7 受拉构件的截面承载力

合集下载

钢筋混凝土教学课件—第6章受压构件的截面承载力

钢筋混凝土教学课件—第6章受压构件的截面承载力
2.受压破坏形态(如下图)
N
e0
N N
e0
e0
实际重心轴
s As
f y As
s As
f y As
f y As
s As
h0
(a )
h0
( b)
h0
(c)
10
有三种情况:
(1)如上图(a)所示:相对偏心距稍大且远侧钢筋较多;
A.N较小时,远侧受拉,近侧受压;
B.破坏时,远侧钢筋受拉但不能屈服,近侧钢筋受压屈服,
B.N较小时,全截面受压(远侧和近侧钢筋均受压);
C.近侧受压程度小于远侧受压程度;
D.破坏时,近侧钢筋受压但不能屈服,远侧钢筋受压屈服,
远侧混凝土压碎; 综合(1)~(3)可知: (1)远侧钢筋均不能受拉且屈服;以混凝土受压破坏为标志,称 为“受压破坏”; (2)相对偏心距较小,称为“小偏心受压”;
1
3.本章重点:单向偏心受压构件(或简称偏心
受压构件) 二.工程应用 1.轴心受压构件:结构的中间柱(近似); 2.单向偏心受压构件:结构的边柱; 3.双向偏心受压构件:结构的角柱; 如下图所示。
2
3
围范的载恒 受承柱的应相为分部影 阴,置布面平构结架框
柱边
柱角
柱间中
§6.1 受压构件一般构造要求
17
§6.5 矩形截面偏心受压构件正截面
受压承载力基本计算公式
一.区分大、小偏心受压破坏形态的界限
由下图可知:
1.受拉破坏时,远侧钢筋先受拉屈服,然后近侧钢筋受压屈服和近
侧混凝土压坏;
2.受压破坏时,近侧钢筋受压屈服和混凝土压坏时,远侧钢筋不能 受拉屈服; 3.界限破坏时,远侧钢筋受拉屈服和近侧混凝土压坏同时发生; 4.受压区太小(如 x 2a ),远侧钢筋先屈服,然后混凝土压坏, 但近侧钢筋不能受压屈服。

建筑结构第7章 钢筋混凝土受拉构件

建筑结构第7章 钢筋混凝土受拉构件

公式适用条件:
2a s x b h0
a's h0 -a's h0 as
as
7-2 大偏心受拉构件
第7 章
钢筋混凝土受拉构件
当时 x 2a s ,令 x 2a s ,则:
Ne As ) f y (h0 as
h e eo a s 2
截面设计时,当其他条件已知,求As和A's时,可设 x=ξbh0,将
λ: 计算截面的剪跨比 λ=a/h0(a为集中荷载至支座截面或节点边缘的距
离),
nA 当 λ<1.5 时,取 λ=1.5 ;当 λ=3。 sv时,取 1 当上式右侧计算值小于 f yv λ>3 h 0 时,应取等
于 f nAsv1 h ,且 0.36 f t bh0 yv 0
s
nAsv1 f yv h0 s
本章结束
轴心受拉构件纵向受拉钢筋在截面中对称布置或沿截Байду номын сангаас周边均匀布置。
从限制裂缝宽度的角度,宜选配直径小的受拉钢筋。 轴心受拉构件一侧的受拉钢筋的配筋率应不小于0.2%和0.45ft / fy中的较
大值。
轴拉构件及小偏心受拉构件的纵向受力钢筋不得采用绑扎接头。
第7 章
钢筋混凝土受拉构件
二、 正截面承载力计算
贯通全截面的斜裂缝,使斜截面受剪承载力降低。受剪承载力的降低与轴 向拉力N近乎成正比。 《混凝土设计规范》规定矩形截面偏心受拉构件的受剪承载力 的计算公式为
nAsv1 1.75 V f t bh0 f yv h0 0.2 N 1.0 s
N: 与剪力设计值V相应的轴向拉力设计值;
第7 章
钢筋混凝土受拉构件

混凝土结构设计原理-受弯构件正截面承载力

混凝土结构设计原理-受弯构件正截面承载力

受弯构件正截面承载力计算
第一阶段:构件未开裂,弹性工作阶段。 第二阶段:带裂缝工作阶段。 第三阶段:钢筋塑流阶段。
受弯构件正截面承载力计算



阶段Ia — 抗裂计算依据; 阶段II — 变形、裂缝宽度计算依据; 阶段IIIa — 承载力计算依据。
受弯构件正截面承载力计算
二 钢筋混凝土梁正截面的破坏形式
受弯构件正截面承载力计算
钢筋的布置 Construction of reinforced bars
梁腹板高度hw>450mm时,要求在梁两侧沿高度每隔200mm设置一根纵 向构造钢筋,以减小梁腹部的裂缝宽度,直径≥10mm。
1. 为保证耐久性、防火性以及钢筋与混凝土的粘结性能,钢筋的混凝 土保护层厚度一般不小于25mm,与环境类别有关;
HRB335 钢筋 HRB400 钢筋
b s,max b s,max
最大配筋率ρmax
b max b
1 f c
fy
受弯构件正截面承载力计算
最小配筋率ρmin
最小配筋率规定了少筋和适筋的界限
min
As ft 0.45 bh fy
且同时不应小于0.2%
受弯构件正截面承载力计算
2.
3.
矩形截面梁高宽比h/b=2.0~3.5;T形截面梁高宽比h/b=2.5~4.0;
梁的高度h通常取为1/10~ 1/15梁跨,由250mm以50mm为模数增大; 梁宽为120、150、180、200、220、250、300……
受弯构件正截面承载力计算
三 受弯构件的力学特性
P
A B
M
P C D A
少筋梁:一裂即坏,裂缝很宽,脆性破坏,截面过大不经济,设计时应避免。 适筋梁:受拉钢筋屈服,混凝土达抗压极限强度,充分利用材料,作为设计依据 超筋梁:压区混凝土的压碎,受拉钢筋未屈服,脆性破坏,设计时应避免。

