P从起点B出发,
沿BC、CD逆时针方向向终点D匀速运动.设点P所走过
路程为x,则线段AP、AD与矩形的边所围成的图形面积为y,
则下列图象中能大致反映y与x函数关系的是()
27.由于连日无雨,某水库的蓄水量随着时间的增加而减少.右图是该水库的蓄水量 (万米 )与干旱持续时间 (天)之间的函数图象.
(1)求 与 之间的函数关系式;
(2)按以上规律,预计持续干旱多少天水库将全部干涸?
28.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
6.如图,已知双曲线 经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为( ,4),则△AOC的面积为()
A.12 B.9 C.6 D.4
7.如图,反比例函数 的图象经过矩形 对角线的交点 分别与 相交于点 若四边形 的面积为6,则 的值为()A.1 B.2 C. 3 D. 4
3.反比例函数 图象上有三个点 , , ,其中 ,则 , , 的大小关系是( )
A. B. C. D.
4.直线y=x+3与y轴的交点坐标是(▲)A.(0,3)B.(0,1)C.(3,0)D.(1,0)

反比例函数与一次函数的综合题(含答案)

反比例函数与一次函数的综合题(含答案)

反比例函数与一次函数的综合题例1. 已知正比例函数y kx =与反比例函数y x=3的图象都过A m (),1,求此正比例函数的解析式及另一个交点的坐标。

例2. 如图1所示,一次函数与反比例函数的图象分别是直线AB 和双曲线。

直线AB 与双曲线的一个交点为C ,CD 垂直x 轴于点D ,OD OB OA ===244。

求一次函数和反比例函数的解析式。

图1例4. 有一个Rt △ABC ,∠A=90°,∠B=60°,AC AB ==31,。

将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数y x=3的图象上,求点C 的坐标。

例3. 如图2所示,反比例函数y kx=的图象经过点()A b -3,,过点A 作AB 垂直x 轴于点B ,△AOB 的面积为3。

(1)求k 和b 的值;(2)若一次函数y ax =+1的图象经过点A ,并且与x 轴相交于点M ,求AB :OM 的值。

图2例5 如图5所示,反比例函数y x=-8与一次函数y x =-+2的图象交于A 、B 两点。

(1)求A 、B 两点的坐标;(2)求△AOB 的面积。

反比例函数与一次函数的综合题答案例1 解:因y x =3图象过A m (),1,即13=m,故m =3,即A (3,1) 将A (3,1)代入y kx =,得k =13 所以正比例函数解析式为y x =13联立方程组得y x y xx y x y ==⎧⎨⎪⎪⎩⎪⎪==⎧⎨⎩=-=-⎧⎨⎩31331311122,解得或 ∴另一交点坐标为(--31,)例2 解:由已知OD OB OA ===244,得()()()A B D 012040,、,、,--- 设一次函数解析式为y kx b =+ 点A 、B 在一次函数图象上∴,即b k b k b =--+=⎧⎨⎩=-=-⎧⎨⎪⎩⎪120121则一次函数解析式是y x =--121 点C 在一次函数图象上 当x =-4时,y=1,即C()-41, 设反比例函数解析式为y m x =,点C 在反比例函数图象上 则14=-m,得m =-4故反比例函数解析式是y x=-4例3 解:(1)∵AB ⊥BO ,A 点坐标为()-3,b∴·即·∴又∵点在双曲线上∴△S AB BO b b A y k xk AOB ==-====⨯-=-123123322323||()(2)∵点A 在直线y ax =+1上 ∴231=-+a ∴a =-33∴y x =-+331 当y=0时,x =3 所以M 点的坐标为()30, ∴::AB OM =23例4 解:本题共有4种情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数与一次函数综合(限时:45分钟)一、选择题(本大题共6道小题)1. 已知反比例函数y=-8x,下列结论:①图象必经过(-2,4);②图象在二、四象限内;③y随x的增大而增大;④当x>-1时,y>8.其中错误的结论有()A.3个B.2个C.1个D.0个2. 验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据,如下表.根据表中数据,可得y 关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y=100x B.y=x100C.y=400xD.y=x4003. 如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=mx(m≠0)的图象相交于点A(2,3),B(-6,-1),则不等式kx+b>mx的解集为()A.x<-6B.-6<x<0或x>2C.x>2D.x<-6或0<x<24. 若点A(-4,y1),B(-2,y2),C(2,y3)都在反比例函数y=-1x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y25. 