第6章-受拉构件的截面承载力

第6章-受拉构件的截面承载力

e' e0 e
α1 fc fy’As’
fyAs
大偏心受拉构件正截面的承载力计算
基本公式:
e' e0 e
Nu
f y As
f
' y
As'
fcbx
Nu
e
fcbx
h0
x 2
f
' y
As'
h0 as'
As'
Ne
1
f
cbxb
h0
f
' y
h0 as'
xb 2
Nu
As
1 fcbxb Nu
e e' e0
fy’As’ fyAs
小偏心受拉构件正截面的承载力计算
基本公式:
Nu
e
f
' y
As'
h0 as'
Nue' fy As h0 as
Nu
As'
As
fy
Nue ' h0 as'
e e' e0
fy’As’ fyAs
三、偏心受拉构件斜截面受剪承载力计算
计算公式:
V
1.75
fy
f
' y
fy
As'
α1 fc fy’As’
fyAs
相关截面设计和截面复核的计算与大偏心受压构件相似,
所不同的是轴向力为轴力。
小偏心受拉构件正截面的承载力计算
小偏心受拉构件破坏特点:
轴向拉力N在As与A’s之间,全截面均 受拉应力,但As一侧拉应力较大, 一侧拉应力较小。 随着拉力增加,As一侧首先开裂,Nu 但裂缝很快贯通整个截面, As与A’s 纵筋均受拉,最后,As与A’s均屈服 而达到极限承载力。

正截面承载力—受弯、受压、受拉

正截面承载力—受弯、受压、受拉

➢ 我国GBJ10-89规范取0=fcm=1.1fc;
➢ 我国DL/T5057-1996、JTJ267-98、GB50010-2002规范
取0=fc。
美国ACI 318—95、欧洲混凝土委员会模式规范
CEB —FIP 1990以及欧洲共同体委员会规范则以标
准圆柱体(150mm300mm)试件的抗压强度标准值
二、基本公式——对任意截面
1、截面的曲率 :
(a)
2、截面上的混凝土应变: 3、截面上的混凝土应力:
4、截面上的钢筋应力:
2
3
5、微元面积上混凝土压应力的合力:
dNi=ci.dAi=b(y).dy.ci(ci) 即:dNi = b(y).ci(ci).dy 6、平衡方程(b)、(c):
N 0 :
28
2、截面M-关系的计算
(a)

力钢理 、筋论 内,上 力的
(b)
的 分 布
混 凝 土 ,

弯 矩 曲 率
(c)
截 面 及 其 应
关 系 的 确 定
变 29
由上图,静力平衡条件得 :
(a) (b)
用数值计算时,沿高度把截面划分成若干条带,假 定条带上的应力是个常值,上式可近似写为:
力的影响不明显 ; 对0 大的超筋梁和小偏压柱,基本不变。
因此,有些规范把取为常数。 我国: 0=fc=0.67fcu; 美国ACI:0=/(2)=0.72/(2×0.425)fc=0.85 fc
11
❖1 关于混凝土抗压强度:
我国规范GBJl0—89、GB 50010-2002、水工混凝 土结构设计规范DL/T5057—1996、港工规范JTJ 267-98以及英国混凝土结构设计规范BS8110以标 准立方体试块(150mm×l50mm×l50mm)的抗压强 度标准值作为混凝土强度等级。

混凝土结构设计原理填空题库(带答案)全解

混凝土结构设计原理填空题库(带答案)全解

绪论1.在混凝土内配置钢筋的主要作用是提高结构或构件的承载能力和变形能力。

2.混凝土内配置钢筋的主要作用是提高结构或构件的承载能力和变形能力。

3.钢筋混凝土结构的主要缺点有:自重大、抗裂性差以及费模费工等。

第一章混凝土结构的设计方法1.混凝土结构对钢筋主要有强度、塑性、___可焊性____和与混凝土的粘结四个性能要求。

2.钢筋的冷加工包括冷拉和冷拔,其中_____冷拔_____后既可以提高抗拉强度又可以提高抗压强度。

3.有明显屈服点钢筋的主要强度指标是____屈服强度________。

4.伸长率包括断后伸长率和___断裂总伸长率__________。

5.反映钢筋塑性性能的主要指标是____断后伸长率___和冷弯性能(p9)。

6.要使配筋后的混凝土结构能够提高承载能力和变形能力,就要求:①钢筋与混凝土两者变形一致,共同受力;②钢筋的位置和数量等也必须正确。

7.混凝土的应力不变,__应变___随时间而增长的现象称为混凝土的徐变。

8.钢筋与混凝土之间的粘结,包括两类问题:①沿钢筋长度的粘结;②钢筋端部的锚固。

9.混凝土强度等级是根据___立方体抗压___强度标准值确定的。

10.结构或构件破坏前没有明显预兆的,属脆性破坏;破坏前有明显预兆的,属_延性_破坏。

11.为了保证可靠锚固,绑扎骨架中受拉光圆钢筋末端应做__半圆弯钩___。

12.钢筋的伸长率是反映其___塑性____性能的指标。

13.在钢筋长度保持不变的条件下,钢筋应力随时间增长而逐渐降低的现象称为钢筋的__应力松弛____。

14.钢筋与混凝土之间的粘结力主要由胶着力、摩擦力和__机械咬合力____三部分组成。

15.为使钢筋与混凝土变形一致、共同受力,钢筋端部要有足够的__锚固长度____。

16.过混凝土应力-应变曲线原点所作切线的斜率为混凝土的_弹性模量_____。

17.混凝土在三向受压下,不仅可提高其____抗压强度______,而且可提高其变形能力。

国开作业《混凝土结构设计原理-模拟测验》 (18)

国开作业《混凝土结构设计原理-模拟测验》 (18)

题目:1.钢筋和混凝土的强度标准值是钢筋混凝土结构按极限状态设计时采用的材料强度基本代表值。

选项A:对选项B:错答案:对题目:2.荷载设计值等于荷载标准值乘以荷载分项系数,材料强度设计值等于材料强度标准值乘以材料分项系数。

选项A:对选项B:错答案:对题目:1. 受弯构件抗裂度计算的依据是适筋梁正截面()的截面受力状态。

选项A:第I阶段末选项B:第III阶段末选项C:第II阶段末答案:第I阶段末题目:2. 受弯构件正截面极限状态承载力计算的依据是适筋梁正截面()的截面受力状态。

选项A:第II阶段末选项B:第III阶段末选项C:第I阶段末答案:第III阶段末题目:3. 钢筋混凝土梁的受拉区边缘达到()时,受拉区开始出现裂缝。

选项A:混凝土的抗拉强度设计值选项B:混凝土的抗拉强度标准值选项C:混凝土实际的抗拉强度选项D:混凝土弯曲时的极限拉应变答案:混凝土弯曲时的极限拉应变题目:1. 梁的破坏形式为受拉钢筋的屈服与受压区混凝土破坏同时发生,则这种梁称为()。

选项A:适筋梁选项B:平衡配筋梁选项C:少筋梁选项D:超筋梁答案:平衡配筋梁题目:1. 单筋矩形梁正截面承载力计算基本公式的适用条件是:()选项A:I、IV选项B:II、IV选项C:II、III选项D:I、III题目:1.钢筋混凝土受弯构件正截面承载力计算公式中考虑了受拉区混凝土的抗拉强度。

选项A:对选项B:错答案:错题目:1. 双筋矩形截面梁正截面承载力计算基本公式的第二个适用条件的物理意义是()。

选项A:保证受压钢筋屈服选项B:防止出现超筋破坏选项C:防止出现少筋破坏选项D:保证受拉钢筋屈服答案:保证受压钢筋屈服题目:1. 剪跨比不是影响集中荷载作用下无腹筋梁受剪承载力的主要因素。

选项A:对选项B:错答案:对题目:2. 无腹筋梁以及不配置箍筋和弯起钢筋的一般板类受弯构件,其斜截面受剪承载力的计算应考虑截面高度的影响。

选项A:对选项B:错答案:对题目:2. 大偏心受压情况下,轴向压力的存在会使构件的正截面承载力提高。

混凝土结构与砌体结构课后习题答案

混凝土结构与砌体结构课后习题答案

绪论一、填空题1. 建筑结构按承重结构类型不同分类,可分为砖混结构、框架结构、框架-剪力墙结构、剪力墙结构、筒体结构、排架结构。

2. 混凝土结构的优点:取材容易、用材合理、整体性好、耐久性好、耐火性好、可塑性好。

3. 建筑结构由板、梁、柱、墙、基础组成。

2)简答题1. 什么是混凝土结构?混凝土结构有哪些优缺点?答:以混凝土为主制成的结构称为混凝土结构,无筋或不配置受力钢筋的混凝土结构称为素混凝土结构;配置受力普通钢筋的混凝土结构称为钢筋混凝土结构;通过张拉或其他方法建立预加应力,配置受力的预应力筋的混凝土结构称为预应力混凝土结构。

缺点:取材容易、用材合理、整体性好、耐久性好、耐火性好、可塑性好。

缺点:自重大、抗裂性差。

2. 简单介绍本课程的学习方法。

答:(1)学习本课程,要注意其与理论力学、材料力学、结构力学的区别与联系。

(2)建筑结构构件的计算方法,绝大部分是建立在实验的基础上,,除了课堂学习以外,还要加强对实验环节的理解和掌握。

(3)课程学习中要贯彻“少而精”的原则,突出重点内容的学习,熟练掌握设计计算的基本功,切忌死记硬背。

(4)本课程所涉及的构造要求众多,要充分重视对构造要求的学习,并注意弄清其中的原理。

(5)要注意培养综合分析问题的能力。

(6)课程应与相关规范配套使用。

(7)注重实践。

模块1 建筑结构的基本设计原则一、填空题1. 结构的功能要求包括安全性、耐久性、适用性。

2. 区分结构工作状态可靠与失效的标志是“极限状态”。

3. 根据功能要求,结构的极限状态可分为承载能力极限状态、正常使用极限状态两类。

4. 结构上的荷载按其随时间的变异性的不同分为永久荷载、可变荷载、偶然荷载。

5. 永久荷载采用标准值为代表值,可变荷载采用标准值、组合值、频遇值、准永久值为代表值。

6. 荷载标准值为基本代表值。

7. 目前除少数十分重要的的结构外,一般结构均采用实用的极限状态表达式进行设计。

8. 用_失效概率_度量结构的可靠度具有明确的物理意义,能较好地反映问题的实质。

第七章 钢筋混凝土受拉构件

第七章 钢筋混凝土受拉构件
轴向力作用点至受拉钢筋A 式中 e—轴向力作用点至受拉钢筋 s合力点之间的距离; 轴向力作用点至受拉钢筋 合力点之间的距离;
e = e 0 − 0 .5 h + a ′
7.2偏心受拉构件 7.2偏心受拉构件
α1 f cbh0 e'
h0-as' e0 fyA s e as a s‘ fy'A' s
N
值为 240kN, , 混凝土强度等级 C30, , 钢筋为 HRB335。 。 求截面配筋。 求截面配筋。
f y = 300N / mm2 ,代入上式 钢筋, 代入上 【解】HRB335 钢筋,

As = N / f y = 240000 / 300 = 800mm2
As = 804mm2 。 选用 4 Φ 16, ,
7.2偏心受拉构件 偏心受拉构件
(2)矩形截面大偏心受拉构件正截面承载力计算 ) 1)基本公式 ) 根据截面内力平衡,见下图, 根据截面内力平衡,见下图,可写出如下公式
N = f y As − f y′ As′ − α1 f c bx
x N ⋅ e ≤ α1 f c bx ( h0 − ) + f y′ As′ ( h0 − a s′ ) 2
大偏心受拉构件
7.2偏心受拉构件 7.2偏心受拉构件
2)适用条件 ) 同大偏心受压构件。 同大偏心受压构件。 3)不对称配筋计算方法 ) ①截面设计;类似于大偏心受压构件。 截面设计;类似于大偏心受压构件。 ②截面校核,一般已知构件尺寸、配筋、材料强度。若再已 截面校核,一般已知构件尺寸、配筋、材料强度。 可求出x和 或再已知e 则可求出x和 。 知N可求出 和e0或再已知 0则可求出 和N。 可求出 4)对称配筋计算方法 )

(整理)大偏压与小偏压解决方案比较.

(整理)大偏压与小偏压解决方案比较.