如图,函数y={1x(x>0),-1 x (x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q6. 如图,正比例函数y=kx与反比例函数y=4的图象相交于A,C两点,过点A作x轴的垂线交x轴于点B,x连接BC,则△ABC的面积等于()A.8B.6C.4D.2二、填空题(本大题共4道小题)(x>0)的图7. 如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=1x(x>0)的图象上,点C在x轴的正半轴上,则平行四边形OABC的面积象上,顶点B在反比例函数y=5x是.8. 如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A的坐标为(x>0)的图象恰好经过点C,则k的值为.(-4,0),点D的坐标为(-1,4),反比例函数y=kx9. 如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4的图象的交点,过A点作AD⊥x轴于点xD,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.(x>0)的图象经过矩形OABC对角线的交点M,分别交AB,BC于点D,E,若四10. 如图,反比例函数y=kx边形ODBE的面积为12,则k的值为.三、解答题(本大题共3道小题)(k≠0)的图象过等边三角形BOC的顶点B,OC=2,点A 11. 如,在平面直角坐标系xOy中,反比例函数y=kx在反比例函数图象上,连接AC,AO.(k≠0)的表达式;(1)求反比例函数y=kx(2)若四边形ACBO的面积是3√3,求点A的坐标.12. 如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是-4,▱ABCD的图象经过点B和D,求:的面积是24.反比例函数y=kx(1)反比例函数的表达式;(2)AB所在直线的函数表达式.(k≠0)在第一象限的图象交于A(1,a)和B两点,与x 13. 如图,一次函数y=-x+3的图象与反比例函数y=kx轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.反比例函数与一次函数综合解析版(限时:45分钟)一、选择题(本大题共6道小题)1. 已知反比例函数y=-8,下列结论:①图象必经过(-2,4);②图象在二、四象限内;③y随x的增大而增大;④x当x>-1时,y>8.其中错误的结论有()A.3个B.2个C.1个D.0个【答案】B[解析]将(-2,4)代入y=-8x成立,①正确;k=-8<0,所以反比例函数的图象在二、四象限,②正确;双曲线在每一象限内y随x的增大而增大,③错误;当-1<x<0时,y>8,④错误,所以错误的结论有2个,故选B.2. 验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据,如下表.根据表中数据,可得y 关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y=100x B.y=x100C.y=400xD.y=x400【答案】A[解析]从表格中的近视眼镜的度数y(度)与镜片焦距x(米)的对应数据可以知道,它们满足xy=100,因此,y关于x的函数表达式为y=100x.故选A.3. 如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=mx(m≠0)的图象相交于点A(2,3),B(-6,-1),则不等式kx+b>mx的解集为()A.x<-6B.-6<x<0或x>2C.x>2D.x<-6或0<x<2【答案】B[解析]观察函数图象,发现:当-6<x<0或x>2时,一次函数图象在反比例函数图象的上方,∴当kx+b>mx时,x的取值范围是-6<x<0或x>2.4. 若点A(-4,y1),B(-2,y2),C(2,y3)都在反比例函数y=-1x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【答案】C[解析]由图象可知y2>y1>y3,故选C.5. 如图,函数y={1x(x >0),-1x (x <0)的图象所在坐标系的原点是 ( )A .点MB .点NC .点PD .点Q【答案】A[解析]∵函数y=1x (x>0)与y=-1x (x<0)的图象关于y 轴对称,∴直线MP 是y 轴所在直线, ∵两支曲线分别位于一、二象限, ∴直线MN 是x 轴所在直线, ∴坐标原点为M.6. 如图,正比例函数y=kx 与反比例函数y=4x 的图象相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于 ( )A .8B .6C .4D .2【答案】C[解析]设A 点的坐标为(m ,4m ),则C 点的坐标为(-m ,-4m ), ∴S △ABC =S △OAB +S △OBC =12m ×4m +12m ×|-4m |=4,故选C . 二、填空题(本大题共4道小题)7. 