(整理)⼤偏压与⼩偏压解决⽅案⽐较.⼤偏压与⼩偏压解决⽅案⽐较偏⼼受压构件正截⾯承载⼒计算⼀、偏⼼受压构件正截⾯的破坏特征(⼀)破坏类型1、受拉破坏:当偏⼼距较⼤,且受拉钢筋配置得不太多时,发⽣的破坏属⼤偏压破坏。

这种破坏特点是受拉区、受压区的钢筋都能达到屈服,受压区的混凝⼟也能达到极限压应变,如图7—2a 所⽰。

2、受压破坏:当偏⼼距较⼩或很⼩时,或者虽然相对偏⼼距较⼤,但此时配置了很多的受拉钢筋时,发⽣的破坏属⼩偏压破坏。

这种破坏特点是,靠近纵向⼒那⼀端的钢筋能达到屈服,混凝⼟被压碎,⽽远离纵向⼒那⼀端的钢筋不管是受拉还是受压,⼀般情况下达不到屈服。

(⼆)界限破坏及⼤⼩偏⼼受压的分界1、界限破坏在⼤偏⼼受压破坏和⼩偏⼼受压破坏之间,从理论上考虑存在⼀种“界限破坏”状态;当受拉区的受拉钢筋达到屈服时,受压区边缘混凝⼟的压应变刚好达到极限压应变值。

这种特殊状态可作为区分⼤⼩偏压的界限。

⼆者本质区别在于受拉区的钢筋是否屈服。

2、⼤⼩偏⼼受压的分界由于⼤偏⼼受压与受弯构件的适筋梁破坏特征类同,因此,也可⽤相对受压区⾼度⽐值⼤⼩来判别。

当时,截⾯属于⼤偏压;当时,截⾯属于⼩偏压;当时,截⾯处于界限状态。

⼆、偏⼼受压构件正截⾯承载⼒计算(⼀)矩形截⾯⾮对称配筋构件正截⾯承载⼒1、基本计算公式及适⽤条件:(1)⼤偏压():,(7-3),(7-4)(7-5)注意式中各符号的含义。

公式的适⽤条件:(7-6)(7-7)界限情况下的:(7-8)当截⾯尺⼨、配筋⾯积和材料强度为已知时,为定值,按式(7-8)确定。

(2)⼩偏压():(7-9)(7-10)式中根据实测结果可近似按下式计算:(7-11)注意:﹡基本公式中条件满⾜时,才能保证受压钢筋达到屈服。

当时,受压钢筋达不到屈服,其正截⾯的承载⼒按下式计算。

(7-12)为轴向压⼒作⽤点到受压纵向钢筋合⼒点的距离,计算中应计⼊偏⼼距增⼤系数。

﹡﹡矩形截⾯⾮对称配筋的⼩偏⼼受压构件,当N >f c bh时,尚应按下列公式验算:(7-13)(7-14)式中,——轴向压⼒作⽤点到受压区纵向钢筋合⼒点的距离;——纵向受压钢筋合⼒点到截⾯远边的距离;2、垂直于弯矩作⽤平⾯的受压承载⼒验算当轴向压⼒设计值N较⼤且弯矩作⽤平⾯内的偏⼼距较⼩时,若垂直于弯矩作⽤平⾯的长细⽐较⼤或边长较⼩时,则有可能由垂直于弯矩作⽤平⾯的轴⼼受压承载⼒起控制作⽤。

7.偏心受压构件的截面承载力计算20191120

7.偏心受压构件的截面承载力计算20191120
(1) M1/M2>0.9
(2)轴压比N/fcA>0.9
(3) l0 3412(M1 )
i
M2
2、两端弯矩异号时的P—δ效应
e0 N
M2=N e0 M2
M2
Nf
N
M0
N
N
M1 = -N e1 M1
e1
一般不会出现控制截面转移的情况,故不必考虑P—δ 效应。
(二) 结构有侧移偏心受压构件的二阶弯矩
a‘
xc
A
‘ s
h h0
cu
N
ηei
e‘ s
x
e
As a
b
>y
N
二、 矩形截面偏心受压
x
构件承载力计算公式 e
1.矩形截面大偏心受压 构件承载力计算公式
fyA‘ s‘ D
T=fyAs fyA‘ s‘
C =afcbx
T=fyAs
(1)计算公式
由纵向力的平衡和各力对受拉 钢筋合力点取矩,可以得到下 面两个基本计算公式:
试验表明,在“受压破
坏轴”力的一情定况时下,,随弯着矩轴越 力大的越增危加险,。构件的抗弯
能力随之减小。
但在“受拉破坏’’的
情弯况矩下一,定轴时力,的存小在偏反心 而高在受 险使。界压 ,构限,大件状轴偏的态力 心抗时越 受弯,能构大 压力越 ,提危轴 件力能越承小受越弯危矩险的能。
力达到最大值。
四、偏心受压构件的二阶效应
混凝土的极限压应变值随着偏心距的减小而减小,当为轴 心受压时,混凝土的极限压应变0.002。
构件截面的极限曲率值也是随着偏心距的减小而减小,
截面所能承受的轴向压力N则随着偏心距的减小而不断增大。 因此,《规范》取用界限状态下的承载力Nb与N的相对大小来 间接反映偏心距对极限曲率的影响,即:

(完整版)第7章受拉构件的截面承载力习题答案

(完整版)第7章受拉构件的截面承载力习题答案

第7章 受拉构件的截面承载力7.1选择题1.钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( D )。

A. 截面破坏时,受拉钢筋是否屈服;B. 截面破坏时,受压钢筋是否屈服;C. 受压一侧混凝土是否压碎;D. 纵向拉力N 的作用点的位置;2.对于钢筋混凝土偏心受拉构件,下面说法错误的是( A )。

A. 如果b ξξ>,说明是小偏心受拉破坏;B. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担;C. 大偏心构件存在混凝土受压区;D. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置;7.2判断题1. 如果b ξξ>,说明是小偏心受拉破坏。

( × )2. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担。

( ∨ )3. 大偏心构件存在混凝土受压区。

( ∨ )4. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置。

( ∨ )7.3问答题1.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同?答:(1)当N 作用在纵向钢筋s A 合力点和's A 合力点范围以外时,为大偏心受拉;当N 作用在纵向钢筋s A 合力点和's A 合力点范围之间时,为小偏心受拉;(2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。

2.大偏心受拉构件的正截面承载力计算中,b x 为什么取与受弯构件相同?答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混凝土受压破坏;又都符合平均应变的平截面假定,所以b x 取与受弯构件相同。

3.大偏心受拉构件为非对称配筋,如果计算中出现'2s a x <或出现负值,怎么处理?答:取'2s a x =,对混凝土受压区合力点(即受压钢筋合力点)取矩, )('0's y s a h f Ne A -=,bh A s 'min 'ρ=4.为什么小偏心受拉设计计算公式中,只采用弯矩受力状态,没有采用力受力状态,而在大偏心受拉设计计算公式中,既采用了力受力状态又采用弯矩受力状态建立?答:因为,大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。

轴心受拉构件正截面承载力计算公式

轴心受拉构件正截面承载力计算公式

轴心受拉构件正截面承载力计算公式一、国内常用的正截面承载力计算公式如下:1.根据构件的材料及截面形状,选择适用的公式进行计算。

a.矩形截面承载力公式截面承载力= 0.6× f_ck × A_s + 0.4× f_y × (A - A_s)其中,f_ck为混凝土强度设计值,A_s为钢筋面积,f_y为钢筋抗拉强度设计值,A为截面总面积。

b.圆形截面承载力公式截面承载力= 0.45× f_ck × A_s + 0.45× f_y × (A - A_s)其中,f_ck为混凝土强度设计值,A_s为钢筋面积,f_y为钢筋抗拉强度设计值,A为截面总面积。

2.根据截面的受力状况进行计算。

a.单轴受力情况下,任意方向上的截面承载力公式为:截面承载力=φ×A_s×f_y其中,φ为弯曲效应系数,取值为0.93.在特殊情况下,比如钢筋屈服前的截面、钢筋屈服后的截面、局部失稳等,需要按相应的规范进行计算。

二、使用公式计算正截面承载力时需要注意以下几点:1.首先要确定构件的受力状况,根据不同的情况选择适用的公式进行计算。

2. 材料参数要严格按照规范要求进行取值,包括混凝土强度设计值f_ck、钢筋抗拉强度设计值f_y等。

3.截面承载力的计算结果是一个近似值,实际工程中需要根据安全系数选取合适的截面尺寸。

4.如果构件具有多个截面,需要分别计算每个截面的承载力,并取其最小值作为构件的正截面承载力。

综上所述,正截面承载力的计算公式是根据构件的受力状况、材料参数以及截面形状等因素来确定的。

在实际设计中,需要严格按照规范要求进行计算,并根据实际工程情况进行合理的选取。

这样才能确保结构的安全可靠。

第七章受扭构件承载力计算

第七章受扭构件承载力计算

第七章 受扭构件承载力计算7.1 概述工程中的钢筋砼受扭构件有两类:● 一类是 —— 平衡扭矩:是静定结构由于荷载的直接作用所产生的扭矩,这种构件所承受的扭矩可由静力平衡条件求得,与构件的抗扭刚度无关。

如:教材图7·1a 、b 所示受檐口竖向荷载作用的挑檐梁,及受水平制动力作用的吊车梁以及平面曲梁、折线梁、螺旋楼梯等。

● 另一类是 —— 协调扭矩:是超静定结构中由于变形协调条件使截面产生的扭矩,构件所承受的扭矩与其抗扭刚度有关。

如:教材图7·2 所示现浇框架的边梁。

由于次梁在支座(边梁)处的转角产生的扭转,边梁开裂后其抗扭刚度降低,对次梁转角的约束作用减小,相应地边梁的扭矩也减小。

● 本章只讨论平衡扭转情况下的受扭构件承载力计算。

在工程结构中,直接承受扭矩、弯矩、剪力和轴向力复合作用的构件是常遇的。

但规范对弯扭、剪扭和弯剪扭构件的设计计算,是以抗弯、抗剪能力计算理论和纯扭构件的承载力计算理论为基础,采用分别计算和叠加配筋的方法进行的,故有必要先了解纯扭构件的受力性能和承载力的计算方法。

7.2 纯扭构件的受力性能7.2.1 素砼纯扭构件的受力性能素砼构件也能承受一定的扭矩。

素砼构件在扭矩T 的作用下,在构件截面中产生剪应力τ及相应的主拉应力tp σ 和主压应力cp σ(教材图7·3)。

根据微元体平衡条件可知:τστσ==cp tp ,由于砼的抗拉强度远低于它的抗压程度,因此当主拉应力达到砼的抗拉强度时,即t tp f ≥=τσ时,砼就会沿垂直于主拉应力方向裂开(教材图7·3)。