如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y=1x (x>0)的图象上,顶点B在反比例函数y=5x(x>0)的图象上,点C在x轴的正半轴上,则平行四边形OABC的面积是.【答案】4[解析]设A(a,b),B(a+m,b),依题意得b=1a ,b=5a+m,∴1a=5a+m,化简得m=4a.∵b=1a,∴ab=1,∴S平行四边形OABC=mb=4ab=4×1=4.8. 如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A的坐标为(-4,0),点D的坐标为(-1,4),反比例函数y=kx(x>0)的图象恰好经过点C,则k的值为.【答案】16[解析]如图,分别过点D,C作x轴的垂线,垂足为E,F,则OE=1,DE=4,OA=4,∴AE=3,AD=5,∴AB=CB=5,∴B(1,0),易得△DAE≌△CBF,可得BF=AE=3,CF=DE=4,∴C(4,4),∴k=16.9. 如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为 .【答案】8[解析]由{y =x ,y =4x,得{x =2,y =2或{x =-2,y =-2,, ∴A 的坐标为(2,2),C 的坐标为(-2,-2).∵AD ⊥x 轴于点D ,CB ⊥x 轴于点B ,∴B (-2,0),D (2,0),∴BD=4,AD=2, ∴四边形ABCD 的面积=12AD ·BD ×2=8.10. 如图,反比例函数y=kx(x>0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D ,E ,若四边形ODBE 的面积为12,则k 的值为 .【答案】4[解析]由题意得:E ,M ,D 在反比例函数图象上,则S △OCE =12|k|,S △OAD =12|k|, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k|, 又∵M 为矩形OABC 对角线的交点, ∴S 矩形OABC =4S 矩形ONMG =4|k|,∵函数图象在第一象限,∴k>0,则k2+k2+12=4k ,∴k=4. 三、解答题(本大题共3道小题)11. 如,在平面直角坐标系xOy 中,反比例函数y=kx (k ≠0)的图象过等边三角形BOC 的顶点B ,OC=2,点A 在反比例函数图象上,连接AC ,AO. (1)求反比例函数y=kx (k ≠0)的表达式;(2)若四边形ACBO 的面积是3√3,求点A 的坐标.【答案】(1) y=√3x ;(2)12,2√3.[解析] (1)作BD ⊥OC 于D ,∵△BOC 是等边三角形, ∴OB=OC=2,OD=12OC=1,∴BD=√OB 2-OD 2=√3, ∴S △OBD =12OD ·BD=√32, 又∵S △OBD =12|k|,∴|k|=√3,∵反比例函数y=k x (k ≠0)的图象在第一、三象限,∴k=√3,∴反比例函数的表达式为y=√3x . (2)∵S △OBC =12OC ·BD=12×2×√3=√3,∴S △AOC =3√3−√3=2√3. ∵S △AOC =12OC ·y A =2√3,∴y A =2√3.把y=2√3代入y=√3x,得x=12, ∴点A 的坐标为12,2√3.12. 如图,▱ABCD 中,顶点A 的坐标是(0,2),AD ∥x 轴,BC 交y 轴于点E ,顶点C 的纵坐标是-4,▱ABCD 的面积是24.反比例函数y=kx 的图象经过点B 和D ,求:(1)反比例函数的表达式; (2)AB 所在直线的函数表达式.【答案】(1) y=8x ;(2) y=3x +2.[解析] (1)∵AD ∥x 轴,AD ∥BC ,∴BC ∥x 轴. ∵顶点A 的坐标是(0,2),顶点C 的纵坐标是-4, ∴AE=6,又∵▱ABCD 的面积是24, ∴AD=BC=4, 则D (4,2), ∴k=4×2=8,∴反比例函数的表达式为y=8x .(2)由题意知B 的纵坐标为-4, ∴其横坐标为-2,则B (-2,-4). 设AB 所在直线的表达式为y=k'x +b , 将A (0,2),B (-2,-4)的坐标代入, 得:{b =2,-2k '+b =-4,解得:{k '=3,b =2,所以AB 所在直线的函数表达式为y=3x +2.13. 如图,一次函数y=-x+3的图象与反比例函数y=kx (k ≠0)在第一象限的图象交于A (1,a )和B 两点,与x 轴交于点C.(1)求反比例函数的解析式;(2)若点P 在x 轴上,且△APC 的面积为5,求点P 的坐标.【答案】(1) y=2x ;(2) (8,0)或(-2,0). [解析](1)∵A (1,a )在y=-x +3的图象上, ∴a=-1+3=2,把A (1,2)代入y=k x 中,得k=2, ∴反比例函数解析式为y=2x .(2)∵点P 在x 轴上,∴设P (m ,0), ∵S △APC =12PC ×2,∴5=12PC ×2,∴PC=5. ∵y=-x +3,当y=0时,x=3,∴C (3,0), ∴m -3=5或3-m=5,即m=8或-2, ∴点P 的坐标为(8,0)或(-2,0).。

相关文档
最新文档