所以在纯扭矩作用下的砼构件的裂缝方向总是与构件轴线成45o的角度。

并且砼开裂时的扭矩T 也就是相当于t f =τ时的扭矩,即砼纯扭构件的受扭承载力co T 。

为了求得co T ,需要建立扭矩和剪应力之间的关系,然后根据强度条件,即砼纯扭构件的破坏条件求出受扭承载力co T 。

7.2.2 素砼纯扭构件的承载力计算(一) 、弹性分析法:用弹性分析方法计算砼纯扭构件承载力时,认为砼构件为单一匀质弹性材料。

土木专升本钢筋混凝土试题集锦

土木专升本钢筋混凝土试题集锦

1 钢筋和混凝土材料的力学性能一、选择题1.《规范》所列混凝土材料的的各种力学指标中最接近于混凝土实际构件受压特性的指标是()A.立方体抗压强度标准值B.立方体抗压强度设计值C.轴心抗压强度标准值D.轴心抗压强度设计值2.混凝土在持续不变的压力长期作用下,随时间延续而增长的变形称为()A.应力松弛B.收缩变形C.干缩D.徐变3.混凝土的弹性模量Ec常用反复加载的方法确定,反复加载的最大荷载常取混凝土试件极限荷载的()A.30%B.50%C.75%D.95%4.钢筋混凝土常用的钢筋属于()A.明显屈服点和流幅的热轧钢筋B.无明显屈服点和流幅的热轧钢筋C.消除残余应力的钢筋D.提高了屈服点的冷加工钢筋5.混凝土处于三向应力作用下,当()A.横向受拉,纵向受压,可提高抗压强度B.横向受拉,纵向受拉,可提高抗压强度C.三向受压会降低抗压强度D.三向受压会提高抗压强度6.高碳钢筋采用条件屈服强度,以0.2表示,即:()A.取极限强度的20%B.取应变的0.002时的应力C.取应变为0.2时的应力D.取残余应变为0.002时的应力7.钢筋混凝土结构对钢筋性能的要求不包括()A.强度B.塑性C.与混凝土的粘结力D.耐久性8.当截面上同时作用有剪应力和正应力时()A.剪应力降低了混凝土的抗拉的强度,但提高了其抗压强度B.剪应力提高了混凝土的抗拉强度和抗压强度C.不太高的压应力可提高混凝土的抗剪强度D.不太高的拉应力可提高混凝土的抗剪强度二、判断题1.高强度钢筋的极限拉伸应变比低强度钢筋大2.钢筋经冷拉时效后可以提高其屈服强度,塑性隆低3.水灰比越大,混凝土的徐变和收缩也越大4.一般情况下,梁上部钢筋的粘结强度高于其下部钢筋5.混凝土双向受压时强度低于单向受压时强度6.混凝土受拉时的弹性模量与受压时相同7.用直接拉伸试验和劈裂试验所得到的混凝土抗拉强度相同8.混凝土收缩、徐变与时间有关,且互相影响三、填空题1.混凝土在长期不变荷载作用下将产生变形,混凝土随水蒸发将产生变形。

混凝土结构设计原理智慧树知到答案章节测试2023年西安理工大学

混凝土结构设计原理智慧树知到答案章节测试2023年西安理工大学

第一章测试1.()是钢筋混凝土的一大优点。

A:自重轻B:耐火性好C:施工不用模板D:永不开裂答案:B2.混凝土是一种()能力比较强的建筑材料。

A:抗裂B:抗弯C:抗压D:抗拉答案:C3.一般说来,钢筋混凝土中以钢筋()比较经济合理。

A:即承拉又承压B:不承力C:承担压力D:承担拉力答案:D4.混凝土的抗拉,抗压强度均很高。

()A:错B:对答案:A5.用钢筋来帮助混凝土抗压是很经济的。

()A:错B:对答案:A第二章测试1.要求钢筋在混凝土中的锚固长度越长()。

A:钢筋越细B:钢筋直径越大C:钢筋强度越低D:混凝土强度越高答案:B2.采用非标准试块时,换算分数为()。

A:边长为100mm立方块的抗压强度取1.05B:边长为100mm立方块的抗压强度取0.95,若劈拉强度时取0.8 C:采用边长200mm立方块的抗压强度取0.98D:边长100mm立方块壁拉强度取0.90答案:A3.混凝土强度等级c表示在标准条件下测得的混凝土()。

A:立方体抗压强度B:抗拉强度C:轴心抗压强度D:弯曲抗压强度答案:A4.混凝土双向受力时,何种情况下强度降低()。

A:两向受拉B:两向受压C:一向受拉一向受压D:abc均不对答案:C5.钢筋冷拉后,其()。

A:抗压强度提高了B:塑性提高了C:极限强度提高了D:屈服极限提高了答案:D6.混凝土的极限压变大致为()。

A:B:C:D:答案:D7.混凝土强度等级越高,则曲线的下降段()。

A:越陡峭B:变化不大C:abc说法均不对D:越平缓答案:A8.对没有明显屈服点的钢筋,其条件屈服点是指()。

A:极限强度的20%B:使钢筋残余应变为0.2%的卸载起点应力C:钢筋应变为0.2%时的应力D:钢筋残余应变为0.2%,与曲线垂直相交点处的应力答案:B9.在混凝土的四种强度fcu、fc、ft中,()是直接测出的,其余的为折算出的强度指标。

A:ftB:fcu、fcC:fcu、fc、ftD:fc答案:C10.混凝土的棱柱体抗压强度低于立方体强度。

受拉构件的承载力计算—轴心受拉构件

受拉构件的承载力计算—轴心受拉构件

E'c=0.5Ec
c= ftk,
又 s E c
s = 2Eftk
故开裂轴力:
Ncr = Ac ftk + 2Eftk As
(3)混凝土开裂后: 混凝土退出工作,应力全部由钢筋承担,钢筋应力急剧增加。 配筋率增大,裂缝间距减小,最大裂缝宽度减小,反之亦然, 当然裂缝间距及裂缝宽度也和钢筋直径有关。
(4)破坏阶段: 受拉钢筋屈服,整个截面裂缝全部裂通。
Nu= fyAs
2.轴心受拉构件承载力计算
N Nu= fyAs
N ––– 轴向拉力的设计值; N u ––– 轴向受拉构件的极限承载力; As ––– 纵向受拉钢筋截面面积; fy ––– 钢筋抗拉设计强度值. 注意 : 轴心受拉构件的钢筋用量并不是由强度要求确定的, 裂缝宽度验算对纵筋用量起决定作用。
轴心受拉构件正截面承载力计算 (建筑规范)
1.轴心受拉构件受力特点
(1)混凝土开裂前:
N Ncr
•钢筋与混凝土共同承担拉力
cftk
s = c c = Ec c s = Es s
sAs
2Eftk
s
Es Ec
c
E c
其时: •混凝土应力等于其开裂强度,并且进入了塑性发展阶段, 其变形模量降低为:

轴心受力构件的截面承载力计算

轴心受力构件的截面承载力计算
l0/b=35~50
l0/b=8~34
l0与构件两端支承条件有关:
两端铰支 l0= l,
两端固支 l0=0.5 l
一端固支一端铰支 l0=0.7 l
一端固支一端自由 l0=2 l
《规范》采用的ψ值根据长细比l0/b查表3-1
01
03
02
04
05
06
长细比l0/b的取值
实际结构中的端部支承条件并不好确定,《规范对排架柱、框架柱的计算长度做出了具体规定。
当柱截面短边大于400mm、且各边纵筋配置根数超过多于3根时,或当柱截面短边不大于400mm,但各边纵筋配置根数超过多于4根时,应设置复合箍筋。
对截面形状复杂的柱,不得采用具有内折角的箍筋 ?
1
2
3
4
5
四、箍 筋
内折角不应采用
内折角不应采用
复杂截面的箍筋形式
钢筋混凝土构件由两种材料组成,其中混凝土是非匀质材料,钢筋可不对称布置,故对钢筋混凝土构件,只有均匀受压(或受拉)的内合力与纵向外力在同一直线时为轴心受力,其余情况下均为偏心受力。在工程中,严格意义上轴心受压不存在,所谓的轴压构件或多或少的都存在偏心。
从经济、施工及受力性能方面考虑(施工布筋过多会影响混凝土的浇筑质量;配筋率过大易产生粘结裂缝,突然卸荷时混凝土易拉裂),全部纵筋配筋率不宜超过5%。全部纵向钢筋的配筋率按r =(A's+As)/A计算,一侧受压钢筋的配筋率按r '=A's/A计算,其中A为构件全截面面积。
三、纵向钢筋
1
柱中纵向受力钢筋的的直径d不宜小于12mm,且选配钢筋时宜根数少而粗,但对矩形截面根数不得少于4根,圆形截面根数不宜少于8根,不得少于6根,且应沿周边均匀布置。

受压构件正截面承载力典型算例(1)

受压构件正截面承载力典型算例(1)

= 5724.35kN 按公式(5­5)计算
N u普 = 0.9j( f c A + f y¢As¢ ) = 0.9 ´ 0.928 ´ (14.3 ´196250 + 300 ´ 6872) = 4065.73kN
N u螺 = 5724.35 > Nu普=4065.73 N u螺 / N u普 = 5724.35 / 4065.73 = 1.4 < 1.5
=
40 mm,选用
C40
混凝土和
HRB400
级钢筋,柱的计算长度为
4.5m。
求该柱的截面配筋 As 和As' 。
【解】本例题属于截面设计类
(1)确定基本参数
C40
混凝土
fc
= 19.1N/mm2;HRB400
钢筋
fy
=
f
' y
= 360 N/mm2;a1
= 1.0 ,ξb=0.52
h0 = h - as = 600 - 40 = 560 mm
(1)确定基本参数
C20 混凝土
fc
= 9.6 N/mm2;HRB335
级钢筋
fy
=
f
' y
= 300 N/mm2;a1
= 1.0 ,ξb=0.55
一类环境,c=30mm,取 as
=
a
' s
= 40 mm, h0
=
h - as
=
400 - 40
= 360 mm
(2)大小偏压的判别
e0
=M N
159 ´ 10 6 =N300 ´ 0 3h =1+
1
çæ l0
2
÷ö z

第六章轴向受力构件-受拉构件承载力计算3

第六章轴向受力构件-受拉构件承载力计算3
在工程中,有不少构件同时承受轴向拉力、弯矩和 剪力的作用。轴向力N不仅对正截面承载力有影响,也 对斜截面受剪承载力有影响。在偏心受拉构件的受剪承 载力计算中,必须考虑轴向力的作用。
6.5.3 偏心受拉构件斜截面承载力计算
轴向拉力使斜裂缝裂得更宽,加大了斜裂缝剪承载力降低。
6.5.1 轴心受拉构件
6.5.1.3 算例
[ 例 1] 已 知 某 钢 筋 混 凝 土 屋 架 下 弦 , 截 面 尺 寸
b×h=200mm×150mm , 承 受 的 轴 心 拉 力 设 计 值
N=234kN,混凝土强度等级 C30,钢筋为 HRB335。
求截面配筋。
[解]查表可知: f y 300 N mm 2 ,代入轴心受拉计算公式 得
时,仍应按 300
N mm 2
取用”的要求,取
f
' y

fy
300
N
mm 2
h
400
e 2 e0 as 2 114 40 46mm ;
e'

h 2

e0
as'

400 2
114 40

274mm
6.5.4 算例
代入计算公式得:
As'

Ne f y (h0 as' )
6.5.2 偏心受拉构件正截面承载力计算
6.5.2.3 矩形截面偏心受拉构件正截面承载力计算公式 对小偏拉,应验算: As minbh , As minbh 应注意,对钢筋混凝土小偏心受拉构件,当 fy 大于 300N/mm2 时,取 300N/mm2。
6.5.2 偏心受拉构件正截面承载力计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、钢筋混凝土受拉构件的应用 存在的问题: 1. 不能充分利用材料的强度; 2. 在较小的拉力作用下就会开裂, 并且裂缝宽度将随着力的增加而加大 承受较大拉力的构件常被做成钢构件 一般钢筋混凝土受拉构件,除了强度计算外, 还需要进一步作抗裂度或裂缝宽度的验算 构造要求: 轴心受拉构件: 正方形、矩形或其他对称截面, 纵向钢筋在截面中对称布置或沿 周边均匀布置 偏心受拉构件: 矩形,长边宜和弯矩作用平面 平行,纵向钢筋布置在短边上
1 c
y
s
1 c
0
′ ′ 令x=2as (b)x < 2 as
(c)x > xb = ξ b h0 增大截面尺寸,重新设计
N u e′ As = ′) f y (h0 − as
s
As
截面复核 已知:截面尺寸、材料强度、轴向拉力设计值和 弯矩设计值和钢筋的面积,复核截面承载力。 对偏心力作用点取矩 1)
e′
e0
e
f y As
Nu
e0
Nu
f y′ A s′
f y As
二、大偏心受拉构件正截面承载力计算 1.基本公式 力的平衡
α 1 fc
Nu = f y As − α1 fcbx − f y' As'
f y′ A s′
α1 fcbx
力矩的平衡 x ′) Nue = α1 fcbx h0 − + f y′As′ ( h0 − as 2 h h ′ e = e0 − + as e′ = e0 + − as 2 2 2.适用条件 (1)保证受拉钢筋先屈服
第七章
受拉构件的截面 承载力
主要内容:
受拉构件的分类 轴心受拉构件的正截面承载力计算 偏心受拉构件正截面承载力计算
7. 1
一、基本概念
概述
受拉构件--承受纵向拉力的构件。 轴心受拉构件 纵向拉力作用线与构 件截面形心轴线重合 偏心受拉构件 纵向拉力作用线偏离构件截面形心 轴线,或构件上既作用有拉力又作 用有弯矩
f y′ A s′
α1 fcbx
e′
e0
e
f y As
Nu = f y As − α1 fcbx − f A
' y
' s
Nu
x ′) N u e = α1 f c bx h0 − + f y′ As′ ( h0 − as 2
三个未知数
取(As +As′)最小
x = xb = ξ b h0
' s
m 一类环境,C=25mm, as =a =c+d /2=25+20/2=35m ft 1.43 ρmin = 0.45 = 0.45× = 0.215% > 0.2% fy 300 (2)判断偏心类型 M 60.5 ×106 h 450 ) e0 = = = 90 ( mm < − as = − 35 = 190mm 3 N 672 ×10 2 2 故为小偏心受拉
Nue′ = f y As ( h0 − as )
e′
e0
h e = − e0 − as 2
Nu
e
b
A s′ ′ as
f y As
对称配筋: As = As′ =
h ′ e′ = e0 + − as 2
N u e′ ′) f y ( h0 − as
′ h0 h0
h
As
as
f y′ A s′
2. 适用条件
e0 ≤ h / 2 − as
满足最小配筋率:
e′
e0
Nu
e
b
A s′
f y As
ft ′ (%):取0.2和0.45 的大值 ρ min、ρ min fy
′ as
′ h0 h0
h
As
as
例题
1. 某偏心受拉构件,处于一类环境,截面尺寸
bh=300mm×450mm,承受轴向拉力设计值N=672kN,弯矩 设计值M=60.5kN·m,采用C30混凝土和HRB335级钢筋。 试进行配筋计算。 解: (1)基本参数 C30混凝土 f c = 14.5MPa, ft = 1.43MPa HRB335级钢筋 f y = 300 MPa ξb = 0.55.
(3)计算力臂
f y′ A s′
e′
e0
h e′ = e0 + − as = 280mm h 2 e = − e0 − as = 100mm 2 As′ (4)求 As、
Nu
e
f y As
Ne′ 672000 × 280 As = = = 1650mm2 > ρminbh0 = 290.3mm2 ′ ) 300 × (415 − 35) f y (h0 − as Ne 67200×100 2 As′ = = = 589.5mm2 > ρ min bh0 = 290.3mm ′ ) 300×(415 − 35) f y (h0 − as
Nu
e′
e0
e
f y As
Nu
Nu
4) x
′) N u e′ = As f y (h0 − as
′ 令x=2as < 2as ′
Nu
三、小偏心受拉构件正截面承载力计算 三、小偏心受拉构件正截面承载力计算 1. 基本公式 力矩的平衡
f y′ A s′
′) Nue = f y′As′ ( h0 − as

min
bh0 = 0.215% × 300 × 365 = 235.425mm
28(As = 1874mm 2)
2
配置3
作 P.172. 6.1

′ ≤ x ≤ xb = ξ b h0 2)2 a s Nu = f y As −α1 fcbx − f y' As' 3)x > xb = ξ b h0 令x = xb = ξb h0
Nu = f y As − α1 fcbx − f A
' y ' s
x
α 1 fc
f y′ A s′
α1 fcbx
α 1 fc
3) 解算
As
f y′ A s′
α1 fcbx
′≥ (a)As
N u = f y As − α1 f c bx − f A ' N u + α1 f c bx f y
' y ' s源自′ bh ρ min x = ξb h0
As =
e′
e0
e
f y As
Nu
fy
+
fy
As'
′ bh 令:As ′ = ρ min ′ bh (b)As′ < ρ min
(3)配筋计算
x = ξb h0 = 200.8mm
Ne − f c bx(h0 − 0.5 x) ' As = f y' ( h0 − a ' )
h e = e0 − − as = 35mm 2
e′
e0
α 1 fc
f y′ A s′
α1 fcbx
e
f y As
Nu
450 ×103 × 35 −14.3× 300 × 200.8× (365 − 0.5 × 200.8) = <0 300 × (365 − 35) 按构造要求配置
e′
e0
e
f y As
Nu
′ as
b
x
A s′
x < xb = ξb h0
′ x ≥ 2 as
h0 h
as
As
(2)保证受压钢筋也屈服
3.
设计计算方法 截面设计(两种情况) (1)已知:截面尺寸、材料强度、轴向拉力设计 值和弯矩设计值,计算所需钢筋面积。
α 1 fc
方 法: 1)截面类型判别 e0 > h / 2 − as 大偏心受拉 ′ 2) 解算 A s
x ′) N u e = α1 f c bx h0 − + f y′ As′ ( h0 − as 2
ξb Ne − α1 fcbξ h h0 − 2 ′ As = ′) f y′ ( h0 − as
2 b 0
′ bh 要求:As′ ≥ ρ min ′ =0.2% ρ min
x ′) Nu e = α1 f cbx h0 − + f y′ As′ ( h0 − as x 2 ' ' ′ Nu = f y As − α1 f cbx − f y As 若:x ≥ 2as
As
α 1 fc
′ 令x=2as ′ 若:x < 2as
以受压钢筋合 力作用点取矩
f y′ A s′
配筋率: 纵向钢筋配筋率都应满足最小配筋 率的要求。一侧受拉钢筋应满足最 小配筋的大值 ft ρ min = 0.45 fy
ρ min = 0.2%
箍筋: 都应配置箍筋。
7. 2
轴心受拉构件正截面承载力计算
一. 受力破坏特点 开裂以前:混凝土与钢筋共同承担拉力 开裂以后: 开裂截面混凝土退出工作,全部拉力由 钢筋承担 破坏时: 整个截面全部裂通,受拉钢筋屈服, 达到极限状态 二. 轴心受拉构件正截面承载力计算 构件破坏时,全部 拉力由钢筋承担
A =ρ
' s
' min
bh0 = 0.2% × 300 × 365 = 219mm
' s 2
2
配置2
14 ( A = 308mm )
x ′) Nu e = α1 fcbx h0 − + f y′As′ ( h0 − as 2 Ne − f y' As' (h0 − as' ) αs = <0 2 f c bh0
相关文档
最新文档